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Introduction

Consider the biggest problem of modern physics:

the Cosmological Constant Problem (CCP).

The ‘biggest’ problem for, at least, two reasons:

1. magnitude of the problem: |Λtheo|/|Λexp| ≥ 1042,

2. size of the problem: the Universe.

The main Cosmological Constant Problem (CCP1) can be phrased as
follows (see, e.g., [1] for a review):

why does the zero-point energy of the vacuum not produce naturally
a large cosmological constant Λ in the Einstein field equations?

—————————————————————————————————
[1] S. Weinberg, RMP 61, 1 (1989).
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Introduction

Indeed, it is known that QCD involves a vacuum energy density
(e.g., gluon condensate or bag constant) of order

|ǫQCD| ∼ (100 MeV)4 ∼ 1032 eV4 .

Moreover, this energy density can be expected to change as the
temperature T of the Universe drops,

ǫQCD = ǫQCD(T ) .

How can it, then, be that the Universe ends up with a vacuum energy
density certainly less than

|ǫpresent| < 10−28 g cm−3 ∼ 10−10 eV4 ?

Here, there are 42 orders of magnitude to explain!
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Introduction

Even more CCPs after the discovery of the “accelerating Universe” :

CCP1 – why |Λ| ≪ (EQCD)4 ≪ (Eelectroweak)
4 ≪ (EUV)4 ?

CCP2a – why Λ 6= 0 ?

CCP2b – why Λ ∼ ρmatter
∣∣
present ∼ 10−11 eV4 ?

Hundreds of papers have been published on CCP2, but, most likely,
CCP1 needs to be solved first before CCP2 can even be addressed.
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Introduction
Here, a brief review of a particular approach to CCP1, which goes
under the name of q–theory [2,3].

Then, turn to CCP2, describe a possible mechanism, and discuss a
hint for new TeV–scale physics [4,5].

Outline talk:

A1. Basics of q–theory

B1. Coup d’envoi

B2. Electroweak kick

B3. Effective Λ and Eew

B4. Recap mechanism

—————————————————————————————————
[2] F.R. Klinkhamer & G.E. Volovik, PRD 77, 085015 (2008), arXiv:0711.3170.

[3] F.R. Klinkhamer & G.E. Volovik, JETPL 91, 259 (2010), arXiv:0907.4887.
[4] F.R. Klinkhamer and G.E. Volovik, PRD 80, 083001 (2009), arXiv:0905.1919.
[5] F.R. Klinkhamer, arXiv:1001.1939v7.
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A1. Basics of q–theory

Crucial insight [2]: there is vacuum energy and vacuum energy.

More specifically and introducing an appropriate notation:

the vacuum energy density ǫ appearing in the action need not be the
same as the vacuum energy density ρV in the Einstein field equations.

How can this happen concretely . . .
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A1. Basics of q–theory

Consider the full quantum vacuum to be a self-sustained medium
(as is a droplet of water in free fall).

That medium would be characterized by some conserved charge .

Then, consider macroscopic equations of this conserved microscopic
variable (later called q), whose precise nature need not be known.

An analogy: the mass density in liquids, which describes a microscopic
quantity – the number density of atoms – but obeys the macroscopic
equations of hydrodynamics, because of particle-number conservation.

However, is the quantum vacuum just like a normal fluid?
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A1. Basics of q–theory

No, as the vacuum is known to be Lorentz invariant
(cf. experimental limits at the 10−15 level in the photon sector [6–8]).

The Lorentz invariance of the vacuum rules out the standard type of
charge density which arises from the time component j0 of a
conserved vector current jµ.

Needed is a new type of relativistic conserved charge , called the
vacuum variable q.

In other words, look for a relativistic generalization (q) of the number
density (n) which characterizes the known material fluids.

—————————————————————————————————
[6] A. Kostelecký and M. Mewes, PRD 66, 056005 (2002), arXiv:hep-ph/0205211.

[7] F.R. Klinkhamer and M. Risse, PRD 77, 117901 (2008), arXiv:0709.2502

[8] F.R. Klinkhamer and M. Schreck, PRD 78, 085026 (2008), arXiv:0809.3217.
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A1. Basics of q–theory

With such a variable q(x), the vacuum energy density of the effective
action can be a generic function

ǫ = ǫ(q) , (1)

which may include a constant term due to the zero-point energies of
the fields of the Standard Model (SM), ǫ(q) = Λbare + ǫvar(q).

From 1© thermodynamics and 2© Lorentz invariance, it then follows that

PV
1©
= −

(
ǫ− q

d ǫ

d q

)
2©
= −ρV , (2)

with the first equality corresponding to an integrated form of the
Gibbs–Duhem equation (for chemical potential µ ≡ dǫ/dq).

Recall GD-eq: N dµ = V dP − S dT ⇒ dP = (N/V ) dµ for dT = 0.
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A1. Basics of q–theory

Both terms entering ρV from (2) can be of order (EUV)4, but they
can cancel exactly for an appropriate value q0 of the vacuum variable q.

Hence, for a generic function ǫ(q),

∃ q0 : Λ ≡ ρV =
[
ǫ(q) − q

d ǫ(q)

d q

]

q=q0

= 0 , (3)

with constant vacuum variable q0 [a similar constant variable is known
to play a role for the Larkin–Pikin effect (1969) in solid-state physics].

Great, CCP1 solved, in principle . . .

But, is a relativistic vacuum variable q possible at all?

Yes, there exist several theories which contain such a q (see later).
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A1. Basics of q–theory

To summarize, the q–theory approach to the main Cosmological
Constant Problem (CCP1) provides a solution.

For the moment, this is only a possible solution, because it is not
known for sure that the “beyond-the-Standard-Model” physics does
have an appropriate q–type variable.

Still, better to have one possible solution than none.

(Two remarks in Appendix A.)
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B1. Coup d’envoi

Now, the remaining puzzles:

CCP2a – why Λ 6= 0 ?

CCP2b – why Λ ∼ ρmatter
∣∣
now ∼ 10−29 g cm−3 ∼ 10−11 eV4 ?

CCP2b also goes under the name of ‘cosmic coincidence puzzle’ (ccp).

Here, consider a possible realization of q operative at an UV (Planck)
energy scale.

In the very early Universe, the vacuum energy density ρV (t) rapidly
drops to zero and stays there, but small effects are found to occur at
cosmic temperatures T of the order of the TeV scale . . .
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B2. Electroweak kick
Explicit realization of vacuum variable q via a 3–form gauge field A [9,10].

Effective action of GR+SM,

Seff[g, ψ] =

∫

R4

d4x
√

− det g
(
KN R[g] + ΛSM + Leff

SM[ψ, g]
)
, (4)

with KN ≡ 1/(16πGN ) and ~ = c = 1, is replaced by [3]

S̃eff[A, g, ψ] =

∫

R4

d4x
√
− det g

(
K(q)R[g] + ǫ̃(q) + Leff

SM[ψ, g]
)
, (5a)

q2 ≡ −
1

24
Fαβγδ F

αβγδ . (5b)

Fαβγδ = ∇[αAβγδ] , (5c)

—————————————————————————————————
[9] M.J. Duff and P. van Nieuwenhuizen, PLB 94, 179 (1980).

[10] A. Aurilia, H. Nicolai, and P.K. Townsend, NPB 176, 509 (1980).
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B2. Electroweak kick

Then, variational principle produces generalized Einstein equations
with a vacuum energy density term

ρV = ǫ̃− q
d ǫ̃

d q
, (6)

which is precisely of the Gibbs–Duhem form (2). Technically, the extra
term on the RHS of (6) appears because of the fact that q = q(A, g).

Specifically, the generalized Einstein and Maxwell equations give:

2K(q)
(
Rαβ − gαβ R/2

)
= −2

(
∇α∇β − gαβ �

)
K(q)

+ρV (q) gαβ − TM
αβ , (7a)

dρV (q)

dq
+R

dK(q)

dq
= 0 . (7b)

Eqs. (6)–(7) are generic, i.e., independent of scale and dimension of q.
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B2. Electroweak kick

Consider flat FRW universe with two types of matter, massive (‘type 1’)
and massless (‘type 2’) particles. Resulting ODEs:

6

(
H
dK

dq

dq

dt
+KH2

)
= ρV + ρM1 + ρM2 , (8a)

6
dK

dq

(
dH

dt
+ 2H2

)
=

dρV

dq
, (8b)

dρM1

dt
+

[
4 − κM1(t/tew)

]
H ρM1 = 0 , (8c)

dρM2

dt
+ 4H ρM2 = 0 , (8d)

with prescribed equation-of-state (EOS) function κM1(x) peaking at x = 1.
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B2. Electroweak kick

Analytically, it has been shown [4] that there exists a solution which

• starts from a standard radiation-dominated FRW universe with ρV = 0,

• is perturbed around t = tew ∼ EPlanck/(Eew)2 with ρV 6= 0,

• resumes the standard radiation-dominated expansion with ρV = 0.

Specifically, the vacuum energy density for t ∼ tew is given by

ρV (t) ∼ κ2
M1(t)H(t)4 , (9)

which has a peak value of order (tew)−4 ∼
(
(Eew)2 /EPlanck

)4

but vanishes as t→ ∞.

⇒ standard (nondissipative) dynamic equations of q–theory do not
produce a constant ρV, remnant > 0 from the electroweak kick.
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B3. Effective Λ and Eew

As argued in [4], quantum-dissipative effects of the vacuum energy
density may lead to a finite remnant value of order

Λ ≡ ρV, remnant ∼
(
(Eew)2 /EPlanck

)4
∼ (10−3 eV)4 , (10)

for Eew ∼ 1 TeV and EPlanck ∼ 1015 TeV. In fact, expression (10) was
already suggested by Arkani-Hamed, Hall, Kolda, and Murayama [11].

In [5], it was then shown that it is possible to modify the “classical”
q–theory equations (8) in such a way as to recover (10).

This approach is in the spirit of Kepler rather than Newton.

Details of these ODEs and their numerical solution in Appendix B.
Now, focus on the physics implications.

—————————————————————————————————
[11] N. Arkani-Hamed et al., PRL 85, 4434 (2000), arXiv:astro-ph/0005111.
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B3. Effective Λ and Eew

Theoretical value of the effective cosmological constant given by

Λtheory ≡ lim
t→∞

ρtheory
V (t) = rnum

V (Eew)8 /(EPlanck)
4 , (11)

with a number rnum
V ≡ rV (τfreeze) from the solution of the ODEs.

Equating this to the experimental value Λexp ≈ (2 meV)4 gives

Eew =

(
Λexp

rnum
V

)1/8

(EPlanck)
1/2 ≈ 3.8 TeV

(
0.013

rnum
V

)1/8

. (12)

Analytic bound: rnum
V . 1 ⇒ Eew & 2 TeV.

Numerical results for rnum
V give Eew estimates of Table 1.
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B3. Effective Λ and Eew

Table 1: Preliminary estimates [5] of the energy scale Eew for hierarchy parameter ξ ≫ 1.
Both massive type–1 and massless type–2 particles are assumed to have been in thermal
equilibrium before the “kick” and the number of type–2 particles is taken as Neff,2 = 102.
Left: prescribed kick with type–1 particles of equal mass M = Eew and, for fixed coupling
constant ζ = 2, Eew shown as a function of the number of degrees of freedom Neff,1.
Right: dynamic kick with case–A type–1 mass spectrum (N1a, M1a ; N1b, M1b) =

(40, 2 × Eew; 60, 1/3 × Eew) and Eew = 〈M1i〉 shown as a function of ζ.

ζ Neff,1 Eew [TeV]

2 1 8.5

2 101 4.9

2 102 3.2

2 103 2.8

2 104 2.7

ζ Neff,1 Eew [TeV]

0.2 102 14.8

2 102 3.8

20 102 5.6
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B4. Recap mechanism

� Presence of massive particles with electroweak interactions
[ average mass < M > = Eew ∼ TeV ] changes the expansion rate
H(t) of the Universe compared to the radiation-dominated case.

� Change of the expansion rate kicks ρV (t) away from zero.

� Quantum-dissipative effects operating at cosmic time tew set by
Eew may result in a finite remnant value of ρV .

� Phenomenological description of this process follows from a
modification of the classical q–theory cosmological equations.

� Required Eew value ranges from 3 to 15 TeV, depending on the
effective number of new particles and assuming the dissipative
coupling constant to be of order 1.
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Conclusion

CCP1: self-adjustment of a particular type of vacuum variable q can
give ρV (q0) = 0 in the equilibrium state q = q0.

CCP2: finite remnant value of ρV (t) may result from quantum-dissipative
effects operating at a cosmic time tew set by the scale Eew ∼ TeV
of massive particles with M ∼ Eew and electroweak interactions.

Hint: required Eew value ranges from 3 to 15 TeV, which, if correct,
implies new TeV–scale physics beyond the SM.
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Appendix A: Two remarks

Two remarks [3]:

1. The adjustment-type solution (3) of the CCP1 circumvents
Weinberg’s no–go theorem [1].

Crux: q is a non-fundamental scalar field (cf. theory of Sec. B2).

2. Next question is how the Universe got the right value q0?

Possible answer via a generalization of q–theory, for which the
correct value q0 arises dynamically (cf. brief summary below).
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Appendix A: Two remarks

Realization of vacuum variable q via an aether-type velocity field uβ [12,13],
setting EUV = EPlanck. For a flat FRW metric with cosmic time t, there is
an asymptotic solution for uβ = (u0, ub) and Hubble parameter H(t):

u0(t) → q0 t , ub(t) = 0 , H(t) → 1/t . (A.1)

Define v ≡ u0/EPlanck, τ ≡ t EPlanck, h ≡ H/EPlanck, and λ ≡ Λ/(EPlanck)
4.

Then, the field equations are [12]:

v̈ + 3h v̇ − 3h2 v = 0 , (A.2a)

2λ− (v̇)2 − 3 (h v)2 = 6h2 , (A.2b)

with the overdot standing for differentiation with respect to τ .
Starting from a de-Sitter universe with λ > 0, there is a unique value of
q̂0 ≡ q0/(EPlanck)

2 to end up with a static Minkowski spacetime, q̂0 =
√
λ/2.

—————————————————————————————————
[12] A.D. Dolgov, PRD 55, 5881 (1997), arXiv:astro-ph/9608175.

[13] T. Jacobson, PoS QG-PH, 020 (2007), arXiv:0801.1547.
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Appendix A: Two remarks

Fig. A1: Four numerical solutions of ODEs (A.2ab) for λ = 2 and boundary conditions
v(1) = 1 ± 0.25 and v̇(1) = ±1.25, with dashed curves for negative v̇(1).

⇒ required Minkowski value q̂0 =
√
λ/2 = 1 arises dynamically

[see left panel].

⇒ Minkowski spacetime is an attractor.
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Appendix B: Model universe

Model universe with three components (see Appendix A of [5]):

0. Vacuum variable q entering the gravitational coupling K(q).

1. Massive ‘type 1’ particles (subspecies i = a, b, c, . . .) with masses
Mi of order Eew ∼ 1 TeV and electroweak interactions.

2. Massless ‘type 2’ particles with electroweak interactions.

Now, proceed as follows:

� Consider a flat FRW universe with Hubble parameter H(t).

� Allow for energy exchange between the two matter components,
so that total type–1 energy density peaks around tew ≡ EPlanck/(Eew)2.

� Get function κM1i(t) from EOS parameter wM1i(t), with
κM1i(t) ∼ 0 for t≪ tew in the ultrarelativistic regime.

� Introduce a dissipative coupling constant ζ = O(1) and a function
γ(t) which equals 1 for t≪ tew and drops to zero for t > tew.
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Appendix B: Model universe

Modified q–theory ODEs (standard ODEs recovered for ζ = 0 and γ = 1):

6
(
HK′ q̇ +KH2

)
= ρV +

∑

i=a,b,c,...

ρM1i + ρM2 , (B.1a)

6K′
(
Ḣ + 2H2

)
= γ ρ′V +

(
1 − γ

)K′

K

[
2ρV +

∑

i

1
2 κM1i ρM1i

]
, (B.1b)

ρ̇M1i + (4 − κM1i)HρM1i =
N1i

N1

[λ21

tew
ω̂ ρM2 −

ζ

γ
q ρ̇ ′

V

]
−
λ12

tew
ν̂ ρM1i,(B.1c)

ρ̇M2 + 4H ρM2 = −
λ21

tew
ω̂ ρM2 +

λ12

tew
ν̂

∑

i

ρM1i , (B.1d)

where the overdot [prime] stands for differentiation with respect to t [q].
Functions γ, ω̂, and ν̂ shown in Figs. B1–B4 below.
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Appendix B: Model universe

Use simple Ansätze: ρV (q) ∝ (q − q0)
2 and K(q) ∝ q.

With tew and ξ ≡ (EPlanck/Eew)4 ≫ 1, define dimensionless variables:

τ ≡ (tew)−1 t , h ≡ tew H , (B.2a)

rV ≡ (tew)4 ρV , rMn ≡ ξ−1 (tew)4 ρMn , (B.2b)

x ≡ ξ
(
q/q0 − 1

)
. (B.2c)

Figures B1–B3 and B4 show numerical results for ξ = 102 and ξ = ∞ .
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Appendix B: Model universe

Fig. B1: Numerical solution [5] of standard (nondissipative) q–theory ODEs (B.1) for
ζ = 0 and γ = 1. The hierarchy parameter is ξ = 102 [oscillatory effects suppressed
for larger values of ξ, recovering the smooth behavior of (9)]. Further coupling constants
{λ21, λ12} = {18, 2} and case–A type–1 mass spectrum (N1a, M1a ; N1b, M1b) =

(40, 2 Eew; 60, 1/3 Eew).
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Appendix B: Model universe

Fig. B2: Same as Fig. B1, but now for the modified q–theory ODEs (B.1) with dissipative
coupling constant ζ = 2 and γ(τ) = 0 for τ ≥ τfreeze = 3.
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Appendix B: Model universe

Fig. B3: Same as Fig. B2, but evolved further.
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Appendix B: Model universe

Fig. B4: Same as Fig. B2, but now for ξ = ∞.
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