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Introduction

1. INTRODUCTION

Fundamental question: does space remain smooth as one probes
smaller and smaller distances?

A conservative limit on the typical length scale ℓ of any small-scale
structure of space:

LEP/Tevatron: ℓ . 10−18 m ≈ ~c/
(
200 GeV

)
. (1)

Yet, astrophysics provides us with very much higher energies.

Outline of this talk:

� phenomenology of a simple photon-propagation model;

� bounds from ultra-high-energy cosmic rays (UHECRs);

� theoretical implications.
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Phenomenology

2. PHENOMENOLOGY

2.1 Model

Action for a Lorentz-violating deformation of quantum electrodynamics:

SmodQED = SmodM + SstandD , (2)

with modified-Maxwell term [Chadha & Nielsen, NPB 217, 125 (1983)]:

SmodM =

∫

R4

d
4x

(
− 1

4

(
ηµρηνσ + κµνρσ

)
Fµν(x)Fρσ(x)

)
, (3a)

and standard Dirac term for spin– 1
2 particle with charge e and mass M :

SstandD =

∫

R4

d
4x ψ(x)

(
γµ

(
i ∂µ − eAµ(x)

)
−M

)
ψ(x) . (3b)

Theory is gauge-invariant, CPT–even, and power-counting renormalizable.
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Phenomenology

κµνρσ is a constant background tensor with the same symmetries as
the Riemann curvature tensor and a double trace condition κµν

µν = 0,
⇒ 20− 1 = 19 independent components.

10 birefringent parameters are already constrained at the 10−32 level
[Kostelecky & Mewes, hep-ph/0205211].

Restrict the theory to the nonbirefringent sector :

κµνρσ = 1
2

(
ηµρ κ̃νσ − ηµσ κ̃νρ − ηνρ κ̃µσ + ηνσ κ̃µρ

)
, (4)

for a symmetric and traceless matrix κ̃µν with 10− 1 = 9 components.

⇒ 9 Lorentz-violating (LV) deformation parameters κ̃µν .
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Phenomenology
Rewrite these parameters κ̃µν as follows:

(
κ̃µν

)
≡ diag

(
1, 1

3 ,
1
3 ,

1
3

)
κ̃00 +

(
δκ̃µν

)
, δκ̃00 = 0, (5)

with 1 independent parameter κ̃00 for the spatially isotropic part of κ̃µν

and 8 independent parameters δκ̃µν .

Express these parameters in terms of the so-called SME parameters:



κ̃00

δκ̃01

δκ̃02

δκ̃03

δκ̃11

δκ̃12

δκ̃13

δκ̃22

δκ̃23




≡




(3/2) κ̃tr

−(κ̃o+)(23)

−(κ̃o+)(31)

−(κ̃o+)(12)

−(κ̃e−)(11)

−(κ̃e−)(12)

−(κ̃e−)(13)

−(κ̃e−)(22)

−(κ̃e−)(23)




. (6)
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Phenomenology

2.2 Possible spacetime origin

Calculations of standard photons and Dirac particles propagating in
simple classical spacetime-foam models reproduce a restricted
(isotropic) version of model (2):

2 κ̃tr = −σ̃2 F̃ ≡ −σ̃2

(
b̃
/
l̃
)4
, δκ̃µν = 0 , (7)

in terms of the quadratic coefficient of modified photon dispersion
relation given below.

Heuristics: Bethe holes (1944).
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Phenomenology

For randomly oriented “defects” (size b) embedded in Minkowski
spacetime (separation l), proton and photon dispersion relations are:

ω2
p ≡ M2

p c
4
p/~

2 + c2p k
2 + O(k4) , (8a)

ω2
γ =

[
1 +

(
σ̃2 F̃

) ]
c2p k

2 +
(
σ̃4 F̃ b̃2

)
c2p k

4 + O(k6) , (8b)

with wave number k ≡ |k|,
effective defect on/off factors σ̃2, σ̃4 ∈ {−1, 0,+1},
effective size b̃, and effective excluded-volume factor F̃ ≡ (̃b/l̃)4 ≪ 1.

Specific results [1] for the relation between effective parameters (tilde)
and fundamental spacetime parameters (bar):

b̃ = β b , l̃ = λ l , σ̃2 = −1 , σ̃4 = 1 , (9)

with positive constants β and λ of order unity.
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Phenomenology

2.3 Vacuum Cherenkov radiation

�The decay process p→ p+ γ in model (2) has been
studied classically by Altschul [hep-th/0609030]
and quantum-mechanically by Kaufhold & FRK [2].

Radiated energy rate of a point particle with electric charge Ze, mass
M > 0, momentum q, and ultrarelativistic energy E ∼ c |q|:

dWmodQED

dt
∼ Z2 e2 ξ(q̂) E2/~

∣∣∣
E2≫E2

thresh

, (10)

with direction-dependent coefficient ξ ≥ 0 and threshold energy

E2
thresh =

M2 c4

R
[
2 κ̃tr + 2 δκ̃0j q̂

j
+ δκ̃jk q̂

j
q̂

k] + O
(
M2 c4

)
, (11)

for ramp function R[x] ≡
(
x+ |x|

)
/2 .
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Phenomenology

Exact tree-level result [C. Kaufhold, FRK, & M. Schreck, 2007] for the
radiation rate of a spin– 1

2 Dirac particle (charge Ze, mass M > 0, and
E ≥ Ethresh) in the restricted isotropic model (7) with only α0 ≡ 2 κ̃tr > 0:

dW isotropic case
modQED

dt
=
Z2e2

4π

1

3α3
0E
√
E2 −M2

(√
2− α0

2 + α0
E −

√
E2 −M2

)2

×
{

2
(
α2

0 + 4α0 + 6
)
E2 −

(
2 + α0

)

×
(

3
(
1 + α0

)
M2 + 2

(
3 + 2α0

)√
2− α0

2 + α0
E

√
E2 −M2

)}
, (14a)

with

EmodQED, isotropic case
thresh =

Mc2√
α0

√
1 + α0/2 . (14b)
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UHECR bounds

3. UHECR BOUNDS

3.1 Basic idea

A remarkably simple observation [a,b]:

� if vacuum Cherenkov radiation has a threshold Ethresh(̃b, l̃, κ̃),
then UHECRs with E > Ethresh cannot travel far, as they rapidly
radiate away their energy;

� observing an UHECR of energy E implies that this energy is at
or below threshold,

E ≤ Ethresh(̃b, l̃, κ̃), (13)

which then gives bounds on combinations of b̃, l̃, and κ̃.

————————————————————————————————–
[a] Beall, PRD 1, 961 (1970).
[b] Coleman & Glashow, PLB 405, 249 (1997).
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UHECR bounds

3.2 Bounds on LV photon parameters

Take the following 29 selected events :

27 from Auger [arXiv:0712.2843],

1 from Fly’s Eye [astro-ph/9410067],

1 from AGASA [PRL 73, 3491 (1994)].

Table 1 on the next page gives their

� arrival time (year and Julian day);

� primary energy E in EeV, where 1 EeV ≡ 1018 eV;

� arrival direction with right ascension and declination in degrees.

Uncertainties in the energies are of the order of 25 % and in the
pointing directions of the order of 1 deg.
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UHECR bounds
Table 1: UHECR events from Auger (2004–2007), Fly’s Eye (1991),
and AGASA (1993).

year day E RA DEC year day E RA DEC
1991 288 320 85.2 48.0 2006 81 79 201.1 −55.3
1993 337 210 18.9 21.1 2006 185 83 350.0 9.6
2004 125 70 267.1 −11.4 2006 296 69 52.8 −4.5
2004 142 84 199.7 −34.9 2006 299 69 200.9 −45.3
2004 282 66 208.0 −60.3 2007 13 148 192.7 −21.0
2004 339 83 268.5 −61.0 2007 51 58 331.7 2.9
2004 343 63 224.5 −44.2 2007 69 70 200.2 −43.4
2005 54 84 17.4 −37.9 2007 84 64 143.2 −18.3
2005 63 71 331.2 −1.2 2007 145 78 47.7 −12.8
2005 81 58 199.1 −48.6 2007 186 64 219.3 −53.8
2005 295 57 332.9 −38.2 2007 193 90 325.5 −33.5
2005 306 59 315.3 −0.3 2007 221 71 212.7 −3.3
2005 306 84 114.6 −43.1 2007 234 80 185.4 −27.9
2006 35 85 53.6 −7.8 2007 235 69 105.9 −22.9
2006 55 59 267.7 −60.7
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UHECR bounds

Pierre Auger Observatory (Pampa Amarilla, Argentinia)

Left: Water Cherenkov surface detector (Andes mountains to the west).

Right: Fluorescence detector telescopes (bay windows open).
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UHECR bounds

With these 29 primary energies and directions, we obtain the following
two–σ (95% CL) Cherenkov bounds on the nine isolated SME
parameters of nonbirefringent modified-Maxwell theory [4]:

(ij) ∈ {(23), (31), (12)} :
∣∣(κ̃o+)(ij)

∣∣ < 2× 10−18 , (14a)

(kl) ∈ {(11), (12), (13), (22), (23)} :
∣∣(κ̃e−)(kl)

∣∣ < 4× 10−18 , (14b)

κ̃tr < 1.4× 10−19 , (14c)

for the Sun-centered celestial equatorial coordinate system.

Here, we have set Mprim = 56 GeV/c2 and, for (14c), used the 148 EeV
Auger event which has a reliable energy calibration.

From a 202 EeV Auger event, a preliminary bound at the two–σ level is:

−2× 10−19 < κ̃univ
tr < 8× 10−20 ,

but involves some assumptions for the lower bound [FRK & Schreck, 2008].
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UHECR bounds

The Cherenkov bounds (14abc) depend only on the measured
energies and flight directions of the charged cosmic-ray primaries
at the top of the Earth atmosphere.

Leverage factor for the UHECR Cherenkov bounds is

(
Eprim/Mprimc

2
)2

= 1018

(
Eprim

50 EeV

)2 (
50 GeV
Mprim

)2

.

May perhaps be increased to a value of 1021 in the future:

� Mprim reduced by a factor 10 from the use of further information
such as the shower-maximum atmospheric depth Xmax [3];

� average energy increased to Eprim ∼ 150 EeV.
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UHECR bounds

Hence, UHECR bounds for nonbirefringent mod-Maxwell theory give
nine parameters bounded at the 10−18 level.

Current laboratory bounds (complete set of references in [5]):

� direct bounds at the 10−12 level
for the three parity-odd nonisotropic parameters in κ̃o+ ;

� direct bounds at the 10−14 to 10−16 levels
for the five parity-even nonisotropic parameters in κ̃e− ;

� direct bound at the 10−7 level
for the single parity-even isotropic parameter κ̃tr ;

� indirect bound at the 10−8 level for κ̃tr (from measured ge − 2).

Interestingly, the UHECR Cherenkov bounds are the strongest where
the laboratory bounds are the weakest, they are truly complementary.

PennState August 11, 2008 (v1) – p. 16



UHECR bounds

From the 148 EeV Auger event, we also get a bound on the general
coefficient of the quartic photon term in (8b):

|F̃ b̃2| .
(
1.4× 10−35 m

)2
, (15)

based on the analysis of Gagnon & Moore [hep-ph/0404196]
but scaling their result to Mprim = 56 GeV/c2 and Eprim = 148 EeV. (#)

Taking F̃ = 10−19 from (14c), this bound becomes

b̃ . 4× 10−26 m , (16)

which is still a very small length.

————————————————————————————————–
(#) Bound (15) disagrees, by 16 orders of magnitude, with a claimed

“quantum-gravity” effect in a gamma-ray flare from Mkn 501 as
observed by the MAGIC telescope [arXiv:0708.2889v1]; see [5].
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UHECR bounds

3.3 Discussion

Cherenkov-type bounds have been obtained for combinations of the
effective defect size (̃b) and separation (l̃):

F̃ ≡ (̃b/l̃)4 . 10−19 , (17a)

b̃ . 4× 10−26 m ≈ ~ c/
(
5× 109 GeV

)
. (17b)

Bound (17b) is already quite remarkable (cf. LEP/Tevatron/LHC) and,
moreover, severely constrains (read: rules out) TeV–gravity models
[cf. Arkani-Hamed, Dimopoulos, & Dvali, hep-ph/9803315]:

any such theory with, for example, a nonperturbative gravity scale
EADD = ~ c/LADD ∼ 5 TeV needs to explain the origin of a very small
numerical factor f in the quartic photon term (setting c = 1):

ω2
γ = k2 + f L2

ADD k
4 + O(k6) , |f | . 10−12 . (18)
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UHECR bounds

More generally, also the Lorentz-violating deformation parameters of
modified-Maxwell theory are strongly bounded:

|κµνρσ| . 10−18 , (19)

where, for the sake of argument, the “one-sided” Cherenkov bound on
the isotropic parameter κ̃tr has also been made “two-sided.”

Bounds (17a) and (19) imply that a single-scale
(
b̃ ∼ l̃

)
classical

spacetime foam is ruled out altogether.

This conclusion holds, in fact, for arbitrarily small defect size b̃ ,
as long as a classical spacetime makes sense.

That is, down to distances at which the classical-quantum transition
occurs, possibly of order lPlanck ≈ 10−35 m . . .
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Outlook
4. OUTLOOK

Experimental result from astrophysics (UHECRs, in particular):

quantum spacetime foam must have “crystalized” to a classical
spacetime manifold which is remarkably smooth , as quantified by

the defect excluded-volume factor F̃ ≡ (̃b/l̃)4 . 10−19 ≪ 1 and
Lorentz-violating parameters |κµνρσ| . 10−18 ≪ 1.

Clearly, this is a null experiment and there is an analogy with the
Michelson–Morley experiment (1887):
theorists expect novel effects which are not seen by experimentalists.

This suggests the need for radically new concepts (cf. SR in 1905).

For example, a self-tuning Lorentz-invariant vacuum variable [6] may
play a crucial role for the flatness of spacetime by resolving the
so-called cosmological constant problem (see talk tomorrow).
————————————————————————————————–
[6] FRK & G. Volovik, PRD 77, 085015 (2008), arXiv:0711.3170 [gr-qc].
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Conjectures – Fundamental length

A. TWO CONJECTURES

A.1 Fundamental length

In view of the conclusions from Sec. 3.3, the following question arises:

theoretically, are we really sure that quantum spacetime effects only
show up at distances of the order of the Planck length?

Conjecture 1a : quantum spacetime has a fundamental length scale l,
which is conceptually different from the Planck length,

l
?

6= lPlanck ≡
√

~G/c3 ≈ 1.6× 10−35 m . (20)

HEURISTICS: a quantum spacetime foam could arise from gravitational
self-interactions which need not involve Newton’s constant G describing
the gravitational coupling of matter (similar to the case of a gas of
instantons in Yang–Mills theory).
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Conjectures – Fundamental length

Consider a generalized quantum phase for spacetime dynamics [6],

I general
grav =

−1

16π l2

∫
d
4x

√
|g|

(
R+ 2λ

)
+
G/c3

l2

∫
d
4x

√
|g| Lclass.

matter , (21)

which reproduces the classical Einstein equations but contains a new
fundamental length l.

This suggests that, as far as spacetime is concerned, the role of
Planck’s constant ~ would be replaced by the squared length l2,
which might loosely be called the quantum of area .

Planck’s constant ~ would continue to play a role in the description of
the matter quantum fields.

But, with ~ and l2 being logically independent , it is possible to
consider the “limit” ~→ 0 while keeping l2 fixed.
————————————————————————————————–
[7] FRK, JETPL 86, 73 (2007), gr-qc/0703009.
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Conjectures – Fundamental length

Table 2: Fundamental dimensionful constants of nature,
including the hypothetical quantum of area l2.

quantum classical quantum
matter relativity spacetime

~ c , G l2

Here, we have considered only the 2nd and 3rd columns of Table 2
and leave the unified treatment of all columns to a future theory.

In that theory, “classical gravitation” may perhaps emerge from the
combined quantum effects of matter and spacetime, giving the “large”
Newton gravitational constant

G = f c3 l2/~ , (22)

as ratio of “small” quantum constants, with calculable numerical factor f .
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Conjectures – Fundamental length

Return to the generalized action (21), possibly relevant for quantum
spacetime as probed by classical matter.

Conjecture 1b : the quantum spacetime length scale l is related to a
nonvanishing cosmological constant or vacuum energy density.

For the case of the early universe, with a vacuum energy density
ρvac ≡ E4

vac, it can be argued [7] that the following holds (c = ~ = 1):

l
?∼ EPlanck/E

2
vac ≈ 2× 10−29 m

(
EPlanck

1019 GeV

)(
1016 GeV
Evac

)2

, (23)

where the Planck energy scale is given by EPlanck ≡ 1/lPlanck and the
numerical value for Evac has been identified with the “grand-unification”
scale suggested by elementary particle physics.
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Conjectures – Fundamental length

If (23) holds true with lPlanck/l ∼ 10−6, it is perhaps possible to have
sufficiently rare defects left-over from the crystallization process of
classical spacetime from the initial quantum spacetime foam.

With average spacetime defect size b̃ set by lPlanck (matter related) and

average defect separation l̃ set by l (vacuum related), these spacetime
defects would give the following excluded-volume factor in the modified
photon dispersion relation (8b):

F̃ ≡
(
b̃/l̃

)4 ?∼ 10−24, (24)

which is close to saturating the current UHECR bound,

(
b̃/l̃

)4
∣∣∣
Fly’s Eye

. 3× 10−23 . (25)
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Conjectures – Cosmological constant
A.2 Cosmological constant
A different line of reasoning (motivated by “emerging symmetries” ideas)
tries to explain the three cosmological constant problems:

1. why is |ρvac| ≪ (EPlanck)
4 ?

2. why is ρvac 6= 0 ?
3. why is now ρvac ∼ ρmatter?

Taking Lorentz-invariance seriously (cf. UHECR discussion in Sec. 3.3),
a new idea on this famous problem is as follows [6]:
Conjecture 2 : The perfect quantum vacuum behaves as a self-sustained
Lorentz-invariant medium with a new type of conserved charge.
Argument is based solely on thermodynamics (cf. Einstein 1907) and has
an analog in condensed-matter physics, the Larkin–Pikin effect (1969).
Work in progress on the expanding (and accelerating!) universe [8].
————————————————————————————————–
[6] FRK & G. Volovik, PRD 77, 085015 (2008), arXiv:0711.3170 [gr-qc].
[8] FRK, arXiv:0803.0281 [gr-qc]; FRK & G. Volovik, arXiv:0803.0281 [gr-qc].
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