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Introduction

0. INTRODUCTION

Thanks to observational cosmology, there are now three cosmological
constant problems instead of one:

1. why is |ρvac| ≪ (EPlanck)
4 ≈ (1028 eV)4 ?

2. why is ρvac 6= 0 ?

3. why is ρvac ∼ ρmatter
∣∣
now ≈ (10−3 eV)4 ?

Clearly, we first need to get a handle on problem No. 1.
Only then can we start worrying about Nos. 2 and 3.

This talk gives an overview of ongoing work with Grisha Volovik.

The main focus is on the vacuum energy density, but let’s start with an
important fact of life.
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Lorentz invariance

1. LORENTZ INVARIANCE (LI)

Lorentz violation (LV): difficult to bound something that is unknown.

Hence, the need for simple concrete models.

Consider a LV deformation of quantum electrodynamics (QED):

SmodQED = SmodM + SstandD , (1)

with a modified-Maxwell term and a standard Dirac term for a spin– 1
2

particle with charge e and mass M :

SmodM =

∫

R4

d
4x
(
− 1

4

(
ηµρηνσ + κµνρσ

)
Fµν(x)Fρσ(x)

)
, (2a)

SstandD =

∫

R4

d
4x ψ(x)

(
γµ
(
i ∂µ − eAµ(x)

)
−M

)
ψ(x) . (2b)

Theory is gauge-invariant, CPT–even, and power-counting renormalizable.
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Lorentz invariance

κµνρσ is a constant background tensor with the same symmetries as
the Riemann curvature tensor and a double trace condition κµν

µν = 0

⇒ 20 − 1 = 19 real and dimensionless components.

As 10 birefringent parameters are already constrained at the 10−32 level,
[Kostelecky & Mewes, hep-ph/0205211], theory can be restricted to
the nonbirefringent sector :

κµνρσ = 1
2

(
ηµρ κ̃νσ − ηµσ κ̃νρ − ηνρ κ̃µσ + ηνσ κ̃µρ

)
, (3)

for a symmetric and traceless matrix κ̃µν with 10 − 1 = 9 components.

These 9 parameters κ̃µν can be grouped as follows:

1 parity-even isotropic parameter κ̃tr;
3 parity-odd parameters in an antisymmetric traceless 3 × 3 matrix (κ̃o+)mn;
5 parity-even parameters in a symmetric traceless 3 × 3 matrix (κ̃e−)mn.

Ultra-high-energy cosmic rays (UHECRs) give tight bounds on κ̃µν .
Skip all the details.
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Lorentz invariance

From the absence of “vacuum Cherenkov radiation”
in 29 selected UHECR events (with accurately
measured primary energies and directions),
the following 2σ bounds have been obtained [1]: �

(ij) ∈ {(23), (31), (12)} :
∣∣(κ̃o+)(ij)

∣∣ < 2 × 10−18 , (4a)

(kl) ∈ {(11), (12), (13), (22), (23)} :
∣∣(κ̃e−)(kl)

∣∣ < 4 × 10−18 , (4b)

κ̃tr < 1.4 × 10−19 . (4c)

Current laboratory bounds for these κ̃ range between 10−7 and 10−16.

A brief review: FRK, arXiv:0807.2147.

Conclusion 1: LI of electromagnetic sector verified to high precision.
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Vacuum energy

2. VACUUM ENERGY

Cosmology suggests a nonzero cosmological constant Λ > 0 or
gravitating vacuum energy density ρV = −PV > 0.

But what is the theory?

First the statics, simple picture based on three assumptions [2]:

1. perfect quantum vacuum is a Lorentz-invariant state ;

2. perfect quantum vacuum is a self-sustained medium at zero
external pressure;

3. perfect quantum vacuum is characterized by a new type of
conserved charge q, which is constant over spacetime.

Analog of q in cond-mat: the Larkin–Pikin effect (1969) in magnetic
phase transitions of crystals.
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Vacuum energy

Thermodynamics and charge conservation (Q = qV = const) give a
Gibbs–Duhem relation (in this context, first discussed by Volovik):

ǫ̃V(q0) ≡
[
ǫ(q) − q

dǫ(q)

dq

]

q=q0

= −Pext = 0 , (5)

for energy density ǫ(q) in the action and equilibrium value q0 of the
vacuum variable q.

Three remarks:

1. effective energy density ǫ̃V(q) is zero by cancelation of two terms
which can each be of order E4

Planck;

2. ǫ̃V gravitates and ǫ not ⇒ ρV = ǫ̃V(q0);

3. explicit models known which give this result for ρV (see later).
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Vacuum energy

All in all, we have in a perfect LI quantum vacuum

Λ ≡ ρV
1©
= ǫ̃V

2©
= −PV

3©
= −Pext = 0 , (6)

with step 1© from thermodynamics, step 2© from LI, and step 3© from
pressure equilibrium.

In the presence of thermal matter (i.e., a non-LI state), pressure
equilibrium gives

PV + PM = Pext = 0 , (7)

so that PV = −PM and

ρV = −PV = PM = wM ρM . (8)

Conclusion 2 : Λ
∣∣
perfect quantum vacuum in equilibrium = 0 , (9a)

Λ
∣∣
imperfect quantum vacuum in equilibrium ∝ ρM . (9b)
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Cosmology

3. COSMOLOGY

Up till now, equilibrium. But what about Hubble’s expanding universe?

Difficult to say as this concerns the exchange of energy between the
deep vacuum (e.g., the variable q) and the low-energy degrees of
freedom (e.g., standard model and general relativity).

Two different approaches have been followed up till now:

[3a]: how, starting far away from equilibrium in a very early phase of
universe, the vacuum may reach its equilibrium state.

[3b]: how, starting from an equilibrium state at late times, a universe
can arise which resembles our present universe.
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Early cosmology

3.1 Equilibrium approach for an early start

Now, vacuum variable q represented by a four-form field F .

The action [3a] has a general term ǫ(F ) and Newton’s constant GN

replaced by a gravitational coupling parameter G = G(F ):

S[A, g, ψ] = −
∫

R4

d4x
√
|g|
(

R

16πG(F )
+ ǫ(F ) + LM(ψ)

)
, (10a)

F 2 ≡ − 1

24
Fκλµν F

κλµν , Fκλµν ≡ ∇[κ Aλµν] , (10b)

Fκλµν = F
√
|g| eκλµν , F κλµν = F eκλµν/

√
|g| , (10c)

where ψ stands for a generic low-energy matter field (~ = c = 1).
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Early cosmology

Variational principle gives generalized Maxwell equations:

∇µ

(√
|g| F

κλµν

F

(
dǫ(F )

dF
+

R

16π

dG−1(F )

dF

))
= 0 , (11)

and generalized Einstein equations:

1

8πG(F )

(
Rµν − 1

2
Rgµν

)
+

1

16π
F
dG−1(F )

dF
R gµν

+
1

8π

(
∇µ∇ν G

−1(F ) − gµν 2G−1(F )
)
− ǫ̃(F )gµν + TM

µν = 0 , (12)

with effective vacuum energy density

ǫ̃(F ) ≡ ǫ(F ) − F
dǫ(F )

dF
, (13)

whose form has been argued on thermodynamic grounds in Part 2.
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Early cosmology

Generalized Maxwell equations solved by

dǫ(F )

dF
+

R

16π

dG−1(F )

dF
= µ , (14)

with an integration constant (chemical potential) µ.

Reduced generalized Einstein equations:

1

8πG(F )

(
Rµν − 1

2 Rgµν

)
+

1

8π

(
∇µ∇ν G

−1(F ) − gµν 2G−1(F )
)

−
(
ǫ(F ) − µF

)
gµν + TM

µν = 0 . (15)

These two equations need to be solved simultaneously.

Princeton, August 7, 2008 (v1) – p. 13



Early cosmology

Flat (k = 0) FRW universe with expansion factor a(t), homogeneous
perfect-fluid matter, and homogeneous four-form amplitude F (t).

With Hubble parameter H(t) ≡ (da/dt)/a, we then have:

3

8π

dG−1

dF

(
dH

dt
+ 2H2

)
=

dρV

dF
, (16a)

H2 +HG
dG−1

dt
=

8π

3
Gρtot , (16b)

dρM

dt
+ 3H

(
PM + ρM

)
= 0 , (16c)

for

ρtot ≡ ρV + ρM , Ptot ≡ PV + PM , (17a)

ρV(F ) = ǫ(F ) − µF , PV(F ) = −ρV(F ) . (17b)
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Early cosmology

Introduce dimensionless variables:

F = fF0 , ρV,M = rV,M/χ , (18a)

µ = u/(χF0) , G−1(F ) = k(f) |F0| , (18b)

H = h/
√
χ |F0| , t = τ

√
χ |F0| , (18c)

using the vacuum compressibility [2]

χ(F0) ≡
(
F 2 d2ǫ(F )/dF 2

∣∣
F=F0

)−1

. (19)

Simple Ansätze suffice for the moment:

rV(f) =
1

2

(
−f2 +

1

3
f4

)
− uf

∣∣∣
u=u0=−1/3

, k(f) = s f , (20)

with f taken positive (f ∼ 1) and a dimensionless parameter s > 0.
Note that rV(1) = 0 for equilibrium value u0 of the chemical potential.
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Early cosmology

Absorbing the numerical constant s in τ and h−1, the final ODEs are:

dh

dτ
+ 2h2 =

drV

df
, (21a)

h
df

dτ
+ fh2 = rV + rM , (21b)

drM

dτ
+ 3h

(
1 + wM

)
rM = 0 , (21c)

with rV(f) from (20) and equation-of-state parameter wM ≡ PM/ρM.

ODEs solved, first, numerically and, then, analytically for τ → ∞.
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Early cosmology

Figure 1: Flat FRW universe with ultrarelativistic matter (wM = 1/3) and boundary
conditions (a, h, f, rM)|τ=1 = (1, 1/2, 1/2, 1/20).

Princeton, August 7, 2008 (v1) – p. 17



Early cosmology

Figure 2: Same as Fig. 1 but over a longer time.
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Early cosmology

Asymptotic behavior:

f ∼ 1 +
2

3
dM

ω

τ
sinωτ , (22a)

h ∼ 2

3

1

τ

(
1 − dM cosωτ

)
, (22b)

rV ∼ 4

9
d2

M
1

τ2
sin2 ωτ , (22c)

with ω =
√

2 and damping factor

dM = 1 + δwM,0

(√
1 − (9/4) rM∞ − 1

)
, (23a)

for coefficient rM∞ of the asymptotic matter energy density rM ∼ rM∞/τ
2.
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Early cosmology

Effective CDM-like behavior:

Oscillating vacuum energy density ρV(t) and oscillating gravitational
coupling parameter G(t) conspire to give the same Hubble expansion
as pressureless matter (e.g., CDM) in a standard FRW universe with
fixed gravitational coupling constant G = GN.

Perhaps this type of oscillating vacuum energy density constitutes a
part of the cold dark matter (CDM) in the standard FRW framework?

An outstanding task is to establish the clustering properties of the
oscillating vacuum energy density.
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Early cosmology

Extrapolation to large times:

For a standard flat FRW universe, the total energy density is always
equal to the critical density ρc ≡ 3H2/(8πGN).

But, here, the gravitational coupling parameter is variable, G = G(t),
and there are rapid oscillations, so that, for example, 〈H〉2 6= 〈H2〉.

Result for wM > 0:

lim
t→∞

〈ρV〉
3〈H〉2/

(
8π〈G〉

) =
1

2
, (24)

which is of order 1 but not exactly equal to 1.
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Early cosmology

Gravitational coupling G(t) relaxes to an equilibrium value:

G−1(t) ∼ G−1
∞

[
1 + c0

tUV

t
sin

(
t

tUV

)]
, (25)

with c0 a constant of order unity,
G∞ a gravitational constant (presumably G∞ ≈ GN), and
tUV =

√
χ|F0|/2 an ultraviolet timescale (presumably tUV ≈ 10−43 s).

Very different from previous suggestions for the dynamics of G(t),
including Dirac’s original suggestion G ∝ 1/t.

For the present universe and the solar system in it, this gravitational
coupling parameter would have minuscule oscillations. Combined with
the Planck-scale mass of the F degree of freedom, this would suggest
that all solar-system experimental bounds are satisfied.
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Early cosmology

Summary of the main results:

(i) a mechanism of vacuum-energy decay , which, starting from a
“natural” Planck-scale value at very early times, leads to the
correct order of magnitude for the present cosmological constant;

(ii) the realization that a substantial part of the inferred CDM may
come from an oscillating vacuum energy density;

(iii) the important role of oscillations of the vacuum variable F ,
which drive the vacuum energy density oscillations responsible for
results (i)–(ii).

Conclusion 3a : The dynamic vacuum variable q (here, F ) allows for
the vacuum energy density to relax to its equilibrium value, ρV = 0,
corresponding to Minkowski spacetime..
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Late cosmology

3.2 Equilibrium boundary conditions at late times

Consider this question:

is it possible at all to relate equilibrium boundary conditions for ρV(0) to
an expanding universe which matches the observations, even if we are
free to choose the type of vacuum-energy dynamics, dρV/dt 6= 0?

One possible answer goes as follows. That is, in mathematical terms,
we present an “existence proof” for this type of universe [3b].

Now, standard gravity with G = GN.
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Late cosmology

Take a closed FRW universe with two equilibrium conditions at teq ≡ 0.

The first condition may be called the Friedmann condition,

(8πGN/3)
(
ρV(teq) + ρM(teq)

)
= a(teq)

−2 , (26)

and the second a Gibbs–Duhem-type condition [Volovik, gr-qc/0405012],

ρV(teq) = 1
2 (1 + 3wM) ρM(teq) , (27)

for constant wM ≡ PM/ρM.

These two conditions allow for a time-independent solution of the
gravitational field equations: the static Einstein universe (1917).
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Late cosmology

Indeed, the Einstein equations reduce to the Friedmann equation
(overdot standing for d/dt)

(
ȧ/a
)2

= (8πGN/3)
(
ρV + ρM

)
− 1/a2 , (28)

and the energy-conservation equation,

(
ρ̇V + ρ̇M

)
= −3 (ȧ/a) (1 + wM) ρM . (29)

But, for a nonstatic solution, a nonvanishing vacuum-energy equation
is needed, for which we take

ρ̇V = γ ΓVM ρM , (30)

where ΓVM is a new fundamental decay constant and γ = γ[a(t)/aeq]

a dimensionless functional with appropriate normalization.
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Late cosmology

Specific Ansatz for this vacuum dynamics functional:

γ[α(t)] =
(
(c1)

6 + 1
)

×
(

(1 − α)6

(c1)6 + (1 − α)6
α2 sin (c2πα) +

α7

(c1)6 + α6

(
(c3)

1/3

(c3)1/3 + |1 − α|1/3

)4
)
,

(31)

with α(t) ≡ a(t)/aeq, coefficients cn, and normalization γ[1] = 1.

Note that (31) is O(a3) for a→ 0 and nonzero for a/aeq = 1.
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Late cosmology

Boundary conditions and constants (in units with 8πGN/3 = c = 1):




a(0)

ρM(0)

ρV(0)

wM

ΓVM

c1
c2
c3




=




10

2/300

1/300

0

50

1/5

9/4

1/15




. (32)

Numerical solution of the three coupled ODEs (28)–(30) with these
boundary conditions is given in Fig. 3.
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Late cosmology

Figure 3: Closed FRW universe with pressureless matter (wM = 0), dynamic vacuum
energy (wV = −1), and equilibrium boundary conditions (32).
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Late cosmology

“Present universe” with density ratio ρV/ρM ≈ 2.75 (WMAP–5yr mean
value for h = 0.70) would approximately correspond to




t

t− tBB

ȧ/a

ρV/ρM

ΩV + ΩM




=




−0.584

0.332

2.985

2.750

1.004



, (33)

where ΩX ≡ ρX/(ȧ/a)
2.

Identifying the calculated value ȧ/a = 2.985 with the measured value
H0 ≈ 0.70/(9.78 Gyr), the present age of the model universe becomes:

τ0 ≈ 13.85 (0.70/h) Gyr . (34)

Far from trivial that reasonable values for ρV0/ρM0, ΩV0 + ΩM0, and τ0
can be produced at all in our approach.
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Late cosmology

Main features of this closed model universe:

1. Gibbs–Duhem-type boundary condition at t = teq with
ρV(teq) = 1

2 ρM(teq) for wM = 0;

2. finite |ρV(t)| within a factor 104 from the value set at t = teq;

3. Big Bang phase with a(t) ∝ (t− tBB)2/3 for wM = 0;

4. an accelerating universe for “present times,”
with ρV/ρM of order 1 and an approximately flat 3–geometry.

Conclusion 3b : An “existence proof” has been given for a universe
with both equilibrium boundary conditions and a Big Bang.
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Conclusion

4. CONCLUSION

The dynamics of the quantum vacuum is a new topic in physics
waiting for input from:

� theory (e.g., emergent-symmetry approach inspired by cond-mat);

� experiment (e.g., observational cosmology).
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