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CHAPTER 1

Introduction

The idea that nothing comes from nothing and that there must exist indivisible parts in the
universe dates back to ancient times. Modern particle physics is concerned with understand-
ing what the fundamental constituents of matter are and how the interaction between them
can be described. During the last half century this endeavour has seen several breakthroughs.
In the sixties a theoretical framework emerged, that is now known as the Standard Model
(SM) [1–5]. At its heart is the concept of gauge symmetry. Together with the mechanism
of spontaneous symmetry breaking (SSB), these guiding principles have proved to be ex-
traordinarily successful. The SM has predicted new particles and related observables with
unprecedented precision.

This theoretical progress has gone hand in hand with great experimental achievements, above
all the ability to build colliders with ever increasing energies and detectors that provide suf-
ficient precision. The discovery of the W - and Z-bosons in 1983 at the Super Proton Syn-
chrotron at CERN, the discovery of the top quark at Tevatron in 1995 and the high precision
measurements at the Large Electron-Positron Collider (LEP), that was in operation at CERN
between 1989 and 2000, mark milestones of particle physics of the last decades. In 2008 the
Large Hadron Collider (LHC) at CERN started operation and with a center-of-mass energy
of 7 TeV the LHC began a new era of collider experiments. After shutting down for the
upgrade to the new center-of-mass energy of 13 TeV, run II has just started taking data and
exciting times are ahead of us.

Until very recently, the last missing ingredient of the SM was the Higgs boson. On the one
hand, a scalar particle was predicted as the consequence of the Higgs mechanism [6–10],
through which the gauge bosons of the weak interaction acquire mass without violating the
gauge invariance of the Lagrangian. On the other hand, the Higgs boson simultaneously solves
the problem of unitarity violation in the scattering of longitudinal vector bosons. One of the
main goals of the LHC thus was to discover the Higgs boson. On July the 4th 2012 a par-
ticle was discovered [11,12] with a mass of about 125 GeV, that looks like the SM Higgs boson.

Despite the enormous success of the SM, we are aware of phenomena and issues that the
SM cannot explain. Among these are the questions of where the prevalence of matter over
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antimatter in the universe comes from, what dark matter is or even how one could describe
gravity and the electroweak and strong interactions within one common framework. Beyond
the Standard Model (BSM) physics therefore aims at developing models that are able to ad-
dress some of these issues while still reproducing the SM predictions that match so well with
the experimental data. The Two-Higgs-Doublet Model (THDM) [13–15], which is treated in
this thesis, is such a model. As the name suggests, it extends the scalar sector of the SM by
a second complex scalar isospin doublet. This extension leads to a Higgs sector that features
three neutral and two charged Higgs bosons. The THDM is one of the simplest extensions of
the SM which is still compatible with the Higgs data from the LHC.

The cleanest THDM specific signature is provided by charged Higgs bosons [16]. In particular
in the light of run II of the LHC, predictions for the production and decay of charged Higgs
bosons in the context of THDMs are needed. This thesis will study the full electroweak (EW)
next-to-leading order (NLO) corrections to the partial decay width of a charged Higgs boson
decaying into an on-shell W -boson and a neutral CP-even scalar. Since the dominant decay
channel into a top and anti bottom quark is a challenging search channel due to the large
background from quantum chromodynamics (QCD), the decay mode considered in this thesis
could prove relevant for BSM searches.

The study of EW processes in THDMs beyond leading order (LO) involves the renormaliza-
tion of the mixing angles that rotate between the basis defined by the gauge interactions, and
the basis of the mass eigenstates. While these angles appear in most THDM specific cou-
plings and play a crucial phenomenological role, there is no obvious relation to observables
which would tell us how to renormalize the angles in a physically meaningful way. There
are different possibilities, each with their own advantages and disadvantages. It thus seems
natural to ask whether there is an ideal scheme which is universally applicable. This thesis
therefore compares different renormalization schemes with the purpose of illuminating what
the intuitions behind each of them are and what subtleties may arise with regard to renor-
malizing mixing angles.

The thesis is structured as follows. Chapter 2 gives a brief introduction into THDMs. After
motivating the extension of the scalar sector with a second doublet in Sec. 2.1, the scalar
potential of a CP-conserving THDM is discussed in Sec. 2.2 in order to identify the physical
degrees of freedom. The discussion of the Yukawa Lagrangian in Sec. 2.3 will show how to
avoid flavour-changing neutral currents (FCNCs) at tree level. Section 2.4 presents the set of
independent parameters used in this thesis and Sec. 2.5 introduces useful notation for dealing
with pairs of mixing scalars in different bases.

In the subsequent Chapter 3 the tree-level partial decay width of the decays H+ → W+ h/H
is derived and further notation is introduced.

Chapter 4 is devoted to the renormalization of THDMs, with the main focus on its scalar
sector. The introductory remarks in Sec. 4.1 on renormalization in general are followed by
the presentation of on-shell renormalization conditions in Sec. 4.2. In particular, the case of
mixing between scalars is considered. In Sec. 4.3 it is argued that for CP-conserving THDMs
it is reasonable to choose all scalar masses as input parameters and to perform the renor-
malization in the mass basis. Once this is clarified, Sec. 4.4 treats the renormalization of
the whole scalar sector. After having renormalized the masses and the scalar fields on-shell
in Sec. 4.4.1 and Sec. 4.4.2, various schemes to renormalize the mixing angles are presented
in Secs. 4.4.3–4.4.6. As a first approach, the idea of process-dependent renormalization con-
ditions is explained. Secondly a scheme which employs a minimal subtraction condition is
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defined. The third scheme is an approach suggested by Kanemura et al. [17, 18] and the
fourth scheme features a minimum number of independent field renormalization constants.
Section 4.5 finally covers the gauge sector by employing the standard way of renormalizing
the masses of the W -boson and Z-boson as well as the electric charge in the SM.

Chapter 5 discusses the decays H+ → W+ h/H at NLO, namely the virtual and the real
corrections. The former are treated in Sec. 5.1, which comprises an overview of the contribut-
ing vertex corrections, as well as the counterterms of the H+W−h/H-vertices. The real
corrections from additional soft photons that are needed to obtain an infra-red (IR) finite
partial decay width, are treated in Sec. 5.2. The Secs. 5.2.1–5.2.3 successively deal with the
contributions from ordinary bremsstrahlung, the contributions from a four-vertex and how IR
finiteness was checked. Finally, Sec. 5.2.4 addresses the issue of process-dependent schemes
and IR divergent virtual photon corrections.

Chapter 6 covers the discussion of the numerical results. The software tools used in the nu-
merical analysis are listed in Sec. 6.1 and the input parameters are defined in Sec. 6.2. The
two subsequent Secs. 6.3 and 6.4 show and discuss the plots with the results for the partial
decay widths. In Sec. 6.5 it is checked that the dependence on the photon phase space cut is
small and hence the soft photon approximation is justified.

Chapter 7 summarizes the findings of the preceding chapters and draws a comparison between
the renormalization schemes considered. Finally it is suggested which further investigations
are necessary to finally answer the question of whether an ideal renormalization scheme for
THDMs exists.





CHAPTER 2

The THDM - A Brief Introduction

2.1. Why a Two-Higgs-Doublet-Model?

As pointed out in the introduction, the Standard Model of particle physics has been very
successful over the last decades in predicting new particles and related observables at high
precision. At the same time we are well aware of its insufficiencies, that are the motivation for
studying BSM physics. While the gauge boson and fermion sector of the SM have been ex-
tremely well probed, the predicted Higgs boson was the missing ingredient until very recently.
Although the scalar particle, that was discovered at the LHC in 2012 [11,12], so far seems to
be compatible with the SM, the experimental data still leave space for the interpretation of
the signals within BSM models.

Now that run II of the LHC has just started taking data at a center-of-mass energy of 13
TeV, predictions in the framework of BSM models are needed even more. When building
models with an extended scalar sector, one has to respect the current experimental and the
theoretical constraints. Among the most restrictive constraints from the experimental side is
the measurement of the parameter ρ, that is defined as

ρ =
M2
W

M2
Z cos2(θW )

, (2.1)

where MW and MZ are the masses of the W -boson and the Z-boson, respectively, and θW
is the Weinberg angle. Experimentally ρ is determined to be very close to one [19]. Since in
the SM and in extensions of its scalar sector the masses of the gauge bosons are generated
through EWSB, the prediction for the above defined ρ depends on the scalar structure of the
model. While the SM with one complex scalar isospin doublet, predicts ρ to be exactly one,
in an SU(2)L ⊗U(1)Y gauge theory with n scalar multiplets Φi of isospin Ii, hypercharge Yi
and a vacuum expectation value (vev) vi, ρ is determined to be

ρ =

∑n
i=1

(
Ii(Ii + 1)− 1

4Y
2
i

)
vi∑n

i=1
1
2Y

2
i vi

. (2.2)

As one can easily see, any number of singlets (I = 0) with hypercharge Y = 0 and doublets
(I = 1/2) with hypercharge Y = ±1 will likewise lead to ρ = 1. Although compatibility with
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this experimental value can in principle be possible in models with higher SU(2) multiplets,
this is not guaranteed anymore. From this point of view SU(2) singlets and doublets are the
simplest allowed scalar extensions.

Another severe constraint is the fact that the existence of flavour-changing neutral currents
(FCNCs) is experimentally very restricted. In contrast to the SM, the coupling matrices
between scalars and fermions and the fermionic mass matrices are in general not diagonal at
the same time (see Sec. 2.3) and hence FCNCs may arise already at tree level. Any realistic
scalar extension has to either prevent tree-level FCNCs in the first place or explain why they
are sufficiently small to still be compatible with experimental data.

From the theoretical side unitarity imposes constraints on scattering amplitudes and conse-
quently on coupling constants. In the SM it was the prediction of the Higgs boson that cured
the violation of unitarity bounds in the scattering of longitudinal gauge bosons VL VL →
VL VL. Without the scalar particle the cross section diverges with the square of the center of
mass energy of the process. Due to the mechanism of EWSB the structure of the interaction
between the Higgs boson and the gauge bosons is such that this divergence is exactly cancelled.

In any model that has an extended scalar sector and that relies on the mechanism of EWSB,
the same cancellation has to hold. This translates into sum rules for the scalar-gauge-boson
couplings. For general multiplets these rules can be rather complicated. If there are however n
physical scalars hi that sit only in singlets and doublets, the sum rule imposed by longitudinal
vector boson scattering on the coupling constants ghiV V , reads∑

i

g2
hiV V

=
(
gSM
hV V

)2
, (2.3)

where gSM
hV V denotes the SM coupling between gauge bosons and the Higgs boson.

Besides adding a singlet to the SM, the Two-Higgs-Doublet Model with two instead of only
one complex scalar doublet is the simplest scalar extension of the SM. Additionally, it is
capable of fulfilling the afore-mentioned selection of constraints. That THDMs have not yet
been ruled out by experimental data, may in itself be seen as reason enough to study them.
Apart from this fact and its simplicity, there are however various other sources of motivation
for THDMs.

Supersymmetry is often adduced as one of the most prominent motivations for THDMs
[20–24]. Due to the structure of the superpotential, one doublet is not sufficient to give
mass to both, up-type and down-type quarks. In addition, a second doublet is required to
ensure supersymmetric models to be anomaly-free. The scalar sector of the Minimal Super-
symmetric Standard Model (MSSM) is indeed a special case of a type II THDM (see Sec. 2.3).

One of the insufficiencies of the SM is that it is not able to explain the prevalence of matter
over antimatter in our universe. THDMs provide features and mechanisms that could help
to explain baryogenesis [25–29]. On the one hand a larger parameter space compared to the
SM and thus more flexibility in the scalar mass spectrum and on the other hand sources of
both explicit and spontaneous CP-violation may be able to generate a sufficient asymmetry
between matter and antimatter.
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On a last note, THDMs are the low energy effective field theory of other BSM models, such
as axion models [30], and are therefore an important tool when searching for new physics
that may appear indirectly through loops.

In order to point out what the changes compared to the SM with one complex doublet are,
when introducing two complex scalar SU(2) doublets Φ1 and Φ2 with hypercharge +1, we
may cast the Lagrangian schematically into

LEW =
∑
ψ

ψ̄i /Dψ − 1

4
W a
µνW

µν
a −

1

4
FµνF

µν + LGhost

+
∑
i=1,2

(DµΦi)
† (DµΦi)

+ LGF(Φ1,Φ2, A
a
µ, Bµ)

− V (Φ1,Φ2)

+ LYuk(Φ1,Φ2, {ψ}) .

(2.4)

Because the scalar doublets transform trivially under the SU(3)C gauge group and do not
couple strongly, the QCD structure is suppressed in the Lagrangian and only the EW gauge
group is considered. The covariant derivative then reads

Dµ = ∂µ + igAaµτa + ig′Bµ , (2.5)

where g and g′ are the EW gauge couplings, τa the Pauli matrices, Bµ the U(1)Y gauge
field and Aaµ the SU(2)L gauge fields (a = 1, 2, 3). The first line of Eq. (2.4) is unchanged
compared to the SM. The first term is the kinetic term of all fermions (the sum runs over all
fermion doublets). The second and the third term are the kinetic terms of the SU(2)L gauge
fields, constructed from their field strength tensor W a

µν and the U(1)Y gauge field with the
field strength tensor Fµν . The last term is the ghost Lagrangian from quantizing the former
non-abelian SU(2)L gauge fields.

The second and third line of Eq. (2.4) contain the kinetic terms of the scalars and the gauge
fixing Lagrangian, that are the straight forward generalizations of their analogue terms in the
SM. For the most general THDM the scalar potential V and the Yukawa-Lagrangian LYuk

finally will contain all operators up to dimension four, that are compatible with the gauge
symmetry and Lorentz invariance. These requirements still allow for a wide range of models
with different phenomenology and physics as will be explained in the following two sections.

2.2. The Scalar Potential

The most general scalar potential, that can be constructed from two complex scalar isospin
doublets such that it respects the SU(2)L ⊗ U(1)Y gauge symmetry and the requirement of
renormalizabilty has 14 real-valued independent parameters [15]. After unphysical phases
have been rotated away, one is left with 11 physical parameters and a potential, in which in
general CP symmetry is broken explicitly and which has a very rich vacuum structure. If the
potential is bounded from below, a global minimum has to exist, however in contrast to the
SM, it is in general not unique. Strongly depending on the 11 parameters, the global minimum
can be charge breaking, (spontaneously) CP-breaking or a ‘normal’ minimum where the latter
refers to the analogue of the SM with a real-valued vev in the lower component of each doublet.
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Although before the background of baryogenesis, THDMs with explicit and spontaneous CP-
breaking have their own strong motivation, the focus in this thesis lies on a phenomenological
study of the decays H+ → W+ h/H in a CP-conserving THDM as well as the comparison
of renormalization schemes for the scalar sector thereof. Requiring a CP-conserving potential
and additionally imposing a Z2 symmetry, allows to restrict the most general scalar potential
to the following form

V (Φ1,Φ2) = m2
11Φ†1Φ1 + m2

22Φ†2Φ2 − m2
12

(
Φ†1Φ2 + Φ†2Φ1

)
+

λ1

2

(
Φ†1Φ1

)2
+

λ2

2

(
Φ†2Φ2

)2
+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1

+
λ5

2

((
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2
)
,

(2.6)

that has 8 independent real-valued parameters. The parameters m11,m22 and m12 have
mass dimension, while the λi (i = 1, ..., 5) are dimensionless. The reason behind imposing
a Z2 symmetry is to avoid FCNCs and will be explained in Sec. 2.3. Note that the bilinear
term proportional to m12, that mixes the two doublets, is in general kept in this potential, al-
though it softly breaks the latter symmetry. The parametrization of the potential in Eq. (2.6)
is very common in the literature [15, 17, 31]. Nonetheless an alternative parametrization of
the CP-conserving potential is presented in App. C. This parametrization is used in the Higgs
Hunter’s Guide [14] as well as in the FeynArts model file (see Sec. 6.1).

Assuming normal vacua

〈Φi〉0 =

 0
vi√

2

 with i = 1, 2 , (2.7)

each doublet may be expanded around its vev and split into the charged complex field ω+
i ,

the neutral CP-even real field ρi and the neutral CP-odd real field ηi

Φi =

 ω+
i

vi + ρi + iηi√
2

 with i = 1, 2 . (2.8)

For the vevs to be minima of the potential, the two stationary conditions

∂V ( 〈Φ1〉0, 〈Φ2〉0 )

∂vi
= 0 with i = 1, 2 (2.9)

have to be fulfilled, which translate into the following conditions for the parameters of the
potential

T1 ≡ m2
12v2 −m2

11v1 −
1

2
λ1v

2
1 −

1

2
(λ3 + λ4 + λ5)︸ ︷︷ ︸

≡λ345

v1v
2
2 = 0 , (2.10)

T2 ≡ m2
12v1 −m2

22v2 −
1

2
λ2v

2
2 −

1

2
(λ3 + λ4 + λ5) v2

1v2 = 0 . (2.11)

For later convenience the abbreviation λ345 and the tadpole parameters T1 and T2 are defined
in Eq. (2.10) and Eq. (2.11). Although at leading order the tadpole parameters vanish, they
allow to preserve the minimum conditions in a convenient way when going beyond LO (see
Sec. 4.4.1).
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In order to identify the physical degrees of freedom, the mass matrices have to be diagonalized.
Due to gauge and CP invariance of the considered model, only fields with the same quantum
numbers for the electric charge and the CP behaviour can mix. The bilinear terms of the
scalar potential may therefore be rearranged in the following way

V |bilinear =
1

2

(
ρ1, ρ2

)
Mρ

(
ρ1

ρ2

)

+
1

2

(
η1, η2

)
Mη

(
η1

η2

)
+

1

2

(
ω−1 , ω−2

)
Mω

(
ω+

1

ω+
2

)
,

(2.12)

where by comparison the entries of the mass matrices Mρ, Mη and Mω can be read off the
potential [15] as

Mρ =

 −m2
12

v2

v1
− λ1v

2
1 m2

12 − λ345 v1v2

m2
12 − λ345 v1v2 −m2

12

v2

v1
− λ1v

2
1

 , (2.13)

Mη =

[
m2

12

v1v2
− λ5

] (
v2

2 −v2v1

−v2v1 v2
1

)
, (2.14)

Mω =

[
m2

12

v1v2
− λ4 − λ5

] (
v2

2 −v2v1

−v2v1 v2
1

)
. (2.15)

As a real symmetric matrix, each of the three mass matrices can be diagonalized by an
orthogonal matrix. In 2 dimensions this rotation matrix can be parametrized by one single
angle θ and reads in the chosen sign convention

R(θ) ≡
(

cos(θ) −sin(θ)

sin(θ) cos(θ)

)
. (2.16)

For the trigonometric functions the short-hand notations cθ = cos(θ), sθ = sin(θ) and tθ =
tan(θ) will be used from here on. From observing thatMη andMω are proportional to each
other, it is clear that two angles are sufficient to describe the change of basis for the whole
scalar sector. Conventionally these angles are called α and β and are defined through

(
ρ1

ρ2

)
= R(α)

(
H

h

)
, (2.17)

(
η1

η2

)
= R(β)

(
G0

A0

)
, (2.18)

(
ω+

1

ω+
2

)
= R(β)

(
G+

H+

)
, (2.19)

where the pairs of scalars on the left-hand side are referred to as the gauge basis, as it is
those fields, in terms of which the kinetic term in the Lagrangian is formulated. The pairs of
scalars on the right-hand side of the Eqs. (2.17–2.19) are accordingly referred to as the mass
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basis, as in this basis the mass matrices become diagonal

R(α)T Mρ R(α) =

(
m2
H 0

0 m2
h

)
, (2.20)

R(β)T Mη R(β) =

(
0 0

0 m2
A0

)
, (2.21)

R(β)T Mω R(β) =

(
0 0

0 m2
H±

)
. (2.22)

Like in the SM there are three massless would-be Goldstone bosons G0, G+ and G− that
correspond to the three broken symmetries and provide the longitudinal polarizations of the
three massive gauge bosons. Given that two complex scalar doublets contain 8 real fields,
one is thus left with 5 physical degrees of freedom corresponding to the massive eigenstates
of the Eqs. (2.20–2.22). These are the two neutral CP-even scalars denoted by H and h,
where it is convention to assume mH ≥ mh for their masses, the neutral CP-odd field A0

with the massmA0 and finally the two charged complex fieldsH+ andH− with the massmH± .

The mixing angles α and β play a crucial role for the phenomenology of the THDM as they
appear in most couplings in which physical scalar fields are involved. The diagonalization
yields the following relations between these angles and the parameters of the potential

tan(β) =
v2

v1
, (2.23)

tan(2α) =
s2β

(
M2 − λ345v

2
)

c2
β (M2 − λ1v2) − s2

β (M2 − λ2v2)
, (2.24)

where the following definitions have been used

M2 ≡ m2
12

cβ sβ
, (2.25)

v ≡
√
v2

1 + v2
2 . (2.26)

v represents the scale of electro-weak symmetry breaking and is experimentally fixed to be
v ≈ 246 GeV [32]. Since needed later, the relations between the masses and the five coupling
constants λ1 − λ5 from the potential are given explicitly

λ1 =
1

v2c2
β

(
s2
αm

2
h + c2

αm
2
H − s2

βM
2
)
, (2.27)

λ2 =
1

v2s2
β

(
c2
αm

2
h + s2

αm
2
H − c2

βM
2
)
, (2.28)

λ3 = 2
m2
H±

v2
+

1

v2

s2α

s2β
(m2

H −m2
h)− M2

v2
, (2.29)

λ4 =
1

v2

(
M2 +m2

A0 − 2m2
H±
)
, (2.30)

λ5 =
1

v2

(
M2 −m2

A0

)
. (2.31)
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2.3. THDMs and FCNCs

Flavor-changing neutral currents are severely restricted by experiment. Any model that allows
for tree-level FCNCs is therefore either already excluded or has to explain why these FCNCs
have not yet appeared at energies probed so far. The phenomenon of tree-level FCNCs arises
from the structure of the interaction between fermions and scalars in the Yukawa Lagrangian
LYuk. In general there exist only the following two independent SU(2)L invariant and Lorentz
invariant combinations of a fermion doublet Ψ = (ψ1, ψ2)T and a scalar doublet Φ = (φ1, φ2)T

Ψ̄LΦψ2,R and (2.32)

Ψ̄LΦ̃ψ1,R with Φ̃i ≡ εjiΦ∗j (i, j = 1, 2) , (2.33)

where ε is the totally antisymmetric tensor in 2 dimensions with ε12 = 1. The subscripts
R and L indicate the right-handed (RH) and left-handed (LH) projections ψR,L = PR,Lψ =
1

2
(1± γ5)ψ. The most general LYuk for two scalar doublets Φ1 and Φ2 can thus be written as

LYuk = −
(
Q̄L
[
ΓD1 Φ1 + ΓD2 Φ2

]
DR + Q̄L

[
ΓU1 Φ̃1 + ΓU2 Φ̃2

]
UR

+ L̄L
[
ΓE1 Φ1 + ΓE2 Φ2

]
ER

)
+ h.c. .

(2.34)

The scalar doublets only have SU(2) structure, while the fermions Q ≡ (U,D)T and L ≡
(ν,E)T are SU(2) doublets and at the same time triplets in flavour space in the sense that
U ≡ (u, c, t)T , D ≡ (d, s, b)T , ν ≡ (νe, νµ, ντ )T and E ≡ (e, µ, τ)T . The RH projections are
singlets with respect to SU(2) transformations and the Yukawa coupling matrices ΓFi (i = 1, 2
and F = U,D,L) are 3× 3 complex matrices in flavour space.

In the SM without a second doublet Φ2, the mass matrix of the fermions is given by v1/
√

2
times ΓF1 . Hence this mass matrix and the coupling matrix ΓF1 between scalars and fermions
can be simultaneously diagonalized in flavor space, which means that there are no tree-level
FCNCs. However in the presence of two scalar doublets like in Eq. (2.34), ΓF1 and ΓF2 do
not necessarily diagonalize at the same time. In general there will therefore be non-vanishing
couplings between a neutral scalar φ and two fermions of different flavours. This would for
instance allow for d̄sφ terms that induce K-K̄-mixing at tree level.

General THDMs thus suffer from FCNCs, but the structure of LYuk makes it evident how
this issue can be circumvented. If each type of right-handed fermions of the same electric
charge coupled to only one scalar doublet, a situation analogous to the SM case is restored
and the existence of tree-level FCNCs is prevented. To this end either ΓF1 or ΓF2 has to vanish
for each group of fermions F , which in the following will be formulated more elegantly in
terms of symmetry requirements [15]. As far as the quarks are concerned, there are only two
possibilities. Either both types of RH quarks couple to one and the same doublet or they
couple to different ones. Conventionally these two cases are denoted and defined as follows,
where it is assumed that the charged leptons couple to the same doublet as the RH down-type
quarks:

• Type I: All RH quarks and RH charged leptons couple to the same doublet
Φ2. This is achieved by a Z2-symmetry under Φ1 7−→ −Φ1.

• Type II: All RH up-type quarks couple only to Φ2, while all RH down-type
quarks and RH charged leptons couple only to Φ1. This is achieved by the
symmetry under the simultaneous Z2-transformations Φ1 7−→ −Φ1, (DR)i 7−→
−(DR)i and (ER)i 7−→ −(ER)i (i being the flavour index).
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Of course it is not a necessity to require the same transformations for the charged leptons as
for the down-type quarks. Consequently there are two more models:

• Lepton-specific model: All RH down-type quarks couple to Φ2 but all RH
charged leptons couple to Φ1. This is achieved by the symmetry under the
simultaneous Z2-transformations Φ1 7−→ −Φ1, and (ER)i 7−→ −(ER)i.

• Flipped model: The RH up-type quarks and the RH charged leptons couple
to Φ2, while the RH down-type quarks couple to Φ1. This is achieved by
the symmetry under the simultaneous Z2-transformations Φ1 7−→ −Φ1 and
(DR)i 7−→ −(DR)i

The scalar sector of the MSSM is a type II THDM. Due to relations that are imposed by
supersymmetry, it has however a smaller number of independent parameters than a general
THDM (see e.g. [15]). See Djouadi’s review [33] for details on the Higgs sector of the MSSM.

2.4. Sets of Independent Parameters

The question of complete sets of independent parameters is naturally a crucial one, not only
as it gives a lower bound to the number of measurements needed to fix the parameters of a
THDM, but it is also important in order to develop consistent renormalization schemes. At
LO the mixing angle tan(β) is given by the ratio of the vevs, which in turn feed into masses
of the gauge bosons. Since also the EW gauge couplings g and g′ or the masses MW and
MZ , respectively, will have to be renormalized, it is sensible to examine the set of parameters
from the scalar potential together with the electroweak parameters g and g′ or MW and MZ ,
respectively.

In the gauge basis one counts 8 parameters from the scalar potential, two vevs and the two
gauge couplings. Most conveniently the tadpole parameters T1 and T2 are used to replace
m11 and m22. One is hence left with the following set of 12 independent parameters in the
gauge basis

{
T1, T2, m12, λ1 − λ5, v1, v2, g, g

′ } ≡ SG . (2.35)

In the mass basis a set of independent parameters will certainly contain all the scalar masses,
the masses of the gauge bosons, the electron charge as well as tan(β). In order to avoid
complication when renormalizing the scalar sector, it is feasible to also choose the tadpole
parameters Th and TH , though now rotated into the mass basis. This gives a set of 10
independent parameters that is not yet a complete one. Due to the structure of the equations
(2.27) to (2.31) there are restrictions to which other two parameters can be chosen. Despite
the phenomenological relevance, e.g. m12 and λ5 cannot be chosen at the same time. Below
possible choices are given names for later reference

{mh, mH , mH± ,mA0 , MW , MZ , e, tan(β), Th, TH} ∪


{α, M}
{α, λ5}
{λ3, λ5}

≡


SP1

SP2

SP3

(2.36)
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2.5. General Notation

For later convenience the following general notation shall be introduced in order to refer
to any pair of scalar fields of the same quantum numbers in the gauge and the mass basis
respectively (

γ1

γ2

)
∈

{ (
ρ1

ρ2

)
,

(
η1

η2

)
,

(
ω+

1

ω+
2

) }
, (2.37)

(
f1

f2

)
∈

{ (
H

h

)
,

(
G0

A

)
,

(
G+

H+

) }
, (2.38)

where the transformation between the two basis may be formulated with a general rotation
angle θ (

γ1

γ2

)
= R(θ)

(
f1

f2

)
, θ ∈ {α, β} . (2.39)

Accordingly a subscript ’γ’ or ’f’ indicates a pair of scalars in the gauge or mass basis. With
the mass matrices in the gauge basis Mγ and the diagonal mass matrices Df , the bilinear
terms of the potential read in this notation

∑
all pairs γ

1

2

(
γ†1, γ†2

)
Mγ

(
γ1

γ2

)
=

∑
all pairs f

1

2

(
f †1 , f †2

)
Df
(
f1

f2

)
. (2.40)





CHAPTER 3

The Decays H+ → W+ h/H at LO

As motivated in Chapter 1 the process that is explicitly studied in this thesis is the decay of
a charged Higgs boson into an on-shell W -Boson and an on-shell neutral CP-even scalar in a
general CP-conserving THDM,

H+ → W+ h/H (3.1)

W+

h/H

H+

p1

p3

p2

Figure 3.1.: Tree-level Feynman diagram for the decays H+ → W+ h/H including the
definition of momenta.

The Feynman diagram contributing at LO is shown in Fig. 3.1, where additionally the defi-
nition for the momenta is introduced that will be used in the following. Despite its triviality
and the fact that one can find the tree-level decay width e.g. in [16], it shall be presented
in order to introduce the necessary notation. The amplitude ALO

φ corresponding to Fig. 3.1
with φ standing for h or H respectively, reads

ALO
φ =

ig

2
ρφ (p1 + p2)µ ε

∗µ
3 =

ie

2sW
ρφ 2 (p1ε

∗
3) , (3.2)

where conservation of momentum and the Ward-identity for the on-shell W-boson have been
used. g is the gauge coupling, sW the sine of the Weinberg angle. The vertices for the two
different scalars differ only in their dependence on the mixing angles

ρφ =

{
− cβ−α for φ = h

sβ−α for φ = H .
(3.3)
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The partial decay width is given by (see e.g. [34])

Γφ ≡ Γ(H+ →W+s) =
1

2mH±

∫
dΠ2

∑
λ3

|Aφ|2 . (3.4)

λ3 denotes the polarization of the W -boson and, given an isotropic squared amplitude, the
two-body phase space after integration in the rest frame of the charged Higgs boson is

∫
dΠ2 =

∏
i=2,3

∫
d3pi
(2π)3

1

2Ei

 (4π) δ(4)(p1 − p2 − p3)

=

∫
dΩ

|~p2|
(4π)2mH±

=
1

8πm2
H±

λ
(
m2
H± ,M

2
W ,m

2
φ

)
︸ ︷︷ ︸

≡ FKin
φ

, (3.5)

where dΩ is the differential solid angle in three dimensions and the phase space function

λ(a, b, c) ≡
(
a2 + b2 + c2 − 2ab− 2bc− 2ca

) 1
2 (3.6)

has been used to express the final state momenta in the H+ rest frame as

|~p2| = |~p3| =
2

mH±
λ
(
m2
H± ,M

2
W ,m

2
φ

)
. (3.7)

Since at any loop order the dependence of the corresponding amplitude on the polarization
vector ε3 of the on-shell W -boson can be written in terms of only one contraction p1ε3, it is
helpful to define the following factor

FPol
φ ≡

∑
λ3

(p1ε
∗
3) (p1ε3)

= pµ1p
ν
1

(
−gµν +

p3µp3ν

M2
W

)
=

1

4M2
W

λ2
(
m2
H± ,M

2
W ,m

2
φ

)
, (3.8)

where in the second line the polarization sum of a massive vector boson (see e.g. [34]) has
been used. The leading order (i.e. ∝ αEM ) partial decay width is thus given by

ΓLO
φ =

1

2mH±
FKin
φ FPol

φ

∣∣∣∣2 ie

2sW
ρφ

∣∣∣∣2 (3.9)

=
αEM

16M2
W s

2
Wm

3
H±

ρ2
φ λ

3
(
m2
H± ,M

2
W ,m

2
φ

)
. (3.10)



CHAPTER 4

Renormalization of THDMs

4.1. A General Note on Renormalization

In a quantum field theory, one will in general encounter correlation functions that are diver-
gent. These divergences manifest themselves in a perturbative framework as ultra-violet (UV)
and infra-red (IR) divergences due to arbitrarily large and small loop momenta. However,
since the seventies it has been known that the standard model with the SU(3)C ⊗ SU(2)L ⊗
U(1)Y gauge group is renormalizable [35]. This means that in relations between only observ-
able quantities all divergent parts drop out at any order of perturbation theory. The same
holds for a THDM as it obeys the same gauge symmetries and no operators with dimension
higher than four are considered.

In order to investigate the cancellation of divergences, they first have to be regularized so
that divergent integrals can be subtracted from one another in a mathematically sensible way
- in other words, the divergences have to be under control. In the literature, a variety of
different regularization methods can be found. To regularize the UV divergences, we will use
dimensional regularization, which preserves both Lorentz invariance and gauge invariance.
The treatment of the IR divergences will be postponed to Sec. 5.2. Dimensional regulariza-
tion [35,36] means to calculate the loop integrals in D dimensions, where the real number D
is the dimension of both the spacetime or respectively the momentum space as well as the
fields. Defining ε ≡ (D − 4)/2, the physically relevant case of four dimensions is retained in
the limit of sending ε to zero. The cancellation of UV divergent terms then translates into
the cancellation of singular poles in ε such that after renormalization the limit of ε → 0 can
safely be taken.

Instead of speaking about relations between only observables, as used above to define the
concept of renormalizability, the so-called counterterm formalism shall be used. Renormaliz-
ability in this formalism means that redefining a finite set of parameters is enough to render
all correlation functions UV finite at any order of perturbation theory. If the bare Lagrangian
before renormalization has n independent bare parameters {p1,0, ..., pn,0}, each of them is split
into the corresponding renormalized parameter pi and its counterterm (CT) δpi by defining

pi,0 = pi + δpi for i = 1, ...n . (4.1)
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These n CTs δpi must be fixed by a set of n renormalization conditions. This is sufficient
to render all S-Matrix elements finite [37]. However, in order to also obtain finite Green
functions, in particular finite self energies, additional field renormalization parameters Zφ
have to be introduced, which mediate between bare fields φ0 and renormalized fields φ:

φ0 =
√
Zφ φ . (4.2)

What is called a renormalization scheme therefore is a specific choice of a set of n independent
parameters that get independent CTs, a set of m field renormalization parameters and finally
a set of n+m renormalization conditions that fix the introduced parameters.

Essentially, the counterterm formalism is a convenient way of bookkeeping the regularized
poles so that in contrast to the bare parameters, the renormalized ones are UV finite. A
physical meaning can therefore be assigned to those renormalized parameters, although this
need not be the case depending on what particular finite value they are defined to acquire.
Also note that the number of field renormalization parameters m is not necessarily equal
to the number of degrees of freedom of the model. It can be larger as well as smaller and
examples for both will discussed in the following sections.

The renormalization of the SM at one-loop level is well studied and can be found in an
abundance of literature (see e.g. [37]). The renormalization of fermionic and gauge bosonic
fields as well as electroweak and strong coupling constants is the same in the THDM, except
for the fact that corresponding self energies and vertex functions have contributions from a
larger scalar sector. The focus shall therefore lie on the scalar sector and in the following
sections different renormalization schemes for the THDM shall be discussed in detail and
compared with each other.

4.2. On-shell Conditions

At the heart of on-shell renormalization conditions lies the idea of using observables to for-
mulate renormalization conditions. These conditions fix counterterms in such a way that, by
absorbing particular finite parts, the renormalized parameters of the theory correspond to
observables. To only meet the necessary requirement of rendering S-Matrix elements finite,
parameters do not have to be renormalized on-shell. Doing so is rather exploiting the freedom
of choice in a way that appeals to physical intuition.

Apart from this intuition, there is however another reason to use on-shell conditions. As
long as observable quantities like cross sections and decay widths are calculated, no matter
which renormalization scheme is used, eventually all fields of the external particles of this
process, have to fulfil on-shell relations. It may therefore seem natural to work with renor-
malization schemes in which the renormalization conditions preserve the on-shell relations for
any physical field at any order of perturbation theory. Through such conditions the scheme
becomes generically applicable to any process. Otherwise higher order corrections may lead
to a violation of the on-shell relations of the fields which thus have to be restored after the
renormalization procedure (see discussion in Sec. 4.4.6).

Since we are mainly concerned with the scalar sector of a THDM, on-shell renormalization
conditions will be discussed in this context. The basic procedure is however the same for
fermions and gauge bosons. Recalling that the notion of a particle in a quantum field theory
can be identified with a single pole of a correlation function in the Kallén-Lehmann spectral
representation (see e.g. [34]), it can be readily understood why the term ‘on-shell conditions’
refers to a set of three conditions, namely:
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1. The real part of the pole of the propagator is given
by the physical mass m.

2. The mixing with other fields of the same quan-
tum numbers vanishes on the mass shell, which is
defined by p2 = m2.

3. The field is properly normalized, i.e. the residue
of the propagator at the pole is equal to i.

(4.3)

The central object for the discussion therefore is the propagator G(p2) in momentum space.
For a single scalar field φ, i.e. in the absence of further scalar fields with equal quantum
numbers, we can write schematically

G(p2) =
√
Zφ
∗√

Zφ

∫
d4x eipx 〈Ω|Tφ(x)φ(0)|Ω〉

=

∫
d4x eipx 〈Ω|Tφ0(x)φ0(0)|Ω〉 (4.4)

= + ...+ +1PI 1PI 1PI (4.5)

=
i

p2 − m2
0 + Σ + iε

, (4.6)

where in the first two lines the definition of the field renormalization constant of Eq. (4.2) was
used to transform between the bare scalar field φ0 and the corresponding renormalized field φ.
The symbol T stands for the time ordered product, |Ω〉 is the vacuum state of the interacting
theory and iΣ represents the one-particle-irreducible (1PI) two-point-function that is shown
pictorially in Eq. (4.5) and which will from here on be called self energy. Defining Γ̂(p2) as
the inverse of the renormalized propagator Ĝ(p2) with a relative factor i as

Ĝ(p2) = iΓ̂−1(p2) , (4.7)

and introducing a mass CT through m2
0 = m2 + δm2, one can easily identify that

Γ̂(p2) =
√
Z
∗√
Z
[
p2 − (m2 + δm2) + Σ

]
. (4.8)

In a CP-conserving THDM however, there are three pairs of scalars as defined in Eq. (2.38),
within each of which mixing is allowed. Most conveniently the inverse propagator is then cast
into a (2 × 2)-matrix structure. Making use of the general notation, introduced in Sec. 2.5,
the field renormalization, which is to be specified later, may in general be denoted by a
(2× 2)-matrix

√
Zf(

f1

f2

)
0

=
√
Zf

(
f1

f2

)
≡
(
12×2 +

1

2
δZf

)(
f1

f2

)
. (4.9)

With Df being the corresponding diagonal mass matrix and Σf the matrix with the self
energies Σfifj of the scalars fi and fj as entries, the generalized version of Eq. (4.8) is given
by

Γ̂f (p2) =
√
Zf
† [

p212×2 − (Df + δDf ) + Σf

] √
Zf . (4.10)
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To translate the general on-shell conditions into conditions in terms of this Γ̂f (p2), we first
observe that

Ĝf = i Γ̂−1
f

=
i

Γ̂f1f1Γ̂f2f2 − Γ̂2
f1f2︸ ︷︷ ︸

=det(Γ̂f)

(
Γ̂f2f2 −Γ̂f1f2

−Γ̂f1f2 Γ̂f1f1

)
, (4.11)

where the momentum dependence has been suppressed and it has been made explicit that Γ̂f
is always symmetric. The pole condition defines the physical masses as the the real parts of
the solutions to the equation

det
(

Γ̂f (p2)
)

= 0 . (4.12)

This simplifies, if first imposing that the mixing has to vanish on the mass shell1

Re
(

Γ̂f1f2(m2
f1

)
)

!
= 0, Re

(
Γ̂f1f2(m2

f2
)
)

!
= 0 . (4.13)

From Eq. (4.12) it then follows that for the masses mf1 and mf2 , it must hold that

Re
(

Γ̂f1f1(m2
f1

)
)

!
= 0, Re

(
Γ̂f2f2(m2

f2
)
)

!
= 0 . (4.14)

The third condition that the residue at the pole of the propagator is equal to i, eventually
translates into

Re

(
∂Γ̂f1f1(p2)

∂p2

)∣∣∣∣∣
p2=m2

f1

!
= 1, Re

(
∂Γ̂f2f2(p2)

∂p2

)∣∣∣∣∣
p2=m2

f2

!
= 1 . (4.15)

Note that beyond one-loop level one has to replace the ‘Re’ in the Eqs. (4.13–4.15) by ‘R̃e’ [37]
which takes only the real parts of the loop integrals while taking into account the imaginary
parts from coupling constants.

The term ”on-shell conditions” will only be used in the strict sense as defined above, which is
literally ensuring that a field satisfies the three on-shell relations of Eq. (4.3) beyond LO. In
a broader sense, it is sometimes used to refer to a renormalization condition, through which
a counterterm absorbs particular finite parts, such as defining the electric charge e to be the
coupling constant for the eeγ interaction in the Thomson-limit. It will not be used in this
sense here.

4.3. A Matter of the Order of Doing Things?

In the context of the MSSM, whose scalar sector is a type II THDM (see Sec. 2.3), an often
drawn distinction is the order of renormalizing and rotating from the gauge to the mass basis.

1As at NLO only the interference term of the LO amplitude and the NLO amplitude contributes to the correction
of the decay widths, the imaginary parts in the counterterms drop out. In the following sections of this thesis
the ‘Re’ in the on-shell conditions that require the vanishing mixing of physical scalars on their mass shell will
therefore be omitted in order to have the same notation as used in the formulae given in [17].
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Because this appears to be a potentially confusing issue, I shall briefly outline it and discuss
the connection to the situation in a general THDM.

Given two relevant bases, the mass basis and the gauge basis, one may wonder in which basis
to renormalize. A priori, both options must be possible and this distinction is often framed
as a choice between first renormalizing and then rotating or vice versa. The latter is what
has been introduced in Sec. 4.2, but what are the implications of the former?

The mixing angles appear only when going from one basis to another. Taking seriously that
the renormalization is carried out in the gauge basis, where α and β do not yet exist, suggests
not to renormalize these mixing angles. This is to say that the very definition of the angles is
that they diagonalize the already renormalized mass matrices. A consequence of this is that
beyond leading order, one has to distinguish between β as defined by the ratio of vevs (Φi,2

refers to the lower component of the ith doublet) on the one hand,

tan(β) ≡ 〈Φ2,2〉0
〈Φ1,2〉0

7→ tan(β) + δtan(β) (4.16)

and the two distinct angles βc and βn on the other hand, which diagonalize the renormalized
mass matrix of the charged scalars and the neutral CP-odd scalars, respectively,(

ω+
1

ω+
2

)
= R(βc)

(
G+

H+

)
, (4.17)(

η1

η2

)
= R(βn)

(
G0

A0

)
. (4.18)

This is important, because in the mass matrices and vertices the vevs v1 and v2 are typically
replaced by MW , MZ , e and tan(β). As a result ‘tan(β)’ appears in the sense of the definition
in Eq. (4.16) as well as in the role of a mixing angle. Once the replacement rule of taking
tan(β) to tan(β) + δtan(β) has been applied consistently to only tan(β) but not tan(βc) and
tan(βn), the indices can be dropped again, since at LO all three are identical.

If one still chose scalar masses as input parameters, which implies that they preserve their
meaning as physical masses beyond LO, the on-shell pole conditions would have to be imposed
on the inverse propagator for physical fields, which in analogy to Eq. (4.10), now reads

Γf (p2) = R†(θ)
[√

Z
†
γ

[
p212×2 − (Mγ + δMγ) + Σγ

] √
Zγ

]
R(θ) , (4.19)

where γ indicates the gauge basis and θ is the corresponding mixing angle α, βc or βn. This
step is technically inconvenient considering the mass matrices Mγ of the Eqs. (2.13–2.15)
and the relations between masses and the parameters of the potential in Eqs. (2.27–2.31).
This observation is admittedly no surprise as saying to ‘first renormalize and then rotate’
already suggests that this approach is at odds with choosing the physical masses mfi as input
parameters.

The reason why this approach of renormalizing in the gauge basis is applied in certain models
is that the analytical diagonalization of the mass matrices can be difficult or even impossi-
ble if these are complicated matrices in more than two dimensions. This is indeed the case
in CP-violating THDMs or in the next-to-minimal supersymmetric model. One therefore
chooses only those scalar masses as input parameters for which the analytical diagonalization
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is accessible, while the other input parameters are chosen from the gauge basis.

In a CP-conserving THDM however, the analytical relations between all scalar masses and the
parameters of the scalar potential are easy to derive and are known. It is therefore natural to
choose all scalar masses as input parameters, i.e. to choose one of the physical parameter sets
described in Eq. (2.36) and to perform the renormalization in the mass basis. This is reflected
in the fact that typical parametrizations of the Feynman rules use all scalar masses [17, 38].
On a last note, it may in general seem clearer and more instructive to talk about which set of
independent parameters is chosen, instead of talking about whether to first renormalize and
then rotate or vice versa.

4.4. Renormalization of the Scalar Sector

4.4.1. Mass Renormalization

As pointed out in the last section, for a CP-conserving THDM it is both natural and conve-
nient to choose the masses as independent parameters and to renormalize the scalar sector in
the mass basis. The inverse propagator is thus given by Eq. (4.10) and as a complete set of
independent parameters SP1 defined in Eq. (2.36) shall be chosen. The latter choice is also
convenient because this is the set in terms of which the THDM model file of the mathematica
package FeynArts [38] is formulated (except for the necessary transformation between M and
Λ5 given in Eq. (C.7)).

For better readability, the index ”0” for bare quantities will from here on be dropped and the
relation between bare and renormalized parameters will instead be expressed by replacement
rules. The inverse propagator, expanded to NLO, reads

Γ̂f (p2) = p2 1−Df + Σf − δDf +
1

2
δZ†f

(
p2 1−Df

)
+

1

2

(
p2 1−Df

)
δZf︸ ︷︷ ︸

≡ Σ̂f (p2)

. (4.20)

As introduced in the equation above, Σ̂f denotes the matrix of renormalized self energies.
The mass counterterms, defined through

m2
H 7→ m2

H + δm2
H ,

m2
h 7→ m2

h + δm2
h ,

m2
A0 7→ m2

A0 + δm2
A0 ,

m2
H± 7→ m2

H± + δm2
H± ,

(4.21)

are fixed by the corresponding on-shell pole conditions of Eq. (4.14). To this end, it is
first necessary to derive the explicit expressions in the matrix δDf , in which the tadpole
counterterms

T1 7→ 0 + δT1 ,

T2 7→ 0 + δT2

(4.22)

show up. Recalling that in the gauge basis the parameters m11 and m22 have been replaced
by the tadpole parameters, we observe that before setting the latter to zero they appear in
Mγ in the same way for all three pairs of scalars

Mγ = Mγ |{Ti=0} +

 T1

v1
0

0
T2

v2

 . (4.23)
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For the diagonal mass matrix this translates into

Df = R†(θ) Mγ R(θ) =

(
m2
f1

0

0 m2
f2

)
+ RT (θ)

 T1

v1
0

0
T2

v2

 R(θ) , (4.24)

which allows to identify δDf as

δDf =

(
δm2

f1
0

0 δm2
f2

)
+ R(θ)T

δT1

v1
0

0
δT2

v2

 R(θ)

︸ ︷︷ ︸
≡ δT

, (4.25)

where the counterterms for the angles δα and δβ, which in principle enter through R(θ), do
not appear at NLO. Only beyond NLO, terms of the order δθδT would have to be considered.
The explicit forms of the matrices δT are given in App. B. The counterterms δT1 and δT2

therein are fixed by the following renormalization conditions that ensure that the vevs are
minima of the Higgs potential also beyond LO

h/H

+ δTh/H
!

= 0 . (4.26)

The circle in the above pictorial equation represents the sum of all tadpole diagrams con-
tributing at the corresponding order. Having in mind that the scalar potential appears with
a relative minus sign in the Lagrangian, Th/H can be identified in the following manner

−V (Φ1,Φ2)|lin. terms = − T1ρ1 − T2ρ2

= (−cαT1 − sαT2)︸ ︷︷ ︸
=:TH

H + (−cαT2 + sαT1)︸ ︷︷ ︸
=:Th

h . (4.27)

The pole condition of Eq. (4.14) hence in general notation leads to

δm2
fi

= Re
(

Σfifi(m
2
fi

) − δTfifi
)

for i = 1, 2 , (4.28)

where δTfifi stand for the corresponding entry of the matrix δT defined in Eq. (4.25). The
four scalar mass CTs of a THDM read explicitly

δm2
H = Re

(
ΣHH(m2

H)− δTHH
)
,

δm2
h = Re

(
Σhh(m2

h)− δThh
)
,

δm2
A0 = Re

(
ΣA0A0(m2

A0)− δTA0A0

)
,

δm2
H± = Re

(
ΣH+H+(m2

H±)− δTH+H+

)
.

(4.29)

What has yet to be specified is what the field renormalization matrix δZf is, how its entries
are fixed and how the mixing angles are renormalized. Before turning to the renormalization
of the angles the so far followed on-shell approach shall first be extended to the scalar fields.
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4.4.2. On-shell Renormalized Fields

The most general field renormalization matrix δZf is a non-symmetric real matrix

√
Zf = 12×2 +

1

2
δZf = 12×2 +

1

2

(
δZf1f1 δZf1f2

δZf2f1 δZf2f2

)
. (4.30)

The pole conditions of Eq. (4.14) have been used to fix the mass counterterms. The four δZfifj
above can be used to allow for all four conditions in Eq. (4.13) and Eq. (4.15) to hold, that
ensure correct normalization of the fields and vanishing mixing on the mass shell. Plugging
the inverse propagator, expanded to NLO as given in Eq. (4.20) into those conditions, yields

δZos
fifi

= Re

(
∂Σfifi

∂p2

)∣∣∣∣
p2=m2

fi

for i = 1, 2 , (4.31)

δZos
fifj

=
2

m2
fi
−m2

fj

[
Σfifj (m

2
fj

) − δTfifj

] for i, j = 1, 2
and i 6= j .

(4.32)

In this approach for the field renormalization, which is for later distinction indicated by the
superscript ”os”, the scalar sector of the THDM thus has 3 · 4 = 12 independent field renor-
malization constants that are fixed by exactly the same number of 3 · 4 conditions. Since
needed for later reference the formulas for all three pairs of scalars will be given explicitly

δZos
G+G+ = −Re

(
Σ
′

G+G+(0)
)
, δZos

H+H+ = −Re
(

Σ
′

H+H+(m2
H±)

)
, (4.33)

δZos
G+H+ = − 2

m2
H±

[
ΣG+H+(m2

H±) − δTG+H+

]
, (4.34)

δZos
H+G+ =

2

m2
H±

[ΣG+H+(0) − δTH+G+ ] , (4.35)

δZos
G0G0 = −Re

(
Σ
′

G0G0(0)
)
, δZos

A0A0 = −Re
(

Σ
′

A0A0(m2
A0)
)
, (4.36)

δZos
G0A0 = − 2

m2
A0

[
ΣG0A0(m2

A0) − δTG0A0

]
, (4.37)

δZos
A0G0 =

2

m2
A0

[ΣG0A0(0) − δTA0G0 ] , (4.38)

δZos
HH = −Re

(
Σ
′
HH(m2

H)
)
, δZos

hh = −Re
(

Σ
′
hh(m2

h)
)
, (4.39)

δZos
Hh =

2

m2
H −m2

h

[
ΣHh(m2

h) − δTHh
]
, (4.40)

δZos
hH = − 2

m2
H −m2

h

[
ΣhH(m2

H) − δThH
]
, (4.41)

where the shorthand notation Σ′fifi(p
2) ≡ ∂Σfifi(p

2)

∂p2
has been used.
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4.4.3. Renormalization of the Angles

So far, all presented renormalization conditions were on-shell conditions that shared the same
physical intuition laid out in Sec. 4.2. The mixing angles α and β are neither observables
themselves, nor is there any physically obvious way of fixing their counterterms by relating
them to observables.

In any consistent renormalization scheme, the counterterms δα and δβ will always contain
the same UV divergent part. However, the finite terms which are defined to be contained
these counterterms, lead to differences such as the extent to which the angles can be given a
physical interpretation, whether their value becomes gauge dependent and how numerically
stable the calculations are [39].

It turns out that the questions of what the field renormalization matrix δZf is, how its entries
are fixed and how the mixing angles are renormalized, are inseparably linked. In the following,
different schemes are presented to reveal how these questions are linked and what subtleties
may arise with respect to the consequences of different finite parts. A final comparison and
discussion of the different schemes will be postponed to Chapter 7.

4.4.4. Process-dependent Schemes

The idea of a process-dependent scheme to renormalize the mixing angles is similar to the
standard way of renormalizing the electric charge in the SM (see Sec. 4.5). Knowing that the
theory is renormalizable, the requirement that the amplitude of a physical process has to be
UV finite can be used to fix counterterms. It is a consistency check for the scheme that the
same such defined CT renders other amplitudes finite, too.

In their paper [16] from 1997 Santos et al. calculated the dominant one-loop corrections from
top and bottom quarks to the decay H+ → W+ h in a CP-conserving THDM. To this end,
it is necessary to fix δ(β−α). Since the only difference between the H+W−h and H+W−H-
vertices is the proportionality to either cβ−α or sβ−α, both their counterterms share the same
δ(β −α). It therefore may seem at hand to use the decay H+ → W+ H with a heavy Higgs
boson to fix δ(β − α). This is what has been done in [16] and may serve as an example to
illustrate the idea of a process-dependent scheme.

The complete CT of the H+W−H-vertex (see Chapter 5 for further details) can be written
schematically as

W+

H

H+
p1

p3

p2

= 2 (p1ε
∗
3)

ig

2
sβ−α

[
δg

g
+

δsβ−α
sβ−α

+
1

2
δZWW +

1

2
δZH+H+ +

1

2
δZHH (4.42)

− cβ−α
sβ−α

(
1

2
δZG+H+ +

1

2
δZhH

) ]

where, as defined in Chapter 3, ε3 denotes the polarization vector of the on-shell W -boson.
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The UV finiteness of the amplitude of the decay H+ → W+ H implies



W+

h/H

H+

Sum of all virtual

vertex corrections︸ ︷︷ ︸
≡AVC

H

+

W+

h/H

H+


!

= finite . (4.43)

Using the NLO expansion

sβ−α = cβ−α δ(β − α) , (4.44)

this translates in general into the following expression for δ(β − α)

δ(β − α)
!

=
i

g cβ−α (p1ε∗3)
AVC
H

− sβ−α
cβ−α

(
δg

g
+

1

2
δZWW +

1

2
δZH+H+ +

1

2
δZHH

)
+

1

2
δZG+H+ +

1

2
δZhH

+ Cfinite,

(4.45)

where Cfinite is some UV finite constant through which the following three possible choices
can be differentiated:

1. The last section opened by saying that the mixing angles themselves are not observables.
Nonetheless, the afore-noted analogy to the electric charge renormalization appealed
to allow for a, though process-dependent, more physical interpretation of the angles.
Applying the same kind of condition for β − α would mean to choose Cfinite such that
the predicted NLO partial decay width is equal to the actually measured one. The
difference between the present situation and the renormalization of the electric charge
is that even before the advent of the SM, measuring electron scattering in the Thomson
limit was in principle possible, while we have not yet observed any BSM scalars.

2. What has instead been done by Santos et al. in [16], is to set Cfinite to zero, which means
that the virtual one-loop corrections to the amplitude of H+ → W+ H vanishes and
hence the NLO decay width is supposed to be set equal to the LO decay width. In [16],
where only top and bottom quarks have been taken into account, this works perfectly
fine. Aiming for the full electroweak corrections, this, however, leads to conceptual
problems which make it impossible to use the decay H+ → W+ H to fix δ(β − α) in
this way. This is due to the issue of IR divergences, which accompany charged external
particles. This will be explained in detail in Sec. 5.2.4.

3. If the equal sign in Eq. (4.45) is to be taken in terms of only the UV-divergent parts of
the r.h.s. of the equation, then this condition is a minimal subtraction (MS) condition
that defines the angle counterterm δ(β − α) to contain only the term proportional to
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the 1/ε pole. The hybrid scheme consisting of on-shell renormalization conditions for
the masses and all scalar fields (Eq. (4.29) and Eqs. (4.33–4.41)) together with this
MS condition for δ(β − α) shall be called HybMS for later reference. As far as the
UV finiteness is concerned, this scheme works fine, but it turns out not to be a good
scheme in terms of the numerical stability of the results. This will be discussed further
in Sec. 6.4.

Using the decay H+ → W+ H to renormalize mixing angles proved to be unsatisfactory.
Once the treatment of real corrections has been introduced, more promising suggestions for
a process-dependent scheme, which circumvent the issue of IR divergences, will be discussed
in Sec. 5.2.4. As far as the concept of a process-dependent renormalization condition is
concerned, using another process will still be along the lines of the example discussed above.
Also note that a process-dependent scheme for the mixing angles, which could be applied
in any calculation, would have to consist of two different processes to fix both independent
counterterms δα and δβ separately.

4.4.5. The Kanemura Approach

Another way to renormalize the angles is based on work by Kanemura et al. [17, 18]. The
essential idea is to make the counterterms of the angles, δα and δβ, show up in the inverse
propagator matrix Γ̂f (p2) in a way that is consistent with the internal relations of the THDM.
Once this is achieved, the angle counterterms can be fixed by imposing the on-shell conditions
from Sec. 4.2.

While actually renormalizing in the mass basis, temporarily switching to the gauge basis and
back again, reveals the following ansatz for the field renormalization(

f1

f2

)
= R(θ)T

(
γ1

γ2

)
7→ R(θ + δθ)T

√
Zγ

(
γ1

γ2

)
(4.46)

NLO
= R(δθ)T R(θ)T

√
Zγ R(θ)︸ ︷︷ ︸

=:
√
Zf

R(θ)T

(
γ1

γ2

)
(4.47)

=
√
Zf

(
f1

f2

)
. (4.48)

The ‘NLO’ over the equal sign in Eq. (4.47) indicates that in the expansion of the sine
and cosine, any term beyond linear order in δθ has been neglected and that only terms
linear in δθ and δZγ are taken into account. Apart from this approximation, in which
R(θ + δθ)T = R(δθ)T R(θ)T holds, only a unit matrix has been inserted. Identifying the
matrix in front of the physical scalars fi as the field renormalization matrix leads to the
definition of

√
Zf as a product of R(δθ)T and

√
Zγ that is embraced by rotation matrices.

This
√
Zγ is some field renormalization matrix in the gauge basis and the naturally arising

question is how many free parameters it has.

In their paper [17] from 2008, in which Kanemura et al. suggested this approach,
√
Zγ is

said to be any real but symmetric matrix. It thus has three free parameters and leads to the
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following parametrization of the field renormalization matrices in the mass basis

√
ZKan
f = R(δθ)T

1 +
1

2
δZf1f1 δCf2

δCf2 1 +
1

2
δZf2f2



=

1 +
1

2
δZf1f1 δCf2 + δθ

δCf2 − δθ 1 +
1

2
δZf2f2

 , (4.49)

that are labelled with the superscript ”Kan” for later distinction. These matrices read explic-
itly for the three pairs of scalars

(
H

h

)
7→

1 +
1

2
δZHH δCh + δα

δCh − δα 1 +
1

2
δZhh

 (
H

h

)
, (4.50)

(
G0

A0

)
7→

1 +
1

2
δZG0G0 δCA0 + δβ

δCA0 − δβ 1 +
1

2
δZA0A0

 (
G0

A0

)
, (4.51)

(
G+

H+

)
7→

1 +
1

2
δZG+G+ δCH+ + δβ

δCH+ − δβ 1 +
1

2
δZH+H+

 (
G+

H+

)
. (4.52)

The off-diagonal elements for the neutral CP-even scalars contain two free renormalization
parameters, which is exactly the amount needed to require both corresponding on-shell con-
ditions of Eq. (4.13),

Γ̂Hh(m2
H)

!
= 0 , Γ̂Hh(m2

h)
!

= 0 . (4.53)

This is equivalent to simply identifying the off-diagonal elements here with the ones from
Eq. (4.30)

1

2
δZos

Hh
!

= δCh + δα , (4.54)

1

2
δZos

hH
!

= δCh − δα . (4.55)

Using Eq. (4.40) and Eq. (4.41) this yields

δα =
1

4
(δZos

Hh − δZos
hH) =

1

m2
H −m2

h

[
1

2
ΣHh(m2

h) +
1

2
ΣHh(m2

H) − δTHh

]
, (4.56)

δCh =
1

4
(δZos

Hh + δZos
hH) =

1

m2
H −m2

h

[
1

2
ΣHh(m2

h) − 1

2
ΣHh(m2

H)

]
. (4.57)

Note that δCh alone will not be used anywhere, as for physical fields only δZos
Hh and δZos

hH

appear in counterterms of vertices.

As far as the off-diagonal elements for the charged and neutral CP-odd scalars are con-
cerned, there are only three free parameters to be fixed by renormalization conditions be-
cause the same angle β diagonalizes both the charged and CP-odd mass matrix. This is
one parameter fewer than in the general case of Eq. (4.30), which is also to say that it
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is one parameter fewer than needed to require all on-shell conditions. As a consequence,
one has to choose three out of four possible conditions and not all scalar fields can be
on-shell at the same time. Kanemura et al. present two out of the four possible choices:

Set 1:
Γ̂G0A0(0)

!
= 0

Γ̂G0A0(m2
A0)

!
= 0

Γ̂G+H+(0)
!

= 0


⇒

δβ(1) = − 1

2 m2
A0

[
ΣG0A0(m2

A0) − δTG0A0 (4.58)

+ ΣG0A0(0) − δTG0A0 ]

δC
(1)
H+ =

1

2
δZos

H+G+ + δβ(1) (4.59)

δC
(1)
A0 =

1

4

[
δZos

A0G0 + δZos
G0A0

]
(4.60)

and

Set 2:
Γ̂G0A0(0)

!
= 0

Γ̂G+H+(m2
H±)

!
= 0

Γ̂G+H+(0)
!

= 0


⇒

δβ(2) = − 1

2 m2
H±

[
ΣG+H+(m2

H±) − δTG+H+ (4.61)

+ ΣG+H+(0) − δTG+H+ ]

δC
(2)
H+ =

1

4
[δZos

H+G+ + δZos
G+H+ ] (4.62)

δC
(2)
A0 =

1

2
δZos

A0G0 + δβ(2) . (4.63)

Concerning the different definitions of δβ, clearly, different choices for renormalization con-
ditions can only differ in what finite part δβ contains, but the UV-divergent parts must not
differ. This is already remarked in [17] and has been checked again, both numerically and
analytically for the Feynman gauge that is being used in this thesis.

Note that in [17] the sum of the two terms in the second line of Eq. (4.58) and Eq. (4.61),
respectively, vanish and the equations therefore simplify further. This however only holds in
the Landau gauge. In a general gauge, particularly the Feynman gauge, ΣG0A0(0) − δTG0A0

and ΣG+H+(0)− δTG+H+ do not vanish and have to be included.

Aiming at on-shell renormalized fields, this scheme can be used as long as not both, a charged
HiggsH+ and a neutral CP-odd scalarA0, are external particles of the physical process. Given
that this is not the case for the decays H+ → W+ h/H , this approach with the choice of
Set2 to ensure H+ to be on-shell, will be referred to as the Kan scheme.

In their later paper [18] from 2015, Kanemura et al. react to the issue of gauge dependence of
tan(β) in certain renormalization schemes. For the scalar sector of the MSSM this has been
discussed in general and exhaustively by Freitas et al. [39]. In any renormalization scheme
a relation between only observables is necessarily gauge independent. Having to choose a
gauge is a consequence of the quantization of gauge fields but is itself an unphysical choice
and must not affect physical statements in the afore-mentioned sense. Through the choice
of renormalization conditions the gauge independence of parameters such as tan(β), that are
not observable themselves, may well be affected. This is to say that the relation between
observables and tan(β) can become gauge dependent and therefore in different gauges one
would infer a different numerical value for tan(β) from experimental measurements. Although
this is no conceptual or physical problem, it is not desirable if one wishes to assign a physical
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intuition to tan(β).

The suggestion by Kanemura et al. to get rid of such a gauge dependence of tan(β) goes back
to Eq. (4.49). The earlier assumption that

√
Zγ is a symmetric matrix is dropped, which

of course is nothing else but to introduce more free renormalization parameters that can be
used to impose further conditions. The matrices

√
ZKan may now be parametrized as

√
ZKan
f =

1 +
1

2
δZf1f1 δCf1f2 + δθ

δCf2f1 − δθ 1 +
1

2
δZf2f2

 . (4.64)

Only the off-diagonal elements are affected compared to the former definition in Eq. (4.49).
With 8 free parameters for the off-diagonals, there are two more than on-shell conditions
(3 · 2 = 6), whereas in the first version there was one fewer than possible on-shell conditions.
In the neutral CP-even sector the additional freedom is not needed and in [18], it is simply
eliminated again by setting

δCHh
!

= δChH
!

= δCh (4.65)

and therefore restoring the situation as in Eq. (4.50). With 5 free parameters on the off-
diagonals of the charged and neutral CP-odd sectors, first of all, it is now possible to enforce
all scalar fields to be renormalized on-shell by requiring{

Γ̂G0A0(m2
A0)

!
= 0 , Γ̂G0A0(0)

!
= 0 ,

Γ̂G+H+(m2
H±)

!
= 0 , Γ̂G+H+(0)

!
= 0

}
.

(4.66)

The first two of those conditions imply the following underconstrained system of equations

δβ − δCA0G0 = − 1

m2
A0

[ΣG0A0(0)− δTA0G0 ] , (4.67)

δβ + δCG0A0 = − 1

m2
A0

[
ΣG0A0(m2

A0)− δTG0A0

]
. (4.68)

In [18], it is stated that it is the right-hand side of Eq. (4.68), that introduces the gauge
dependence. The additional freedom to fix δCA0G0 and δCG0A0 is then used such that,
by definition, δβ contains only the gauge independent (G.I.) part of the right-hand side of
Eq. (4.68)

δβ ≡ − 1

m2
A0

[
ΣG0A0(m2

A0)− δTG0A0

]∣∣∣∣
G.I.

. (4.69)

As a result the gauge dependence is moved to δCG0A0 , which is indeed acceptable as there is no
physical meaning to it. Formally this looks like an appealing step, however it remains unclear
what Eq. (4.69) means practically speaking. It seems that, unless one does the calculation
for the tadpoles and the ΣG0A0 self energy with the full dependence on a general Rξ gauge
parameter, it is hard to know how δβ would read explicitly.

4.4.6. A Minimal Scheme

As demonstrated in the last sections, for each pair of scalars four independent field renor-
malization parameters are necessary to fulfil all of the on-shell conditions in Eq. (4.13) and
Eq. (4.15). However this is not necessary to only render all S-Matrix elements and self energies
UV finite. One may wonder, what the minimum number of field renormalization parameters
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in the scalar sector is to meet this requirement.

Due to SU(2)-invariance [40] the minimum number is two, one for each scalar doublet

Φi 7→
√
Zi Φi =

(
1 +

1

2
δZi

)
Φi for i = 1, 2 , (4.70)

where Zi, δZi ∈ R. Hence in the gauge basis the field renormalization matrix is identical for
each of the three pairs of scalars

√
ZMin
γ =

 1 +
1

2
δZ1 0

0 1 +
1

2
δZ2

 . (4.71)

Defining the corresponding field renormalization matrices in the mass basis by mere basis

transformation of
√
ZMin
γ √

ZMin’
f ≡ R(θ)T

√
ZMin
γ R(θ) , (4.72)

while δDf is however still the same as defined in Eq. (4.25), turns out not to be sufficient to

ensure all renormalized self energies to be UV finite [40]. While this
√
ZMin’
f is sufficient to

render the amplitude of H+ → W+ h/H UV finite, it does not have the needed divergence

structure to cancel all divergent parts of the self energies. Where
√
ZMin’
f is used in the

literature (e.g. [41, 42]), δDf always contains other off-diagonal contributions that, after all,
are linked to the angle counterterms δα and δβ.

The Kanemura approach does essentially the same, only by defining the angle counterterms
to be contained in δZf instead of in δDf . Given how simple and instructive the manipulations

of Eq. (4.47) are, it seems natural to just replace
√
Zγ by

√
ZMin
γ and to define√

ZMin
f ≡ R(δθ)T R(θ)T

√
ZMin
γ R(θ) (4.73)

= 1 +
1

2

(
c2
θ δZ1 + s2

θ δZ2 cθsθ (δZ2 − δZ1) + 2δθ

cθsθ (δZ2 − δZ1)− 2δθ s2
θ δZ1 + c2

θ δZ2

)
︸ ︷︷ ︸

= δZMin
f

. (4.74)

Formally we can then identify

δZMin
G+G+ = c2

β δZ1 + s2
β δZ2 = δZMin

G0G0 , (4.75)

δZMin
H+H+ = s2

β δZ1 + c2
β δZ2 = δZMin

A0A0 , (4.76)

δZMin
G+H+ = cβsβ (δZ2 − δZ1) + 2 δβMin = δZMin

G0A0 , (4.77)

δZMin
H+G+ = cβsβ (δZ2 − δZ1)− 2 δβMin = δZMin

A0G0 , (4.78)

δZMin
HH = c2

α δZ1 + s2
α δZ2 , (4.79)

δZMin
hh = s2

α δZ1 + c2
α δZ2 , (4.80)

δZMin
Hh = cαsα (δZ2 − δZ1) + 2 δαMin , (4.81)

δZMin
hH = cαsα (δZ2 − δZ1)− 2 δαMin , (4.82)
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where the superscript ‘Min’ has also been added to the angle CTs to prevent confusion with
the ones from other schemes. Given only four free renormalization parameters to be fixed by
some set of four renormalization conditions, there is a large variety of possible choices and
certainly not all scalars can fulfil on-shell relations at the same time. First a possible choice
of four conditions will be presented, then the correct normalization of those fields that are
not renormalized on-shell, will be treated.

In order to reduce the complexity of the renormalization procedure for the decay H+ →
W+ h/H, at least the decaying charged scalar can be forced to fulfil on-shell relations by
requiring Γ̂G+H+(m2

H±)
!

= 0 , Re

(
∂Γ̂H+H+(p2)

∂p2

)∣∣∣∣∣
p2=m2

H±

!
= 1

 . (4.83)

This is equivalent to{
δZMin

G+H+
!

= δZos
G+H+ , δZMin

H+H+
!

= δZos
H+H+

}
, (4.84)

where the on-shell Z-factors are given in Eq. (4.33) and Eq. (4.34). It follows that

δZ1 = δZos
H+H+ − 1

tβ
δZos

G+H+ +
2

tβ
δβMin , (4.85)

δZ2 = δZos
H+H+ + tβ δZ

os
G+H+ − 2tβ δβ

Min . (4.86)

By requiring 1

δv1

v1

!
=

δv2

v2
, (4.87)

δβ is automatically fixed, too,(
1 + t2

β

)
δβ = δtβ =

tβ
2

(
δv2

v2
− δv1

v1
+ δZ2 − δZ1

)
=

tβ
2

(δZ2 − δZ1) , (4.88)

where the relation between δβ and δtβ only holds at NLO. Inserting Eq. (4.85) and Eq. (4.86)
into this result, yields the simple relation

δβMin =
1

4
δZos

G+H+ , (4.89)

which in turn allows to reformulate δZ1 and δZ2 independently of δβMin

δZ1 = δZos
H+H+ − 1

2tβ
δZos

G+H+ , (4.90)

δZ2 = δZos
H+H+ +

tβ
2
δZos

G+H+ . (4.91)

The only renormalization parameter yet to be fixed is δαMin. This can be done by one more
on-shell condition, e.g.

Γ̂Hh(m2
H) = Σ̂Hh(m2

H)
!

= 0 , (4.92)

which determines δαMin to be

δαMin =
1

m2
H −m2

h

[
ΣHh(m2

H)− δTHh +
cαsα

2

(
m2
H −m2

h

)
(δZ2 − δZ1)

]
. (4.93)

1See e.g. [43–45]. Although these papers treat the MSSM, the therein given argument for the legitimacy of this
condition is independent of supersymmetry.
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The scheme, given through the definition of δZMin
f and the conditions in the Eqs. (4.29, 4.83,

4.87 and 4.92) will be referred to as the Min scheme. I have checked that in this scheme both
the renormalized self energies as well as the decay amplitudes of H+ → W+ h/H are UV
finite.

In order to calculate observables like decay widths and cross sections, it is not sufficient that
the amplitude is UV finite. Additionally the fields that correspond to external particles have
to fulfil on-shell relations. Apart from their propagators having the pole at the right position,
these fields also have to be correctly normalized and to have vanishing mixing on the mass
shell. As mentioned in Sec. 4.2, if higher order corrections violate these relations, then they
have to be restored after the renormalization procedure. This is well known [41, 46] and can
be achieved by a wave function normalization matrix ZN that acts on the tuple of amplitudes
that differ only by external fields that mix,

Ã...f1...

...

Ã...fn...

 = ZN


A...f1...

...

A...fn...

 . (4.94)

The tilde denotes the new linear combinations of fields that satisfy on-shell relations. In
Eq. (4.94) a general case with n mixing scalars has been assumed, while for a CP-conserving
THDM there are only pairs of two scalars that mix. In general for any process, there will
be as many (n × n)-matrices ZN acting on the corresponding tuple of amplitudes as there
are fields f1...fn in the initial and final state of the process. Parametrizing the wave function
normalization matrix ZN by [41]

ZN =

( √
Zf1

√
Zf1 Zf1f2√

Zf2 Zf2f1

√
Zf2

)
, (4.95)

its entries are given in terms of renormalized self energies Σ̂fifj (i, j = 1, 2; i 6= j)

Zfifj = −
Σ̂fifj (m

2
fi

)

m2
fi
−m2

fj
+ Σ̂fjfj (m

2
fi

)
, (4.96)

√
Zfi =

1 + Re
(

Σ̂′fifi(p
2)
)
− Re


(

Σ̂fifj (p
2)
)2

p2 −m2
fj

+ Σ̂fjfj (p
2)


′ 
− 1

2

∣∣∣∣∣∣∣∣
p2=m2

fi

. (4.97)

Hence it is manifest that ZN is a UV finite matrix. It only reshuffles the amplitudes such that
they correspond to a physical process. To be consistent in the order of perturbation theory,
ZN has to be expanded so that after acting on the amplitudes A...f1..., the tilde amplitudes
Ã...f1... have only terms of the required order. At NLO only terms up to order α have to be
considered for ZN

Zfifj = ∆Zαfifj + O(α2) , (4.98)√
Zfi = 1 − 1

2
∆Zαfi + O(α2) . (4.99)

Formally ZN then has the form

ZN = 1 +

 −1

2
∆Zαf1

∆Zαf1f2

∆Zαf2f1
−1

2
∆Zαf2

 + O(α2) . (4.100)
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Because of the square in the numerator of the last term in Eq. (4.97), expanding its denomi-
nator will not contribute at NLO and one is simply left with

∆Zαfifj = −
Σ̂fifj (m

2
fi

)

m2
fi
−m2

fj

, (4.101)

∆Zαfi = Re
(

Σ̂′fifi(m
2
fi

)
)
. (4.102)

The calculation of the decay amplitudes of H+ → W+ h/H in the Min scheme requires such a
wave function normalization matrix ZN for the neutral CP-even scalars, whereas the charged
H+ is already on-shell due to the choice of renormalization conditions. By decomposing the
amplitude with H and h, respectively, in the final state into its LO and NLO part,

AH = ALO
H + ANLO

H + O(α2) , (4.103)

Ah = ALO
h + ANLO

h + O(α2) (4.104)

and then acting with ZN on

(
AH
Ah

)
, yields

ÃH = ALO
H − 1

2
∆ZαH ALO

H + ∆ZαHh A
LO
h + ANLO

H︸ ︷︷ ︸
=: ÃNLO

H

+ O(α2) , (4.105)

Ãh = ALO
h − 1

2
∆Zαh ALO

h + ∆ZαhH ALO
H + ANLO

h︸ ︷︷ ︸
=: ÃNLO

h

+ O(α2) . (4.106)

With the above choice of renormalization conditions (Eqs. (4.83), (4.87) and (4.92)) for the
Min scheme, ZN still contains IR divergent terms. It is therefore a good consistency check for
this wave function normalization matrix to check whether the final decay width is IR finite
after adding real soft photon corrections. I have checked that this is indeed the case. This
will be discussed in more detail in Sec. 5.2.

4.4.7. A Word on the Last Parameter

For the sake of completeness, a last remark on the parameter M may be appropriate. It is
the only element of the chosen set of independent parameters SP1, whose renormalization
has not been covered yet in the previous sections. However, because the H+W−h/H-vertex
is independent of M , there is no need to renormalize it for the decays H+ → W+ h/H at
NLO. Moreover, any renormalization condition for δM , that works in one scheme, could be
added to any of the discussed renormalization schemes. In contrast to the renormalization of
the mixing angles, there is no subtlety involved that would link it to the field renormalization.

Because the only vertices, where M appears, are the trilinear and quartic scalar couplings,
a reasonable possibility to renormalize M is a MS condition requiring the UV finiteness of
a corresponding renormalized vertex function. Possible choices would be e.g. the following
trilinear couplings [17]

λHA0A0 = − 1

4vs2β

[
(sα−3β + 3sα+β)m2

H + 4s2βcα−βm
2
A0 − 4sα+βM

2
]
, ,(4.107)

λhhH = − cα−β
2vs2β

[
2s2αm

2
h + s2αm

2
H − (3s2α − s2β)M2

]
. (4.108)
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4.5. Renormalization of the Gauge Sector

In order to study the decays H+ → W+ h/H at NLO the only other ingredients apart from
the scalar sector, that need to be renormalized, are the electroweak gauge bosons and their
coupling constants. In the previously discussed spirit of the on-shell conditions this shall be
briefly presented as it is given in [37]. The W - and Z-boson masses MW , MZ and the electric
charge e are shifted by the following counterterms

M2
W 7→ M2

W + δM2
W , (4.109)

M2
Z 7→ M2

Z + δM2
Z , (4.110)

e 7→ (1 + δZe) e . (4.111)

For the gauge fields in the mass basis the following field renormalization constants are intro-
duced

W± 7→
√
ZW W± =

(
1 +

1

2
δZW

)
W± , (4.112)(

Z

A

)
7→

( √
ZZZ

√
ZZA√

ZAZ
√
ZAA

) (
Z

A

)
(4.113)

=

 1 +
1

2
δZZZ

1

2
δZZA

1

2
δZAZ 1 +

1

2
δZAA

( Z

A

)
, (4.114)

where the mixing of the Z-boson and the photon A calls for the matrix structure. These
renormalization constants for masses and fields are then fixed by on-shell conditions along
the lines of Sec. 4.2 for the scalar fields. This finally leads to

δM2
W = R̃e

(
ΣT
WW

(
M2
W

))
, δM2

Z = R̃e
(
ΣT
ZZ

(
M2
Z

))
,

δZWW = −Re

(
∂ΣT

WW

∂p2

∣∣∣∣
p2=M2

W

)
, δZZZ = − Re

(
∂ΣT

ZZ

∂p2

∣∣∣∣
p2=M2

Z

)
,

δZAZ = −2Re

(
ΣT
ZA(M2

Z)

M2
Z

)
, δZZA = 2

ΣT
ZA(0)

M2
Z

,

(4.115)

δZAA = − ∂ΣT
AA

∂p2

∣∣∣∣
p2=0

,

where the superscript T indicates the transverse part of the self energy. As it was the case in
Sec. 4.2 for the discussion of scalars, beyond one-loop level ‘Re’ has to be replaced everywhere
by ‘R̃e’ in order to distinguish between imaginary parts that originate from loop integrals and
the imaginary parts from the CKM matrix which, on the contrary, have to be included. For
the W -boson the distinction between ‘R̃e’ and ‘Re’ is in general already relevant at one-loop
level and therefore shown in Eq. (4.115), despite the fact that in this thesis the CKM matrix
is set to be real (see Sec. 6.2).

Eventually the electric charge is defined to be the eeγ-coupling in the Thomson limit, which
after some manipulation yields

δZe =
1

2

∂ΣT
AA

∂p2

∣∣∣∣
p2=0

+
sW
cW

ΣT
AZ(0)

M2
Z

. (4.116)
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Note that the second summand in Eq. (4.116) has a relative minus sign if for the covariant
derivative the sign convention is chosen, in which the terms with the electroweak gauge fields
carry inverse signs compared to Eq. (2.5).

The electroweak gauge coupling g appears in the vertex Eq. (3.2), and hence δg will be needed
in terms of δM2

W , δM2
Z and δZe. With the leading order relation

g =
e

sW
=

e MZ√
M2
Z −M2

W

, (4.117)

it can easily be verified that at NLO δg is given by

δg

g
= δZe +

1

2

1

M2
Z −M2

W

(
δM2

W − M2
W

M2
Z

δM2
Z

)
. (4.118)

Compared to the SM, one difference in the treatment of the gauge sector of a THDM concerns
the gauge fixing Lagrangian [47]. In the SM, the linear Rξ gauge is chosen such that the mix-
ing term −iMW (∂µW−µ )G+, which is by this choice contained in the gauge fixing Lagrangian,
cancels the same term with opposite sign from the kinetic term of the scalar doublet. When
renormalizing the kinetic term as well as the gauge fixing Lagrangian the same cancellation
automatically holds for the counterterms of the mixing at any order of perturbation theory.

In a THDM a W−H+-CT results from the mentioned iMW (∂µW−µ )G+ part of the kinetic

term due to H+G+-mixing. If one followed the approach of the SM, analogous terms from the
gauge fixing Lagrangian would cancel this CT, which is, however, necessary in a THDM to
ensure the vanishing of the W−H+ two-point function on the mass shell. As has been shown
in [48, 49], it is legitimate not to renormalize the gauge fixing Lagrangian; that is, the latter
is formulated in already renormalized fields when adding it to the rest of the bare THDM
Lagrangian. Consequently the W−H+-CT from the kinetic term is indeed not cancelled.



CHAPTER 5

The Decays H+ → W+ h/H at NLO

5.1. Virtual Corrections

The generic virtual correction and counterterm diagrams that contribute to the EW correc-
tions of the decays H+ → W+ h/H at NLO are shown in Fig. 5.1 [16].

ANLO
h/H =

W+

h/H

H+

(a)

+

W+

h/H

H+

(b)

+

W+

h/H

H+

H/h

(c)

+

W+

h/H

H+ G+

(d)

+

W+

h/H

H+
G+

(e)

+

W+

h/H

H+ W+

(f)

Figure 5.1.: Generic diagrams contributing to the decays H+ → W+ h/H: Vertex correc-
tions (a), vertex counterterm (b), corrections to the external legs (c-f).

The corrections to the external legs in (c) and (d) of Fig. 5.1 vanish by definition for on-shell
renormalized scalars (see discussion in Sec. 4.2), while the mixing in (d) vanishes due to the
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Ward-identity for an on-shell W -boson. The vanishing of the fourth and last correction to an
external leg, shown in Fig. 5.1(g) is ensured by a Slavnov-Taylor-identity [46]. Note that for
this to hold, the following counterterm

− MW

2
W+
µ

(
∂µH−

)
δZG−H− (5.1)

is needed, that is already fixed through the renormalization of the scalar fields and follows
from the THDM specific treatment of the gauge fixing Lagrangian as discussed in Sec. 4.5.
For the virtual radiative corrections at NLO one is thus left with the vertex corrections in (a)
(that represents all possible one-loop diagrams) and the CT in (b) of Fig. 5.1.

At one-loop level there are four different topologies contributing to the three-point functions
of the vertex corrections. Restricted by the vertices of a CP-conserving THDM, these four
topologies result in eleven different Lorentz structures of Feynman diagrams that connect
the three fields H+hW− and H+HW−, respectively. Generic diagrams of these structures
can be found in Fig. A.1 of App. A. They are corrections from either purely electroweak
vertices Figs. A.1(d),A.1(f)–A.1(j)), a mixture of electroweak and trilinear or quartic scalar
vertices Figs. A.1(b),A.1(c),A.1(e),A.1(k) or a mixture of electroweak and Yukawa couplings
Fig. A.1(a). The latter with top and bottom quarks in the loop will give the largest contribu-
tion to the vertex correction [16]. QCD corrections will only contribute from next-to-next-to
leading order on.

On particle level there are in total 73 Feynman diagrams contributing to the vertex corrections
as represented by Fig. 5.1(a). The diagrams in the classes Figs. A.1(a),A.1(d),A.1(g)–A.1(k)
contain UV divergences that are cancelled by adding the counterterm for the corresponding
vertex. The decay amplitude may then be decomposed into the tree-level part and NLO part
(order α)

AH = ALO
H + AVC

H + ACT
H︸ ︷︷ ︸

≡ ANLO
H

+ O(α2) ,

Ah = ALOh + AVC
h + ACT

h︸ ︷︷ ︸
≡ ANLO

h

+ O(α2) ,
(5.2)

where AVC
φ (φ = h,H) represents the sum of all vertex corrections and ACT

φ the corresponding
total counterterm. Independent of the particular choice of the renormalization scheme, the
CT can be cast into

W+

H

H+
p1

p3

p2

= 2 (p1ε
∗
3)

ig

2
sβ−α︸ ︷︷ ︸

= ALO
H

[
δg

g
+

δsβ−α
sβ−α

+
1

2
δZWW +

1

2
δZH+H+ +

1

2
δZHH (5.3)

− cβ−α
sβ−α

(
1

2
δZG+H+ +

1

2
δZhH

) ]
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for the decay into W+H and likewise for the decay into W+h

W+

h

H+
p1

p3

p2

= 2 (p1ε
∗
3) (−)

ig

2
cβ−α︸ ︷︷ ︸

= ALO
h

[
δg

g
+

δcβ−α
cβ−α

+
1

2
δZWW +

1

2
δZH+H+ +

1

2
δZhh (5.4)

+
sβ−α
cβ−α

(
1

2
δZG+H+ − 1

2
δZHh

) ]
.

In both Eq. (5.3) and Eq. (5.4) the first line in the brackets contains the CTs from the pa-
rameters of the corresponding vertex, while the second line contains the field renormalization
constants coming from the external fields. The third line finally contains the contributions
of mixing effects from the G+HW− and H+hW− vertices (for Eq. (5.3)) and the G+hW−

and H+HW− vertices, respectively (for Eq. (5.4)). The CTs δg und δZWW were defined in
Sec. 4.5 and are independent of the renormalization scheme for the scalar sector. The scalar
field renormalization parameters as well as the angle CTs depend on the chosen scheme. At
one-loop level δsβ−α and δcβ−α are related to δα and δβ as follows

δsβ−α = cβ−α δ(β − α) = cβ−α (δβ − δα) ,

δcβ−α = −sβ−α δ(β − α) = −sβ−α (δβ − δα) .
(5.5)

The UV finiteness of ANLO
φ has been checked numerically for all three renormalization schemes

HybMS, Kan and Min (see Sec. 6.1 for more details). At NLO the only new contribution
to the squared amplitude is the inference term of the LO amplitude and the order O(α)
corrections

|Aφ|2 =
∣∣ALO

φ

∣∣2 +
(
ALO
φ

(
ANLO
φ

)∗
+ c.c.

)
=
∣∣ALO

φ

∣∣2 + 2 Re
(
ALO
φ

(
ANLO
φ

)∗)
,

(5.6)

where φ stands for either h or H. Recalling Eq. (3.4) the NLO partial decay width is accord-
ingly given by

Γφ =
1

2mH±

∫
dΠ2

∑
λ3

[ ∣∣ALO
φ

∣∣2 + 2 Re
(
ALO
φ

(
ANLO
φ

)∗ ) ]
. (5.7)

From the tensor structure it is clear that also in ANLO
φ the dependence on the polarization

vector ε3 can be reduced due to the Ward-identity to the contraction with the incoming
momentum p1. The LO correction factorizes from the vertex correction,

AVC
φ ≡ ALO

φ FNLOH+W−φ , (5.8)

and the partial decay width at NLO can hence be written as

ΓNLO
H = ΓLO

H

[
1 + 2 Re

(
FNLO
H+W−H

)
+ δZWW + δZH+H+ + δZHH

− cβ−α
sβ−α

(δZG+H+ + δZhH) + 2
δg

g
+ 2

δsβ−α
sβ−α

]
(5.9)
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and

ΓNLO
h = ΓLO

h

[
1 + 2 Re

(
FNLO
H+W−h

)
+ δZWW + δZH+H+ + δZhh

+
sβ−α
cβ−α

(δZG+H+ − δZHh) + 2
δg

g
+ 2

δcβ−α
cβ−α

]
. (5.10)

5.2. Real Corrections

When dealing with electroweak radiative corrections for a process with charged particles in
the initial or final state, one encounters infra-red (IR) divergences already at one-loop level.
These divergent terms stem from virtual photon corrections such as the following example of
a loop diagram that belongs to the class of triangles in Fig. A.1(e),

W+

h

H+

p1

p3

p2

γ q − p3,

q,Λ

q − p1,
m2

m1

∝
∫

d4q

(2π)4

(q − 2p1)µ

(q2 − Λ2)
(

(q − p3)2 −m2
1

)(
(q − p1)2 −m2

2

) . (5.11)

Because the photon is massless, its propagator diverges for vanishing loop momentum q2. This
divergence has been regularized in Eq. (5.11) by artificially introducing a finite photon mass Λ.

Note that we will have to also include diagrams with additional photons. Due to its vanish-
ing mass, the photon can have an arbitrarily small energy. If its energy is smaller than the
detector sensitivity ∆E, such a so-called soft photon will escape any detection. Processes
with additional soft photons in the final state will thus add to the measurable signal. As a
consequence one has to sum incoherently over processes with any number of additional soft
photons that is consistent with the order in perturbation theory considered for the original
process.

The emission of real soft photons off charged particles leads to IR divergences in the limit
of vanishing photon momentum. This is because the propagator of the charged particle then
becomes on-shell. It turns out that both IR divergences, the ones from virtual photon cor-
rections and the ones from additional real soft photons, exactly cancel each other. That this
holds generally for any process to any order of perturbation theory, has been shown by Bloch
and Nordsieck [50].

At NLO only real corrections with one additional soft photon have to be considered. For the
decay H+ → W+φ, where φ stands for either h or H, this leaves one with four diagrams
contributing to the tree-level amplitude Aφγ of the decay H+ → W+φγ. They are shown in
Fig. 5.2 and Fig. 5.3.
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γ

W+

h/HH+

H+

(a)

γ

W+

h/H

H+

W+

(b)

γ

W+

h/H

H+

G+

(c)

Figure 5.2.: Feynman diagrams for bremsstrahlung off the inital state H+ (a),
bremsstrahlung off the final state W+ (b) and the contribution from the G+W−γ-vertex (c).

The three diagrams in Fig. 5.2 are proper bremsstrahlung contributions from the initial and
final state charged particles, whereas the diagram in Fig. 5.3 comes from a single THDM
specific 4-vertex that is proportional to α as well.

γ

W+

h/HH+

Figure 5.3.: Feynman diagram for the 4-vertex contribution.

The incoherent sum of both final states, with and without an additional soft photon, gives
the measurable partial width for the decay H+ → W+φ as

Γobs
φ ≡ Γobs(H+ →W+φ) = Γ(H+ →W+φ)︸ ︷︷ ︸

=Γφ

+ Γ(H+ →W+φγ)
∣∣
E4≤∆E︸ ︷︷ ︸

≡Γsoft
φγ

, (5.12)

where E4 denotes the energy of the photon. Denoting by p4 its momentum and λ4 its
polarization and adopting the nomenclature for the rest of the kinematics from Chapter 3,
the soft real corrections are given by

Γsoft
φγ =

1

2mH±

 ∏
i=2,3,4

∫
d3pi
(2π)3

1

2Ei

∣∣∣∣∣∣
E4≤∆E

(4π)δ(4)(p1 − p2 − p3 − p4)
∑
λ3,λ4

|Aφγ |2 . (5.13)

As only photons with a small energy are to be taken into account, the so-called soft photon
approximation neglects the dependence on p4 of the integrand in Eq. (5.13) anywhere but
in the denominator of Aφγ , where it constitutes the pole. One can then separate the phase
space integrals

Γsoft
φγ =

1

2mH±

∫
dΠ2

∑
λ3

 ∫
E4≤∆E

d3p4

(2π)3

1

2E4

∑
λ4

|Aφγ |2
 . (5.14)

By calling the amplitude of the bremsstrahlung diagrams Abrems and the amplitude corre-
sponding to the 4-vertex diagram A4V, the squared amplitude at order α2 reads

|Aφγ |2 = |Abrems + A4V|2 (5.15)

= |Abrems|2 + | A4V|2 + 2Re (AbremsA
∗
4V) . (5.16)
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The contributions from only Abrems on the one hand and the contribution from A4V including
the interference term on the other hand will be treated separately in the following two sections.

5.2.1. Soft Bremsstrahlung

In the soft photon approximation the amplitude for photon emission from the initial state
charged Higgs boson (Fig. 5.2(a)) is given by

A = ALO
φ e

2p1ε
∗
4

(p1 − p4)2 −m2
H±

, (5.17)

where ALO
φ denotes the LO amplitude as defined in Chapter 3. Using the same approximation,

the radiation off the W -boson in the final state (Fig. 5.2(b)) yields

A = ALO
φ e

2p3ε
∗
4

(p3 + p4)2 −M2
W

− ALO
φ e

m2
H± −m2

h

(p3 + p4)2 −M2
W

ε3ε
∗
4

2p1ε∗3
. (5.18)

The second term in Eq. (5.18) originates from the longitudinal part of the W -boson prop-
agator. As expected, it is cancelled by the diagram Fig. 5.2(c) with the Goldstone boson
propagator which leads to the same expression but with opposite sign. In summary the
Bremstrahlung amplitude in the soft photon approximation can be written as

Abrems = ALO
φ e

[
2p3ε

∗
4

(p3 + p4)2 −M2
W

+
2p1ε

∗
4

(p1 − p4)2 −m2
H±

]
(5.19)

= ALO
φ e

∑
i=1,3

(
± piε

∗
4

pip4

)
. (5.20)

In the last line terms in the denominator proportional to p2
4 = Λ2 have been neglected. The

lower sign in ”±” holds for radiation off the initial H+, while the upper sign holds for the
radiation off the final state W+. Note that if replacing ”±” by ”±Qi” with Qi being the
electric charge of the corresponding initial or final state particle and with i running over all
external charged particles, Eq. (5.20) directly generalizes to soft bremsstrahlung corrections
at NLO for processes of arbitrary multiplicity [37]. The sum over the photon polarizations
leads to ∑

λ4

|Abrems|2 = −e2
∣∣ALO

φ

∣∣2 ∑
i,j=1,3

±pipj
(pip4)(pjp4)

, (5.21)

where the ‘+’ sign holds for i = j and the ‘–’ sign for i 6= j. Due to the proportionality of
Abrems to the Born amplitude, we can then write

Γsoft
φγ

∣∣∣
brems

=
1

2mH±

∫
dΠ2

∑
λ3

∣∣ALO
φ

∣∣2 (−e2)

∫
E4≤∆E

d3p4

(2π)3

1

2E4

∑
i,j=1,3

±pipj
(pip4)(pjp4)

= − e2

2(2π)3
ΓLO
φ

∑
i,j=1,3

±

 ∫
E4≤∆E

d3p4

2E4

2pipj
(pip4)(pjp4)


︸ ︷︷ ︸

≡Iij

. (5.22)
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The above defined standard integrals Iij have first been calculated by ’t Hooft and Veltman
[51], while the following representation of the general result is taken from [37]

Iij = 4π
apipj

a2p2
i − p2

j

{
1

2
ln

(
a2p2

i

p2
j

)
ln

(
4∆E2

Λ2

)
(5.23)

+

[
1

4

(
ln

(
u0 − |~u|
u0 + |~u|

))2

+ Li2

(
1− u0 + |~u|

v

)
+ Li2

(
1− u0 − |~u|

v

)]u=api

u=pj

 ,

where v is defined as

v ≡
a2p2

i − p2
j

2(api0 − pj0)
(5.24)

and a as the solution of

a2p2
i − 2a(pipj) + p2

j = 0 ∧ api0 − pj0
pj0

> 0 . (5.25)

Three different combinations of indices feed into Eq. (5.22)

Γsoft
φγ

∣∣∣
brems

= − e2

2(2π)3
ΓLO
φ (I11 + I33 − 2I13) . (5.26)

For identical indices Eq. (5.23) simplifies significantly [37],

I33 = 2π

[
ln

(
4∆E2

Λ2

)
+

E3

|~p3|
ln

(
E3 − |~p3|
E3 + |~p3|

)]
. (5.27)

In the rest frame of the decaying H+ the momentum |~p3| of the W -boson cannot be zero,
however the incoming momentum |~p1| vanishes in this frame . For I11 the term corresponding
to the second logarithm in Eq. (5.27) therefore first has to be expanded so that one can take

the limit
|~p1|
E1
→ 0 in a well-defined way. This yields

I11 = 2π

[
ln

(
4∆E2

Λ2

)
− 2

]
. (5.28)

Finally for I13, the needed solution of Eq. (5.25) is given by

a =
E3 + |~p3|
mH±

⇒ v =
(E3 + |~p3|)2 −M2

W

2|~p3|
. (5.29)

5.2.2. Additional Soft Corrections

The Feynman diagram with the four-vertex in Fig. 5.3 contributes to the decay H+ →W+φγ
at order α as well. The corresponding amplitude is obviously IR finite and given by

A4V = −ρφ
ie2

2sW
ε∗3ε
∗
4 , (5.30)

with ρφ referring to either a sine or cosine of the angle β − α as defined in Eq. (3.3). The
absolute square of the amplitude when summed over λ4,

∑
λ4

|A4V|2 = −
∣∣∣∣ρφ ie2

2sW

∣∣∣∣2 ε∗3ε3 , (5.31)
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is independent of the photon kinematics. The integration over the photon phase space thus
gives a constant that only depends on ∆E

∫
E4≤∆E

d3p4

(2π)3

1

2E4
=

4π

2(2π)3

√
∆E2−Λ2∫

0

d|~p4|
|~p4|2√

Λ2 + |~p4|2
(5.32)

=
1

(2π)2

[
1

2

(
∆E2 − Λ2

)
− Λ2ln

(
∆E

Λ

)]
(5.33)

Λ→ 0−→ 1

(2π)2

∆E2

2
. (5.34)

The interference term Abrems A
∗
4V, on the contrary, contains an IR divergent factor which

originates from the H+–propagator

∑
λ4

[AbremsA
∗
4V + c.c.] =

∑
λ4

eALO
φ

∑
i=1,3

± piε
∗
4

pip4

 ε3ε4ρφ
ie2

2sW
+ c.c.

 (5.35)

= −
∑
i=1,3

[
±eALO

φ

piε3
pip4

ρφ
ie2

2sW
+ c.c.

]
(5.36)

Ward-Id.
= e2

[
ALO
φ ρφ

ie

2sW
(p1ε3) + c.c.

]
1

p1p4
(5.37)

= − e2
∣∣ALO

φ

∣∣2 1

p1p4
. (5.38)

After the integration over the photon phase space in the rest frame of the charged Higgs
boson,

∫
E4≤∆E

d3p4

(2π)3

1

2E4

1

p1p4
=

1

(2π)3

4π

2mH±

√
∆E2−Λ2∫

0

d|~p4|
|~p4|2
E2

4

(5.39)

=
1

(2π)2mH±
Λ

√
∆E2−Λ2

Λ∫
0

dη
η2

1 + η2
(5.40)

=
1

(2π)2mH±

[√
∆E2 − Λ2 − Λarctan

(√
∆E2

Λ2
− 1

)]
(5.41)

Λ→ 0−→ 1

(2π)2

∆E

mH±
, (5.42)



5.2. Real Corrections 45

the limit Λ → 0 turns out to exist. Consequently the interference term leads only to an IR
finite contribution as well. Adding up these two finite contributions yields

1

2mH±

∫
dΠ2

∑
λ3

 ∫
E4≤∆E

d3p4

(2π)3

1

2E4

∑
λ4

(
2Re ( AbremsA

∗
4V ) + | A4V|2

) (5.43)

=
1

2mH±

∫
dΠ2

∑
λ3

[
− e2 |ALO

φ |2
1

(2π)2

∆E

mH±
(5.44)

−
∣∣∣∣ρφ ie2

2sW

∣∣∣∣2 ε∗3ε3 1

(2π)2

∆E2

2

]

= −e2 ΓLO
φ

1

(2π)2

∆E

mH±
(5.45)

−e2 1

2mH±
FKin
φ (−3)

(
ρφe

2sW

)2 1

(2π)2

∆E2

2
,

where in the last line the kinematical factor FKin
φ , introduced in Eq. (3.5), has been used, as

well as the normalization of the polarization vectors of the W -boson,∑
λ3

ε∗3,µε
µ
3 =

∑
λ3

−1 = −3 . (5.46)

5.2.3. Cancellation of Infra-red Divergences

In summary, the soft real corrections up to order α2 for the decay width, are given by

Γsoft
φγ = − e2 ΓLO

φ

1

2(2π)3
( I11 + I33 − 2I13 )

− e2 ΓLO
φ

1

(2π)2

∆E

mH±

− e2

(
ρφe

2sW

)2 1

2mH±
FKin
φ (−3)

1

(2π)2

∆E2

2
.

(5.47)

The IR divergent terms coming from these real corrections have been regularized with a finite
photon mass Λ. They are contained in the Iij integrals of Eq. (5.23) and come in the form
of terms proportional to ln (∆E/Λ). Within the virtual corrections the IR divergent terms
come from the H+ and W+ self energies that enter the field renormalization factors δZH+H+

and δZWW , as well as from the diagrams in Fig. A.1(d) and Fig. A.1(e), in case it is a photon
that connects H+ and W+.

An infra-red finite Γobs
φ , as defined in Eq. (5.12), is obtained by the cancellation of the ln (Λ)

terms from the real corrections with the ones coming from the virtual corrections, where
necessarily the same regularization method has been used. After any dependence on Λ has
dropped out, the limit Λ→ 0 can be taken to retain a massless photon again.

Note that this formalism introduces a dependence of the decay width on the detector sensi-
tivity ∆E, where the value of ∆E says what ”soft” in the context of a particular experimental
setup means. If the soft photon approximation is a justified approximation, then the final
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result for Γobs
φ must not depend strongly on the choice of ∆E [37] (see discussion in Sec. 6.5).

The cancellation of the Λ-dependence has been checked numerically by varying Λ over a
wide range of ten orders of magnitude. If the resulting variation of Γobs

φ is beyond the
significant digits of a double precision type, the check is passed. This has been done for each
renormalization scheme that was introduced in Chapter 4:

• Kan scheme: infra-red finite

• HybMS scheme: infra-red finite.
Given that the Kan scheme yields an IR finite result, it is obvious that the same holds
for the HybMS scheme. The only part of the CT in which the two schemes differ is
δ(β − α). In the minimal subtraction condition δ(β − α) is defined to only contain UV
divergent terms, while in the Kan scheme δ(β − α) is constructed from the ΣHh and
ΣG+H+ self energies as well as the tadpoles, none of which can have IR divergent photon
loops at one-loop level.

• Min scheme: infra-red finite.
As already mentioned in Sec. 4.4.6, it is only after acting with the wave function nor-
malization matrix ZN on the tuple of amplitudes,(

ÃH
Ãh

)
= ZN

(
AH
Ah

)
, (5.48)

that Γobs
φ is infra-red finite. This is to say that at NLO the expansions for Ãφ, that

are given in Eqs. (4.105,4.106), have to enter Γφ in Eq. (5.12) to yield an IR finite result.

One might be inclined to think that the choice of renormalization scheme is completely
independent of the treatment of real corrections. Indeed in all three cases so far, exactly
the same Γsoft

φγ has been added to Γφ to obtain a finite partial width. Note, however,
that this is only strictly true in renormalization schemes where all fields of external
particles are on-shell. In schemes like the Min scheme, in which this is not the case,
the normalization matrices ZN must in general also affect the amplitudes entering Γsoft

φγ .
It is only because the tree-level amplitude Aφγ of the real corrections is already of the
order O(α), that at NLO there is no contribution from ZN acting on AHγ and Ahγ .

• Process-dependent scheme using H+ → W+ H : See discussion in the subsequent
Sec. 5.2.4.

5.2.4. Process-dependent Schemes Revisited

In Sec. 4.4.4 the decay H+ → W+ H has been presented as a first suggestion for a process-
dependent renormalization condition for the angle β − α. Given the similarity of the coun-
terterms of the H+W−h-vertex and the H+W−H-vertex, this choice may seem natural when
aiming for the NLO amplitude of the decay H+ → W+h and has indeed been used in [16].
Because in this paper Santos et al. considered only the contributions from top and bottom
quarks in the virtual corrections, infra-red divergent loops did not appear at all. This is why
in this approximation the process H+ → W+ H may well be used to fix δ(β − α).

The full electroweak virtual corrections, however, lead to infra-red divergences in δZH+H+ ,
δZWW and FNLO

H+W−H , where the latter is the vertex form factor as defined in Eq. (5.8). The
renormalization condition for δ(β−α) in Eq. (4.45) (with Cfinite = 0) was said to follow from

requiring ΓNLO
H

!
= ΓLO

H . If naively applying the same condition in case of the full electroweak
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corrections, δ(β−α) will contain additional IR divergences and as a result Γobs
φ would not be

IR finite.

Requiring that the NLO decay width is equal to the LO one, actually involves real, soft
photon corrections

ΓNLO
H = ΓLO

H

[
1 + 2 Re

(
FNLO
H+W−H

)
+ δZWW + δZH+H+ + δZHH (5.49)

− cβ−α
sβ−α

(δZG+H+ + δZhH) + 2
δg

g
+ 2

cβ−α
sβ−α

δ(β − α)

]
+ Γsoft

Hγ

!
= ΓLO

H . (5.50)

This condition would lead to an IR finite δ(β − α) and hence solve the problem of finiteness
for Γobs

h . But it defines real corrections into δ(β − α), which is seen as unacceptable [39].
Through the photon phase space cut, this counterterm would inevitably depend on some
detector sensitivity ∆E, which would thereby introduce a dependence on the experimental
setting.

In order to circumvent this issue for a process-dependent scheme, Freitas et al. [39] therefore
suggest to use another process where it is possible to separate the weak virtual corrections
from the virtual corrections that come from pure quantum electrodynamics (QED). Only the
latter contain the infra-red divergent parts. If this separation is possible and if the QED
corrections form a UV finite subset, then one can define the angle counterterm by requiring
only the virtual weak corrections to vanish at NLO. In [39] this is discussed for the renormal-
ization of tan(β) in the context of the MSSM and their suggested choice for such a process is
A0 → τ+τ−.

A question, that seems natural, is whether any other process with only neutral external par-
ticles could be used. The issue of infra-red divergences in process-dependent renormalization
conditions at one-loop level could thereby be avoided right from the start. In order to system-
atically go through all existing couplings of a CP-conserving THDM, a reasonable minimum
set of requirements would be:

1. Vertex with only neutral fields.

2. The coupling constant depends on α and/or β.

3. No external Goldstone bosons are involved.

The only couplings meeting these criteria are:

• Yukawa couplings: none

• 2 scalars - 2 gauge bosons: none

• 2 scalars - 1 gauge boson: λhA0Z =
e

2sW cW
cβ−α , λHA0Z = − e

2sW cW
sβ−α

• 1 scalar - 2 gauge bosons: λHZZ =
ieMW

sW c
2
W

cβ−α , λhZZ =
ieMW

sW c
2
W

sβ−α
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• Trilinear scalar couplings: λHA0A0 , λhA0A0 , λhHH , λhhH , λhhh , λHHH

• Quartic scalar couplings: λA0A0A0A0 , λHHA0A0 , λhhA0A0 , λHhA0A0 ,

λHHHH , λhhhh , λhhHH , λhhhH , λhHHH

The same kind of conditions as discussed above, that require the NLO decay width to be equal
to the LO decay width, could in principle be imposed on the decays A0 → ZH, A0 → Zh
and H → ZZ. Whether these decay channels are kinematically allowed depends on the
mass ratios. A renormalization scheme using one of these processes would therefore only
be applicable to certain scenarios. Albeit H → ZZ is the least restrictive in this sense, it
is proportional to cβ−α. Experimental data favour values for sβ−α close to one [52], which
means that couplings that involve cβ−α are suppressed due to sum rules. This is relevant if
the intention of a process-dependent scheme is to eventually measure the corresponding decay
width in order to replace the renormalization condition of equating the NLO width with the
LO width, by equating the former with the actually measured value.

As far as the trilinear and quartic couplings are concerned, one could in principle think of one
scalar decaying into two or three other scalars. However, actually measuring these decays is

very challenging. Even if only using a condition of the form ΓNLO
H

!
= ΓLO

H , note that due to
the kinematics these decays could only be used in a very restricted set of scenarios.

In conclusion there is no process at hand that involves only neutral particles, that has a
realistic potential to be measured and that is sufficiently general in the sense that it does
not only work for a few special scenarios with particular ratios of scalar masses. From
the processes involving charged particles, the decay A0 → τ+τ− is not only one where the
separation of QED and weak corrections is possible, but also one that is kinematically not
very restrictive. But still only δβ can be fixed through this decay and not δα which is, in
contrast to the situation in the MSSM, another independent parameter to be renormalized.
Aiming for a process-dependent scheme for both mixing angles, one would therefore still have
to use another process in addition to A0 → τ+τ−. A possible choice could be the analogous
decay of a neutral CP-even Higgs boson, H → τ+τ−, as the corresponding Yukawa coupling
depends on the mixing angle α. In order to avoid the necessity to renormalize the fermion
sector, a process-dependent scheme will not be used hereinafter for the calculation of the
NLO decay widths of H+ → W+ h/H.



CHAPTER 6

Numerical Results

6.1. Used Software

The sum of all one-loop vertex corrections AVC
H/h, as defined in Eq. (5.2), was calculated in

Mathematica using the packages FeynArts 3.9 [38] and FormCalc 8.3 [53, 54]. For a CP-
conserving THDM the FeynArts model file THDM.mod already exists and is included in the
mentioned version of FeynArts. Note that the couplings therein are parametrized in terms of
the set of independent parameters SP1 (see Eq. (2.36)), but they are based on the alternative
parametrization of the scalar potential presented in App. C. As a result the Λ5 of the model
file has to be expressed by the parameters of Sec. 2.2 via Eq. (C.7).

All scalar self energies Σfifj as well as the gauge boson self energies ΣWW , ΣZZ , ΣAZ and
ΣZA have likewise been calculated with the help of these packages. The thereby obtained
analytical expressions for the vertex corrections and self energies are formulated in terms of
the scalar one-loop integrals as they are defined in [55].

For the calculation of the partial decay widths the Fortran 90 program CalcGamma was writ-
ten, in which the expressions from Mathematica have been implemented and used to construct
the counterterms of the renormalization schemes introduced in Chapter 4. In order to eval-
uate numerically the one-point, two-point and three-point functions, the library LoopTools

2.9 [55] was linked.

The ultra-violet finiteness of the partial decay widths as given by Eq. (5.9) and Eq. (5.10),
was checked numerically. On the one hand the cancellation of the terms proportional to the
ε−1-pole was checked numerically in Mathematica by making use of a FormCalc function.

In CalcGamma, on the other hand, a numerical check for UV finiteness, which uses the renor-
malization scale µ, was performed for all those schemes, which do not involve a MS condition.
The terms which contain the µ-dependence are proportional to ln(µ) and always appear to-
gether with the ε−1-poles. In on-shell schemes the cancellation of the UV divergences therefore
implies the cancellation of the µ-dependent terms. One can make use of this fact to check
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the UV finiteness of an amplitude by checking the independence of the NLO amplitude from
the renormalization scale µ. To this end, µ was varied in CalcGamma over a wide range of ten
orders of magnitude.

Note that this method of checking UV finiteness cannot be applied to the HybMS scheme,
because the minimal subtraction condition for δ(β − α) separates the ln(µ)-terms from the
ε−1-poles and hence introduces a remaining dependence of the NLO amplitude on the renor-
malization scale. However, considering the fact that the only difference between the HybMS
scheme and the Kan scheme is the UV finite part in δ(β −α), the UV finiteness of the decay
amplitude in the former scheme is manifest as well.

Eventually the formula for the real corrections given in Eq. (5.47) was implemented in Cal-

cGamma to obtain infra-red finite results for the physical decay widths. How the infra-red
finiteness of Γobs

H/h as defined in Eq. (5.12), has been checked, is explained in Sec. 5.2.3.

6.2. Input Parameters

In the following all parameters are specified, that are needed for the decays H+ → W+ h/H
at NLO and which therefore enter CalcGamma as input parameters.

• Masses of SM particles
The masses of the W - and Z-boson, the quarks and the leptons were set to [56]1,

Mass Value

MW 80.398 GeV

MZ 91.1876 GeV

mu 190 MeV

md 190 MeV

ms 190 MeV

mc 1.4 GeV

mb 4.75 GeV

mt 172.5 GeV

me 510.99891 keV

mµ 105.658367 GeV

mτ 1.77684 GeV

• SM coupling parameters
For the electroweak fine-structure constant the value

αEM =
1

137.035999074
(6.1)

1For the masses of the SM particles the conventions of the LHC Higgs Cross Sections Working Group were
followed.
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is used as given in [32]. Since unitarity of the CKM matrix V is required for the
cancellation of UV divergences, the standard parametrization [32] through the following
three angles

sin(θ12) =
|Vus|√

|Vud|2 + |Vus|2
, (6.2)

sin(θ23) = sin(θ12)

∣∣∣∣ VcbVus

∣∣∣∣ , (6.3)

sin(θ13) = |Vud| (6.4)

is used, where the CP-violating phase has been set to zero. The four needed CKM
matrix elements

|Vud| = 0.97425 , (6.5)

|Vus| = 0.2253 , (6.6)

|Vub| = 0.00413 , (6.7)

|Vcb| = 0.0411 , (6.8)

have been taken from [32].

• SM-like Higgs boson
Throughout all scenarios, for which numerical results will be presented, it has been
assumed that the observed signal of a neutral scalar with a mass of 125 GeV [57],
corresponds to the lighter Higgs boson h of the two neutral CP-even scalars of a THDM.

• THDM parameters
Recalling the parametrization SP1 of a CP-conserving THDM in Eq. (2.36), the free
parameters are

{ mH , mH± , mA0 , tβ, sβ−α, M} , (6.9)

where the mixing angle α has been replaced by sβ−α to prevent confusion with the
fine-structure constant and because sβ−α appears in many couplings of the THDM.

In order to find parameter points that are neither excluded by theoretical constraints
nor by the current experimental data, the THDM parameter space was scanned with
the tool ScannerS [58, 59]. The theoretical constraints which were imposed, are the
unitarity of the tree-level scattering amplitudes from the quartic scalar couplings, the
stability of the vacuum and the positivity of the scalar potential. Furthermore, compat-
ibility with the experimental data has been checked: with the EW precision constraints
through the S, T and U parameters, with the constraints from flavour physics, the LEP
data and the LHC Higgs data.

Note that the parameter M is fixed by m12 through Eq. (2.25). Since m12 enters
ScannerS as an independent parameter, the latter will therefore be used below instead
of M to define the scenarios. Also note, that only scenarios respecting the mass relation

mH± ≥ MW + mH , (6.10)

will be considered in the following to ensure the decay mode H+ → W+ H to be
kinematically allowed. For the same reason this mass relation is also required for the
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calculation of Γh in the Min scheme. This is a consequence of the fact that the cor-
rectly normalized decay amplitude Ãh (Eq. (4.106)) in that scheme is a mixture of the
amplitudes Ah and AH .

In order to study the phenomenology of the decays H+ → W+ h/H, the partial decay
widths Γobs

H/h will be plotted over mH± . To this end, two classes of type I scenarios are
defined in Tab. 6.1, where all other masses are fixed with respect to mH± . In the plots
in Sec. 6.3 for these classes C1 and C2, the ranges of parameter points, which are not
excluded yet, are indicated as pale green stripes. For illustrative reasons we have also
shown parameter regions that are already excluded by experimental and by theoretical
constraints.

Name Type mH± [GeV] mH [GeV] mA0 [GeV] m12 [GeV] tan(β) sβ−α

C1 I [240, 400] mH± - 110 mH± - 50 mH± - 250 5 0.8

C2 I [240, 310] mH± - 110 mH± - 50 mH± - 250 15 0.95

Table 6.1.: Definition of two classes of type I scenarios with mH± as only free param-
eter.

In Tab. 6.2 three further scenarios are given, that were found to still be allowed in
parameter scans with ScannerS. Because the parameter points of the classes C1 and
C2, which are not excluded, are in the region of relatively low charged Higgs masses,
the scenario S1 is presented as an example of an allowed type I parameter point with
mH± larger than 600 GeV. Similarly the two scenarios S2 and S3 are type II scenarios,
where the former has a relatively low mass mH± and the latter a larger mass mH±

(mH± > 600 GeV).

Note that in the plots for the scenarios S1, S2 and S3 in Sec. 6.3 mH± is varied while
all other parameters are kept fixed. Using ScannerS we could not find any allowed
parameter point when moving away from the value of mH± of the allowed points S1,
S2 and S3. Hence there are no pale green areas indicated in the corresponding plots
Figs. 6.3–6.5. Whether the exclusion is due to experimental or theoretical constraints
needs further investigation.

Name Type mH± [GeV] mH [GeV] mA0 [GeV] m12 [GeV] tan(β) sβ−α

S1 I 607.37 145.02 600.96 37.69 13.2 0.84

S2 II 374.31 170.66 348.07 104.41 1.5 0.95

S3 II 658.92 152.24 658.75 105.59 1.26 0.95

Table 6.2.: Definition of selected scenarios for type I and II THDMs.

• Detector sensitivity
The detector sensitivity ∆E, which enters in the real corrections as the photon phase
space cut-off (see Sec. 5.2), was set to 10 GeV.
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6.3. The NLO Results

In the following the numerical results will be presented for the partial decay widths of both
decays H+ → W+ h and H+ → W+ H, that are studied in this thesis. The NLO results
are shown for the Kan and the Min renormalization scheme together with the LO results. In
Addition ∆Γ, defined as

∆Γ ≡ ΓNLO − ΓLO

ΓLO
, (6.11)

is plotted, to exhibit the relative size of the corrections. The results for the HybMS renor-
malization scheme are discussed in the following Sec. 6.4.
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Figure 6.1.: Partial decay width Γ (upper part) and ∆Γ (lower part) of the decays H+ →
W+ h (left) and H+ → W+ H (right) at LO and at NLO in the Kan and Min scheme for
the scenarios of the class C1.

Figure 6.1 shows the results for the scenarios of class C1, where the pale green stripes represent
the parameter points which are not excluded by experimental data or theoretical constraints
(see Sec. 6.2). The kinks appear when running into singularities due to the crossing of
thresholds. The appearance of such singularities is a general phenomenon that is neither
unique to this definition of scenarios nor to one particular renormalization scheme. For
example in the right plot of Fig. 6.1 the locations of the three visible kinks are

mH± = 270.8 GeV , (6.12)

mH± = 292.38 GeV , (6.13)

mH± = 360 GeV . (6.14)

Recalling the definition of the class C1, these values of mH± lead to masses of the neutral CP-
even Higgs H that are exactly twice as large as MW , MZ and mh, respectively. Consequently,
the propagators of W -, Z- and light Higgs bosons in the one-loop diagrams contributing to
the HH self energy ΣHH become on-shell and thereby cause singularities of the B0 functions
therein. This is to say that the results can only be trusted not too close to the thresholds.
In order to obtain physical results at the threshold, one would have to take into account the
finite width of the particles which propagate in the loops.
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Figure 6.2.: Partial decay width Γ (upper part) and ∆Γ (lower part) of the decays H+ →
W+ h (left) and H+ → W+ H (right) at LO and at NLO in the Kan and Min scheme for
the scenarios of the class C2.

In Fig. 6.2 the results for scenarios of the class C2 are shown, which feature the same kinks
as for the class C1 (as far as they are included in the shown range for mH±). This is evident
given that the definitions of the two scenario classes differ only in tβ and sβ−α.

Although the corrections in these type I scenarios can become as large as ±30% for values of
mH± as displayed in the plots, the corrections are of the order of a few percent in the areas
that are not excluded. The decay widths in Fig. 6.1 and Fig. 6.2 are only shown for mH± up
to 400 GeV and 310 GeV, respectively. Beyond these ranges the corrections get very large. In
the scenarios of class C1 they are as large as 80 % for mH± = 600 GeV and for the scenarios of
class C2 the corrections become negative and very large so that for mH± ≈ 350 GeV the NLO
decay width would already become negative. Note, however, that these parameter regions
are excluded.

Figure 6.3 shows ∆Γ for the decay channel with the heavy Higgs in the final state in the
S1 scenario for varying mH± , while all other parameters are kept fixed. It is reassuring to
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Figure 6.3.: ∆Γ of the decay H+ → W+ H in the Kan and Min scheme for the S1 scenario
with varying mH± and otherwise fixed parameters.
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see that for a scenario with mH± > 600 GeV, but that is not excluded, the corrections are
relatively small and do not explode as in the cases of the classes C1 and C2 for large mH± .
The knee that is visible in the plot, is again due to analogous threshold effects.
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Figure 6.4.: Partial decay width Γ (upper part) and ∆Γ (lower part) of the decays H+ →
W+ h (left) and H+ → W+ H (right) at LO and at NLO in the Kan and Min scheme for
the S2 scenario with varying mH± and otherwise fixed parameters.

The plots in Fig. 6.4 and Fig. 6.5 finally show the results for the two selected type II scenarios
S2 and S3, where again only mH± was varied, while all other parameters were kept fixed. With
corrections between +10% and -10%, they are moderate over a large range of mH± .
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Figure 6.5.: Partial decay width Γ (upper part) and ∆Γ (lower part) of the decays H+ →
W+ h (left) and H+ → W+ H (right) at LO and at NLO in the Kan and Min scheme for
the S3 scenario with varying mH± and otherwise fixed parameters.

The decay H+ → W+ H is phase space suppressed compared to the decay H+ → W+ h.
In the classes C1 and C2 this suppression gets even enhanced due to mH growing with mH± ,
while mh is fixed at 125 GeV. Nonetheless ΓH is in most shown scenarios comparable to Γh
or even larger than the former as it can be seen in Fig. 6.2. This is a consequence of the LO
coupling being proportional to sβ−α for the case with the heavy Higgs H, but proportional to
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cβ−α for the case that involves the light Higgs h (see Eq. (3.3)). Experimental data strongly
favour values of sβ−α close to one [52, 60]. This is reflected in the fact that the scenarios
defined in Sec. 6.2, which were found to still be allowed, have values of sβ−α between 0.8 and
1. Hence cβ−α is accordingly small and suppresses the decay mode H+ → W+ h.

In conclusion, the Kan scheme and the Min scheme lead to NLO corrections that are of
the order of a few percent to ten percent for parameter points which are neither excluded
by theoretical nor by experimental constraints. Note, however, that the difference between
the corrections in the two schemes is typically of the same size of a few percent. Using the
renormalization scheme dependence as a rough estimate for the theoretical uncertainty due
to missing higher order corrections, the presented results suggest that the NNLO calculation
is needed to obtain a prediction with a smaller theoretical uncertainty.

6.4. The HybMS Scheme

When studying the numerical outcome, the HybMS scheme defined in Sec. 4.4.4 turns out
not to be a good renormalization scheme. This can be seen in Fig. 6.6, where the results for
the decay width in the HybMS scheme are shown in addition to the ones in the Min and the
Kan scheme. The large corrections of several hundred percent in the HybMS scheme are not
unique to the scenario of the class C1 that was chosen for this plot. The situation is similar
in other scenarios and Fig. 6.6 is merely one illustrative example.

As mentioned before, the only difference between the HybMS scheme and the Kan scheme is
that the CT δ(β − α) contains only the pure divergence in the former scheme. While in the
Kan scheme large finite corrections from the wave function renormalization constants δZG+H+

and δZHh are cancelled by the large finite contribution from δ(β − α), this cancellation does
not occur in the HybMS scheme and thus leads to the large corrections in Fig. 6.6.
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Figure 6.6.: Comparison of the NLO partial decay width of the decay H+ → W+ H in the
HybMS, Kan and Min scheme for the scenarios of class C1 .

As pointed out in Sec. 6.1, due to the MS condition for δ(β − α), there is a remaining
dependence of the decay width on the renormalization scale µ. The strength of the dependence
on this artificial scale can be seen as a measure for the theoretical uncertainty due to missing
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higher order corrections. In Fig. 6.6 the result for the HybMS scheme is shown for µ = mH± ,
which motivates the following definition

∆Γµ ≡
Γ(µ) − Γ(µ = mH±)

Γ(µ = mH±)
. (6.15)

Varying µ between mH±/2 and 2mH± reveals in Fig. 6.7 how strongly the decay width de-
pends on µ in this scheme. Whether the large deviations of up to 50% would shrink and the
results for the partial decay widths converge with the results in other schemes, once higher
order corrections are taken into account, cannot be decided from only looking at NLO. Given
how large the differences are, it could also be the case that the HybMS scheme is in general
not a good scheme.
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Figure 6.7.: ∆Γµ in the Kan scheme for the scenario of class C1 with mH± = 340 GeV,
where µ was varied from mH±/2 to 2mH± .

6.5. Dependence on the Detector Sensitivity ∆E

The real corrections Γsoft
φγ were calculated in the soft photon approximation. As has been

mentioned in Sec. 5.2.3, this approximation is only justified if the resulting dependence of
Γobs
φ on the detector sensitivity ∆E is not strong. In order to check that this is indeed the case

for the decays H+ → W+ h/H, the partial decay width was calculated for different values
of ∆E , while all other parameters were kept fixed. Given that the results of the previous
sections were calculated for ∆E = 10 GeV, ∆Γ∆E defined as

∆Γ∆E ≡
Γ(∆E) − Γ(∆E = 10 GeV)

Γ(∆E = 10 GeV)
, (6.16)

may serve as a measure for the dependence on ∆E. In Fig. 6.8 ∆Γ∆E is shown for the pa-
rameter point of the scenario of the class C1 with mH± = 340 GeV.

In the possibly relevant range for ∆E in experiments the relative difference is of the order
of a few permille. In comparison to the size of the typical NLO corrections which are of the
order of a few % up to 10%, this is an acceptable remaining dependence on ∆E. The curve
in Fig. 6.8 exhibits the ln(∆E) dependence from the Iij integrals of Eq. (5.23), that feed into
the soft bremsstrahlung corrections. For the shown plot the Kan scheme was used, but the
drawn conclusion holds for all schemes presented in Chapter 4, as they all share the same
Γsoft
φγ .
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Figure 6.8.: ∆Γ∆E in the Kan scheme for the scenario of the class C1 with mH± = 340
GeV, where ∆E was varied from 0.1 GeV to 50 GeV.



CHAPTER 7

Summary and Conclusion

This thesis has dealt with the calculation of the full NLO partial decay width of the two decay
modes H+ → W+ h and H+ → W+ H of the charged Higgs boson in a CP-conserving
THDM. Charged Higgs bosons provide the cleanest signature of THDMs [16] and given the
recent start of run II at the LHC, predictions for the production and decay of charged scalars
are of great interest. Although the dominant decay channel is H+ → tb̄, this is a challenging
search channel due to the large QCD background. Hence the decay modes considered in this
thesis could prove to be relevant for searches.

In Sec. 6.3 the results were presented in a selection of different scenarios for two different
renormalization schemes, the Kan scheme and the Min scheme. In a previous publication
it was found that for the partial decay width of the decay mode with the light Higgs in
the final state, the corrections from only top and bottom quarks can in some scenarios be
as large as 80% [16]. In their analysis only constraints from tree-level unitarity arguments
had been imposed, while now, almost twenty years later, the available experimental data
severely restrict the allowed parameter space. In scenarios that emerged as compatible with
the theoretical and the current experimental constraints (using the tool ScannerS [52, 59]),
the full EW corrections turn out to be typically of the order of a few percent up to ten percent.

The difference between the two schemes is however, of same order of a few percent for the
allowed parameter points. Taking the renormalization scheme dependence as a rough esti-
mate for the theoretical uncertainty these results thus suggest that the NNLO calculation is
needed to obtain a reliable prediction.

Although the decay into W+H is phase space suppressed compared to the decay into W+h,
in the presented scenarios the former channel either has a comparable decay width or an even
larger one than the latter. This is due to the fact that experiments favour sβ−α close to one
so that consequently the coupling λH+hW− is suppressed, as it is proportional to cβ−α.

The study of the decays H+ → W+ h/H at NLO was embedded in a discussion of more
general questions on the renormalization of CP-conserving THDMs. The intention was to
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understand what the differences between various renormalization schemes are, what their
advantages and disadvantages are and in particular what subtleties arise when renormalizing
the mixing angles. Ultimately, one would like to know whether there is one scheme which is
generally preferable.

The intuition behind on-shell conditions was explained in Sec. 4.2 and it was pointed out
in Sec. 4.3 that in a CP-conserving THDM it is possible to renormalize all 4 scalar masses
on-shell in order to preserve their physical meaning beyond LO. For all practical purposes,
these masses are part of the complete set of independent parameters describing the Higgs
sector, as are the tadpole parameters which are renormalized such that the vevs are ensured
to be minima of the potential also beyond LO (Eq. (4.26)). It is also natural to renormalize
the massive gauge boson masses MW and MZ on-shell and to define the electric charge e in
the standard way in the Thomson limit. Recalling the set of independent parameters SP1,

{ mh, mH , mH± ,mA0 , MW , MZ , e, tβ, Th, TH , α, M } , (7.1)

what a renormalization scheme still has to specify, is how to renormalize tβ, α (or equivalently
sβ−α) and M as well as the scalar fields. In contrast to the other parameters, there is no
obvious way of relating the mixing angles and M to observables.

Different renormalization schemes assign different UV finite parts to the CTs and as a conse-
quence different numerical values for the parameters tβ, sβ−α and M are inferred from exper-
imental measurements. These different definitions of the parameters can differ with respect to

• gauge independence

• numerical stability

• process independence.

These partly necessary, partly desirable features are discussed by Freitas et al. for the pre-
vailing schemes in the context of the MSSM [39]. In the MSSM however, there is only one
parameter for which these issues play a role, namely tβ, while in a general THDM there are
three of them, two angles and the soft symmetry breaking parameter M . The results of their
paper do thus not necessarily translate to the case of a general THDM.

While the requirement of numerical stability has to be fulfilled by any scheme in practice,
gauge independence and process independence are not mandatory features. Given the gauge
invariance of the theory, any relation only between observables will be gauge indepedent.
The relation between unphysical parameters of the model and observables, however may well
dependent on the gauge. But if one wishes to assign a more physical interpretation to the
parameters, in particular to the mixing angles which play a prominent role in THDMs, they
ought to be gauge independent and process-independent.

In view of the given criteria, the schemes that were presented in Chapter 4 shall be briefly
recapitulated here:

1. Process-dependent schemes

In Sec. 4.4.4 the basic idea of a process-dependent renormalization condition for mixing
angles was explained by trying to use the decay H+ → W+ H to fix δ(β−α). At NLO
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such a condition is in general of the form

ΓNLO !
= ΓLO . (7.2)

As observables, partial decay widths are gauge independent. If all other counterterms
in the NLO decay amplitude have already been fixed in a gauge independent way, e.g.
through on-shell conditions, then the gauge independence of the angle CT fixed by
Eq. (7.2) is manifest. Consequently the value for the corresponding angle which would
be inferred from an experimental measurement would likewise be gauge independent.

But this approach also implies that a process-dependent UV finite part is defined into
the angle. This gives the scheme its name and the angle a non-universal meaning. One

may hope to replace Eq. (7.2) by the condition ΓNLO !
= Γmeasured, which of course rests

on having already discovered a BSM scalar and on being able to measure this particular
decay channel. As pointed out in Sec. 5.2.4, requiring the measurability of the process
that is used in the renormalization condition, strongly restricts the eligible processes
for such a scheme.

The discussion in Sec. 5.2.4 also showed that the decay H+ → W+ H cannot be used
to define a renormalization condition. This is due to the fact that the IR divergent
virtual QED corrections cannot be separated as a UV finite subset. Therefore Freitas
et al. suggest to use the decay A0 → τ+τ− instead in order to circumvent this issue for
the process-dependent renormalization of tan(β) in the MSSM. As stated in [39], this
scheme is not affected by numerical instabilities.

For the THDM with two mixing angles, one would have to rely on two different pro-
cesses. With the potential problem of IR divergences in mind, the decay H → τ+τ−

could be used in addition to the decay of the pseudoscalar. Despite the strong advan-
tage of the manifest gauge independence of angles, this scheme is technically involved,
in particular if going beyond NLO.

2. Kan scheme

As far as one can tell from studying the decays H+ → W+ h/H at NLO, the Kan
scheme does not suffer from numerical instabilities. Also, this scheme was used by Kane-
mura et al. to calculate a large set of one-loop corrected couplings in the CP-conserving
THDM [18].

The characteristic feature of this approach is that the angle counterterms show up as
part of the field renormalization matrix, which reflects the strong link between the
renormalization of the mixing angles and the scalar fields. The angle CTs are fixed
by on-shell conditions in a way that is technically simple and could easily be extended
to a next-to-next-to leading order calculation. Despite the fact that the renormaliza-
tion conditions come across in the spirit of physically intuitive on-shell conditions, this
scheme introduces a gauge dependence for β. In their recent paper [18] Kanemura et al.
give a solution to circumvent this issue. It is unclear, however, what their suggestion -
beyond being a formal solution - implies in practice; unless the calculation is done with
a general gauge fixing parameter.
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3. Min scheme

The Min scheme is ‘minimal’ in the sense of the minimum number of field renormaliza-
tion parameters that are necessary to obtain UV finite S-matrix elements and Green’s
functions. Concerning the renormalization of the angles it is a mixture of what was
called the Kanemura approach and the condition δv1/v1 = δv2/v2 [43–45] that feeds
into the renormalization of tan(β). At this stage it is not clear whether this combination
will lead to a gauge dependent definition of tan(β). It was beyond the scope of this
thesis to examine the gauge dependence.

Dealing with the wave function normalization matrix ZN of Eq. (4.95) may technically
speaking appear to be inconvenient. Once the self energies which are anyway needed
for a complete on-shell renormalization scheme are implemented, the required technical
effort is negligible. In the end, the same amount of parameters and equally many con-
ditions are necessary in both cases to ensure all scalars to satisfy the on-shell relations -
be it in the form of renormalization conditions or in the derivation of the wave function
normalization matrix ZN .

4. HybMS scheme

The numerical results for the HybMS scheme in Sec. 6.4 showed that the corrections in
this scheme become extremely large compared to the on-shell schemes (see Fig. 6.6). In
the Kan scheme, large finite corrections from the wave function renormalization con-
stants δZG+H+ and δZHh are cancelled by the large finite contribution from δ(β − α).
The latter finite term is missing in the HybMS scheme, which is the reason for the
unphysically large corrections and the strong dependence on the renormalization scale
(see Fig. 6.7). The HybMS scheme thus turns out not to be a useful renormalization
scheme for the decays explored in this thesis.

Freitas et al. establish a ‘no-go-theorem’ for the MSSM, that basically says that there is
no such perfect renormalization scheme, that suffers neither from numerical instabilities, nor
from gauge dependence or process dependence. A general CP-conserving THDM has more
independent parameters that do not represent an observable quantity. It hence gives even
more freedom to choose renormalization conditions. For the time being it is not clear whether
an analogous ‘no-go-theorem’ also holds for the case of the THDM.

It would certainly be interesting to investigate the gauge dependence of the Min scheme and
other schemes one can think of, but that have not been covered in this thesis. On the one hand
this should be done in a general manner with the tool of extended Slavnov-Taylor-identities
as in [39]. On the other hand it could prove helpful to follow the suggestion by Kanemura
et al. to avoid a gauge dependence of tan(β) (Eq. (4.69)). To this end, one would have to
calculate the self energy ΣG0A0 as well as the tadpole diagrams in a general gauge. Once this
was done, the obtained expression for δβ would be a candidate for a perfect scheme in the
above sense.

This thesis has shed some light on the differences between various renormalization schemes,
on the issues that arise when mixing angles are renormalized and on the different intuitions
that lie behind them.



APPENDIX A

Vertex Corrections
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Figure A.1.: Generic Lorentz structures contributing to the vertex corrections of the
H+W−h-vertex and the H+W−H-vertex, respectively.



APPENDIX B

Tadpole Parameters

The matrices δT with the tadpole renormalization parameters, defined in Eq. (4.25), are given
explicitly in the following. For θ = β the entries of the symmetric matrices(

δTG+G+ δTG+H+

δTH+G+ δTH+H+

)
=

(
δTG0G0 δTG0A0

δTA0G0 δTA0A0

)
, (B.1)

are given by

δTG+G+ =
cβ
v
δT1 +

sβ
v
δT2 = −cβ−α

v
δTH −

sβ−α
v

δTh , (B.2)

δTG+H+ =
cβ
v
δT2 −

sβ
v
δT1 =

sβ−α
v

δTH −
cβ−α
v

δTh = δTH+G+ , (B.3)

δTH+H+ =
s2
β

cβv
δT1 +

c2
β

sβv
δT2 = −

cαs3
β + sαc3

β

vsβcβ
δTH +

sαs3
β − cαc3

β

vsβcβ
δTh (B.4)

and for θ = α, the entries of the matrix(
δTHH δTHh

δThH δThh

)
, (B.5)

are given by

δTHH =
c2
α

cβv
δT1 +

s2
α

sβv
δT2 = −c3

αsβ + s3
αcβ

vsβcβ
δTH +

sαc2
αsβ − cαs2

αcβ
vsβcβ

δTh , (B.6)

δTHh =
sαcα
sβv

δT2 −
sαcα
cβv

δT1 =
s2α

vs2β
(sβ−αδTH − cβ−αδTh) = δTHh , (B.7)

δThh =
s2
α

cβv
δT1 +

c2
α

sβv
δT2 = − s2α

vs2β
cβ−αδTH +

s3
αsβ − c3

αcβ
vsβcβ

δTh . (B.8)
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APPENDIX C

Alternative Parametrization of the Scalar Potential

The Higgs Hunter’s Guide [14] uses a different parametrization of the scalar potential com-
pared to the one given in Eq. (2.6). In particular because the parametrization of the coupling
constants in the FeynArts model file THDM.mod is based on the former, this alternative is
presented as well, including the transformation rules between both parametrizations. The
CP-conserving potential (i.e. setting Λ7 and the relative phase ξ between the vevs to zero)
reads

V (Φ1,Φ2) = Λ1

(
Φ†1Φ1 − V 2

1

)2
+ Λ2

(
Φ†2Φ2 − V 2

2

)2

+ Λ3

[(
Φ†1Φ1 − V 2

1

)
+
(

Φ†2Φ2 − V 2
2

)]2

+ Λ4

[(
Φ†1Φ1

)(
Φ†2Φ2

)
−
(

Φ†1Φ2

)(
Φ†2Φ1

)]
+ Λ5

[
Re
(

Φ†1Φ2

)
− V1V2

]2
+ Λ6

[
Im
(

Φ†1Φ2

)]2
.

(C.1)

To prevent confusion with the λ1 − λ5 of Eq. (2.6) and the definition of the vevs v1 and v2

there, capital letters are used for this alternative. The different vevs are related to each other
via

Vi =
vi√

2
, i = 1, 2 , (C.2)

while the parameters Λ1 − Λ6 can be identified with the following combinations of the pa-
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rameters of Eq. (2.6) [31],

Λ1 =
1

2

[
λ1 − λ345 + 2

M2

v2

]
, (C.3)

Λ2 =
1

2

[
λ2 − λ345 + 2

M2

v2

]
, (C.4)

Λ3 =
1

2

[
λ345 − 2

M2

v2

]
, (C.5)

Λ4 = 2
M2

v2
− λ4 − λ5 , (C.6)

Λ5 = 2
M2

v2
, (C.7)

Λ6 = 2
M2

v2
− 2λ5 . (C.8)
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