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Chapter 1

Introduction

The Standard Model (SM) of particle physics describes in a beautiful way all known
fundamental particles and the interaction among them by means of a quantum field
theory of an exact local SU(3) gauge theory and a spontaneously broken local SU(2)L×
U(1)Y gauge theory. The SM is consistent with the various high precision tests that
have been performed under greatest efforts. Nevertheless, to be completely determined,
one last parameter is missing: the mass of the so called Higgs particle. To confirm or
rule out the existence of this particle and therewith the verification or falsification of
the electroweak symmetry breaking mechanism, is one of the major reasons, that lead
to the construction of the Large Hadron Collider (LHC). The LHC is a proton proton
accelerator with a center of mass energy of 14TeV and a very high luminosity, which is
about a factor hundred higher than the luminosity attained by the Tevatron experiment
at Fermilab.
The unbroken SU(3) symmetry in the SM is the theory of strong interactions, the
so called Quantum Chromodynamics or short QCD. The non-Abelian nature of QCD
allows for self interacting gauge bosons, called gluons. This and the fact, that the
strong coupling constant becomes very strong at large distances, makes predictions,
based on perturbative calculations very difficult to handle. Since protons are made
out of strongly interacting particles (quarks and gluons), scattering processes at the
LHC are dominated by QCD induced events. Great efforts have been done to make
QCD calculations feasible. In recent years a new promising approach came up, making
use of so called maximally helicity violating (MHV) amplitudes. This method was
first developed for gluon amplitudes only, but has soon be extended to amplitudes
containing quark antiquark pairs, massive vector bosons or scalar particles like e.g. the
Higgs particle.
One of the most promising discovery channels for a SM Higgs boson at the LHC, is
Higgs production via weak boson fusion. This process is actually known at next-to
leading order (NLO) in the strong coupling constant αs. The related process pp → Hjj
via gluon fusion gives an irreducible background, and therefore has to be simulated with
high accuracy. This process is up to now – without falling back on approximations –
only known at leading order (LO). The calculation contains a top loop allowing for the
Higgs gluon coupling. The NLO calculation is available in the so called large top mass
approximation in which the Higgs couples directly to gluons. One ingredient for this
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2 CHAPTER 1. INTRODUCTION

NLO calculation are the above mentioned MHV amplitudes, speeding up the calculation
tremendously.

The aim of this thesis is to examine the impact of MHV amplitudes for phenomeno-
logical purposes, especially for the process pp → Hjj. Since MHV plus Higgs ampli-
tudes are only available in the mtop → ∞ limit, the effects of this approximation are
investigated and it is examined whether this approximation can be improved by con-
sidering a correction term. The thesis is organized in the following way:
Chapter 2 deals with the theory of QCD and the Higgs mechanism. Especially it is
shown, that QCD tree amplitudes can be decomposed in so called color ordered par-
tial amplitudes. For specific helicity configurations of the external quarks and gluons
these partial amplitudes have astonishingly short analytic expressions – the MHV am-
plitudes. Chapter 3 explains how MHV amplitudes can be used to calculate non-MHV
amplitudes, as well in the pure QCD case as in the case containing a Higgs. As an appli-
cation, these amplitudes were implemented into the parton level Monte Carlo VBFNLO
and tested for speed-up. Furthermore a detailed study, in respect of different helicity
amplitudes contributing to the differential cross section dσ/d∆Φjj, is given.
MHV amplitudes containing a Higgs are only available in the limit mtop → ∞. In this
limit the Higgs-gluon couplings can be described by an effective Lagrangian of dimen-
sion 5 (D5). Chapter 4 takes a close look at the effective theory. Beside the well known
D5 Lagrangian also a correction term, considering the 1/m2

top supressed parts, will be
derived, which can be described by an effective Lagrangian made out of dimension 7
(D7) operators.
In chapter 5 the D5 and D7 effective couplings were implemented into VBFNLO and
the three subprocesses contributing to pp → Hjj were compared to the full loop cal-
culation. As we will see, some phase space regions spoil the effective theories. The
ambition is to reduce the error emerging from the D5 theory, by considering the D7
correction together with appropriate cuts on the phase space, in order to analyze if it
would be reasonable to perform a NLO calculation including the D7 operators.
The NLO calculation exploits the compactness of the MHV amplitudes. Hence, having
MHV amplitudes for the D7 operators would be a great help for implementing them
into a NLO calculation. In chapter 6 a conjecture for MHV amplitudes for the D7
operators is given. The expressions are shown to agree numerically in the gg → ggH
case.
Chapter 7 finally sums up the results, including a discussion.
Conventions and calculations concerning the derivation of the effective theory as well
as identities between some effective dimension 7 Lagrangians can be found in the Ap-
pendix.



Chapter 2

Gauge theories and Higgs
mechanism

In modern physics, particle interactions are described by gauge theories. Thereby one
means, that the Lagrangian is locally invariant under a given group G, which means
that the group transformation can be different for every space time point. The Stan-
dard Model of particle physics contains three gauge groups: SU(3) × SU(2)L × U(1)Y .
Additionally one introduces a scalar self interacting field with tachyonic mass, the so-
called Higgs field, to break the SU(2)L × U(1)Y invariance to U(1)em – describing the
electroweak interactions. The SU(3) symmetry remains as an exact symmetry and
describes the strong interaction, the so-called Quantum Chromodynamics (QCD).

2.1 QCD

For a long time it has been dubious that a theory of exchanged vector bosons could
correctly describe the strong interaction. Strongly interacting particles, like protons or
neutrons, seem to be made out of constituents, called partons. There are two observa-
tions that did not seem to match up:

• The strong interaction has to be extremely strong in some circumstances, since it
holds the partons together and free partons were never observed.

• In deep inelastic scattering processes – like in electron proton collisions with
momentum transfer Q2 ≥ 1GeV – the partons behave like free particles.

These properties are also known as confinement and asymptotic freedom. The way
out of these seemingly contradictory properties is the description of interactions by
non-Abelian gauge theories, also known as Yang-Mills theories.

The construction of a non-Abelian gauge theory can be motivated by studying the
geometry of local gauge invariance; first in the Abelian case like the U(1) symmetry
leading to the quantum electrodynamic (QED), and then generalizing to an arbitrary
symmetry group.
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4 2.1 QCD

Local gauge invariance in QED

Consider the free Dirac equation
(
i/∂ − m

)
Ψ(x) = 0 (2.1)

which is one of the Euler-Lagrange equations of

L = Ψ̄(x)
(
i/∂ − m

)
Ψ(x) (2.2)

Both equations are invariant under global U(1) gauge transformations

Ψ → Ψ′(x) = e−iλqθΨ(x) (2.3)

Ψ̄ → Ψ̄′(x) = Ψ̄(x)eiλqθ (2.4)

but are not invariant under local gauge transformations where θ depends on x, θ = θ(x),
since one is left with terms ∝ ∂µθ(x)

(
i/∂ − m

)
Ψ′(x) = e−iλqθ

(
i/∂ − m + λq /∂θ(x)

)
Ψ(x) (2.5)

Now one can ask for local gauge invariance. To achieve this, introduce a so-called
gauge field Aµ(x) which transforms in such a way, that the bothersome term ∝ ∂µθ(x)
gets canceled. This is done by replacing the partial derivative ∂µ with the covariant
derivative Dµ

Dµ = ∂µ + iλqAµ(x) (2.6)

It is now easy to check, that the resulting Dirac equation becomes invariant under local
gauge transformations, if the gauge field transforms as

A′
µ(x) = Aµ(x) + ∂µθ(x) (2.7)

An important property of the covariant derivative is that D′
µ = e−iλqθDµe

iλqθ

The electromagnetic field strength tensor, defined by

Fµν(x) = ∂µAν − ∂νAµ (2.8)

is gauge invariant. To get the Lagrangian of QED one has to add a Lorentz and
gauge invariant gauge field to the Dirac Lagrangian, so that the field itself becomes a
dynamical quantity. The QED Lagrangian reads

LQED = Ψ̄(x)
(
i /D − m

)
Ψ(x) − 1

4
Fµν(x)F µν(x) (2.9)

Generalizing to non Abelian gauge symmetries

Consider a multiplet of Dirac fields

Ψ(x) =








Ψ1(x)

Ψ2(x)
...

Ψn(x)








(2.10)
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which transforms according to a representation Dg of a compact symmetry group G.
The infinitesimal generators T a, a = 1, . . . , dim(G) are represented by n × n matrices.
The local gauge transformation of the fields are now given by

Ψ(x) → Ψ′(x) = DgΨ(x), Dg = Dg(x) (2.11)

Let us now construct a covariant derivative which leaves the Lagrangian invariant un-
der local gauge transformations. Consider therefore an infinitesimal parallel transport
U(x+dx, x) of the field Ψ(x), which is generated by an affine connection, or in physics
called gauge field, Aµ(x), an element of the Lie algebra of G

Ψ‖(x + dx) = U(x + dx, x)Ψ(x) (2.12)

U(x + dx, x) = 1 + iAµ(x)dxµ (2.13)

Gauge transformations and parallel transport have to be compatible. That means that
first performing a gauge transformation on the field and second parallel transporting
it, has to give the same as performing the operations vice versa.

Ψ′
‖(x + dx) = U ′(x + dx, x)Ψ′(x) = U ′(x + dx, x)Dg(x)Ψ(x) (2.14)

!
= Dg(x + dx)U(x + dx, x)Ψ(x) (2.15)

Here one can read of the transformation law for the parallel transport operator:

U ′(x + dx, x) = Dg(x + dx)U(x + dx, x)D−1
g (x) (2.16)

Inserting (2.13) and expanding to first oder in dx one obtains the transformation law
for the connection

iA′
µ(x) = Dg(x) (iAµ(x) − ∂µ)D−1

g (x) (2.17)

The covariant derivative defined by Dµ = ∂µ − iAµ(x) behaves under gauge transfor-
mations as (using (2.17))

Dg(x)DµD−1
g (x) = ∂µ − iA′

µ(x) = D′
µ (2.18)

As a consequence, the Dirac Lagrangian with covariant derivative

L = Ψ̄(x)
(
i /D − m

)
Ψ(x) (2.19)

is invariant under local gauge transformations.
Next consider the parallel transport along a closed path (fig.2.1). The effect to the field
up to O(dxdy) is given by the difference of the two paths x → x + dx → x + dx + dy
and x → x + dy → x + dy + dx

U(x + dx + dy, x + dx)U(x + dx, x) − U(x + dy + dx, x + dy)U(x + dy, x) (2.20)

= (1+ iAµ(x + dx)dyµ)(1+ iAν(x)dxν) − (1 + iAµ(x + dy)dxµ)(1+ iAν(x)dyν)

= i (∂µAν(x) − ∂νAµ(x) − i [Aµ(x),Aν(x)]) dxµdyν

≡ iFµν(x)dxµdyν (2.21)
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x x + dx

x + dx + dyx + dy

Figure 2.1: Parallel transporting a field from x to x + dx + dy on to different ways.
The difference between this two paths defines the field strength tensor for general gauge
groups

This defines the field strength tensor for gauge fields of the Lie algebra of an arbi-
trary group G. One should notice that it reduces correctly to the electromagnetic field
strength tensor for G=U(1), since in the Abelian case the commutator vanishes.
It is possible to express the field strength tensor Fµν(x) as commutator of covariant
derivatives, as one can be convinced by a short calculation

Fµν(x) = i [Dµ, Dν ] (2.22)

Yang-Mills Lagrangian

To construct a self contained physical theory, the external gauge field Aµ must itself be
a dynamical quantity. To achieve this, one has to add a gauge and Lorentz invariant
term to the Lagrangian, depending only on the gauge field. However, the combination

Fµν(x)Fµν(x) (2.23)

is not gauge invariant as one can easily check by the use of (2.18) and (2.22). Fortunately
one can easily construct a gauge invariant quantity out of (2.23) by taking the trace
over the group space

Lgauge = − 1

2g2
Tr (Fµν(x)Fµν(x)) (2.24)

→ − 1

2g2
Tr
(
DgFµν(x)D−1

g DgFµν(x)D−1
g

)

= − 1

2g2
Tr
(
Fµν(x)Fµν(x)D−1

g Dg

)

= − 1

4
F a

µν(x)F a µν(x)

where in the third line was made use of cyclic invariance of the trace and in the last line
the trace was performed and the components of the field are written explicitely1. The

1Aµ can be expanded in terms of the representation matrices T a
ij : Aµ(x) = gAa

µ(x)T a
ij , with a

proportionality constant g
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representation matrices are normalized according to Tr(T aT b) = 1
2
δab (corresponding to

the fundamental representation). Altogether, the sum of (2.19) and (2.24) finally gives
the Yang-Mills Lagrangian for gauge invariant interactions of fermions with non-Abelian
gauge bosons

LYang-Mills = Ψ̄(x)
(
i /D − m

)
Ψ(x) − 1

4
F a

µν(x)F a µν(x) (2.25)

QCD - the Yang-Mills theory of the strong interaction

When people started to study hadron spectroscopy, they realized that one can describe
the hadron spectra by introducing a new quantum number, color. Han and Nambu,
Greenberg, and Gell-Mann assigned quarks to the fundamental representation of a new,
internal global SU(3) symmetry. Quarks and antiquarks form a SU(3) triplet, where
quarks transform under the 3-representation (i.e. fundamental representation) and the
antiquarks under the 3̄-representation. Additionally they postulated that all hadron
wavefunctions must be invariant under SU(3) transformation, so that physical hadrons
are singlets under color. Thus, the only allowed combinations are

q̄iqi, ǫijkqiqjqk, ǫijkq̄iq̄j q̄k (2.26)

This not only gave the right quark multiplet observed, it also gave a way out to the
∆++ resonance problem, which is the excitation of three u-quarks with parallel spin
and zero orbital angular momentum

∆++ =
∣
∣u↑, u↑, u↑〉 (2.27)

Without the new degree of freedom, this state would violate the spin statistic theorem,
since the wavefunction is totally symmetric under quark spin and flavor exchange.
But there was still the problem in formulating a theory which solves the issues mentioned
in the beginning of this chapter. The answer to this seeming contradiction became
apparent, when in the 70s Gross, Wilczek and Politzer observed, that non Abelian
gauge theories are asymptotically free [1, 2].2 The main task is now to identify the right
gauge group with the strong interaction. But since the Lagrangian already contains a
global color SU(3) it suggests itself to identify the color symmetry with the gauge group
of the strong interaction.
The QCD Lagrangian, describing the strong interactions therefore is the Yang-Mills
theory of SU(3). It contains six quark fields – also called quark flavors – which are
given as three families of quark doublets

(
u

d

) (
s

c

) (
t

b

)

(2.28)

where the upper quark carries electric charge +2
3

and the lower −1
3
. The quarks are

called (u)p, (d)own, (s)trange, (c)harm, (t)op and (b)ottom. Altogether one gets

LQCD =
∑

q,c,c̄

Ψ̄q,c̄(x)
(
i /Dc̄c − mqδc̄c

)
Ψq,c −

1

4

∑

a

F a
µν(x)F a µν(x) (2.29)

2For their discovery, Gross, Wiltzek and Poitzer were awarded the Nobel Prize in Physics in 2004



8 2.2 Color decomposition

where Ψq,c denote the quark field with flavor q, mass mq and color c.
Finally, Wilson discovered by using an approximation scheme in which the continuum
gauge theory is replaced by a discrete statistical mechanical system on a four dimen-
sional Euclidian lattice, that for sufficiently strong coupling, QCD exhibits confinement
of color: the only finite energy asymptotic states of the theory are those that are sin-
glets of color SU(3)[3]. Therefore QCD implicitly contains the add hoc postulate that
hadrons are color singlets and explains that no free quarks are observed.
The running coupling constant is described by the Callan-Symanzik equation and is
given in second order perturbation theory by [4]

αs(Q
2) =

αs(M
2)

1 + αs(M2)
4π

β0log
Q2

M2

(2.30)

which shows explicitly that for high momenta or short distances the coupling constant
becomes small. For small enough value one can expand the calculation in a perturbation
series.
The quantization of the theory is best done with the help of the Feynman path integral
formalism. The quark propagator and the vertices are derived in a straight-forward
fashion. But there is a subtlety in deriving the gluon propagator due to gauge invariance.
The problem can be solved using the method of Faddeev-Popov by introducing a gauge
fixing term [5]. The Feynman rules used in this thesis can be found in Appendix A.

2.2 Color decomposition

If one is interested in calculating scattering amplitudes in QCD it is often a good idea to
treat the color structure of the amplitude in a specific manner.3 Consider a gauge group
SU(Nc), a generalization of the QCD gauge group SU(3) (by generalizing to arbitrary
Nc the gauge theory structure becomes more apparent). The generators of the SU(Nc)

are traceless, hermitian Nc × Nc matrices, denoted by (T a) j̄
i . Quarks and antiquarks

carry fundamental color index i, ī = 1, 2, . . .Nc, while gluons carry adjoint color index
a = 1, 2, . . . , N2

c − 1. They are normalized according to

Tr(T aT b) = C(r)δab (2.31)

where C(r) is a constant, depending of the representation r chosen. In the following I
take C(r) = 1

2
, but one has to be careful because often C(r) is taken to be 1 whereupon

partial amplitudes may vary by factors of
√

2. Now first of all consider a pure gluonic
scattering amplitude. In a generic Feynman diagram one has a group theory structure
constant fabc defined by

[
T a, T b

]
= ifabcT c (2.32)

for each three-gluon vertex and contracted pairs fabef cde for each four gluon vertex.
Since gluon propagators contain a factor of δab they contract many of the indices. The
number of the indices that stay uncontracted is equal to the number of external gluons.

3The argumentation follows the one of [9]
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To expose the general color structure of an amplitude, express the structure constant
fabc in favor of the T a’s, by multiplying (2.32) with T c and taking the trace:

fabc = −2i
(
Tr
(
T aT bT c

)
− Tr

(
T bT aT c

))
(2.33)

That means that the color structure of our amplitude is made out of products of the
form

Tr(. . . T a . . .)Tr(. . . T a . . .) . . . (2.34)

One can reduce the number of traces by “Fierz rearranging” the contracted T a’s

(T a) j̄1
i1

(T a) j̄2
i2

=
1

2

(

δ j̄2
i1

δ j̄1
i2

− 1

Nc

δ j̄1
i1

δ j̄2
i2

)

(2.35)

Consider e.g. a product of the form

2
(
Tr
(
T aT bT e

)
− Tr

(
T bT aT e

))
·
(
Tr
(
T cT dT e

))
(2.36)

= 2
(
(T a) i2

i1
(T b) i3

i2
(T e) i1

i3
− (T b) i2

i1
(T a) i3

i2
(T e) i1

i3

)
(T c) j2

j1
(T d) j3

j2
(T e) j1

j3

= 2
(
(T a) i2

i1
(T b) i3

i2
(T c) j2

j1
(T d) j3

j2
− (T b) i2

i1
(T a) i3

i2
(T c) j2

j1
(T d) j3

j2

)

× 1

2

(

δ j1
i3

δ i1
j3

− 1

Nc
δ i1
i3

δ j1
j3

)

= Tr
(
T aT bT cT d

)
− Tr

(
T bT aT cT d

)
(2.37)

since the terms containing a factor 1/Nc cancel. In the same way one can anticipate
that any tree diagram for n-gluon scattering can be reduced to a sum of terms with the
color information borne by a single trace of color matrices. Berends and Giele proved
by induction, that this is in fact possible [8]:

Atree
n ({ki, λi, ai}) = gn−2

∑

σ∈Sn/Zn

Tr (T aσ(1) · · ·T aσ(n))Atree
n (σ(1λ1), . . . , σ(nλn)) (2.38)

where g is the strong coupling, ki and λi are the gluon momenta and helicities. The Atree
n

are the so-called partial (or color stripped) amplitudes which contain all the kinematic
information. The sum goes over all permutations but cyclic ones.
The partial amplitude have the following properties [8]

• Atree
n (1, . . . , n) is invariant under cyclic permutations

• reflection property: Atree
n (1, . . . , n) = (−1)nAtree

n (n, . . . , 1)

• the sub-cyclic sum equals zero:
∑

C(1,...,n−1)

Atree
n (1, . . . , n) = 0

• Atree
n is gauge invariant

In a similar fashion, it is also possible to represent an n-point amplitude An with
m qq̄ pairs as a sum of products of color factors Tn and partial amplitudes An, but
now the color decomposition is a little bit more involved. Since for each quark-gluon
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vertex one gets an additional color factor T j̄
i , now the total color factor splits up to a

product of m strings of color matrices T a. For just one qq̄ pair the tree amplitudes can
be reduced to

Atree
n ({ki, λi, ai}) = gn−2

∑

σ∈Sn−2

(T aσ(3) · · ·T aσ(n)) j̄1
i2

Atree
n (1λ1

q̄ , 2λ2
q , σ(3λ3), . . . , σ(nλn))

(2.39)
where 1q̄ and 2q denote the antiquark and the quark, respectively. The general decom-
position with an arbitrary number of qq̄ pairs can be found in [10].

2.3 Higgs couplings to fermions

The standard model is, as already mentioned, a gauge theory of local

SU(3) × SU(2)L × U(1)Y (2.40)

gauge invariance. The SU(3) is responsible for the strong interaction, while SU(2)L ×
U(1)Y generate the electroweak sector. The corresponding Lagrangian can be split into
three individual parts

Lclassic = Lfermion + Lgauge + LHiggs (2.41)

The Higgs field is needed to break SU(2)L×U(1)Y → U(1)em, by which the weak gauge
bosons obtain their masses. In the following I will restrict to quark fields and consider
the creation of their masses in a gauge invariant way. The mechanism of electroweak
symmetry breaking will not be discussed. The interested reader is refered to [4, 6]. The
SM is a chiral theory: left-handed fields Ψ′

L(x) = 1
2
(1 − γ5)Ψ

′(x) are associated with
the fundamental representation of SU(2)L and arranged in isospin doublets, while the
right-handed fields Ψ′

R(x) = 1
2
(1+γ5)Ψ

′(x) are put into a one-dimensional trivial repre-
sentation of SU(2)L (the prime denotes that the fields are eigenstates of the electroweak
interaction). The fermion fields in 2.41 are massless, since an add-hoc introduction of
a mass term would give

−mq q̄q = −mq q̄

(
1

2
(1 − γ5) +

1

2
(1 + γ5)

)

q = −mq (q̄RqL + q̄LqR) (2.42)

which is manifestly non-invariant under SU(2)L transformations, since qL and qR live
in different representations (qL is part of the doublet while qR is of the singlet). The
same Higgs field used to break electroweak symmetry can be used to generate masses
of the fermions in a gauge invariant way. The Higgs part of the Lagrangian in (2.41)
(without leptons) is

LHiggs = (DµΦ)† (DµΦ) − V (Φ)

−
∑

i,j

((
ū′iL

d̄′iL

)

Y u
ijΦ

cu′R
j +

(
ū′iL

d̄′iL

)

Y d
ijΦd′R

j + h.c.

)

(2.43)

where Y f denote Yukawa coupling matrices. After expanding the Higgs field around
its vacuum expectation value, short VEV, the fermions gain masses due to the Yukawa
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coupling to the VEV, and as a “by-product” of the Higgs mechanism the fermions also
couple to the remaining physical degree of freedom of the Higgs field – the Higgs boson.
The coupling strength of the Higgs boson is proportional to the fermion mass divided
by the VEV v of the Higgs field. The Feynman rules for the Higgs fermion vertex can
be found in Appendix A.
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Chapter 3

MHV amplitudes

In the late 1980’s S. J. Parke and T. R. Taylor conjectured, that the amplitudes for
scattering an arbitrary number of gluons to lowest order in the coupling constant,
are given by very compact analytic expressions for specific helicity configurations of
the gluons [7]. The scattering amplitudes of n ingoing gluons where all or all but
one have the same helicity vanish at tree level (for n > 3). The first non vanishing
amplitudes, called maximally helicity violating amplitudes or short MHV-amplitudes,
give the scattering amplitudes of n incoming gluons where all but two gluons have the
same helicity. Written in terms of spinor inner products, the color-ordered (or partial)
amplitudes are given by

Atree
n (1+, . . . , j−, . . . , k−, . . . , n+) = i

(√
2
)n 〈jk〉4

〈12〉〈23〉 · · · 〈n − 1, n〉〈n1〉 (3.1)

Atree
n (1−, . . . , j+, . . . , k+, . . . , n−) = i

(√
2
)n [jk]4

[12][23] · · · [n − 1, 1][n1]
(3.2)

where j and k denote the gluons with negative or positive helicity respectively1. The
validity of this expression was rigorously proven to be correct by Berends and Giele
using their recursion relation for off shell currents [8]. The definition of the spinors 〈i|
and |j〉 are given in Appendix D and follows the notation of [9]. One can obtain the
amplitude for n1 incoming gluons and n2 outgoing gluons (with n1+n2 = n) by crossing
symmetry, that is replace pµ → −pµ and reverse the helicity of the crossed gluon.

As a comment to this amplitude, notice that it is possible to extend the MHV
amplitudes to amplitudes containing one or two massless quark anti-quark pairs. Since
the color information has been stripped off, massless fermions in the theory might as
well be gluinos. Therefore one can use supersymmetric Ward identities, to construct
MHV amplitudes with quark anti-quark pairs out of (3.1). For details the interested
reader is referred to [9].

1For n = 3 the amplitude vanishes if all helicities are the same. For any other helicity configuration,
the amplitude is also given by (3.1) and (3.2), respectively

13
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3.1 MHV vertices in QCD – The CSW approach

Witten observed that perturbative scattering amplitudes in Yang-Mills theory have un-
expected properties, such as holomorphy of the maximally helicity violating amplitudes
[11]. This allows to transform these amplitudes from momentum space to twistor space.

Inspired by the twistor transformation of MHV amplitudes, Cachazo, Svrcek and
Witten found a novel diagrammatic expression for calculating scattering amplitudes in
Yang-Mills theory, which can be used as an alternative to the usual Feynman diagram-
matic approach [12]. They show, that it is possible to continue the MHV amplitudes
off-shell and use them as vertices in tree diagrams to generate non MHV amplitudes.
For the definition of the MHV vertices a different representation for the spinors than
the one given in the appendix is useful:
First recall that the Lie algebra of the complexified Lorentz group in four dimensions
is isomorphic to SU(2)× SU(2). Therefore one can classify the representations as (p,q)
with p,q integers or half integers. Define now

• λa, a = 1, 2 as a left handed spinor transforming as (1
2
, 0)

• λ̃ȧ, ȧ = 1, 2 as a right handed spinor transforming as (0, 1
2
)

The vector representation of the SO(1,3) is the (1
2
, 1

2
) representation. Therefore every

four vector pµ can be represented as a “bi-spinor” paȧ. The mapping can be made
explicit with help of the generalized Pauli matrices σµ = (1, ~σ):

pµ → paȧ = σµ
aȧpµ (3.3)

paȧ = λaλ̃ȧ + µaµ̃ȧ (3.4)

where in the last line it was made use of the fact that any 2 × 2 matrix has at most
rank two and hence can be written with the help of some spinors λ, µ and λ̃, µ̃. If pµ is
a null vector (pµp

µ = 0) we can write

paȧ = λaλ̃ȧ (3.5)

since pµpµ = det(paȧ) and hence the rank of the matrix is less than two. With this
definition of the spinors, one can define the Lorentz invariant quantities

〈λ1, λ2〉 ≡ ǫabλ
a
1λ

b
2 (3.6)

[λ̃1, λ̃2] ≡ ǫȧḃλ̃
ȧ
1λ̃

ḃ
2 (3.7)

The amplitude (3.1) is made out of left handed spinor product, where each gluon is
on-shell and hence paȧ = λaλ̃ȧ. But since one wants to continue the amplitudes off-shell
a suitable definition for the spinor λa – where pµ is not on-shell – is needed. This can be
constructed by the following way: As long as paȧ is lightlike, we can pick up an arbitrary
negative helicity spinor ηȧ to get the left handed part of paȧ by contracting it with ηȧ:
λa = paȧη

ȧ/[λ̃, η]. The factor 1/[λ̃, η] is not relevant, since the tree amplitudes that will
be computed are invariant under rescaling of the λ’s for all the off-shell, internal lines.
Inspired by this property, one can now define the off-shell continuation. Just pick an
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arbitrary right handed spinor ηȧ and define λa for an internal line carrying momentum
paȧ by

λa = paȧη
ȧ (3.8)

It is important to use the same η for all the off-shell lines in all diagrams contributing
to a given amplitude! The propagator of the off-shell gluon which carries momentum q
is chosen to be 1/q2.

−

+ −
+

+

−

+

+ + −

−

−

Figure 3.1: Example for an amplitude made out of MHV vertices.
3 MHV vertices are connected by 2 propagators

Figure 3.1 shows an example for a tree amplitude made out of MHV vertices. Remember
that the MHV amplitude is defined for n incoming gluons, and each gluon has a definite
helicity. This is for both, on-shell and off-shell gluons. If a gluon is considered to
be outgoing it’s helicity has to be reversed. Therefore the two ends of a propagator
must have opposite helicity, since if for example one end of a propagator has incoming
momenta q and positive helicity, the other end has incoming momenta −q and negative
helicity.
One can count the number v of vertices needed to get a non MHV amplitude: Consider
an amplitude with a total of n gluons where m gluons have negative helicity. The
total number of negative helicity gluons emerging from the vertices is 2v, the number
of propagators is v − 1. Each propagator connects exactly one negative helicity end
with a positive one. Therefore the number of external negative helicity gluons m equals
2v − (v − 1). Hence one gets v = m − 1. The rules for constructing a non MHV
amplitude with n gluons whereof m have negative helicity are:

• sum over all topologically different diagrams with v = m − 1 vertices and n
outgoing gluons

• label the outer gluons e.g clockwise and sum over cyclic permutation of the gluons

• imply momentum conservation at each vertex

• choose one reference spinor for all vertices to get the off-shell spinors as defined
above

• the analytic expression for each diagram is given by the product of the MHV
vertices times the scalar propagators 1/q2
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An explicit example for calculating a non MHV amplitude out of MHV-vertices will be
given in section 3.3. Since pure gluonic MHV amplitudes can be extended by the use
of supersymmetric Ward identities to MHV amplitudes containing one or two quark-
antiquark pairs, it would not be surprising if there also exists a formalism, which extends
the CSW formalism to amplitudes containing massless quarks. Indeed Georgiou and
Khoze extended the number of MHV vertices by ones containing one or two qq̄ pairs
[14]. They showed that with this set of MHV vertices it is possible to calculate partial
amplitudes in the same way as described above.

3.2 MHV amplitudes with a scalar

It is now of great phenomenological interest to extend this method to processes involv-
ing a massive Higgs boson. Dixon, Glover, and Khoze found a way how to generate
MHV vertices containing a Higgs [13]. In the following the basic features will be sum-
marized. Since in the Standard Model the gluon-Higgs coupling is dominated via a
top loop, it seems to be a promising approach to integrate out the heavy top quark
and consider the effective gluon-Higgs coupling via the dimension-5 operator propor-
tional to HTrGµνG

µν .2 For this effective coupling one gets for the Higgs plus n gluon
(color-ordered) amplitudes, where all gluons have positive helicity:

An(H, 1+, 2+, . . . , n+) ∝ m4
H

〈12〉〈23〉 · · · 〈n − 1, n〉〈n1〉 (3.9)

where mH is the mass of the Higgs boson.3 Now the first attempt would be to generate
the Higgs plus three gluon amplitude A3(H, 1−, 2+, 3+) from an off shell continuation
of the Higgs plus two gluon amplitude above combined with the pure QCD MHV
vertex A3(−,−, +). This attempt failed, the resulting amplitude is not independent
of the reference momenta used to define the off-shell gluon. But this is not really
surprising since the numerator of (3.9) can be written as a sum of the gluon momenta
(Σ1≤i≤nqi)

2 = (Σ1≤i<j≤n〈ij〉[ji])2, and hence (3.9) contains also anti-holomorphic spinor
products [ji].
This problem can be solved in the following way. The MHV twistor-space structure
of the Higgs plus gluon amplitudes is best apparent by splitting the Higgs coupling to
gluons into two terms, containing purely selfdual (SD) and purely antiselfdual (ASD)
gluon field strength,

Gµν
SD =

1

2
(Gµν + ∗Gµν), Gµν

ASD =
1

2
(Gµν − ∗Gµν), ∗Gµν ≡ i

2
ǫµνρσGρσ (3.10)

By considering the Higgs field H as the real part of a complex field φ = 1
2
(H + iA) one

can make this division explicit:

Lint
H,A =

C

2

[

HTrGµνG
µν + iATrGµν

∗Gµν
]

(3.11)

= C
[
φTrGSD µνG

µν
SD + φ†TrGASD µνG

µν
ASD

]
(3.12)

2Details to the effective Higgs gluon coupling are postponed to Chapter 4.
3Proven in [13], Appendix B.
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with the normalization constant C = αs/6πv. The tree level Higgs-gluon amplitudes
can be decomposed into color-ordered partial amplitudes, similar to the QCD case:

A (H, {ki, λi, ai}) = iCgn−2(
√

2)n
∑

σ∈Sn/Zn

Tr (T aσ(1) · · ·T aσ(n)) An(H, σ(1λ1 . . . nλn))

(3.13)
with Tr(T aT b) = 1

2
δab. The basic idea is now, that due to selfduality the amplitudes

for φ and φ† in each case have a simpler structure. And since H = φ + φ† the Higgs
amplitude can be recovered as the sum of the φ and φ† amplitudes. As a by-product
one also obtains the amplitude for a pseudoscalar Higgs A as the difference of the φ
and φ† amplitudes: A = 1

i
(φ − φ†), since the effective coupling in the mtop → ∞ limit

of a pseudoscalar Higgs to gluons is proportional to ATrGµν
∗Gµν . Using Berends-Giele

recursion relations and off-shell currents, one can prove that, as in the QCD case, the
helicity amplitudes for φ and n gluons of positive helicity vanish, as do the amplitudes
where n − 1 gluons have positive helicity:

An(φ, 1±, 2+, . . . , n+) = 0 (3.14)

The first non vanishing φ amplitudes, which are the φ-MHV amplitudes, are those with
exactly two negative helicity gluons and an arbitrary number of positive helicity gluons.
The first known φ-MHV amplitudes have the same structure as the QCD amplitudes,
the only difference is that now the sum of the gluon momenta equals the momenta
of the Higgs boson, whereas in pure QCD the sum equals zero. The color stripped
amplitudes are:

A2(φ, 1−, 2−) =
〈12〉4

〈12〉〈21〉 = −〈12〉2 (3.15)

A3(φ, 1−, 2−, 3+) =
〈12〉4

〈12〉〈23〉〈31〉 =
〈12〉3

〈23〉〈31〉 (3.16)

A4(φ, 1−, 2−, 3+, 4+) =
〈12〉4

〈12〉〈23〉〈34〉〈41〉 (3.17)

This leads to the assertion for all φ-MHV amplitudes:

An(φ, 1+, . . . , j−, . . . , k−, . . . , n+) =
〈jk〉4

〈12〉〈23〉 · · · 〈n − 1, n〉〈n1〉 (3.18)

Comparing the structure of (3.18) with the pure QDC amplitude (3.1) one observes
that the amplitudes have identical form. Therfore one proposes that the off-shell con-
tinuation of the φ-MHV amplitudes is identical to the pure gluonic case: everywhere an
off-shell leg i with momentum ki appears, one constructs the corresponding holomor-
phic spinor by λi,a = (ki)aȧξ

ȧ. Again ξȧ is an arbitrary reference spinor, chosen to be
the same for all MHV diagrams contributing to a given amplitude. By combining now
the φ-MHV amplitudes with pure QCD MHV amplitudes one can construct non-MHV
amplitudes in the same way as in the CSW approach.
For the φ† field one has similar expressions. Here the amplitudes with n or n−1 gluons
of negative helicity vanish:

An(φ†, 1∓, 2−, . . . , n−) = 0 (3.19)
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The φ†-anti-MHV amplitudes are:

A2(φ
†, 1+, 2+) =

[12]4

[12][21]
= −[12]2 (3.20)

A3(φ
†, 1+, 2+, 3−) =

[12]4

[12][23][31]
=

[12]3

[23][31]
(3.21)

An(φ†, 1−, . . . , i+, . . . , j+, . . . , n−) =
[ij]4

[12][23] · · · [n − 1, n][n1]
(3.22)

They are called “anti-MHV” amplitudes, since the amplitude is made of anti-holomorphic
spinor products [ij]. One has to combine them with pure QCD anti-MHV amplitudes
to get non-MHV φ† amplitudes. One can also obtain these amplitudes by applying
parity to the φ amplitudes, that is computing with φ, reversing the helicity of every
gluon and exchanging 〈ij〉 ↔ [ij].
Of special interest here and in the following is the gg → ggH scattering amplitude.
The φ and φ† amplitudes contributing are depicted in table 3.1. The simplest helicity
configuration for this process is the −−++ case, since one only needs to add the MHV
amplitudes for φ and φ† whose analytic expressions are given by (3.18) and (3.22) for
n = 4. The other helicity configurations have only a contribution of either the φ or
the φ† amplitude. However, calculating them requires more effort, since for the next
to MHV amplitude (the φ amplitude with three negative helicity gluons or the φ† am-
plitude with three positive helicity gluons respectively, short NMHV amplitude) one
has two topological distinct diagrams contributing to the amplitude shown in figure
3.2. These amplitudes are made out of one φ-MHV vertex and one QCD MHV-vertex.
Further one has to sum over the 4 cyclic permutations of the gluons giving a total of
7 terms (the 2. diagram in figure 3.2 with the tree negative helicity gluons on the left
hand vertex does not contribute, since this is not a MHV vertex).

g−2

g−3

g−1

Φ

g+
4

g−2

g−3

g+
4

g−1

Φ

Figure 3.2: The two topological distinct diagrams contributing to the φ-NMHV ampli-
tude. The gi’s are the gluons carrying negative and positive helicities respectively. To
obtain the full amplitude one has to sum over the cyclic permutations of the gluons.

It becomes worse for the NNMHV amplitude (next-to-next-to MHV), since there are 3
topological different diagrams made out of 3 MHV vertices, one φ-MHV vertex and two
QCD MHV-vertices, leading to 10 contributions to be summed over (see figure 3.3).
However, the most involved φ and φ† amplitudes can also be expressed by analytic
expressions, as one can see from (3.9), where all gluons carry positive helicity. Since for
this helicity configuration, the φ amplitude vanishes, it is equivalent to the φ† amplitude!
Similarly the “all minus” φ amplitude is given by the same expression but right handed
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helicities + + ++ + + +− + + −− + −−− −−−−
φ – – MHV NMHV NNMHV
φ† NNMHV NMHV MHV – –

Table 3.1: helicity amplitudes contributing to the ggggH → 0 process. The gg → ggH
process can be obtained by crossing

spinors exchanged by left handed ones. Remember that since this amplitude is not
holomorphic in λa nor in λȧ it is not feasible to use them as MHV-vertices.

Again it is possible to extend the MHV rules to MHV rules containing one ore two
qq̄ pairs by embedding the theory into a supersymmetric theory [15]. As in the pure
gluonic case, one can construct φ-MHV vertices containing qq̄ pairs. By combining them
with QCD MHV vertices – the ones with and without quarks – one can now compute
non φ-MHV amplitudes containing quarks by the same scalar graph approach.

One can now anticipate, that the method for constructing MHV amplitudes for
effective theories generalizes to other effective theories in QCD. Consider an interaction
that can be described by higher dimensional operators in the effective action. The
idea for constructing MHV rules for this effective action, is to split the field strength
into a selfdual and an antiselfdual part. The interaction amplitude should then be
given by purely holomorphic expressions and purely antiholomorphic ones respectively.
There is another example for an effective theory, this time described by the dimension-6
operator Tr(G ν

µ G ρ
ν G µ

ρ ) [13]. The authors sketch that MHV vertices for this theory can
be constructed in the same way as it was explained above. In Chapter 6 this method
will be used to construct MHV amplitudes for certain dimension-7 operators. These
new amplitudes will be used as MHV-vertices as well.

g−3

g−4

g−1

Φ

g−2 g−2

g−3

g−1

Φ
g−4

g−3

g−4

g−2

g−3φ

Figure 3.3: The tree topological distinct diagrams contributing to the φ NNMHV am-
plitude. To obtain the full amplitude one has to sum over the cyclic permutations of the
gluons.

3.3 MHV-φ amplitudes in a parton level

Monte Carlo simulation

Let’s now turn to the process pp → Hjj. If one wants to calculate differential cross
sections one has to consider the tree subprocesses qq → qqH , qg → qgH and gg → ggH .
This process is included to leading order in the parton level Monte Carlo program
VBFNLO [16]. In the SM the dominant production mode for this process is the one
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Figure 3.4: Diagrams relevant for Higgs production via gluon fusion

where the Higgs boson couples to gluons via a top loop. Therefore the LO calculation
already includes one loop diagrams, containing three, four and five point functions
depicted in figure 3.4.
In the large top mass approximation, however, the calculation simplifies enormously,

since each loop can be replaced by an effective Higgs gluon coupling. This has two
advantages: first, one does not have to deal with numerical instabilities arising from
vanishing Gram determinants and second, the calculation is far faster than the full loop
calculation. But even then, the calculation of (differential) cross sections in the large
top mass limit can take a long time, since if one wants small theoretical errors, one has
to calculate the amplitude for many phase space points (∝ 107 − 108PSP ). For this
reason, the time spent in calculating an amplitude is an important issue of a Monte
Carlo program. And since for the large top mass approximation there is the scalar
graph approach described above for calculating scattering amplitudes, it is interesting
to compare the time needed for calculating the cross section for pp → Hjj – once
calculated by using Feynman diagrams and once by using MHV techniques.

To make a real comparison of the time needed for calculating the amplitudes, in
both cases the Monte Carlo program VBFNLO was used with an additional switch,
allowing one to choose in which way the amplitudes should be calculated.

Implementing the φ-MHV amplitudes into VBFNLO

First of all study the process gg → ggH . For this process five different helicity con-
figurations appear, as shown in in table 3.1. The amplitudes are calculated in the
subroutine HiggsGG, the code is embedded into the file gf higgsME.f. The simplest
helicity configuration is the one with two positive and two negative helicity gluons,
since then both, the φ and the φ† amplitudes are MHV amplitudes, given by (3.18)
and (3.22) for n = 4. The analytic expression for the left handed spinor λa and right
handed spinor λ̃ȧ corresponding to the gluon with momentum p can be obtained in the
following way:

(σµ)aȧ pµ = λaλ̃ȧ

−
(

p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)

aȧ

= λaλ̃ȧ

⇒ λa =







(√
p0 + p3
p1+ip2√
p0+p3

)

for p0 6= −p3

(
0√
2p0

)

for p0 = −p3

(3.23)

λ̃ȧ = − λ†
a (3.24)
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with (σµ)aȧ = (−1, ~σ). The last minus sign can be dropped, since calculating scatter-
ing amplitudes involve always an even number of spinors. If the considered gluon is
outgoing the helicity has to be reversed and pi → −pi. The calculation of the next-to-
maximally helicity violating amplitudes, that is the φ amplitude with three negative
and one positive helicity (ingoing) gluons and the φ† amplitude with three positive he-
licity and one negative helicity gluons respectively, is more involved, since now one has
to connect two MHV amplitudes with a scalar propagator. For the φ amplitude one
has to sum over a total of seven diagrams, which are essentially made out of two types
of diagrams and the cyclic permutations of their external gluon legs. The two types of
diagrams and the corresponding analytic expressions are:

ξ+ ξ−

3−

4−

Φ

2−

1+

=
〈34〉4

〈34〉〈4ξ〉〈ξ3〉
1

q2
12

〈2ξ〉4
〈12〉〈2ξ〉〈ξ1〉 (3.25)

ξ− ξ+

4−

φ

3−

2−

1+

=
〈4ξ〉4

〈4ξ〉〈ξ4〉
1

q2
13

〈23〉4
〈12〉〈23〉〈3ξ〉〈ξ1〉 (3.26)

where qij = (qi + qi+1 + . . . + qj) and ξ is given by

ξa ≡ (σµ)aȧ qµ η̃ȧ

= −
(

q0 + q3 q1 − iq2

q1 + iq2 q0 − q3

)

aȧ

η̃ȧ (3.27)

=

(
q0 + q3 + q1 − iq2

q1 + iq2 + q0 − q3

)

a

in the last line, for simplicity, the arbitrary spinor η̃ was chosen to be η̃ȧ = (−1,−1)T .
The right handed off-shell spinor is

ξȧ ≡ ηa (σµ)aȧ qµ (3.28)

where η can be chosen such that ξȧ = ξ†a. Remember that the diagram (3.26) with
all negative helicity gluons on the right hand side is absent, since the corresponding
vertex is not a MHV vertex. The full expression for the partial amplitude with gluons
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of helicity + −−− is then given by (with ξ carrying momenta qij)

A4(φ, g+
1 , g−

2 , g−
3 , g−

4 ) =
〈34〉4

〈34〉〈4ξ〉〈ξ3〉
1

q2
12

〈2ξ〉4
〈12〉〈2ξ〉〈ξ1〉 +

〈23〉4
〈23〉〈3ξ〉〈ξ2〉

1

q2
41

〈4ξ〉4
〈41〉〈1ξ〉〈ξ4〉

+
〈4ξ〉4

〈41〉〈1ξ〉〈ξ4〉
1

q2
23

〈23〉4
〈23〉〈3ξ〉〈ξ2〉 +

〈2ξ〉4
〈12〉〈2ξ〉〈ξ1〉

1

q2
34

〈34〉4
〈34〉〈4ξ〉〈ξ3〉

+
〈4ξ〉4

〈4ξ〉〈ξ4〉
1

q2
13

〈23〉4
〈12〉〈23〉〈3ξ〉〈ξ1〉 +

〈3ξ〉4
〈3ξ〉〈ξ3〉

1

q2
42

〈42〉4
〈41〉〈12〉〈2ξ〉〈ξ4〉

+
〈2ξ〉4

〈2ξ〉〈ξ2〉
1

q2
31

〈34〉4
〈34〉〈41〉〈1ξ〉〈ξ3〉

This expression can for sure be simplified, what should be done before implementing
it into a program. This lengthy form is intentional, so that the several parts can be
reconstructed.
To get the NMHV-φ† amplitude one either calculates the amplitudes in the same manner
as for φ, just switching the helicities and replacing 〈·, ·〉 ↔ [·, ·], or simpler, one just
takes the complex conjugate of the φ-MHV amplitude with reversed helicities. This is
possible, since one can always choose λ̃ȧ to be the complex conjugate of λa as mentioned
above.
Now, the only missing helicity configurations are the ones with all gluons carrying
either positive or negative helicities. Calculating them by connecting MHV vertices
would require 10 independent diagrams containing two propagators. Fortunately for
this helicity configuration one can use the compact expression given in (3.9):

A4(φ, g−
1 , g−

2 , g−
3 , g−

4 ) =
m4

H

[12][23][34][41]

Finally, since all partial amplitudes for φ and φ† are available, one can reconstruct the
partial amplitudes for the Higgs H and the pseudoscalar Higgs A. Because H = φ +φ†

the Higgs amplitude can be recovered as the sum of the φ and φ† amplitudes. The
amplitude for the pseudoscalar Higgs is i times the difference of the φ and φ† amplitudes
A = i(φ−φ†).4 To obtain the full amplitude one has to multiply the partial amplitudes
with the corresponding color factor and sum over all non-cyclic permutations as shown
in (3.13). The color factors are the same as the ones for the amplitudes calculated in
VBFNLO. Define

c1 ≡ Tr(T a1T a2T a3T a4) + Tr(T a4T a3T a2T a1)

c2 ≡ Tr(T a1T a3T a4T a2) + Tr(T a2T a4T a3T a1) (3.29)

c3 ≡ Tr(T a1T a4T a2T a3) + Tr(T a3T a2T a4T a1)

4one has to consider an additional minus sign, since iATrGµν
∗Gµν = − 1

2
AǫµνρσGµνGρσ.
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With this definition, the full amplitude and the color summed amplitude square are
given by

A = iCg2(
√

2)4

︸ ︷︷ ︸

i2α2
s

rv

3∑

i=1

ciA
i
4

⇒
∑

col

|A|2 =
4α4

s

r2v2

(

C1

3∑

i=1

∣
∣Ai

4

∣
∣
2
+ C2

3∑

i,j=1;i6=j

Ai
4A

j∗
4

)

with r = 3 for a CP-even, r = 2 for a CP-odd Higgs and

C1 ≡
∑

col

cici =
(N2 − 1)(N4 − 2N2 + 6)

8N2
=

23

3
(no summation over i)

C2 ≡
∑

col

cicj = −(N2 − 1)(N2 − 3)

4N2
= −4

3
i 6= j

If one wants to implement MHV amplitudes for the subprocesses qg → qgH or qq →
qqH one needs additional MHV vertices containing one ore two quark-antiquark pairs.
The expressions for the MHV amplitudes with qq̄ pairs is strongly related to purely
gluonic MHV amplitudes by supersymmetric Ward identities. The analytic expression
for the MHV amplitudes and how to use them as vertices to obtain non-MHV ampli-
tudes with qq̄ pairs is described in detail in [14, 15]. Going into detail would not bring
further insight. One should just notice, that since all particles are ingoing, the helicity
of the quark is opposite to the antiquark. Therefore the qg → qgH amplitude only
contains MHV and NMHV amplitudes, and more pleasant, for the qQ → qQH scat-
tering only MHV amplitudes appear, making the calculation extremely simple. When
implementing the amplitudes into a program, one again has to be very careful with the
conventions chosen. In this case, when implementing them into an existing program
like VBFNLO one can just attach the amplitudes loosely, fixing missing constants and
phases by comparing with the already existing amplitudes calculated by the program
using Feynman diagrams.

Having both types of amplitudes in the same Monte Carlo program, one can now
test the speed-up. To get the real amount of time spent, the program was compiled
using gprof which is a GNU profiler. This allows one to see where the program spent
its’ time and which functions called which other functions while it was executing. The
program was run on a “Intel(R) Pentium(R) 4 CPU 3.00GHz” machine with 1GB RAM
and SUSE 10.0 as operating system. In all three cases a set of minimal cuts was applied:

pT,min ≥ 20, ηmax ≤ 5, Rjj ≥ 0.6 (3.30)

In the following the time spent for the three different subprocesses gg → ggH , gq →
gqH and qq → qqH will be compared. Additionally it is distinguished whether the
Higgs is CP-even, CP-odd or a linear combination of both.
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gg → ggH – MHV amplitudes vs. Feynman diagrams:

The tables are organized in the following way: First of all, they give the total cross
section, which is a kind of check that indeed both ways of calculating the amplitudes
give the same result and are programmed without errors. Second it lists the total
amount of time spent for running the program. The next number gives the time spent
in the subroutine which is responsible for calculating the matrix elements, followed by
the number of times this subroutine was called. The last line finally gives the average
amount of time needed to calculate the matrix element for one single call. The calcu-
lation was performed for 224 phase space points.

CP-even Higgs Feynman diagrams MHV

σtot 2075.97 ± 1.43 fb 2075.97 ± 1.43 fb

total time 1590.99 sec 1053.5 sec

time spent in HiggsGG 809.35 sec 290.39 sec

# of HiggsGG calls 12966121 12966121

HiggsGG time
calls

6.24 · 10−5 sec
calls

2.24 · 10−5 sec
calls

One can see that the calculation of the amplitudes for a CP-even Higgs with MHV
techniques is 2.79 times faster than the calculation with Feynman diagrams.

CP-odd Higgs Feynman diagrams MHV

σtot 4618.11 ± 3.16 fb 4618.11 ± 3.16 fb

total time 1528.92 sec 1068.5 sec

time spent in HiggsGG 749.95 sec 304.08 sec

# of HiggsGG calls 12973963 12973963

HiggsGG time
calls

5.78 · 10−5 sec
calls

2.34 · 10−5 sec
calls

For the CP-odd Higgs the calculation with MHV diagrams is 2.47 times faster. The
time needed for the MHV approach is almost like in the CP-even case, but calculating
with Feynman diagrams is faster in the CP-odd case, because of the simpler tensor
structure of the vertices.

CP-even + CP-odd Higgs Feynman diagrams MHV

σtot 6694.77 ± 4.62 fb 6694.77 ± 4.62 fb

total time 2820.47 sec 1123.36 sec

time spent in HiggsGG 2019.92 sec 327.35 sec

# of HiggsGG calls 12981120 12981120

HiggsGG time
calls

15.56 · 10−5 sec
calls

2.52 · 10−5 sec
calls



25

The calculation for the Higgs with CP-even and CP-odd coupling with MHV amplitudes
is 6.17 times faster than calculating using Feynman diagrams. The main reason for this
is that when calculating the amplitude for a given helicity configuration with MHV
techniques, one always has to calculate the φ and φ† amplitudes which are just linear
combinations of the H and A amplitudes. Therefore in this case one has to perform
only one calculation, compared to calculating using Feynman diagrams, where one has
to compute the CP-even and CP-odd case separately.

qg → qgH – MHV amplitudes vs. Feynman diagrams:

For this subprocess the calculation was performed for 222 phase space points. The
calculation with MHV techniques is hardly faster than VBFNLO. Only for a Higgs
which has CP-even and CP-odd coupling, the MHV approach is considerably faster
(almost a factor 2) for the same reasons as for the ggH case. The following list shows
the average time needed to calculate the matrix element for one single call:

process Feynman diagrams MHV

CP-even Higgs 3.82 · 10−5 sec
calls

3.45 · 10−5 sec
calls

CP-odd Higgs 3.75 · 10−5 sec
calls

3.28 · 10−5 sec
calls

CP-even + CP-odd Higgs 5.65 · 10−5 sec
calls

3.30 · 10−5 sec
calls

qq → qqH – MHV amplitudes vs. Feynman diagrams:

The results for this subprocess are comparable to the ones for the qgH scattering.
Again only for a Higgs with CP-even and CP-odd character the calculation with MHV
amplitudes is really faster:

process Feynman diagrams MHV

CP-even Higgs 5.90 · 10−6 sec
calls

4.74 · 10−6 sec
calls

CP-odd Higgs 5.81 · 10−6 sec
calls

4.74 · 10−6 sec
calls

CP-even + CP-odd Higgs 7.60 · 10−6 sec
calls

5.38 · 10−6 sec
calls

Altogether one can say, that only for the gg → ggH scattering the calculation
with MHV vertices is considerably faster than calculating with Feynman diagrams.
The main reason for this is, that for the process involving only gluons, there are many
more Feynman diagrams to be considered compared to the processes containing quarks,
which makes the calculation longer. From the MHV point of view, naively this process
is easiest to calculate, since one has only two types of MHV vertices to combine: one
with gluons and a φ field and one containing only gluons, whereas as soon as quarks
appear, there are four different MHV vertices which have to be taken into account:
the two vertices above and the ones containing a quark antiquark pair. On the other
hand, the quark anti-quark pair puts additional constraints on the helicity configuration
that may appear (helicity(q) = −helicity(q̄)), whereby the helicity configurations that
are most complicated to calculate are absent (e.g. for the qqH scattering only MHV
amplitudes are present). One may now wonder why the ggH process is faster then
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the qgH process. The answer is due to the fact that first of all, the usual complicated
NNMHV ggH amplitudes are calculated by using the compact expression (3.9) and
second, the qgH scattering consists of four subprocesses one has to sum over, depending
on the initial and final state partons.
The benefit of using MHV vertices may become even more apparent when more partons
are present, such as gg → gggH appearing e.g. in the next-to leading order calculation
for the process examined here.

3.4 Helicity contributions to dσ/d∆Φjj

It is possible to distinguish the tensor structure of the effective Hgg coupling experi-
mentally. This is best done by looking at the distribution dσ/d∆Φjj , since ∆Φjj is a
parity odd variable [18]. ∆Φjj is defined as the azimuthal angle of the away jet minus
the azimuthal angle of the towards jet – when looking into one particular beam direc-
tion. The value of ∆Φjj does not change when looking into the opposite beam direction.
For the following discussion, an additional cut on the minimal pseudorapidity between
the two jets, ηjj = |ηj1 −ηj2 |, was performed, since then the difference between CP-even
and CP-odd coupling becomes more apparent:

pT,min ≥ 20, ηmax ≤ 5, Rjj ≥ 0.6, ηjj > 3 (3.31)

In figure 3.5 one can see the differential cross section for ∆Φjj for a CP-even and a CP-
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Figure 3.5: Differential cross sec-
tion of ∆Φjj for gg → ggH/A.
Red curve: CP-even Higgs. Green
curve: CP-odd Higgs. The differ-
ential cross section of the CP-odd
Higgs was scaled by a factor 0.5

odd Higgs. It takes just the subprocess gg → ggH into account. The CP-even Higgs
distribution has its maxima at ∆Φjj = 0, while the CP-odd Higgs takes its minima.
The distribution for a Higgs which is a linear combination of both would also give such
a characteristic oscillation, with the minima and maxima respectively shifted away from
zero. One may wonder if some specific helicity configurations are responsible for the
oscillation while other perform the offset. For this process there are 16 possible helicity
configurations, which can be divided into five classes, with each helicity configuration
of a class giving exactly the same contribution to the total cross section:
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(1) All helicities (initial and final state) are the same, e.g. −− → −− (2×)
x ≈ 57% of σtotx

(2) Initial and final state helicities respectively are different, e.g. −+ → +− (4×)
x ≈ 32% of σtotx

(3) Initial state helicities are the same, final state differ, e.g. −− → −+ (4×)
x ≈ 6% of σtotx

(4) Initial state helicities differ, final state are the same, e.g. +− → −− (4×)
x ≈ 5% of σtotx

(5) The two initial and final state helicities are the same, but the sign of initial and
final state differs, e.g. −− → ++ (2×)
x ≈ 0% of σtotx

The helicity configurations that belong to (1) and (2) are those that lead to the MHV
amplitudes for φ and φ† (remember that MHV amplitudes are defined for all particles
incoming). They are responsible for the main part of the total cross section, together
they contribute about 90%. (3) − (5) yield zero in pure QCD but are present here
because of the scalar, see (3.1) and (3.18). (3) and (4) are the NMHV amplitudes for φ
and φ† while (5) is the NNMHV amplitude. One may suspect that the large invariant
mass

√
s of the incoming partons is responsible for the suppression of the NMHV and

NNMHV amplitudes. This can be motivated by comparing the analytic expression for
the partial amplitudes of (1) and (5):

〈ij〉4
〈12〉〈23〉〈34〉〈41〉 ↔

m4
H

[12][23][34][41]
(3.32)

Having a look at (3.23) one can see, that the spinor products are of the magnitude of
the energy of the partons 〈ij〉 ∝ TeV while mH ∝ 0.1TeV , thus (5) gets suppressed by
a factor ∝ 10−4.
Figure 3.6 shows the contributions to dσ/∆Φjj of the different helicity configurations
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Figure 3.6: Differential cross
section of ∆Φjj for gg → ggH .
The different helicity configu-
rations are shown separately:
Red: Type (1) : −− → −−.
Green: Type (2) : −+ → +−.
Purple: Type (3) : −− → −+.
Blue: Type (4) : +− → −−.
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(1) to (5). Only the helicity configurations (1) and (2) have the oscillating behavior,
while (3), (4), and (5) do not oscillate (since the cross section of (5) is so small it’s
not shown, but it would not show an oscillating behavior at all). The amplitudes of
(3), (4) and (5) for H are equivalent to the amplitudes for φ and φ† respectively, while
the amplitudes for (1) and (2) are given by the sum and difference of φ and φ†. One
should notice that the complex combinations of H and A that form φ and φ† show no
oscillation – for any helicity configuration (see figure 3.7). Thus the result that one has
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Figure 3.7: Differential cross

section for φ and φ† of ∆Φjj for
gg → ggH . No oscillation occurs.

obtained for a CP-even Higgs also holds for a CP-odd Higgs or a linear combination of
both (with real coefficients): The only amplitudes that oscillate in ∆Φjj are the ones
that are given by a linear combination of φ and φ† – and are therefore (at least in the
four gluon case) the MHV amplitudes.

A similar behavior occurs in case of the quark gluon scattering, see figure 3.8. Here

 0

 1

 2

 3

 4

 5

 6

 7

-150 -100 -50  0  50  100  150

dσ
/d

∆Φ
jj 

[fb
]

∆Φjj

CP-even Higgs
CP-odd Higgs * 0.5

Figure 3.8: Differential cross
section of ∆Φjj for qg → qgH/A.
Red curve: CP-even Higgs. Green
curve: CP-odd Higgs. The differ-
ential cross section of the CP-odd
Higgs was scaled by a factor 0.5

it is reasonable to distinguish whether one ore two quarks are in the initial or final state.
The total cross section for qgH scattering with CP-even Higgs and the cuts (3.31) is
about 1.5pb. The following processes contribute to the total cross section:
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qg → qgH : This process contains one quark and one
gluon in the initial and final state, respectively. The
Higgs is produced via t-channel exchange of a gluon, as
shown on the left-hand side. It is the main process of
the qgH scattering, representing 99, 0% of σtot. Having
a look at the contributions for ∆Φjj for different helicity

configurations, one finds an analog behavior as for the ggH case: The corresponding
MHV amplitudes are the only ones that oscillate, whilst the NMHV amplitudes show
no oscillation at all, see figure 3.9. (The NNMHV amplitudes are not present in this
process due to the quark pair). The ∆Φjj distribution of the complex combination of
the CP-even and CP-odd amplitude, φ(†) = H ± 2/3iA, behave exactly like in the ggH
case, figure 3.7, viz. it does not oscillate. The only amplitudes that oscillate with ∆Φjj

are thus the ones which are given by a linear combination of the φ and φ† amplitudes
– just as for the ggH scattering.

gg → qq̄H : This process, in which two gluons annihi-
late in the initial state and a quark antiquark pair is
produced in the final state, is strongly suppressed since
it is a s-channel process, constituting only 0.9% to the
total cross section. It is interesting to notice, that in
this case one has no oscillation in the differential ∆Φjj

contribution of the cross section, figure 3.10 (left), nei-
ther for helicity configuration that lead to MHV amplitudes nor helicity configurations
leading to NMHV amplitudes.

qq̄ → ggH : This process is similar to the one above, but
now there is a quark antiquark pair annihilating in the
initial state and a gluon pair in the final state. Since
it is also a s-channel process it is strongly suppressed.
The importance of this process reduces further, when
the parton distribution function is taken into account,
since it is unlikely to find a quark antiquark pair of the

same flavor in the two protons. One is left with a contribution to the total cross section
of less than 0.1%. The ∆Φjj distribution is shown in figure 3.10 (right), which is like
the case above – with no oscillation for any helicity configuration.

The qq → qqH subprocess behaves in terms of the ∆Φjj distribution as one would
expect from the qgH and ggH subprocess. Since in this case one only has helicity
configurations that belong to MHV amplitudes (due to the two quark pairs), one finds
the characteristic oscillation for any helicity configuration. The oscillation for a CP-
even and CP-odd Higgs respectively is identical (up to scaling) to the qgH and ggH
case. Further the φ and φ† distribution is not oscillating, just as for the other subpro-
cesses. Three different channels contribute to the total cross section for qqH scattering.
One channel alone does not represent a physical amplitude due to interference terms,
nevertheless it might be worth looking at them separately. The total cross section cor-
responding to this process is σtot = 232.6 ± 0.1fb. The contribution due to t-channel
gluon exchange constitutes 88.3% of σtot, whilst the u-channel constitutes 11.8%. The
s-channel is strongly suppressed and makes only 0.3% of σtot. Since the sum of all three
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curve takes helicity configurations into account that lead to MHV amplitudes, while the
blue curve contains helicities leading to NMHV amplitudes.

channels leads to a cross section which is 100.3% of σtot, contributions due to inter-
ference effects have to be very small. Although not shown explicitly here, the ∆Φjj

distribution of the t-channel and the u-channel show the familiar oscillation, while the
distribution given by the s-channel is not oscillating at all. This is consistent with the
result for qgH scattering, since there as well one finds no oscillation for the s-channel
induced MHV amplitudes.



Chapter 4

Effective theory

The production of a Standard Model-like Higgs boson at the LHC is dominated by gluon
fusion. This process is actually known up to NNLO accuracy, and it is known that the
NLO as well the NNLO calculation give large corrections (KNNLO ≡ σNNLO/σLO ≈ 2),
and are needed to decrease the renormalization and factorization scale dependencies
[19, 20]. Also of phenomenological interest are scattering amplitudes like gg → ggH
or gg → gggH . The first appears at leading order as a background to production of a
Higgs boson via weak boson fusion, and therefore the latter is needed at next-to-leading
order. While the WBF process is currently known at next-to-leading order in αs the full
NLO calculation for Higgs plus two jets in gluon fusion is not available. However, the
NLO correction to this process was performed by Campbell, Ellis and Zanderighi [21]
in the large top mass approximation. In the following two sections the effective theory
will be examined, and checked on what terms it is valid. Furthermore we will have a
look at the corrections to the mtop → ∞ limit, described by an effective Lagrangian
which is ∝ O(1/m2

top) and contains operators of dimension 7.
To see that the large top mass limit is a good approximation, first look at the

H → gg decay, given by [24]

Γ(H → gg) =
α2

sg
2m3

H

128π3m2
W

∣
∣
∣
∣
∣

∑

i

τi [1 + (1 − τi)f(τi)]

∣
∣
∣
∣
∣

2

(4.1)

with

f(τ) =







[

sin−1
(√

1
τ

)]2

, if τ ≥ 1

−1
4

[

ln
(

η+

η−

)

− iπ
]2

, if τ < 1

(4.2)

where

τ = 4
m2

i

m2
H

, η± ≡
(
1 ±

√
1 − τ

)
(4.3)

and the sum over i goes over all quark flavors. The production cross section of a Higgs
boson at a hadron collider at leading order is proportional to the decay width [24, 25].
F (τ) ≡ τ [1 + (1 − τ)f(τ)] approaches 2/3 when τ → ∞. The evolution of F (τ) is

31
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Figure 4.1: The red curve shows the value of F (τ) which fastly approximates the value
2/3, displayed by the green curve.

shown in figure 4.1. One can see, that if the Higgs mass mH is smaller than the quark
mass mi one can approximate F (τ) with 2/3 making only a small error. If e.g. one has
a Higgs with mH = 120GeV and taking mtop = 175GeV one gets F (4mtop/mH) = 0.69
making an error of less than 3%. One may wonder, if the approximation is still valid
for the gluons being off-shell, like in the process qQ → qQH via gluon fusion. Later, it
will be shown, that in this case one has to perform additional cuts on the phase space
if one wants to keep the approximation valid.

The strategy to find the effective theory describing the (effective) Higgs gluon cou-
pling is the following: First of all, one has to calculate the amplitude of the process
involving a massive quark loop, in the limit that mHiggs ≪ mquark. The only standard
model particle that may satisfy this condition – consistent with the LEP precision data
– is the top quark. Therefore set mquark = mtop.

1 Second, one writes down all possible
operators with the dimension needed, that is, dimension five for the leading term in the
1/mt expansion, and dimension seven for term proportional to (1/mt)

2. Finally one
has to find a linear combination of these operators which leads to exactly the ampli-
tude calculated. This combination may not be unique, but different representations of
the effective Lagrangian are related by partial integration of the action. The effective
Lagrangian will be decomposed as

Leff = LD5 + LD7 ·
(

1

m2
t

)

+ LD9 ·
(

1

m2
t

)2

+ . . . (4.4)

where LD5 and LD7 are field combinations of dimension five and dimension seven, respec-
tively. In the following the analytic expressions for LD5 and LD7 will be derived, for a
SM like CP-even Higgs as well as for a CP-odd Higgs appearing e.g. in supersymmetric
extensions of the SM or in two Higgs doublet models (2HDM) [22, 23]. The Feynman
rules for a given effective Lagrangian were calculated with help of Mathematica [27]
using the package “Feyncalc” [28].

1For all other SM quarks one has mquark ≪ mHiggs. Since F (τ) → 0 for τ → 0 these contributions
are strongly suppressed and can be neglected.
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4.1 CP-even Higgs

The Higgs couples to two gluons via a triangle loop:

g1

g2

H

The calculation of the three point function can be found in Appendix B.1. If one
expands the Amplitude as

T µ1µ2 = T µ1µ2
D5

+ T µ1µ2
D7

·
(

1

m2
t

)

+ T µ1µ2
D9

·
(

1

m2
t

)2

+ . . . (4.5)

one gets

T µ1µ2
D5 = − iαs

3πv
δa1a2(gµ1µ2q1 · q2 − qµ2

1 qµ1
2 ) (4.6)

T µ1µ2
D7

=
iαs

180πv
δa1a2

[
(gµ1µ2q1 · q2 − qµ2

1 qµ1
2 )(−7q1 · q2 − 9q2

1 − 9q2
2) (4.7)

+gµ1µ2q2
1q

2
2 − q2

1q
µ1

2 qµ2

2 − q2
2q

µ1

1 qµ2

1 + (q1 · q2)q
µ1

1 qµ2

2

]

As we will see, one also needs the analytic expression of the four point function to define
(4.4). It is derived in Appendix B.2. The result expanded in powers of 1/m2

t is given
by

Bµ1µ2µ3 = Bµ1µ2µ3
D5

+ Bµ1µ2µ3
D7

·
(

1

m2
t

)

+ Bµ1µ2µ3
D9

·
(

1

m2
t

)2

+ . . . (4.8)

with the coefficients Bµ1µ2µ3
D5 and Bµ1µ2µ3

D7 given by (B.26) and (B.27) respectively.
To find the effective Lagrangian that leads to these vertices, one has to write down

all gauge- and Lorentz-invariant combinations of operators that may contribute to the
effective vertices and match coefficients. The effective Lagrangian that gives the D5 ver-
tices is simple to construct. It has to be a combination of one Higgs field (or derivatives
thereof) and gluon fields, together they must form an operator of dimension 5. There
is only one unique combination that is Lorentz and gauge invariant, and CP-even2:

LD5 ∝ HTr (GµνG
µν) (4.9)

with the gluonic field strength tensor Gµν = 1
g
Fµν from (2.22). The Hgg vertex corre-

sponding to (4.9) is (with the proportionality constant β):

〈0
∣
∣T

{

HAa1
µ1

Aa2
µ2

· i
∫

d4xLD5

}
∣
∣0〉
∣
∣
∣
amputated
connected

F.T.
= −iβ2δa1a2(gµ1µ2q1 · q2 − qµ2

1 qµ1

2 ) (4.10)

2The combination containing a dual field strength tensor leads to a CP-odd coupling and will be
discussed later.
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On the right hand side one has the Fourier transform for convenience, and overall
momentum conservation is understood. Comparing (4.6) with (4.10) one can read
off the constant β = αs/6πv, and the leading order effective Higgs gluon interaction
becomes:

LD5 =
αs

6πv
HTr (GµνG

µν) =
αs

12πv
HGa

µνG
a µν (4.11)

To get the Lagrangian that leads to the D7 vertex contributions one needs additional
field strength tensors. Remember the definition of the field strength tensor (2.22):

Gµν(x) =
i

g
[Dµ, Dν ] (4.12)

Define in the same way

[Dµ, [Dν , Dρ]] =
[
∂µ − igAa

µt
a,−igtb(∂νA

b
ρ − ∂ρA

b
ν + gf bcdAc

νA
d
ρ)
]

= − igta
[
∂µ∂νA

a
ρ − ∂µ∂ρA

a
ν + gfabc((∂µAb

ν)A
c
ρ + Ab

ν∂µA
c
ρ)

+gfabcAb
µ(∂νA

c
ρ − ∂ρA

c
ν + gf cdeAd

νA
e
ρ)
]

≡ − igtaGa
µνρ (4.13)

and

[Dβ, [Dµ, [Dν , Dρ]]] = − igta
[
∂β∂µ∂νA

a
ρ − ∂β∂µ∂ρA

a
ν

+ gfabc(∂β∂µAb
νA

c
ρ + ∂µA

b
ν∂βAc

ρ + ∂βAb
ν∂µA

c
ρ + Ab

ν∂β∂µAc
ρ)

+ gfabc∂βAb
µ(∂νA

c
ρ − ∂ρA

c
ν + gf cdeAd

νA
e
ρ)

+ gfabcAb
µ(∂β∂νA

c
ρ − ∂β∂ρA

c
ν + gf cde(∂βA

d
νA

e
ρ + Ad

ν∂βA
e
ρ))

+ gfaghAg
β(∂µ∂νA

h
ρ − ∂µ∂ρA

h
ν + gfhbc(∂µAb

νA
c
ρ + Ab

ν∂µA
c
ρ)

+ gfhbcAb
µ(∂νA

c
ρ − ∂ρA

c
ν + gf cdeAd

νA
e
ρ))
]

≡ − igtaGa
βµνρ (4.14)

One should notice that the fields in (4.13) and (4.14) can also be expressed in terms of
(4.12) and the covariant derivative in the adjoint representation

Dab
µ = ∂µδab − gAc

µf
abc (4.15)

It is easily checked, that

Ga
µνρ = Dab

µ Gb
νρ (4.16)

Ga
βµνρ = Dab

β Gb
µνρ = Dab

β Dbc
µ Gc

νρ (4.17)

The D7 effective Lagrangian, which has to be of dimension seven, is made out of different
gauge and Lorentz invariant combinations of Gµν , Gµνρ, Gβµνρ, ∂µH , H , ∂µ∂µH like
e.g.:

∂µ∂
µH Tr (GµνG

µν) , H Tr (GµνρG
µνρ)

H Tr
(
Gµ

µνG
µ ν
µ

)
, H Tr

(
Gµ

µνρG
νρ
)

H Tr
(
G ν

µ G ρ
ν G µ

ρ

)
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These expressions are manifestly Lorentz-invariant. They are also gauge invariant due
to the trace taken over the color space, as one can see following the same steps as in
(2.24). The Feynman rules for the Hgg vertices corresponding to different operators
are:

〈0
∣
∣T

{

HAa1
µ1

Aa2
µ2

· i
∫

d4xLeff

}
∣
∣0〉
∣
∣
∣
amputated
connected

F.T.
= (4.18)

=







2iq2
HT µ1µ2

T δa1a2 , Leff = ∂µ∂
µH Tr (GµνG

µν)

2i(q1 · q2)T
µ1µ2

T δa1a2 , Leff = H Tr (GµνρG
µνρ)

iT µ1µ2

L δa1a2 , Leff = H Tr
(
Gµ

µνG
µ ν
µ

)

i(q2
1 + q2

2)T
µ1µ2

T δa1a2 , Leff = H Tr
(
Gµ

µνρG
νρ
)

0, Leff = H Tr
(
G ν

µ G ρ
µ G µ

ρ

)

(4.19)

Again, the momentum conserving delta function on the right hand side was neglected.
The two different tensor structures are given by

T µ1µ2

T = gµ1µ2q1 · q2 − qµ2

1 qµ1

2 (4.20)

T µ1µ2

L = gµ1µ2q2
1q

2
2 − q2

1q
µ1

2 qµ2

2 − q2
2q

µ1

1 qµ2

1 + (q1 · q2)q
µ1

1 qµ2

2 (4.21)

By using momentum conservation, qH = q1 + q2, one sees that the different parts are
not all independent of each other. The first one in (4.19) is, at least for the Hgg vertex,
a linear combination of the second and the fourth. Indeed, one can show that the
operators are related. This becomes manifest by integrating them by parts, as shown
in Appendix C:

1

2
(∂µ∂

µH)GaνρGa
νρ = HGa νρGa µ

µνρ + HGa
µνρG

a µνρ + surface terms (4.22)

By comparing (4.19) with (4.7) one can write down the effective D7 Lagrangian. One
choice is e.g.

LD7 =
αs

360πv

[

HGa µ
µρG

a ν ρ
ν − 9HGa µ

µνρG
a νρ − 7

2
HGa

µνρG
a µνρ (4.23)

+ igC H Tr
(
Gα

βG
β
γG

γ
α

) ]

The Lagrangian is not completely determined, since the last operator in (4.19) does not
contribute to the Hgg coupling. It contains at least three vector operators and hence it
appears first with the Hggg coupling. Calculating the Hggg vertex V3,D7 out of (4.23)
and subtracting it from Bµ1µ2µ3

D7 given in (B.27) one has

Bµ1µ2µ3
D7

− V3,D7 =
48 + C

240
· αsg

πv

(

gµ1µ3qµ2

3 q1 · q2 + qµ1

3 (qµ2

1 qµ3

2 − gµ2µ3q1 · q2) (4.24)

− gµ1µ2qµ3

2 q1 · q3 + qµ1

2 (gµ2µ3q1 · q3 − qµ2

3 qµ3

1 ) − gµ1µ3qµ2

1 q2 · q3 + gµ1µ2qµ3

1 q2 · q3

)

fa1a2a3
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and the missing constant is determined to C = −48. Having fixed all parameters one
should look for a more convenient representation of (4.23). It would be desirable to have
at least one part proportional to LD5. This is possible for an on-shell Higgs, because
then one can replace ∂µ∂µH with −m2

H in (4.22). One operator on the right hand side
of (4.22) can be replaced in favor of m2

HH Tr (GµνG
µν). When replacing one operator,

it is best to keep the one that – at least for the Hgg vertex – is proportional to q2
1 + q2

2

instead of q1 · q2, since q2
1 + q2

2 indicates the virtuality of the gluon and should be small,
while it is quite impossible to make predictions on the magnitude of q1 · q2. With this
selection LD7 becomes

LD7 =
αs

360πv

[
7

4
m2

HHGa
µνG

a µν − 11

2
HGaµ

µνρG
a νρ + HGaµ

µρG
a ν ρ

ν (4.25)

− 48ig HTr
(
Gα

βG
β
γG

γ
α

)
]

One can perform the last trace

i Tr
(
Gα

βGβ
γG

γ
α

)
=

i

4
(dabc + ifabc)Ga α

βGb β
γG

c γ
α (4.26)

= − 1

4
fabcGa α

βG
b β

γG
c γ

α (4.27)

where the part proportional to the totally symmetric symbol dabc vanishes, since it is
contracted with totally antisymmetric field strength tensors Ga µν .

LD7 =
αs

360πv

[
7

4
m2

HHGa
µνG

a µν − 11

2
HGaµ

µνρG
a νρ + HGaµ

µρG
a ν ρ

ν (4.28)

+ 12g HfabcGa α
βG

b β
γG

c γ
α

]

4.2 CP-odd Higgs

The derivation of the effective Lagrangian for a CP-odd Higgs is quite similar to the
CP-even case. The coupling of a CP-odd Higgs to fermions contains an additional γ5

leading to a totally antisymmetric tensor structure for the (effective) vertices. Hence
they can be expressed with help of the totally antisymmetric Levi-Cevita tensor in four
dimensions. Each part of the effective Lagrangian that describes the CP-odd Higgs-
gluon coupling must therefore contain a dual field strength tensor defined by

∗Gµν =
i

2
ǫµνρσGρσ (4.29)

where ǫµνρσ is the totally antisymmetric tensor with the convention ǫ0123 = +1. To find
the effective Lagrangian one again has to calculate the three- and four point functions
containing two and three gluons respectively and a CP-odd Higgs. The calculation and
corresponding expressions for T µ1µ2

D5 , T µ1µ2
D7 , Bµ1µ2µ3

D5 and Bµ1µ2µ3
D7 are given in Appendix

B.3 and B.4. For the effective Lagrangian of dimension 5, LD5, there is again only one
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possible combination of a Higgs field and field strength tensors: it has to be proportional
to AǫµνρσTr(GµνGρσ). Calculating the Feynman rules for the Agg vertex and comparing
with (B.33) one finds

LD5 =
−iαs

4πv
ATr(Gµν

∗Gµν) =
αs

16πv
AǫµνρσGa

µνG
a
ρσ (4.30)

For the construction of the D7 Lagrangian one can use the same field strength tensors
defined in (4.13) and (4.14), but the contraction must contain one ǫ-tensor, like e.g.

∂µ∂
µA ǫµνρσTr (GµνGρσ) , A ǫµνρσTr

(
GµναG α

ρσ

)

A ǫµνρσTr
(
GαµνG

α
ρσ

)
, A ǫµνρσTr

(
Gα

αµνGρσ

)

A ǫµνρσTr
(
GµνG

α
ρ Gασ

)

Again all dimension 7 operators given above are not independent. In appendix C it is
shown that

ǫµναβGa
µνρG

a
αβ

ρ =
1

4
ǫµναβGa

ρµνG
aρ

αβ (4.31)

1

2
(∂µ∂µA)ǫνραβGa

αβGa
νρ = AǫνραβGa

µνρG
a µ

αβ + AǫνραβGa
αβGa µ

µνρ (4.32)

Calculating the Feynman rules for the Agg vertex for the different Lagrangians gives:

〈0
∣
∣T

{

AAa1
µ1

Aa2
µ2

· i
∫

d4xLeff

}
∣
∣0〉
∣
∣
∣
amputated
connected

F.T.
= (4.33)

=







−4iq2
Aǫµ1µ2q1q2δa1a2 , Leff = ∂µ∂µA ǫµνρσTr (GµνGρσ)

−4i(q1 · q2)ǫ
µ1µ2q1q2δa1a2 , Leff = A ǫµνρσTr

(
GαµνG

α
ρσ

)

−i(q1 · q2)ǫ
µ1µ2q1q2δa1a2 , Leff = A ǫµνρσTr

(
GµναG α

ρσ

)

−2i(q2
1 + q2

2)ǫ
µ1µ2q1q2δa1a2 , Leff = A ǫµνρσTr

(
Gα

αµνGρσ

)

0, Leff = A ǫνραβTr
(
GµνG

α
ρ Gασ

)

(4.34)

Comparing this with (B.33) one can start to built LD7. Again there are several possible
representations, one choice is

LD7 = − αs

24π v

[
1

8
(∂2A)ǫµνρσGa

µνG
a
ρσ +

1

4
AǫνραβGa µ

µνρG
a
αβ (4.35)

+CigATr
(
ǫµναβGµνGβγG

γ
α

)]

where again the D7 operators are chosen in such a way, that the first operator is (for an
on-shell Higgs) proportional to the D5 operator and the second operator is proportional
to q2

1 + q2
2 instead of q1 · q2, for the same reasons as in the CP-even case. The constant
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C has to be fixed by comparing the Aggg effective D7 vertex (B.39) with the Feynman
rules V A

3,D7 obtained directly from LD7

Bµ1µ2µ3
D7

− V A
3,D7

= −2 − C

24
· αsg

πv
(ǫµ3q1q2q3gµ1µ2 + ǫµ2q1q2q3gµ1µ3 − ǫµ2µ3q1q3qµ1

2 (4.36)

− ǫµ2µ3q1q2qµ1

3 + ǫµ1q1q2q3gµ2µ3 + ǫµ1µ3q2q3qµ2

1 − ǫµ1µ3q1q2qµ2

3 + ǫµ1µ2q2q3qµ3

1

+ ǫµ1ν2q1q3qµ3
2 + ǫµ1µ2µ3q3q1 · q2 + ǫµ1µ2µ3q2q1 · q3 + ǫµ1µ2µ3q1q2 · q3)f

a1a2a3

Fixing C = 2 and performing the trace over the color space, one obtains for an on-shell
CP-odd Higgs

LD7 =
iαs

360π v

[

− 15

4
m2

AAGa
µν

∗Ga µν +
15

2
AGa µ

µνρ
∗Ga νρ (4.37)

− 15gAfabcGa µ
νG

b ν
ρ
∗Gc ρ

µ

]

For convenience everything is expressed with help of the dual field strength tensor
defined in (4.29).
If one compares (4.28) with (4.37) one finds that both effective Lagrangians look quite
similar. The operators for the CP-odd Lagrangian look almost like the ones of the
CP-even Lagrangian, but in each term one field strength tensor is replaced by a dual
one. The CP-even case contains one more operator (∝ HGa µ

µρG
a ν ρ

ν ) which does not
appear in the CP-odd Lagrangian since there is no analog dual one.

4.3 Checks

Two kinds of checks were made to test the calculations of the three and four point
functions. The first test exploits the Ward-Takahashi identity to express the color
stripped four point function as a difference of color-stripped three point functions.
Second, the five point function that couples the Higgs to four gluons was calculated. It
was expanded into a power series in 1/m2

t in the same way as the three and four point
functions:

P µ1µ2µ3µ4 = P µ1µ2µ3µ4
D5

+ P µ1µ2µ3µ4
D7

·
(

1

m2
t

)

+ P µ1µ2µ3µ4
D9

·
(

1

m2
t

)2

+ . . . (4.38)

If everything goes right, the effective vertices for the Hgggg coupling derived from the
effective Lagrangian directly, must coincide with P µ1µ2µ3µ4

D5 and P µ1µ2µ3µ4
D7 respectively.

4.3.1 Ward-Takahashi identity

The Ward identity in QED [29] states, that if M(k) = ǫµ(k)Mµ(k) is the amplitude for
some QED process involving an external photon with momentum k, then this amplitude
vanishes if one replaces ǫµ with kµ. The generalization is the Ward-Takahashi identity
[30]. It relates n point correlation functions to a difference of two (n−1) point correlation
functions, when an external photon is replaced with its’ momentum. This identity can
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also be applied to the QCD case, if one just considers the color-stripped part of an
amplitude.
The three point function T µ1µ2 is, apart from the color factor δab, identical to the
corresponding QED three point function, and hence has to vanish when it is contracted
with q1µ1 or q2µ2 .
If one expresses the three and four point functions as

T µ1µ2

1 = Tr(ta1ta2)T̃ µ1µ2

1 (4.39)

Bµ1µ2µ3
1 = Tr(ta1ta2ta3)B̃µ1µ2µ3

1 (4.40)

and contracts the B̃µ1µ2µ3

1 with qµ1

1 one gets (using /q1
= (/k + /q1

+ m) − (/k + m)):

q1µ1 · B̃µ1µ2µ3
1 = C

∫
d4k

(2π)4
Tr

{

(/k + m)
[
(/k + /q1 + m) − (/k + m)

]
(/k + /q1

+ m)

(k2 − m2)((k + q1)2 − m2)

×
γµ2(/k + /q12

+ m)γµ3(/k + /q123
+ m)

((k + q12)2 − m2)((k + q123)2 − m2)

}

= g
(

T̃ µ2µ3

1 (q12, q3) − T̃ µ2µ3

1 (q2, q3)
)

(4.41)

If one replaces qµ1
1 by qµ2

2 or qµ3
3 one obtains two more identities:

q2µ2 · B̃µ1µ2µ3

1 = g
(

T̃ µ1µ3

1 (q1, q23) − T̃ µ1µ3

1 (q12, q3)
)

q3µ3 · B̃µ1µ2µ3
1 = g

(

T̃ µ1µ2
1 (q1, q2) − T̃ µ1µ2

1 (q1, q23)
)

The identity takes the same form for the CP-even and CP-odd case. I checked with the
help of Mathematica that these three relations are indeed satisfied – for the CP-even
as well as for the CP-odd Higgs.

4.3.2 Five point function for the Hgggg coupling

The five point function is given by a Higgs coupling to four gluons via a top-quark
pentagon loop.

g1

g2

g3

H, A

g4

The corresponding five point correlation function was calculated for a CP-even and
for a CP-odd Higgs. The result was expanded into a power series in 1/mt as shown
in (4.38). As a cross-check, the obtained expressions were tested using the Ward-
Takahashi identity. That is, the color-stripped five point correlation function were
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reduced to differences of (color-stripped) four point correlation functions. This was
done order by order in the 1/mt expansion.
In both cases, the CP-even and CP-odd, the Φgggg vertices3 obtained from LD5 and LD7

coincide with the corresponding expression of the expansion, P µ1µ2µ3µ4
D5 and P µ1µ2µ3µ4

D7 .

3Φ stands for a CP-even or CP-odd Higgs H and A respectively



Chapter 5

Effective theories vs. full calculation

In the following the effective theories of the last chapter will be compared with the full
loop calculation for the process pp → H + 2j. To make a meaningful comparison, one
must not only look at total cross sections, but also compare differential distributions.
The main task is to find out, in which range of the phase space for a given Higgs
mass the approximation is valid, and where it starts to break down. The parton level
Monte Carlo program VBFNLO has the full leading order calculation for this process,
involving a heavy fermion loop. The large top mass approximation mt → ∞ is also
included. The only missing parts are the D7 Lagrangian of the last section. It is useful
to implement the different dimension 7 operators, which form the D7 Lagrangian, in
such a way, that one can analyze them separately. Thus, the effective Lagrangian was
split in the following way:

LH
eff = LH

D5 +
1

m2
t

(
LH

D7 I + LH
D7 II + LH

D7 III + LH
D7 IV

)
(5.1)

LA
eff = LA

D5
+

1

m2
t

(
LA

D7 I
+ LA

D7 II
+ LA

D7 III

)
(5.2)

with for the CP-even Higgs and for the CP-odd Higgs

LH
D5

=
αs

12πv
HGa

µνG
a µν

LH
D7 I

=
αs

360πv
· 7

4
m2

HHGa
µνG

a µν

LH
D7 II =

−αs

360πv
· 11

2
HGa µ

µνρG
a νρ

LH
D7 III

=
αsg

360πv
· 12 HfabcGa µ

νG
b ν

ρG
c ρ

µ

LH
D7 IV

=
αs

360πv
· HGa µ

µρG
a ν ρ

ν

LA
D5

=
−iαs

8πv
AGa

µν
∗Ga

µν

LA
D7 I =

−iαs

360π v
· 15

4
m2

AAGa
µν

∗Ga µν

LA
D7 II =

iαs

360π v
· 15

2
AGa µ

µνρ
∗Ga νρ

LA
D7 III

=
−iαsg

360π v
· 15AfabcGa µ

νG
b ν

ρ
∗Gc ρ

µ

LA
D7 IV

αs

360π
v · HGa µ

µρG
a ν ρ

ν

Additional subroutines were implemented into the file gf higgsME.f for each D7 La-
grangian given above, respectively. The implementation was done in such a way, that
one can use the quark and gluon currents calculated by VBFNLO and contract them
with the effective H/Agg, H/Aggg and H/Agggg couplings, in the same manner as it is

41
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realized for the full calculation or the effective D5 coupling. There are some subtleties
one has to consider when implementing the vertices given by the D7 Lagrangians into
VBFNLO: First of all, when calculating the Feynman rules for a given vertex, all gluons
have to be outgoing. Second, the Feynman rules given in Appendix A differ in the con-
ventions to the ones used to calculate scattering amplitudes in VBFNLO, which agree
with [31]. These Feynman rules have an additional minus sign for the gluon-fermion
vertex. Therefore one has to consider an additional factor (−1) for the phase when
implementing the three gluon-Higgs vertex, since this is the only case where an odd
number of gluon-fermion vertices appears in the calculation.
There is one ambiguity when taking the D7 correction into account. One can take the
scattering amplitude up to O(1/m2

t ) leading to a squared matrix element of O(1/m4
t ),

or one can ask for the squared matrix element being at most of order (1/m2
t ). Both

should give similar results as long as the approximation is valid. In the following the
latter choice was made, that is

|M |2 =
∣
∣
∣MD5 +

1

m2
t

MD7

∣
∣
∣

2 O( 1

m2
t

)

= |MD5|2 + 2
1

m2
t

Re (MD5M
∗
D7)

where MD5 and MD7 refer to the matrix element one derives using the D5 or D7 La-
grangian respectively. By making this choice one may reckon that negative weights to
the cross section occur. Even though negative weights are unphysical, at least they are
a good indicator for the phase space region where the approximation breaks down.

5.1 Proton proton → Higgs plus two jets

The process pp → Hjj via gluonfusion can be divided into three main subprocesses,
differing in the number of external quarks. Since the possibility to find a quark or gluon
with a certain kinematics inside a proton is very unequal for a center of mass energy of
14TeV, the three subprocesses should be considered separately.1

5.1.1 qQ → qQH

q q

Q Q

H/A
Figure 5.1: One diagram contributing to the
process qq → qqH. The dot represents the
Higgs gluon coupling which is determined either
through a top loop or an effective coupling.

The Feynman diagram contributing to this process is given by figure 5.1. The other
diagrams are related to this one by crossing. As one can see, there is only a two gluon
Higgs vertex, therefore not all of the effective D7 operators do contribute. To be precise,
LH

D7 III
and LA

D7 III
are absent; they lead to vertices containing at least three gluons.

1The probability is given by the parton distribution function (PDF) which can be derived from
experimental data obtained at lower scales with the help of the DGLAP evolution equations [32, 33].
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5.1.2 qg → qgH

q q

g g

Figure 5.2: This diagram depicts the process
qg → qgH/A. The four dots display the in-
teraction point where a Higgs can be radiated
off. The coupling can be through a top loop or
effective respectively.

In Fig. 5.2 are the different ways shown how the Higgs can be radiated off. All
other diagrams contributing to this process can be obtained by crossing. Again, one
has the two gluon-Higgs coupling, and in addition the three gluon-Higgs coupling has
to be taken into account. That means that all effective Lagrangians do contribute to
this process.

5.1.3 gg → ggH

g g

g g

g g

g g

Figure 5.3: This two diagram show the possible processes for gg → ggH/A.
The dots display where a Higgs can be radiated off. The coupling can be through
a top loop or effective.

The different topologies contributing to this process are depicted in figure 5.3. Here
finally the two, three and also the four gluon Higgs coupling have to be taken into
account.

5.2 Checks

After implementing the various D7 couplings, two kinds of checks were performed on
the analytic amplitude: a gauge invariance and a Lorentz boost check.

5.2.1 Gauge invariance

Due to gauge invariance, an amplitude with one ore more external gluons has to vanish
if one replaces an outer polarization vector with the corresponding momentum vec-
tor. This follows from the fact, that the amplitude is invariant under the replacement
ǫµ
i → ǫµ

i + ciq
µ
i for arbitrary ci (see also section 4.3.1). For the process qg → qgH one
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has two different polarization vectors that can be replaced to make the amplitude van-
ish, while for the gg → ggH process there are even four possibilities. Each part of
the effective Lagrangians (5.1) and (5.2) was checked separately. For all possibilities of
replacing a polarization vector, the amplitude vanishes numerically, as it is supposed
to. Certainly this was done as well for a CP-even as for a CP-odd Higgs.

5.2.2 Lorentz boost

Since the amplitude is a Lorentz-scalar, it must be the same in each reference frame.
One can therefore perform a Lorentz boost on all the outer momenta without changing
the result. The total cross section was compared for the process gg → ggH , once
calculated in the enter of mass frame and once in a boosted frame. The result was, for
a CP-even and CP-odd Higgs, identical.

5.3 Total cross section for different Higgs masses

In this section the total cross sections for Hjj in pp collisions at
√

s = 14TeV will
be compared, once obtained by using the full loop calculation, the D5 effective theory
and the D5+D7 effective theory. The factorization scale was taken to be the geometric
average between the transverse momenta of the two jets: µf =

√
pT1pT2 . The renor-

malization scale for the strong coupling αs was fixed at the Z0 mass: µr = 91.188GeV.
(Varying the renormalization scale has large impact on the total cross section, however
it should not alter the qualitative and quantitative results with respect to the shape
and relative position of the different curves). The analysis was done for two kinds of
cuts. The first consists of a minimal set of cuts which are needed to handle collinear
singularities and are given by (5.3). The second are so called weak boson fusion cuts
which reduce the QCD background for the Higgs production via weak boson fusion.
These cuts are added to the ones in (5.3) and given by (5.4).

minimal cuts : pTj > 20GeV, |ηj| < 5, Rjj > 0.6 (5.3)

additional WBF cuts : |ηj1 − ηj2| > 4, ηj1 · ηj2 < 0, mjj > 600GeV(5.4)

The three subprocesses of the last section were considered separately.

gg → ggH

In figure 5.4 one can see how the total cross section varies with the Higgs mass for the
two sets of cuts. The effective theory improves in both cases when taking the correction
given by LH

D7
into account. Up to Higgs masses of 200GeV the total cross section

obtained by using the effective theory plus corrections is almost identical as the one
given by the full loop calculation. It would now be interesting to know the contributions
of the different parts of the dimension 7 Lagrangian to this correction. First off all,
examine LH

D7 IV. When considering only this part of the dimension 7 Lagrangian one
finds that numerically the correction is zero. To verify this result, the amplitude was
calculated with the help of Mathematica using only vertices given by LH

D7 IV. The
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Figure 5.4: Total cross section for gg → ggH for a minimal set of cuts (left)
and WBF cuts (right). The red curve shows the result obtained considering the
full loop calculation. The green curve uses the effective Higgs gluon coupling
described by LD5. The blue line takes the correction to LD5 described by LD7

into account.

result was, in agreement with VBFNLO, that the amplitude in this case indeed vanishes
(analytically).
Next, consider the cross section obtained by taking only LH

D7 II and LH
D7 III into account.

The total cross section is shown in figure 5.5. The purple crosses denote the result
one obtains, taking both parts into account. It is hardly distinguishable from the
D5 effective Lagrangian. Analytically one finds that for the process gg → ggH the
amplitudes satisfy

−12

11
A
(
LH

D7 II

)
= A

(
LH

D7 III

)
(5.5)

where A(LD7 j) denotes the amplitudes derived by using Higgs-gluon vertices given by
LD7 j. Hence the sum of both amplitudes is suppressed by one order of magnitude.
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Figure 5.5: Red curve: effective theory
LD5. The green and blue line show the
corrections given by LD7 II and LD7 III re-
spectively. The purple crosses finally de-
pict the cross section obtained when taking
both D7 corrections into account.

Altogether it follows that the correction to LD5 must be given approximately by LD7 I,
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see figure 5.6. This is delightful, since this part of the dimension 7 Lagrangian can be
expressed in terms of the dimension 5 Lagrangian plus formfactor:

LH
eff ≈ LH

D5

(

1 +
7

120

m2
H

m2
t

)

(5.6)
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Figure 5.6: The red and green lines show
the full loop calculation and the effective
theory D5+D7. The blue × are the cross
section for LD5 + 1

m2
t

LD7 I.

qg → qgH

The total cross section for this process is shown in figure 5.7. The D7 correction does
not seem to give better results then the D5 effective theory alone. Some phase space
region seems to spoil the top mass expansion. This will be investigated in the next
section. Meanwhile, one should notice, that for WBF cuts the approximation becomes
slightly better. Having a look at the four different parts of LD7 one finds, that in this
case the D7 correction is not only given by one part of the dimension 7 Lagrangian,
but rather by the first three, while the contribution of LH

D7 IV
is negligible (the effect of

LH
D7 IV

on the total cross section is less than 0.1%).

qQ → qQH

The evaluation of the total cross section with the Higgs mass is given in figure 5.8
for both kinds of cuts. As in the qgH case the top mass expansion gets spoiled, and
again the WBF cuts seem to cut out a part of the phase space region that spoils the
approximation. The biggest part of the D7 Lagrangian cross section comes from LD7 I

and LD7 II, since again the contribution of LD7 IV is negligible (it lowers the total cross
section by approximately 1%). Remember that LD7 III does not contribute here, since
this Lagrangian does not lead to an Hgg vertex. Looking at the Hgg vertex given by
LD7 II, which is ∝ (q2

1 + q2
2), forebodes that highly virtual gluons are responsible for the

collapse of the effective theory.

CP-odd Higgs

The result obtained for a CP-odd Higgs boson is quite similar to the CP-even case
as shown in figure 5.9 and 5.10. Again for the ggA subprocess the correction to



47

 0

 1

 2

 3

 4

 5

 6

 100  150  200  250  300  350  400  450  500  550

σ t
ot

[p
b]

mH[GeV]

qg -> qgH, minimal cuts

topLoop
LD5

LD5+1/m2LD7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100  150  200  250  300  350  400  450  500  550

σ t
ot

[p
b]

mH[GeV]

qg -> qgH, WBF cuts

topLoop
LD5

LD5+1/m2LD7

Figure 5.7: qg → qgH for minimal and WBF cuts. The red line gives the total cross
section when considering the full loop calculation, while the green and blue line correspond
to effective Higgs gluon coupling described by LD5 and LD5 + 1
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Figure 5.8: qq → qqH for minimal and WBF cuts. The red line shows σtot when
considering the full loop calculation, while the green and blue curves show the total cross
section for the effective D5 and D7 theory.

the D5 Lagrangian is given solely by LA
D7 I

, while the sum of LA
D7 II

and LA
D7 III

vanishes
analytically:

A
(
LA

D7 II

)
= − A

(
LA

D7 III

)
(5.7)

where A(LA
D7 j

) denotes the amplitude for the gg → ggA process given by the partic-
ular Lagrangian. This means, that again one can express the D7 correction for this
subprocess in terms of the dimension 5 effective Lagrangian plus formfactor:

LA
eff = LA

D5

(

1 +
1

12

m2
A

m2
t

)

(5.8)

The other two subprocesses suffer again from phase space regions that spoil the heavy
top mass expansion. One should mention, that applying WBF cuts leads to the same
behavior as in the CP-even case; cutting out a part of the phase space region that spoils
the approximation.
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Figure 5.10: σtot for qg → qgA (left) and qq → qqA (right). The red, green and
blue curve show the result for the full loop calculation, the D5 effective theory and the
correction given by the D7 effective theory respectively.

5.4 Differential cross section: pT distribution

In this section the phase space regions that spoil the large top mass approximation
will be investigated. Additionally, the upcoming deviations are analyzed quantitatively
and it is checked whether the error one obtains by considering the effective theories
can be reduced by performing an appropriate cut on the phase space. There are some
indications, that the effective theories get spoiled for kinematics involving highly virtual
gluons with |qi|2 & m2

t :

(i) We have seen at the beginning of chapter 4 that the ggH coupling with two
on-shell gluons is perfectly described by the effective D5 theory.

(ii) For the process qq → qqH only the ggH vertex is involved, which is mainly given
by (see (B.10) and (B.11))

T µ1µ2

D5

(

1 +
1

120m2
t

(
7m2

H + 11
(
q2
1 + q2

2

))
)

where q1 and q2 are the momenta of the intermediate gluons. One can deduce that
for |q2

1 + q2
2| ≈ −m2

t the 1/m2
t suppressed term becomes the same magnitude as
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the D5 approximation and for
√

|q2
1 + q2

2| &
√

60
11

mt ≈ 408.7GeV one has to deal

with negative weights. This can be visualized by considering only the t-channel
exchange of the gluons and looking at the differential cross section dσ/d

√

q2
1 + q2

2,
see figure 5.11.
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Figure 5.11: Differential cross
section for the t-channel in qq →
qqH for mH = 120GeV . Red:
top loop. Green: effective theory
(D5+D7).

(iii) The approximation becomes better the more gluons are involved in the process.
Considering the parton distribution function for a 7TeV proton, the gluons peak
at low x values whereas quarks are mainly distributed in higher x regions – and
hence a large momentum transfer between the quark legs is likely [34].

In the same way as for the qqH subprocess one can also have a look at the differential
distribution with respect to the momentum transfer between the quark legs in the qgH
subprocess. One finds that for |q2| ≪ −m2

t the D5+D7 effective theory and the full
loop calculation show no significant difference, only for values |q2| > m2

t one encounters
a deviation. Performing a cut on q2 – the gluon momenta radiated from the quark leg,
would give a great improvement to the effective theory.
For practical use it is desirable to have cuts that are easy applicable in an experiment.
The momentum transfer q2 could in general be reconstructed out of the two jets and
the decay products of the Higgs, but one has to deal with large uncertainties; not
to mention neutrinos among decay products. In contrast, the kinematics of the two
hardest jets are accessible without difficulties. Kinematic variables that are related to
this problem are the maximum pT of the jets and also cuts that force the jets going
into forward regions, like the WBF cuts (5.4).
The diagrams 5.12 - 5.17 show the pT,max spectrum of the differential cross section
for the three subprocesses; as well for a minimal set of cuts as for WBF cuts. The
corresponding differential K-factors for the D5 and D5+D7 effective theory with respect
to the full loop calculation are given for two different Higgs masses: mH = 120GeV and
mH = 200GeV, which are around the preferred upper and lower bounds of a Standard
Model Higgs given by the electroweak precision data. The differential K-factor is defined
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as

K-factor ≡
(

dσ

dpT,max

)

topLoop

/(
dσ

dpT,max

)

effective

(5.9)

To make a quantitative statement about how good or bad the approximations are, there
is for each subprocess a table from which one can estimate the error obtained by taking
a particular approximation. The tables are organized in the following way: σtot is the
total cross section of the process considering the top loop. D5-deviation gives an upper
and lower bound for the error one gets, when considering the D5 effective theory, while
D7-deviation gives the error bounds for the D5+D7 effective theory. The lower bound
is defined by the ratio:

∆σmin ≡
∥
∥
∥
∥

σtoploop − σeffective

σtoploop

∥
∥
∥
∥

(5.10)

This is only a lower bound, since when calculating the total cross section, phase space
regions that underestimate the full theory can compensate regions that overestimate
the full theory, leading in the worst case to an apparent deviation of zero. To get an
upper error bound one can use the following definition: Take for each phase space point
the absolute value of the difference between the squared matrix elements of the full loop
calculation and effective theory. Divide the number obtained after integrating over the
phase space by σtoploop:

∆σmax ≡
∫

dLIPS‖M2(topLoop) − M2(effective)‖
/

σtoploop (5.11)

Because of this definition of the error bounds, the latter bound gives the real discrepancy
between effective and full calculation.

qq → qqH

mH cuts σtot[fb] D5-deviation D7-deviation
(∆σmin) ∆σmax (∆σmin) ∆σmax%

120GeV
minimal 295.31 ± 0.13 (17.7%) 24.6% (42.3%) 54.9%
WBF 105.64 ± 0.25 (13.2%) 15.4% (17.7%) 19.8%

200GeV
minimal 193.82 ± 0.09 (13.8%) 28.0% (56.2%) 73.1%
WBF 83.09 ± 0.06 (4.8%) 17.9% (22.2%) 23.2%

Applying an additional cut, pT,max < 200GeV, one obtains:

120GeV
minimal 262.37 ± 0.23 (5.1%) 12.5% (5.3%) 7.4%
WBF 92.69 ± 0.14 (4.2%) 6.7% (1.3%) 2.1%

200GeV
minimal 165.65 ± 0.15 (2.5%) 13.8% (5.8%) 8.7%
WBF 71.01 ± 0.11 (5.5%) 9.7% (2.4%) 3.3%

Table 5.1: Total cross section and deviation of the effectives theories for two different
Higgs masses and the cuts (5.3) and (5.4) for qq → qqH. σtot gives the total cross section
using the full loop calculation. D5-deviation and D7-deviation give the deviation of the
effective D5 and D5+D7 theories respectively, defined by (5.10) and (5.11).
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Figure 5.12: qq → qqH for minimal and WBF cuts (left) and differential K-factor as
defined in (5.9) (right).
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Figure 5.13: Differential K-factor for qq → qqH for mH = 200GeV as defined in (5.9).
Left: minimal cuts. Right: WBF cuts.

Figure 5.12 shows the differential cross section over pT of the hardest jet and the K-
factor for the qqH subprocess for a Higgs mass of 120GeV. Since for a Higgs mass of
200GeV the differential pT distribution has the same shape as for a 120GeV Higgs, only
the differential K-factors are given in figure 5.13. The cross section peaks at low pT
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regions and fast approaches zero for pT > 300GeV, at least for the full theory. The D5
effective theory unfortunately does not decline that fast, and for D7 the results for hight
pT are unphysical (leading to negative weights). The differential K-factor denotes, that
the effective theories brake down at phase space regions with pT ≈ 150 − 200GeV. On
the other hand, for very low pT one can see the effect of the mass correction, given by
LH

D7 I
. This contribution to the amplitude has the same phase as the D5 contribution

LH
D5. This explains why the D5 approximation underestimates the full calculation for

low pT .
In table 5.1 one can read off the total cross section and deviations of the effective
theories. It shows the real error one makes by considering the effective theory (∆σmax),
calculated by (5.11) and aside the error one obtains by naive comparison of the total
cross section is given in brackets (∆σmin). By comparing these numbers one can see,
that one cannot trust in (∆σmin), which underestimates the real error by up to a factor
five. Surprisingly, the effective D5 approximation is far away from being an excellent
approximation, leading to large uncertainties of about 25− 30% for minimal cuts, and
15% for WBF cuts. Applying an additional cut pT,max < 200GeV reduces the error of
the D5 effective theory already by a factor two. This can be further improved by the
D7 correction, reducing the error down to 2 − 8%. One has to take into account, that
the cut pT,max < 200GeV reduces the total cross section by 10 − 15%. That means,
that the total uncertainty, given by the sum of error and missing cross section, has
almost the same magnitude as the original error given by using the D5 effective theory.
However, if one wants to estimate the background for weak boson fusion processes, it
would be possible to perform the pT,max cut also for this process, being left with only
the small error given above. In other words, to reduce the total error by considering
the D7 correction, one should apply this cut to all observables.

qg→ qgH

mH cuts σtot[fb] D5-deviation D7-deviation
(∆σmin) ∆σmax (∆σmin) ∆σmax

120GeV
minimal 4757.72 ± 6.67 (3.6%) 12.4% (10.9%) 17.5%
WBF 406.44 ± 0.34 (2.6%) 9.9% (3.8%) 10.5%

200GeV
minimal 3263.16 ± 3.09 (3.3%) 18.5% (14.4%) 23.6%
WBF 314.45 ± 0.26 (5.8%) 15.6% (5.2%) 13.2%

Applying an additional cut, pT,max < 200GeV, one obtains:

120GeV
minimal 4296.56 ± 8.07 (1.3%) 7.3% (2.4%) 3.9%
WBF 365.05 ± 0.62 (1.6%) 6.0% (0.1%) 3.6%

200GeV
minimal 2879.99 ± 4.27 (10.2%) 13.6% (4.0%) 6.0%
WBF 277.70 ± 0.47 (11.1% 12.6% (2.4%) 5.2%

Table 5.2: Total cross section and deviation of the effectives theories for two different
Higgs masses and the cuts (5.3) and (5.4) for qg → qgH. σtot gives the total cross section
using the full loop calculation. D5-deviation and D7-deviation give the deviation of the
effective D5 and D5+D7 theories respectively, defined by (5.10) and (5.11).
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Figure 5.14: qg → qgH for minimal and WBF cuts and differential K-factor
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Figure 5.15: Differential K-factor for qg → qgH for mH = 200GeV. Left: minimal cuts.
Right: WBF cuts

Figure 5.14 and 5.15 are, for reasons of comparison, arranged in the same way as for
the qqH subprocess. Again one sees from the shape of the differential K-factor, that
for large pT,max the effective approximation breaks down. The discrepancy between the
absolute values seem to be smaller than in the qqH case, the differential cross section
dσ/dpT for the D7 effective theory is hardly distinguishable from the full calculation
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(figure 5.14, left). In low pT regions one can see the effect of the Higgs mass, given by
LH

D7 I.
Having a look at the errors that arise when considering the effective theory, table 5.2,
one finds as one would expect from figure 5.8, that they are smaller than in the qqH
case. But still, using the D5 effective theory, gives a deviation from the full loop
calculation up to 20%. The D7 correction without an additional cut on the phase
space still gives no further improvement. It is interesting to notice, that the naive error
underestimates the real one by at least a factor two. Applying the same cut as in the
qqH case, pT,max < 200GeV, again reduces the error significantly. For the D5 + D7
effective theory it can thereby be reduced to 4 − 6%, while the D5 theory alone has
errors of twice the magnitude. With this pT cut the total cross section is reduced by
about 10%. As mentioned above, hence it only makes sense to consider the D5+D7
approximation when the pT cut is applied to all observables.

gg→ ggH

mH cuts σtot[fb] D5-deviation D7-deviation
(∆σmin) ∆σmax (∆σmin) ∆σmax

120GeV
minimal 8308.01± 7.79 (4.5%) 7.9% (0.3%) 5.1%
WBF 246.03 ± 0.17 (3.9%) 8.5% (1.3% 7.1%

200GeV
minimal 5840.85± 0.10 (13.6%) 16.6% (0.1%) 7.9%
WBF 186.03 ± 0.38 (11.7%) 15.7% (1.6%) 8.0%

Applying an additional cut, pT,max < 200GeV, one obtains:

120GeV
minimal 7703.46 ± 14.28 (5.9%) 6.6% (0.1%) 2.5%
WBF 227.92 ± 0.89 (5.4%) 7.1% (0.1%) 4.6%

200GeV
minimal 5348.91 ± 10.57 (15.8%) 16.0% (3.0%) 4.7%
WBF 168.89 ± 0.68 (14.8%) 15.1% (1.4%) 4.8%

Table 5.3: Total cross section and deviation of the effective theories for two different
Higgs masses and the cuts (5.3) and (5.4) for gg → ggH. σtot gives the total cross section
using the full loop calculation. D5-deviation and D7-deviation give the deviation of the
effective D5 and D5+D7 theories respectively, defined by (5.10) and (5.11).

The differential pT,max distribution and the corresponding K-factor for the ggH subpro-
cess are given in figure 5.16 for mH = 120GeV and the K-factors of a 200GeV Higgs
in figure 5.17. In any of the four cases the pT,max distribution shows almost the same
behavior, as one can see by looking at the K-factors: Being in excellent agreement with
the full loop calculation up to ≈ 200GeV and overestimating the full calculation for
higher pT,max. The situation is quite different to the qqH and qgH case, where the
D7 correction always underestimates the full theory for hight pT,max, causing negative
weights for sufficient large values of pT,max.
Having a look at the numbers in table 5.3, one finds that considering the D7 correction
leads in any case to a better approximation than the D5 effective theory. Curiously,
applying WBF cuts does not yield further improvement. A cut on pT,max lowers again
the total error made by considering the effective D7 calculation, whilst the total cross
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Figure 5.16: gg → ggH for minimal and WBF cuts and differential K-factor
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Figure 5.17: Differential K-factor for gg → ggH for mH = 200GeV. Left: minimal
cuts. Right: WBF cuts

section is reduced by ≈ 8%. The difference of the total deviation between the two
effective theories reflects the fact, that the D7 correction is mainly given by the D5
calculation times a formfactor (5.6). For mH = 120GeV the D5 cross section increases
by ≈ 2.7% and for mH = 200GeV it is increased by ≈ 7.6%, giving approximately the
differences between the error of the D5 and D7 calculation.
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mH = 120GeV mH = 200GeV
D5 theory minimal cuts 9.8% 11.4%

WBF cuts 10.2% 15.9%
D5+D7, pT,max < 200 minimal cuts 3.1% 5.2%

WBF cuts 3.7% 4.8%

Table 5.4: Average error for effective theories considering all subprocesses for pp → Hjj
via gluon fusion. The first two lines show the error by the D5 effective theory, while the
last two lines take the D7 correction and a cut pT,max < 200 into account.

5.5 Discussion

As we have seen in the last section, the calculation of cross sections for the process
pp → Hjj may lead to unexpectedly high errors when calculating in the large top mass
approximation. The main reason is the existence of highly virtual gluons which spoil
the approximation. Appropriate cuts that suppress the appearance of these intermedi-
ate states could reduce the error by a factor two, but further improvement is desirable.
As shown in the last section, it can be further reduced by considering the D7 correc-
tion to the effective theory and performing a cut on pT,max. One may ask why a cut
pT,max < 200GeV might be the best choice: First of all it is motivated by looking at
the K-factors, figure 5.12 to 5.17, which in all three subprocesses is almost one, up to
pT ≈ 200GeV. One has to keep in mind, that such a cut reduces the total cross section
by approximately 10%. On the other hand, a less restrictive cut, e.g. pT,max < 350GeV,
would lower the cross section by only 2%, but one would still be left with uncertainties
of about 10% – for the qqH subprocess even up to 20%.
The examined process is important due to two reasons: First, as mentioned in section
3.5, the coupling properties of a scalar Higgs can be measured by looking at the differen-
tial ∆Φjj distribution of the cross section. Second, it is a background process to Higgs
production via weak boson fusion. Applying the cut pT,max < 200GeV on the WBF
process, one finds that one only looses 3.4% of the total cross section. This justifies
such a cut for the background studies. The WBF signal is a promising channel for the
discovery of a light or intermediate Higgs (120GeV− 200GeV); this process is actually
know at NLO accuracy in αs.

2 It is important to have also the QCD backgound at
NLO accuracy since the LO calculation has large factorization- and renormalization
scale dependencies. This NLO calculation was performed by [21] in the large top mass
limit, and they have shown that a strong renormalization scale dependency remains,
with the cross section varying by about 35% when the renormalization scale is changed
by a factor 2. Nevertheless the NLO calculation also suffers from errors due to the
mt → ∞ approximation. As we have seen in the last section, the cross section calcu-
lated using effective vertices also has to be treated as a function of pT . The average
errors for all three subprocesses for the LO calculation are summarized in table 5.4.
Supposing that the NLO calculation uncertainties are of the same magnitude, one finds
that the errors due to the effective theory are about half of the magnitude of the scale

2Recently the elecroweak NLO corrections to this process were performed [35]



57

uncertainties. However, if one would perform a NLO calculation considering the D7
effective theory and applying an additional cut on pT , the uncertainties due to the
approximation might be reduced by a factor three. Additionally, the dimension 7 oper-
ators give rise to a six point function (5gH), a residual of the hexagon six point function
appearing at NLO. As we will see in the next chapter, there seem to exist some MHV
amplitudes for the D7 operators; hence implementing them into a program or extending
MCFM (Monte Carlo for FeMtobarn processes [21]), where the next-to-leading order
code is incorporated, might be easier than one would expect. Unfortunately the MCFM
implementation of this NLO process has not been made public yet.
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Chapter 6

MHV amplitudes for the dimension
7 operators

As seen in Chapter 3, MHV amplitudes are a powerful tool for calculating scattering
amplitudes. It would therefore be nice to have corresponding compact expressions for
the dimension 7 operators, (5.1) and (5.2). Trying to find MHV amplitudes for the
individual parts of LH

D7
and LA

D7
most likely fails. A more promising ansatz is to proceed

in the same way as suggested by [13], that is, splitting the effective Lagrangian into a
selfdual and an antiselfdual part. Remember the definition of the (anti)selfdual field
strength tensor:

Gµν
SD =

1

2
(Gµν + ∗Gµν), Gµν

ASD =
1

2
(Gµν − ∗Gµν), ∗Gµν ≡ i

2
ǫµνρσGρσ (6.1)

The splitting may be possible for all parts of the dimension 7 Lagrangians but LH
D7 IV,

since the involved operators do not have a corresponding dual. Nevertheless this is not
that tragic, since this operator could be neglected for each of the pp to Hjj subprocesses;
either because it vanishes analytically or its contribution is negligible.
The simplest case is the LD7 I operator, since it is proportional to LD5. Considering H
as the real part of a complex field and A as the imaginary part, φ = 1

2
(H + iA), one

gets

LH,A
D7 I =

C

2

[

HTrGµνG
µν + iATrGµν

∗Gµν
]

(6.2)

= C
[
φTrGSD µνG

µν
SD + φ†TrGASD µνG

µν
ASD

]
(6.3)

with C = 7αsm
2
A/720πv for the CP-even case and C = −αsm

2
H/48πv for the CP-odd

case. The Higgs amplitude can be recovered by the sum and difference of the φ and φ†

amplitudes, respectively. The MHV amplitudes are the ones given in (3.18) and (3.22).
For LD7 II one can define the dual of Gµ

µνρ in the same way as for the normal field
strength tensor:

∗Gµ
µνρ ≡ i

2
ǫνρστG

µ στ
µ

and the (anti)selfdual fields as in (6.1) just replacing Gαβ ↔ Gµ
µαβ . Using the fact that

∗Gµ
µνρ

∗Gνρ = Gµ
µνρG

νρ and ∗Gµ
µνρG

νρ = Gµ
µνρ

∗Gνρ
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one finds

LH,A
D7 II =

C

2

[

HTrGµ
µνρG

νρ + iATrGµ
µνρ

∗Gνρ
]

(6.4)

= C
[
φTrGµ

SDµνρG
νρ
SD + φ†TrGµ

ASDµνρG
νρ
ASD

]
(6.5)

Here the constant C is given by C = −11αs/360πv for the CP-even case and C =
αs/24πv for the CP-odd case.
The remaining part of the the effective Lagrangian is the one containing three field
strength tensors. To split it into an selfdual and anti-selfdual part, one needs the
following identities

Tr
(
Gµ

ν
∗Gν

ρ
∗Gρ

µ

)
= Tr

(
Gµ

νG
ν
ρG

ρ
µ

)
and Tr

(∗Gµ
ν
∗Gν

ρ
∗Gρ

µ

)
= Tr

(
Gµ

νG
ν
ρ
∗Gρ

µ

)

which can be shown with the help of 1

ǫµνρσǫ ν′ρ′σ′

µ = −

∣
∣
∣
∣
∣
∣

gνν′

gνρ′ gνσ′

gρν′

gρρ′ gρσ′

gσν′

gσρ′ gσσ′

∣
∣
∣
∣
∣
∣

Using the equations above it is only a short calculation to show that

LH,A
D7 III

=
C

2

[

HTr
(
Gµ

νG
ν
ρG

ρ
µ

)
+ iATr

(
Gµ

νG
ν
ρ
∗Gρ

µ

) ]

(6.6)

= C
[

φTr
(
Gµ

SDνG
ν
SDρG

ρ
SDµ

)
+ φ†Tr

(
Gµ

ASDνG
ν
ASDρG

ρ
ASDµ

) ]

(6.7)

with the constant C = −iαsg/15πv for a CP-even and C = iαsg/6πv for a CP-odd
Higgs.

The easiest way to start is to look at the φggg scattering amplitude given by the
selfdual part of LH,A

D7 III. Since it does not contain a φgg vertex, this amplitude is directly
given by the φggg vertex contracted with external polarization vectors. The partial
amplitude is explicitly given by:

A(φggg) =
1

2

((
− iǫq3ε(q1)ε(q2)ε(q3)q1 · q2 ± permutations of the qi

)

(
− iǫq1q2q3ε(q1)ε(q2) · ε(q3) ± permutations of the qi

)

+ iǫq2q3ε(q1)ε(q3)q1 · ε(q2) + iǫq2q3ε(q1)ε(q2)q1 · ε(q3) − iǫq1q3ε(q2)ε(q3)q2 · ε(q1)

+ iǫq1q3ε(q1)ε(q2)q2 · ε(q3) − iǫq1q2ε(q2)ε(q3)q3 · ε(q1) − iǫq1q2ε(q1)ε(q3)q3 · ε(q2)

+ 3q1 · q3q2 · ε(q1)ε(q2) · ε(q3)
)

+ 3q1 · ε(q2)q2 · ε(q3)q3 · ε(q1)
)

(6.8)

In Appendix D the basics of the spinor calculus are summarized which is needed to cal-
culate helicity amplitudes. As described there, it is always possible to find polarization
vectors that are orthogonal to each other, as long as all or all but one polarizations
of the gluons are the same. Since this is always true for only three gluons, the second
line in (6.8) vanishes for every helicity configuration. The first line also vanishes, since

1taken from [4] A.1.10 p.743.
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three polarization vectors are contracted with the epsilon tensor.2

If all gluons have helicity h = −1, one can see with the help of (D.1), that each of
the remaining terms in (6.8) are proportional to 〈12〉〈23〉〈31〉, all with the same phase,
leading to

A(φg−g−g−) ∝ 〈12〉〈23〉〈31〉

The case where all helicities are positive h = +1, each term is proportional to [12][23][31],
but the sum exactly cancels. For all other helicity configurations, each term in (6.8)
vanishes separately.
As one might guess, the only non vanishing amplitude for the anti-selfdual part of the
Lagrangian LD7 III is the one with all helicities being positive:

A(φ†g+g+g+) ∝ [12][23][31]

This leads to the following conjecture for the n-gluon partial amplitude of the selfdual
part of LD7 III :

A(φ, g1, . . . , gn) = 0, if #g− ≤ 2 (6.9)

A(φ, i−, j−, k−) ∝ 〈ij〉2〈jk〉2〈ki〉2
〈12〉 . . . 〈n − 1, n〉〈n1〉 (6.10)

That means, the amplitude vanishes if less than three gluons are negative, and the first
non vanishing amplitudes – the MHV amplitudes – are the ones with exactly three
negative helicity gluons. For the antiselfdual part just reverse helicities and exchange
〈ij〉 ↔ [ij]. This conjecture was tested numerically for the four gluon amplitude.
That is, the amplitude was calculated for a CP-even and a CP-odd Higgs and φ was
constructed by taking the complex sum of both amplitudes φ = 1

2
(H+iA). The obtained

amplitude was compared by the one, that is obtained via (6.10). The absolute values
of the amplitudes are numerical in perfect agreement if one takes the proportionality
constant equal 12 (the ratio is 1.0 up to 14 digits). Since conventions for calculating the
MHV amplitudes were used, that differ from those used for calculating the Feynman
diagrams, the relative phase to the dimension 5 amplitude still has to be fixed. This
was done by calculating the amplitudes considering LD5 + LD7 III. For a phase factor
of (−1) again both calculations are in perfect agreement. Therefore, the four gluon
partial amplitude for LD7 III is given by3

A(φ, i−, j−, k−) = − 12
〈ij〉2〈jk〉2〈ki〉2
〈12〉〈23〉〈34〉〈41〉 (6.11)

Since this amplitude is holomorphic in its’ arguments, it should be possible to continue
it off-shell and use it as an MHV-vertex. The four gluon amplitude for the all minus
case was calculated, by using (6.11) as a MHV vertex and combining it with a pure
QCD MHV-vertex. As expected, the absolute value of the amplitude was numerically

2see [13], Appendix B
3The color decomposition is given by (3.13)
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in perfect agreement with the one calculated using Feynman graphs.
In the pure QCD case as well as the case where the φ field couples to the gluons
via the dimension 5 operator, supersymmetric Ward identities relate MHV amplitudes
containing only gluons to those containing one or two quark antiquark pairs [9, 15].
These identities can be derived, using the fact that the supercharge Q annihilates
the vacuum. Following the line of arguments one can conclude, that the amplitudes
containing a φ field (that couples to the SD part of LD5) and one qq̄ pair should vanish if
the total number of negative helicity particles is less than three (for φ† reverse helicities).

An(φ, q∓, q̄±, g+
3 , . . . , g+

n ) = 0

An(φ†, q±, q̄∓, g−
3 , . . . , g−

n ) = 0

However, relating (6.10) to amplitudes containing a qq̄ pair cannot be constructed in
the same way, since for the proof it is essential that the MHV amplitudes are made
out of exactly two negative (positive) helicity gluons. Nevertheless, it is worth to try
to guess MHV amplitudes for the 4 parton case with one quark-antiquark pair and two
gluons, since the amplitude is already available in VBFNLO. Being inspired by the pure
QCD MHV amplitudes

An(g−
i , g−

j ) = −〈ij〉
〈ik〉An(q+

k , g−
i , q̄−j )

one can use trial and error by multiplying (6.11) with spinor products of the type
〈ij〉/〈jk〉 where i and k represent the positive and negative helicity (anti)quark respec-
tively, and j is one of the negative helicity gluons. It was worth the effort, since for one
combination, the MHV amplitudes indeed coincide:

A(φ, q+
1 , g−

2 , g−
3 , q̄−4 ) = − 12

〈12〉〈24〉〈23〉2〈34〉2
〈12〉〈23〉〈34〉〈41〉 = −12

〈24〉〈23〉〈34〉
〈41〉 (6.12)

The phase was checked to be correct by comparing the sum of the dimension 5 and
dimension 7 result, as it was done in the pure gluonic case.
As a comment, deriving supersymmetric Ward identities for LD7 III for two quark-
antiquark pairs should naively lead to the result, that the amplitude containing only
one quark-antiquark pair should vanish. This is in agreement with the observation that
this Lagrangian does not contribute to the qq → qqH amplitude.

The only missing part are now MHV amplitudes for LD7 II. We already know from
the previous section, that the four gluon Higgs amplitude for LD7 II and LD7 III are
proportional. A short calculation shows, that also the three gluon Higgs amplitudes are
proportional. Further, the two gluon Higgs amplitude vanishes in both cases, as long
as the gluons are on-shell. This raises the question if the amplitudes are the same for
any number of external gluons. If so, the conjectures (6.9) and (6.10) would also be
true for the selfdual part of LD7 II. So far, they for sure give the right expression for
n = 2, 3, 4.



Chapter 7

Conclusions

The major challenge at the LHC will be the discovery or the exclusion of a Standard
Model like Higgs boson. Therefore not only the existence of a new particle has to be
guaranteed, but also its coupling properties and its spin have to be determined. In
order to extract these from experimental data, one needs predictions with very small
theoretical uncertainties – as well for the production process itself as for the background
processes. A very promising discovery channel for a SM-like Higgs, is Higgs production
via weak boson fusion. This process is actually known at NLO accuracy in αs, while
the QCD background process Higgs production via gluon fusion is only known at NLO
if one takes the large top mass approximation into account. To perform this NLO cal-
culation, the use of MHV amplitudes was made, since calculating scattering amplitudes
therewith can be considerably faster than using the common method of Feynman dia-
grams.
The aim of this thesis was to determine the impact of helicity amplitudes, especially
MHV amplitudes, for Higgs plus two jets via gluon fusion in the large top mass limit.
In order to use the effective theory as an alternative to the full loop calculation (e.g
in a NLO calculation), it was examined to what extent it is valid, and in addition a
correction described by dimension 7 operators was considered.
In Chapter 3 the strategy for calculating scattering amplitudes for Higgs plus n-partons
with MHV techniques was reviewed. The main idea is to split the Lagrangian into a
selfdual and an antiselfdual part. The so-derived MHV amplitudes were implemented
into the parton leven Monte Carlo program VBFNLO for the process pp → Hjj. The
time spent for calculating these amplitudes was compared to the time needed to calcu-
late the amplitudes with Feynman diagrams. We saw that for the most time consuming
subprocess gg → ggH , the calculation using MHV amplitudes is almost a factor 3 faster
than calculating with Feynman diagrams, while for the other two subprocesses the cal-
culation with MHV amplitudes is comparable. Further the contribution of different
helicity configurations to the total cross section as well as to the differential cross sec-
tion dσ/dΦjj was studied. It was shown that the amplitudes which are MHV provide
the bulk of the total cross section. In addition, exactly these amplitudes are responsible
for the azimuthal angle modulation of the differential cross section.
Chapter 4 focuses on the large top mass limit. In this limit, one can expand the ampli-
tude describing the Higgs-gluon coupling via a top loop into a power series in 1/mtop.
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The first coefficient proportional to O(1/mt)
0 can be described by the well known di-

mension 5 effective theory. It was recovered for a CP-even and for a CP-odd Higgs. The
second coefficient, which is proportional to O(1/mt)

2, can be described by an effective
dimension 7 theory. The derivation of the dimension 7 Lagrangian was explained in
detail. We saw that this Lagrangian is ambiguous, and one has to take a particular
choice which is motivated by the kinematics of the process.
In Chapter 5 the various operators describing the dimension 7 effective theory were
implemented into VBFNLO for the process pp → Hjj via gluon fusion. The effective
dimension 5 (D5) and dimension 7 (D7) theories were compared with respect to the
full calculation containing the top loop. We found out, that the D5 theory leads to
unexpectedly high errors, of about 10%−15%. Processes leading to high PT jets in the
final state spoil the effective theories. The errors can be reduced by considering the D7
theory and performing additional cuts on the phase space. Since the above mentioned
NLO calculation for this process also uses the D5 theory, it suffers from errors of pre-
sumably the same magnitude. Including the D7 Lagrangians could help to reduce these
errors.
In Chapter 6 the effective D7 Lagrangians for a CP-even and a CP-odd Higgs were split
into a selfdual and antiselfdual part in order to derive MHV amplitudes – in the same
way as it was done for the D5 theory. One part of the D7 Lagrangian is proportional to
the D5 Lagrangian; the corresponding MHV amplitudes are therefore trivial. For the
two other parts of the Lagrangian, a conjecture for the n-gluon φ amplitude was given
and shown to agree numerically with the known result for n = 4. Finally, for one of
these two parts, a MHV amplitude for the qqggH amplitude was found.



Appendix A

Feynman Rules and conventions

The following Feynman rules were used for the calculations:

a, µ

= igγµta (A.1)

=
i(/p + m)

p2 − m2 + iǫ
(A.2)

= − i
mf

v
(CP-even Higgs) (A.3)

= − γ5mf

v
(CP-odd Higgs) (A.4)

a1, µ1 a2, µ2 =
−igµ1µ2δa1a2

p2
(A.5)

a3, µ3a2, µ2

a1, µ1

=
gfa1a2a3 [gµ1µ2(q1 − q2)

µ3

+ gµ2µ3(q2 − q3)
µ1

+gµ3µ1(q3 − q1)
µ3 ]

(A.6)

65



66 APPENDIX A. FEYNMAN RULES AND CONVENTIONS

a1, µ1 a2, µ2

a3, µ3 a4, µ4

=

−ig2
[

fa1a2bfa3a4b (gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+fa1a3bfa2a4b (gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+fa1a4bfa2a3b (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)
]

(A.7)

Notice that the Feynman rules used in VBFNLO use the conventions of Barger, Phillips
[31], which differ in the gluon-fermion vertex by an additional (−1). So one has to be
careful and has to consider an additional minus sign for the phase when an odd number
of gluon-fermion vertices appear.

Conventions

As long as not indicated explicitly the following conventions are taken:
Metric:

gµν = diag(1,−1,−1,−1) (A.8)

Gamma matrices:

γµ =

(
0 σµ

σ̄µ 0

)

with
σµ = (1, ~σ)

σ̄µ = (1,−~σ)
(A.9)

γ5 ≡ − iγ0γ1γ2γ3 (A.10)

Tr
(
γµγνγργσγ5

)
= − 4iǫµνρσ (A.11)

where ~σ are the Pauli matrices.

SU(3) color matrices:

Tr
(
T aT b

)
=

1

2
δab (A.12)

[
T a, T b

]
= ifabcT c (A.13)



Appendix B

Calculation of effective vertices

All calculations were performed with the help of Mathematica.

B.1 Effective Hgg vertex

q1 k

q2

µ1, a1

µ2, a2

HT µ1µ2

1 +

q1

k
q2

µ1, a1

µ2, a2

HT µ1µ2

2

The analytic expression reads (with q12 = q1 + q2)

T µ1µ2

1 = (−1)

∫
ddk

(2π)d
Tr

{

i

/k − mt

(igγµ1ta1)
i

/k + /q1
− mt

(igγµ2ta2)
i

/k + /q12
− mt

(
−imt

v
)

}

= (−δa1a2)
1

2

mtg
2

v

∫
ddk

(2π)d

Tr
{

(/k + mt)γ
µ1(/k + /q1

+ mt)γ
µ2(/k + /q12

+ mt)
}

[k2 − m2
t ] [(k + q1)2 − m2

t ] [(k + q12)2 − m2
t ]

(B.1)

Dimensional regularization was used to handle the singularities appearing in inermedi-
ate steps. The expression was evaluated in the following way:

• Shift the integration variable: k + q1 → k

• Introduce Feynman parameters according to

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
2δ(x + y + z − 1)

(xA + yB + zC)3
(B.2)

• Define

l = k − yq1 + zq2 (B.3)

∆ = m2
t + (zq2 − yq1)

2 − yq2
1 − zq2

2 (B.4)
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and express everything in terms of l and ∆, e.g. shift the integration variable.

⇒ T µν
1 = const ·

∫ 1

0

dy

∫ 1−y

0

dz

∫
ddl

(2π)d

2Tr {l, q1, q2}
[l2 − ∆]3

(B.5)

• The integral is now symmetric in l, hence one can drop all terms in the numer-
ator containing an odd number of l ’s. Further, symmetry allows one to replace
lµ1lµ2 → 1

d
l2gµ1µ2

• The nummerator contains a rational part ∝ l0 and a divergent part ∝ l2, which
has to be regularized. Performing the integral over the divergent part (with
ǫ = (4 − d)/2) one gets:1

∫
ddl

(2π)d

gµ1µ2l2(4
d
− 1)

[l2 − ∆]3
=

igµ1µ2

2

1

(4π)2−ǫ
ǫΓ(ǫ)

(
1

∆

)ǫ

ǫ→0
=

igµ1µ2

32π2
(B.6)

For the rational part one only has to calculate the finate integral leading to
∫

d4k

(2π)4

Nrat

[l2 − ∆]3
=

−i

32π2

Nrat

∆
(B.7)

where Nrat is a function independent of l.

• Expand 1/∆ into a geometric series:

1

∆
≡ 1

m2
t + R

=
1

m2
t

1

1 + R
mt

=
1

m2
t

(

1 − R

m2
t

+

(
R

m2
t

)2

− . . .

)

(B.8)

R is a polynomial of the gluon momenta q1, q2 and the Feynman parameters y
and z

• Integrate out the Feynman parameters y and z.

• Exploit Furry’s theorem [26] to get the result for the three point function T µ1µ2 :
T µ1µ2

1 = T µ1µ2

2 = 1
2
T µ1µ2 .

Expressing the result as

T µ1µ2 = T µ1µ2
D5 + T µ1µ2

D7 ·
(

1

m2
t

)

+ T µ1µ2
D9 ·

(
1

m2
t

)2

+ . . . (B.9)

one finally finds

T µ1µ2
D5 = − iαs

3πv
δa1a2(gµ1µ2q1 · q2 − qµ2

1 qµ1
2 ) (B.10)

T µ1µ2
D7

=
iαs

180πv
δa1a2

[
(gµ1µ2q1 · q2 − qµ2

1 qµ1

2 )(−7q1 · q2 − 9q2
1 − 9q2

2) (B.11)

+gµ1µ2q2
1q

2
2 − q2

1q
µ1

2 qµ2

2 − q2
2q

µ1

1 qµ2

1 + (q1 · q2)q
µ1

1 qµ2

2

]

1The integrals can be found in various integral tables, e.g. in the appendix of [26].
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B.2 Effective Hggg vertex

q1

k

k + q123

q2

k + q1

k + q12

q3

µ1, a1 H

µ2, a2 µ3, a3

Bµ1µ2µ3
1 +

q1

k + q23

k + q123

q2

k + q3

k

q3

µ1, a1 H

µ2, a2 µ3, a3

Bµ1µ2µ3
2

The analytic expression of a generic four point integral is

Bµ1µ2µ3

1 = (−1)

∫
d4k

(2π)4
Tr

{

i

/k − m
(igγµ1ta1)

i

/k + /q1
− m

(igγµ2ta2) (B.12)

× i

/k + /q12
− m

(igγµ3ta3)
i

/k + /q123
− m

(
−im

v
)

}

The full four point function is given by the sum over all six permutations of the gluons.
This integral is finite, so no regulator is needed. The calculation is similar to the
calculation of the three point function.

• Shift the integration variable: k → k − q1

• Use Feynman-Parameters according to:

1

ABCD
=

∫ 1

0

dx1dx2dx3dx4δ(x1 + x2 + x3 + x4 − 1)
3!

[x1A + x2B + x3C + x4D]4

(B.13)

• Define

lµ = kµ − x2q
µ
1 + x3q

µ
2 + x4q

µ
2 + x4q

µ
3 (B.14)

∆ = m2 + x2
2q

2
1 − x2q

2
1 − 2x2x3q1 · q2 − 2x2x4q1 · q2 − 2x2x4q1 · q3 + x2

3q
2
2(B.15)

+ x2
4q

2
2 − x3q

2
2 + 2x3x4q

2
2 − x4q

2
2 + 2x2

4q2 · q3 + 2x3x4q2 · q3 − 2x4q2 · q3

so that the denominator becomes DN(q1, q2, q3, q4, l) = (l2 − ∆)4

• Discard all odd numbers of l due to symmetric integration.

• The momentum intergral looks somewhat like (with A1 and A2 independent of l)
∫

d4l

(2π)4

Tr(. . .)

DN(. . .)
=

∫
d4k

(2π)4

{

A1
lµlν |l2
DN

+ A2
1

DN

}

(B.16)

Performing the integral using
∫

d4l

(2π)4

1

(l2 − ∆)4
= i

1

16π2

1

6

1

∆2
(B.17)

∫
d4l

(2π)4

l2|lµlν
(l2 − ∆)4

= − i
1

16π2

4|gµν

12

1

∆
(B.18)
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one gets

Bµ1µ2µ3

1 = i
g3m

(4π)2v
Tr(ta1ta2ta3)

∫ 1

0

dx1dx2dx3dx4δ(
∑

xi − 1)

(

A3
1

∆
+ A4

1

∆2

)

where A3, A4 are functions of the external momenta and Feynman parameters.

• Expand the denominators into a power series in 1/m2
t

1

∆
=

1

m2 + R
=

1

m2

(

1

1 + R
m2

)

=
1

m2

(

1 − R

m2
+

R2

m4
− . . .

)

(B.19)

1

∆2
=

1

(m2 + R)2
=

1

m4

(

1 − 2
R

m2
+ 3

R2

m4
+ . . .

)

(B.20)

• Perform the integral over the Feynman parameters, beeing left with

Bµ1µ2µ3

1 (q1, q2, q3) = Tr(ta1ta2ta3)B̄µ1µ2µ3

1 (B.21)

From Furry’s theorem one gets

B̄µ1µ2µ3
1 (q1, q2, q3) = −B̄µ1µ2µ3

2 (q1, q2, q3) = B̄µ1µ2µ3(q1, q2, q3) (B.22)

The color structure of the sum of the two diagrams above is

Tr(ta1ta2ta3)B̄µ1µ2µ3
1 (q1, q2, q3) + Tr(ta3ta2ta1)B̄µ1µ2µ3

2 (q1, q2, q3)

= [Tr(ta1ta2ta3) − Tr(ta3ta2ta1)] B̄µ1µ2µ3(q1, q2, q3) =
i

2
fa1a2a3B̄µ1µ2µ3(q1, q2, q3)

using the identity

Tr(ta1ta2ta3) =
1

4
(da1a2a3 + ifa1a2a3) (B.23)

• The full amplitude can be recovered by summing over the six permutations of the
gluons. It is proportional to a single color factor fa1a2a3

Bµ1µ2µ3(q1, q2, q3) =
i

2
fa1a2a3

(
B̄µ1µ2µ3(q1, q2, q3) + B̄µ2µ3µ1(q2, q3, q1) (B.24)

+B̄µ3µ1µ2(q3, q1, q2)
)

Again, expressing the result as

Bµ1µ2µ3 = Bµ1µ2µ3
D5 + Bµ1µ2µ3

D7 ·
(

1

m2
t

)

+ Bµ1µ2µ3
D9 ·

(
1

m2
t

)2

+ . . . (B.25)

one finds

Bµ1µ2µ3
D5

=
gαs

3πv
fa1a2a3

(
(qµ1

2 − qµ1

3 ) gµ2µ3 + (qµ2

3 − qµ2

1 ) gµ1µ3 + (qµ3

1 − qµ3

2 ) gµ1µ2
)

(B.26)
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Bµ1µ2µ3
D7

=
gαs

180πv
(−qµ1

1 qµ2
2 qµ3

1 − 2qµ1
1 qµ2

3 qµ3
1 + 2qµ1

1 qµ2
1 qµ3

2 + qµ1
1 qµ2

2 qµ3
2 + qµ1

1 qµ2
1 qµ3

3 (B.27)

− qµ1

1 qµ2

3 qµ3

3 − 9gµ1µ3qµ2

1 q2
1 + gµ1µ3qµ2

2 q2
1 + 11gµ1µ3qµ2

3 q2
1 + 9gµ1µ2qµ3

1 q2
1

− 11gµ1µ2qµ3

2 q2
1 − gµ1µ2qµ3

3 q2
1 − qµ1

1 gµ2µ3q1 · q2 − 7gµ1µ3qµ2

1 q1 · q2

+ gµ1µ3qµ2
2 q1 · q2 − 18gµ1µ3qµ2

3 q1 · q2 − 4gµ1µ2qµ3
1 q1 · q2 + 4gµ1µ2qµ3

2 q1 · q2

+ qµ1

1 gµ2µ3q1 · q3 + 4gµ1µ3qµ2

1 q1 · q3 − 4gµ1µ3qµ2

3 q1 · q3 + 7gµ1µ2qµ3

1 q1 · q3

+ 18gµ1µ2qµ3

2 q1 · q3 − gµ1µ2qµ3

3 q1 · q3 − qµ1

1 gµ2µ3q2
2 − 10gµ1µ3qµ2

1 q2
2

+ 10gµ1µ3qµ2
3 q2

2 + 11gµ1µ2qµ3
1 q2

2 − 9gµ1µ2qµ3
2 q2

2 + gµ1µ2qµ3
3 q2

2 + 18gµ1µ3qµ2
1 q2 · q3

− gµ1µ3qµ2

2 q2 · q3 + 7gµ1µ3qµ2

3 q2 · q3 − 18gµ1µ2qµ3

1 q2 · q3 − 7gµ1µ2qµ3

2 q2 · q3

+ gµ1µ2qµ3

3 q2 · q3 + qµ1

1 gµ2µ3q2
3 − 11gµ1µ3qµ2

1 q2
3 − gµ1µ3qµ2

2 q2
3 + 9gµ1µ3qµ2

3 q2
3

+ 10gµ1µ2qµ3

1 q2
3 − 10gµ1µ2qµ3

2 q2
3 + qµ1

3 (11qµ2

3 (qµ3

1 − qµ3

2 ) + 2qµ2

2 qµ3

2 + qµ2

2 qµ3

3

+ qµ2
1 (−11qµ3

1 − 36qµ3
2 + 2qµ3

3 ) − 10gµ2µ3q2
1 + 18gµ2µ3q1 · q2 − 7gµ2µ3q1 · q3

− 11gµ2µ3q2
2 + 4gµ2µ3q2 · q3 − 9gµ2µ3q2

3) + qµ1

2 (36qµ2

3 qµ3

1 + 11qµ2

1 (qµ3

1 − qµ3

2 )

+ 11qµ2

3 qµ3

2 − 2qµ2

3 qµ3

3 − qµ2

2 (2qµ3

1 + qµ3

3 ) + 10gµ2µ3q2
1 + 7gµ2µ3q1 · q2

− 18gµ2µ3q1 · q3 + 9gµ2µ3q2
2 − 4gµ2µ3q2 · q3 + 11gµ2µ3q2

3))

B.3 Effective Agg vertex

q1 k

q2

µ1, a1

µ2, a2

AT µ1µ2

1 +

q1

k
q2

µ1, a1

µ2, a2

AT µ1µ2

2

The analytic expression for the three point function containing a CP-odd Higgs A is:

T µ1µ2

1 = (−1)

∫
d4k

(2π)4
Tr

{
i

/k − mt
(igγµ1ta1)

i

/k + /q1
− mt

(igγµ2ta2)
i

/k + /q12
− mt

× (−γ5mt

v
)

}

(B.28)

In the CP-odd case there is no regulator needed for the three point function. Due to the
additional γ5 in the trace there is only one tensor structure proportional to ǫµναβq1αq2β

and there are no singularities. The way the calculation was performed is alike the
CP-even case:

• Shift the integration variable k → k − p

• Introduce Feynman parameters as given in (B.2)

• Define

lµ = kµ − x2q
µ
1 + x3q

µ
2 (B.29)

∆ = x2
2q

2
1 − x2q

2
1 − 2x2x3q1 · q2 + x2

3q
2
2 − x3q

2
2 + m2 (B.30)
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so that the denominator becomes (l2 −∆)3. After performing the trace one is left
with

T µ1µ2

1 = −δab 4m
2
t g

2

2v

∫ 1

0

dx2

∫ 1−x2

0

dx3

∫
d4k

(2π)4

2ǫµ1µ2αβq1αq2β

(l2 − ∆)3
(B.31)

• Perform the integration over the loop momenta using
∫

d4k

(2π)4

1

(l2 − ∆)3
=

−i

(4π)2

Γ(1)

Γ(3)

1

∆
=

−i

2(4π)2

1

∆
(B.32)

• The remaining steps are equal to the CP-even case: expand 1/∆ as in (B.8),
integrate out the Feynman parametes and exploit Furry’s therem to get T µ1µ2 .

The final result is

T µ1µ2 =
iαsδ

ab

2πv
ǫµ1µ2αβq1αq2β

︸ ︷︷ ︸

T
µ1µ2
D5

+
iαsδ

ab

12πv
ǫµ1µ2αβq1αq2β(q2

1 + q1 · q2 + q2
2)

︸ ︷︷ ︸

T
µ1µ2
D7

(
1

m2
t

)

(B.33)

B.4 Effective Aggg vertex

q1

k

k + q123

q2

k + q1

k + q12

q3

µ1, a1 A

µ2, a2 µ3, a3

Bµ1µ2µ3

1 +

q1

k + q23

k + q123

q2

k + q3

k

q3

µ1, a1 A

µ2, a2 µ3, a3

Bµ1µ2µ3

2

The analtic expression is given by

Bµ1µ2µ3

1 = (−1)

∫
d4k

(2π)4
Tr

{

i

/k − m
(igγµ1ta1)

i

/k + /q1
− m

(igγµ2ta2) (B.34)

× i

/k + /q12
− m

(igγµ3ta3)
i

/k + /q123
− m

(−γ5m

v
)

}

Again, the calculation is quite similar to the CP-even case:

• Shift k → k − q1 and introduce Feynman parameters according to B.13

• Define

lµ = kµ − x2q
µ
1 + x3q

µ
2 + x4(q

µ
2 + qµ

3 ) (B.35)

∆ = m2 + (x2 − 1)x2q
2
1 − 2x2x3q1 · q2 − 2x2x4q1 · q2 − 2x2x4q1 · q3 (B.36)

− x3q
2
2 + x2

3q
2
2 − x4q

2
2 + 2x3x4q

2
2 + x2

4q
2
2 − 2x4q2 · q3 + 2x3x4q2 · q3

+ 2x2
4q2 · q3 − x4q

2
3 + x2

4q
2
3

Express everything in terms of l and ∆ so that the denominator is proportional
to (l2 − ∆)4.
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• Evaluate the trace and discard all odd numbers of lµ in the nominator. The
nominator can be splitted into two parts, one proportonal to l2 and one containing
no l ’s.

• Perform the integration over the loop momenta using (B.17) and (B.18) and
expand 1/∆n into a taylor series.

• Sum over the six permutations of the outer gluons and exploit Furry’s theorem
to express everything by one single color factor as in (B.24).

The result expressed as

Bµ1µ2µ3 = Bµ1µ2µ3
D5

+ Bµ1µ2µ3
D7

·
(

1

m2
t

)

+ Bµ1µ2µ3
D9

·
(

1

m2
t

)2

+ . . . (B.37)

is given by

Bµ1µ2µ3
D5 =

αsg

2πv
fa1a2a3ǫµ1µ2µ3σ(q1 + q2 + q3)σ (B.38)

Bµ1µ2µ3
D7 =

αsg

24πv
(−ǫµ3q1q2q3gµ1µ2 − ǫµ2q1q2q3gµ1µ3 + ǫµ2µ3q1q3qµ1

2 + ǫµ2ν3q2q3qµ1
2 (B.39)

+ ǫµ2µ3q1q2qµ1

3 − ǫµ2µ3q2q3qµ1

3 − ǫµ1q1q2q3gµ2µ3 − ǫµ1µ3q1q3qµ2

1 − ǫµ1µ3q2q3qµ2

1

+ ǫµ1µ3q1q2qµ2

3 + ǫµ1µ3q1q3qµ2

3 + ǫµ1µ2q1q2qµ3

1 − ǫµ1µ2q2q3qµ3

1 − ǫµ1µ2q1q2qµ3

2

− ǫµ1µ2q1q3qµ3
2 + ǫµ1µ2µ3q1q2

1 + ǫµ1µ2µ3q2q2
1 + ǫµ1µ2µ3q3q2

1 + ǫµ1µ2µ3q1q1 · q2

+ ǫµ1µ2µ3q2q1 · q2 + ǫµ1µ2µ3q3q1 · q2 + ǫµ1µ2µ3q1q1 · q3 + ǫµ1µ2µ3q2q1 · q3

+ ǫµ1µ2µ3q3q1 · q3 + ǫµ1µ2µ3q1q2
2 + ǫµ1µ2µ3q2q2

2 + ǫµ1µ2µ3q3q2
2 + ǫµ1µ2µ3q1q2 · q3

+ ǫµ1µ2µ3q2q2 · q3 + ǫµ1µ2µ3q3q2 · q3 + ǫµ1µ2µ3q1q2
3 + ǫµ1µ2µ3q2q2

3 + ǫµ1µ2µ3q3q2
3)

where ǫµ1µ2µ3q1 = ǫµ1µ2µ3αq1α etc.
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Appendix C

Identities between effective
Lagrangians

To show the following identities, it is useful to express the field strength tensors with
help of the covariant derivative in the adjoint representation (4.15-4.17). Using partial
integration and the fact, that the boundary terms vanish one has:

HGaνρGa µ
µνρ = HGaνρDabµGb

µνρ

= HGaνρ(∂µδabGb
µνρ − gAcµfabcGb

µνρ)

P.I.
= − (∂µH)GaνρGa

µνρ − H(∂µGaνρ)Ga
µνρ − gHGaνρAcµfabcGb

µνρ

= − (∂µH)GaνρGa
µνρ − HGb

µνρ(∂
µδba − gAcµf bac)Ga

µνρ

= − (∂µH)GaνρGa
µνρ − HGb

µνρD
baµGaνρ

= − (∂µH)Gaνρ(∂µδ
ab − gAc

µf
abc)Gb

νρ − HGb
µνρG

bµνρ

= − (∂µH)Gaνρ∂µGa
νρ + g(∂µH)Ac

µf
abcGaνρGb

νρ − HGa
µνρG

aµνρ

The second term in the last line vanishes since GaνρGb
νρ is symmetric under exchange

of a and b, while fabc is antisymmetric.
Further, partial integration of the first term displays that

−(∂µH)Gaνρ∂µGa
νρ = (∂µ∂

µH)GaνρGa
νρ + (∂µH)(∂µG

aνρ)Ga
νρ

⇒ −(∂µH)Gaνρ∂µGa
νρ =

1

2
(∂µ∂

µH)GaνρGa
νρ

Inserting this into the equation above, one finally gets

HGaνρGa µ
µνρ =

1

2
(∂µ∂µH)GaνρGa

νρ − HGa
µνρG

aµνρ (C.1)

An almost identical calculation holds for the case, where an additional epsilon tensor
is contracted, as it appears in the effective Lagrangian for an CP-odd Higgs.

AǫνραβGa
αβGa µ

µνρ = same calculation as in the CP-even case

= ǫνραβ(−(∂µA)Ga
αβ∂µGa

νρ + g(∂µA)Ac
µf

abcGa
αβGb

νρ − AGa
µνρG

a µ
αβ)
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The second term vanishes due to the symmetry in a and b of ǫνραβGa
αβGb

νρ = ǫνραβGb
αβGa

νρ

and fabc is antisymmetric under exchange of a, b. Partial integrating the first term gives

−ǫνραβ(∂µA)Ga
αβ∂µGa

νρ = ǫνραβ((∂µ∂
µA)Ga

αβGa
νρ + (∂µA)(∂µG

a
αβ)Ga

νρ)

= ǫνραβ((∂µ∂
µA)Ga

αβGa
νρ + (∂µA)(∂µG

a
νρ)G

a
αβ)

⇒ −ǫνραβ(∂µA)Ga
αβ∂µGa

νρ =
1

2
(∂µ∂

µA)ǫνραβGa
αβGa

νρ

where in the second line it was used that ǫµναβ = ǫαβµν and indices were relabled.
Putting erverything together one finds:

AǫνραβGa
αβGa µ

µνρ =
1

2
(∂µ∂

µA)ǫνραβGa
αβGa

νρ − AǫνραβGa
µνρG

a µ
αβ (C.2)

There is one more identity to be shown, which was used for the calculations. It is the
one connecting ǫµναβGa

µνρG
a
αβ

ρ with ǫµναβGa
ρµνG

a ρ
αβ. To derive the expression recall

that Ga
µνρ is proportional to the commutator [Dµ, [Dν , Dρ]]. Exploit the Jacobi-Identity

[Dµ, [Dν , Dρ]] + [Dν , [Dρ, Dµ]] + [Dρ, [Dµ, Dν ]] = 0

to get
Ga

µνρ + Ga
νρµ + Ga

ρµν = 0

Making use of the antisymmetry in the last two indices of Ga
µνρ and the fact, that all

indices are dummy, eather contractet with gρσ or ǫµναβ , so that one can always relabel
the indices, e.g. µ ↔ α ∧ ν ↔ β, leads to

gρσǫµναβGa
µνρG

a
αβσ = gρσǫµναβ(−Ga

νρµ − Ga
ρµν)(−Ga

βσα − Ga
σαβ)

= gρσǫµναβ(Ga
νρµGa

βσα + Ga
νρµGa

σαβ + Ga
ρµνG

a
βσα + Ga

ρµνG
a
σαβ)

= gρσǫµναβ(Ga
µρνG

a
ασβ − Ga

µρνG
a
σαβ − Ga

ρµνG
a
ασβ + Ga

ρµνG
a
σαβ)

= gρσǫµναβ(Ga
µνρG

a
αβσ − 2Ga

µρνG
a
σαβ + Ga

ρµνG
a
σαβ)

= gρσǫµναβ(Ga
µνρG

a
αβσ + 2Ga

µρνG
a
αβσ + 2Ga

µρνG
a
βσα + Ga

ρµνG
a
σαβ)

= gρσǫµναβ(Ga
µνρG

a
αβσ − 2Ga

µνρG
a
αβσ − 2Ga

µνρG
a
αβσ + Ga

ρµνG
a
σαβ)

= gρσǫµναβ(−3Ga
µνρG

a
αβσ + Ga

ρµνG
a
σαβ)

and hence

⇒ ǫµναβGa
µνρG

a
αβ

ρ =
1

4
ǫµναβGa

ρµνG
aρ

αβ (C.3)



Appendix D

Spinor calculus

Calculating scattering amplitudes in QCD using the Weyl-Van der Waerden spinor cal-
culus leads for specific helicity amplitudes to extaordernary short expressions. The
upcoming problem is, that calculating them is not always that straight forward. The
case of pure QCD for an arbitrary number of gluons was solved by Berends and Giele
using recursive techniques [8]. In this thesis one often is interested of calculating am-
plitudes with a scalar coupling to the (anti)selfdual part of the gluonic field strength
tensor, whereby contractions of epsilon tensors with outer momenta and polarization
vectors appear. This leads to new subtleties. In the following a strategy for calculating
them will be given, using a representation proposed in [9].

The solution of the massless Dirac equation (with definite helicity) is:

u±(k) =
1

2
(1 ± γ5)u(k) u±(k) = u(k)(1 ∓ γ5)

v∓(k) =
1

2
(1 ± γ5)u(k) v∓(k) = v(k)(1 ∓ γ5)

Define:

|i±〉 ≡ |k±
i 〉 ≡ u±(ki) = v∓(ki)

〈i±| ≡ 〈k±
i | ≡ u±(ki) = v∓(ki)

and spinor products:

〈ij〉 ≡ 〈i−|j+〉 = u−(ki)u+(ki)

[ij] ≡ 〈i+|j−〉 = u+(ki)u−(ki)

Useful identities are:

• Gordon identity: 〈i±|γµ|i±〉 = 2kµ
i

• Projection operator: |i±〉〈i±| = 1
2
(1 ± γ5) /ki

• Antisymmetry: 〈ij〉 = −〈ji〉, [ij] = −[ji], 〈ii〉 = [ii] = 0

• Fierz rearrangement: 〈i+|γµ|j+〉〈k+|γµ|l+〉 = 2[ik]〈lj〉

77



78 APPENDIX D. SPINOR CALCULUS

• Charge conjugation of current: 〈i+|γµ|j+〉 = 〈j−|γµ|i−〉

• Schauten identity: 〈ij〉〈kl〉 = 〈ik〉〈jl〉 + 〈il〉〈kj〉

The polarization vector for a massless gauge boson with momentum k of definite helicity
h = ±1 can be expressed as:

ǫ±µ (k, q) = ±〈q±|γµ|k∓〉√
2〈q∓|k±〉

where q is an arbitrary reference momenta which must not be proportional to k. It
has the right property of a polarization vector, viz. it is transverse to k, complex con-
jugation reverses its’ helicity and it has the standard normalization. A right choice of
the reference momenta qi can simplify the calculation substantially due to the following
properies (with ǫ±i (q) ≡ ǫ±(ki, qi = q)):

ǫ±i (q) · q = 0

ǫ+
i (q) · ǫ+

j (q) = ǫ−i (q) · ǫ−j (q) = 0

ǫ+
i (kj) · ǫ−j (q) = ǫ+

i (q) · ǫ−j (ki) = 0

/ǫ+
i (kj)|j+〉 = /ǫ−i (kj)|j−〉 = 0

〈j+|/ǫ−i (kj) = 〈j−|/ǫ+
i (kj) = 0

Now, if all helicities of the n external gluons are the same, take all the reference momenta
to be identical, qi ≡ q. If all but one helicities are identical, choose the reference
momenta of the differing gluon to be q1 = kn and for the remaining n − 1 gluons
q2 = q3 = . . . = qn = k1. With the relations above it follows that for this specific
helicity configurations one has

ǫi · ǫj = 0

From a technical point of view, this is the reason for the vanishing of so many helicity
configurations and the existence of MHV amplitudes.

Contractions with an epsilon tensor can be expressed in terms of spinor products in
the following way (ǫµ1µ2µ3µ4k1µ1k2µ2k3µ3k4µ4 ≡ ǫ(k1, k2, k3, k4)):

−4iǫ(k1, k2, k3, k4) = Tr (γ5/k1/k2/k3/k4)

= Tr

(
1

2
(1 + γ5)/k1/k2/k3/k4

)

− Tr

(
1

2
(1 − γ5)/k1/k2/k3/k4

)

= Tr
(
|k+

1 〉〈k+
1 |k−

2 〉〈k−
2 |k+

3 〉〈k+
3 |k−

4 〉〈k−
4 |
)

− Tr
(
|k−

1 〉〈k−
1 |k+

2 〉〈k+
2 |k−

3 〉〈k−
3 |k+

4 〉〈k+
4 |
)

= [12]〈23〉[34][41] − 〈12〉[23]〈34〉[41]

where in the last line the cyclic invariance of the trace was used. When calculating the
φggg scattering given by the selfdual part of LD7 III, one often has to deal with ǫ tensors
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contracting two or more polarization vectors. They can also be expressed in terms of
spinor products by fierzing the upcomming expressions:

4iǫ(ǫ+(k1), ǫ
+(k2), k3, k4) = Tr

(
γ5/ǫ

+(k1)/k3/ǫ
+(k2)/k4

)

= Tr

(
1

2
(1 + γ5)/ǫ

+(k1)/k3/ǫ
+(k2)/k4

)

− Tr

(
1

2
(1 − γ5)/ǫ

+(k1)/k3/ǫ
+(k2)/k4

)

= Tr

(

γµ 〈ξ−|γµ|k−
1 〉√

2〈ξ−|k+
1 〉

|k−
3 〉〈k−

3 |γν 〈ξ−|γν |k−
2 〉√

2〈ξ−|k+
2 〉

|k−
4 〉〈k−

4 |
)

− Tr

(

γµ 〈ξ−|γµ|k−
1 〉√

2〈ξ−|k+
1 〉

|k+
3 〉〈k+

3 |γν 〈ξ−|γν|k−
2 〉√

2〈ξ−|k+
2 〉

|k+
4 〉〈k+

4 |
)

=
〈k−

4 |γµ|k−
3 〉〈ξ−|γµ|k−

1 〉〈k−
3 |γν |k−

4 〉〈ξ−|γν|k−
2 〉

2〈ξ−|k+
1 〉〈ξ−|k+

2 〉

− 〈k+
4 |γµ|k+

3 〉〈ξ−|γµ|k−
1 〉〈k+

3 |γν |k+
4 〉〈ξ−|γν|k−

2 〉
2〈ξ−|k+

1 〉〈ξ−|k+
2 〉

=
[31]〈ξ4〉[42]〈ξ3〉 − [41]〈ξ3〉[32[〈ξ4〉

2〈ξ1〉〈ξ2〉 (D.1)

If more than two polarization vectors are contracted to the epsilon tensor, one can
demonstrate, as claimed in [13], that this expression vanishes.
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Zusammenfassung

Das Standardmodell der Teilchenphysik (SM) beschreibt alle bekannten fundamentalen
Teilchen und deren Wechselwirkung als Quantenfeldtheorie einer exakten lokalen SU(3)
Eichgruppe und einer spontan gebrochenen lokalen SU(2)L × U(1)Y Eichgruppe. Die
Vorhersagen des SM wurden in den unzähligen hochpräzisionsexperimenten, welche
teilweise unter grössten Anstrengungen durchgeführt wurden, immer wieder bestätigt.
Jedoch gibt es, trotz diesem Erfolg, noch immer einen unbekannten Parameter welchen
es zu bestimmen gilt: die Masse des sogenannten Higgs Teilchens. Um die Existenz
dieses Teilchens bestätigen bzw. ausschliessen zu können – und damit auch den Mech-
anismus der elektroschwachen Symmetriebrechung, ist einer der Hauptgründe die zum
Bau des Large Hadron Colliders (LHC) geführt haben. Der LHC ist ein Proton-Proton
Beschleuniger mit einer Schwerpunksenergie von 14TeV und einer unglaublich hohen
Luminosität, welches jedes zuvor dagewesene Experiment in den Schatten stellt.
Die ungebrochene SU(3) Symmetrie des SM ist die Theorie der starken Wechselwirkung
– die sogenannte Quanten Chromodynamik, oder kurz QCD. Die nicht-Abelsche Natur
der QCD erlaubt es den trägern der starken Wechselwirkung, den sogenannten Glu-
onen, direkt miteinander wechselzuwirken. Dies und die Tatsache, dass die starke
Wechselwirkung bei grossen Abständen sehr gross wird, machen Vorhersagen basierend
auf störungstheoretischen Rechnungen schwer handhabbar. Da Protonen aus stark
wechselwirkender Materie aufgebaut sind (Protonen bestehen aus Quarks und Gluo-
nen), werden Streuprozesse am LHC von QCD induzierten Prozessen dominiert. In
der Vergangenheit wurden daher grosse Anstrengungen unternommen, Vorhersagen für
QCD Ereignisse möglich zu machen. In den letzten Jahren ist diesbezüglich ein neuer,
vielversprechender Ansatz aufgekommen, welcher bis dato unbekannte (mathematis-
che) Eigenschaften von so genannten maximal helizitätsverletzenden (MHV) Ampli-
tuden ausnutzt. Diese Methode wurde zuerst nur für Amplituden formuliert, welche
die Streuung von n Gluonen beschreiben, jedoch wurde sie erweitert auf Amplituden
mit ein oder zwei Quark-, Antiquark Paaren, massiven Vektorbosonen oder skalaren
Teilchen, wie z.B. das Higgs Boson.
Einer der vielversprechendsten Entdeckungskanäle für ein Standard Model Higgs Boson
am LHC, ist die Higgserzeugung durch die annihilation schwacher Eichbosonen (auch
WBF Prozesse genannt). Dieser Prozess ist momentan zu next-to leading order (NLO)
Genauigkeit in der starken Kopplungskonstanden αs bekannt. Die charakteristische
Signatur dieses Prozesses sind die zwei resultierenden Jets in Vorwärtsrichtung. Der
mit diesem verwandte Prozess, Higgsproduktion plus zwei Jets induziert durch Gluon-
fusion, erzeugt einen irreduziblen Hintergrund und muss daher mit hoher Genauigkeit
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vorhergesagt werden. Bis jetzt ist dieser Hintergrund jedoch nur auf leading order (LO)
bekannt. Die Rechnung enthält eine Quark-Schleife, welche die Higgs-Gluon Kopplung
ermöglicht. Eine NLO Rechnung für diesen Prozess ist zwar prinzipiell erhältlich, je-
doch nur unter der Annahme, dass die Masse des Top-Quarks wesentlich grösser ist als
alle anderen vorkommenden Grössen (mtop → ∞). In diesem Grenzwert koppelt das
Higgs direkt an die Gluonen. Ein wesentlicher Bestandteil der NLO Rechnung sind
die oben erwähnten MHV-Amplituden, durch welche die Rechendauer des Programms
stark verkürzt wird.
In dieser Diplomarbeit wird der Prozess pp → Hjj durch Gluonfusion untersucht. Ziel
ist es, herauszufinden inwiefern MHV Amplituden von phänomenologischem Interesse
sind. Da sich MHV Amplituden mit einem Higgs Boson nur in der Nährung mtop → ∞
formulieren lassen, wird die Gültigkeit dieser Nährung untersucht. Weiter werden erst/-
malig die mit 1/m2

top unterdrückten Terme genauer betrachtet und nachgeprüft, ob man
durch Berücksichtigung dieser, die durch die Nährung auftretenden Unsicherheiten, re-
duzieren kann. Die Diplomarbeit ist wie gefolgt aufgebaut:
In Kapitel 2 werden die Grundzüge von Eichtheorien, speziell die der QCD wiederholt.
Es wird gezeigt, wie sich die QCD aus der QED durch Verallgemeinerung von einer
Abelschen auf eine nicht-Abelsche Eichgruppe ableiten lässt. Werden Übergangsam-
plituden auf Baumgraph-Niveau berechnet, so lassen sich die Amplituden einer nicht-
Abelsche Eichgruppe in so genannte partielle Amplituden zerlegen (im Fall der QCD
spricht man von farbgeordneten Amplituden). Diese Zerlegung wird durch betrachten
der zugrundeliegenden Algebra motiviert. Schliesslich wird am Ende des Kapitels noch
kurz auf den Higgs Sektor eingegangen, welcher für die Erzeugung der Massen und
der Symmetriebrechung des elektroschwachen Sektors zuständig ist. Es wird explizit
gezeigt, wie durch die Fermionkopplung an das skalare Higgsfeld Massenterme generiert
werden können ohne Eichinvarianz zu verletzen.
Für die oben erwähnten partiellen Amplituden existieren, für bestimmte Helizitätskon-
figurationen der externen Teilchen, erstaunlich kompackte Ausdrücke, welche MHV-
Amplituden genannt werden. In Kapitel 3 wird gezeigt, wie diese MHV-Amplituden
genutzt werden können, um Amplituden einer beliebigen Helizitätskonfiguration zu
konstruieren. Dies wird zuerst für reine QCD Prozesse beschrieben, und dann auf
Prozesse mit zusätzlich einem Higgs als externes Teilchen verallgemeinert. Diese MHV-
Amplituden wurden in das parton level Monte Carlo Program VBFNLO für den Prozess
pp → Hjj implementiert und das Tempo für Berechnungen mit diesen Amplituden
wurde mit dem für Berechnungen mit herkömmlichen Feynman Diagrammen verglichen.
Für die Subprozesse mit einem oder zwei Quarks im Endzustand ergibt sich mit MHV-
Amplituden kein nennenswerter Zeitvorteil, für den Subprozess mit zwei Gluonen im
Endzustand, welches auch der mit Feynman Amplituden am aufwendigsten zu Berech-
nende ist, ist man jedoch mit MHV Techniken um einen Faktor drei schneller. Im fol-
genden Abschnitt werden dann die Beiträge verschiedener Helizitätskonfigurationen zu
dem differentiellen Wirkungsquerschnitt dσ/d∆Φjj betrachtet. Diese Verteilung zeigt
ein oszillierendes Verhalten, dessen genaue Form davon abhängt, ob das Higgs Boson
CP-geraden oder CP-ungeraden Charakter (bzw. eine Mischung aus beiden) besitzt.
Den grösste Anteil am Wirkungsquerschnitt haben die zugehörigen MHV-Amplituden.
Auch sind es genau diese Amplituden, die eine Oszillation zeigen. Durch das Betra-
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chten einer komplexen Summe aus CP-geradem und CP-ungeradem Higgs wird diese
Eigenschaft ersichtlich.
Die MHV-Amplituden mit einem Higgs sind nur im Grenzfall mtop → ∞ erhältlich.
In diesem Fall kann die Higgs-Gluon Kopplung durch eine effektive Lagrangedichte
beschrieben werden, die Operatoren der Dimension 5 (D5) enthält. In Kapitel 4
diese effektive Theorie genauer betrachtet. Neben der bekannten D5 Theorie wird
der mit 1/m2

top unterdrückte Korrekturterm bestimmt, welcher durch eine effektive La-
grangedichte aus Operatoren der Dimension 7 (D7) beschrieben werden kann. Die Form
des D7 Lagrangians ist, anders als die des D5 Lagrangians, nicht eindeutig. Vielmehr
muss man sich auf ein unabhängiges Set von D7 Operatoren festlegen. Bei genauerer
Betrachtung der auftretenden Kinematik, erweist sich jedoch eine bestimmte Kombina-
tion von Operatoren als sinnvoll. Die mit 1/m2

top unterdrückten Korrekturterme werden
sowohl für ein CP-gerades als auch ein CP-ungerades Higgs-Boson hergeleitet.
In Kapitel 5 wird die Auswirkung der D7 Operatoren auf die drei Subprozesse qqH ,
qgH und ggH untersucht. Dazu wurden die durch die D7 Operatoren gegebenen Am-
plituden in VBFNLO implementiert. Man findet, dass für Impulsüberträge q2 ≫ m2

top

die Nährung zusammenbricht. Jedoch können die dafür relevanten Phasenraumregio-
nen durch einen cut auf den maximalen Transversalimpuls des härtesten Jets beseitigt
werden. Ein cut pT,max < 200GeV erscheint als angebracht. Dabei sollte man beachten,
dass dieser cut den totalen Wirkungsquerschnitt um ca. 10% reduziert. Dies sollte
jedoch nicht weiter stören solange man diesen Prozess als Hintergrundprozess zu Vek-
torbosonfusionsprozessen (WBF) betrachtet, da hierfür ein cut pT,max < 200GeV den
totalen Wirkungsquerschnitt nur um ca. 3.4% verringert. Eine genaue Untersuchung
zeigt, dass die durch die effektive Theorie auftretenden Unsicherheiten von 10%− 16%,
je nach Higgsmasse und angewendeter cuts, durch Berücksichtigung der D7 Korrek-
tur und dem cut pT,max < 200GeV deutlich reduziert werden können. Da die NLO
Rechnung im Limes mtop → ∞ berechnet wurde, ist anzunehmen, dass die Rechnung
von zusätzlichen Unsicherheiten der gleichen Grössenordnung behaftet ist. Würde man
in einer NLO Rechnung die D7 Operatoren berücksichtigen, könnten diese jedoch re-
duziert werden.
Die NLO Rechnung nutzt die Kompaktheit der MHV-Amplituden aus, um die für die
reellen Korrekturen benötigten zwei nach vier Prozesse möglichst effizient zu berech-
nen. Es wäre daher von grossem Vorteil, wenn man auch MHV-Amplituden für die
D7 Operatoren zur Verfügung hätte. In Kapitel 6 werden MHV-Amplituden für die
D7 Operatoren behandelt. Es wird ein analytischer Ausdruck für die n-Gluon-Higgs
Streuung gegeben, welcher gut motiviert ist, aber nicht bewiesen wird. Jedoch wird
gezeigt, dass die vier Gluon-Higgs Amplitude, gegeben durch die MHV-Amplituden,
nummerisch mit dem bekannten Ergebnis, welches man aus Feynman Diagrammen
erhält, übereinstimmt.
Kapitel 7 enthält eine abschliessende Diskussion der vorhergehenden Ergebnisse.
Verwendete Konventionen und sämtliche Rechnungen sind im Anhang zusammenge-
fasst.
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