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CHAPTER 1

Introduction

Ever since the moment that the Large Hadron Collider (LHC) provided its first data a
new era has begun for particle physics. The data so far confirms the Standard Model
(SM) with remarkable precision. The SM is based on an SU(3)C × SU(2)L × U(1)Y

gauge symmetry. The electroweak SU(2)L × U(1)Y symmetry is spontaneously bro-
ken down to the electromagnetic symmetry U(1)em. In the SM, electroweak symmetry
breaking is realized in the most economic way: A single scalar field obtains a vacuum
expectation value [1–7]. The scalar field through its vacuum expectation value gener-
ates masses for the gauge bosons as well as for the fermions. Three of the degrees of
freedom of the scalar field are thereby “eaten” by the W ± and Z bosons. The remain-
ing degree of freedom provides a physical particle - the Higgs boson. The Higgs boson
has another very important feature: It unitarizes the amplitudes for the scattering of
longitudinally polarized gauge bosons.
As soon as the Higgs boson is found and its mass - the only free parameter left - is mea-
sured, the SM will be completely verified. However, since the SM suffers from unsolved
problems such as the hierarchy problem the LHC data might soon suggest extensions
of the SM. Since the SM cannot unify all four fundamental forces - it does not include
the gravity - it seems to be only an effective, low energy description. Therefore, physics
beyond the SM is expected to be found at the TeV scale. However, new physics has
to fit into electroweak precision data from e.g. Tevatron or LEP, which until now have
confirmed the SM with high precision. This highly constrains new physics extensions.
An alternative idea to the elementary Higgs boson incorporated in the SM is that the
Higgs boson might be a bound state of a strongly interacting sector [8–14]. The Higgs
boson is realized as a pseudo Nambu-Goldstone boson [15] and is therefore naturally
lighter than the other usual resonances of the strongly-interacting sector. The Higgs
mass is generated via quantum effects and protected by an enlarged global symmetry.
This keeps the Higgs mass naturally small. Originally, these Composite Higgs models
could not fulfill electroweak precision tests, but has recently been revived by construc-
tions in higher dimensional curved space-times [16, 17].
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2 Chapter 1. Introduction

In Composite Higgs models there is an additional parameter, ξ, which lies between 0
and 1. The value ξ = 0 corresponds to the SM whereas ξ = 1 corresponds the techni-
color limit. In order to fulfill electroweak precision tests only slight deviations from the
SM are desirable. This implies small values for ξ. The particle content of these models
is the same as in the SM for low energies. Only the couplings change and now depend
on ξ. Such a change in the couplings can lead to significant changes in the Higgs pair
production cross sections and branching ratios.
The subject of this diploma thesis is to investigate Higgs pair production in the context
of Composite Higgs models. In Higgs pair production, the trilinear Higgs self-coupling
is accessible, which provides an insight into the Higgs potential and the mechanism of
electroweak symmetry breaking. In the first part of chapter 2 a short review of the
Higgs mechanism of the Standard model is given. In order to explain the difficulties of
the SM, the hierarchy problem will be described. In the second part of chapter 2 the
general concepts of Composite Higgs models will be introduced, both in the context
of a model-independent Lagrangian and for two explicit models. In the last part of
chapter 2 a modification of one of the models is discussed, where the fermions of the
new strongly interacting sector are not integrated out but appear explicitly. In chapter
3, Higgs pair production processes at the LHC are investigated. The cross sections for
gluon fusion, vector boson fusion and double Higgs-strahlung are examined. For the
gluon fusion process, parameter regions where the trilinear Higgs self couplings might
be accessible are constructed. Higgs pair production at e+e−-colliders is discussed
in chapter 4. In this context, Higgs pair production in double Higgs-strahlung off Z
bosons and W boson fusion is investigated. Cross sections as a function of the Higgs
mass and the collider energy are shown. Also the prospects of measuring the trilinear
Higgs coupling in these processes is discussed. In chapter 5, Higgs production in a
model with a partially composite top quark, where the new fermions of the strongly
interacting sector are explicitly taken into account, is presented. The first part of that
chapter is devoted to the diagonalization of the mass matrix. Then Higgs production
via gluon fusion is compared to a model where the new fermions are integrated out.
Afterwards, the way in which the new fermions affect Higgs pair production via gluon
fusion is investigated. In chapter 6, a summary and an outlook is given.



CHAPTER 2

Theoretical background

2.1. The Standard Model

The Standard Model (SM) of particle physics describes the electromagnetic, weak and
strong interactions of particles. The SM proves to be a theory of high predictive power
for many physical processes. The free parameters, however, have to be determined
by experiments. Furthermore, there is one particle which has not yet been found
experimentally - the Higgs boson. In this section the properties of the SM Higgs boson
will be described. In the next section an alternative to the Higgs sector of the SM will
be discussed.

2.1.1. The Higgs Mechanism

The Standard Model of particle physics is based on an SU(3)C×SU(2)L×U(1)Y gauge
symmetry. Gauge boson masses cannot be introduced ad hoc in the SM Lagrangian,
because these mass terms would violate gauge invariance. However, gauge boson masses
can be implemented through spontaneous breaking of the electroweak SU(2)L×U(1)Y

symmetry down to the electromagnetic symmetry U(1)em. Therefore a (Lorentz) scalar
field Φ, which transforms as a doublet under the SU(2) and has got a U(1) charge of
1/2, has to be introduced [18]. So the SM Lagrangian L is extended by

Ls = (DµΦ)†(DµΦ)− V (Φ) = (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2 . (2.1)

The first part is the kinetic term and the second part V (Φ) is the potential for the
field Φ. The potential is the key ingredient for electroweak symmetry breaking. Since
for µ2 ≤ 0 the field has a non-zero minimum, electroweak symmetry breaking can be
triggered. The scalar field acquires a vacuum expectation value (VEV)

v =

√

−µ2

λ
= 246 GeV . (2.2)

3



4 Chapter 2. Theoretical background

The vacuum field 〈Φ〉 reads

〈Φ〉 =
1√
2

(

0
v

)

. (2.3)

The electroweak covariant derivative is given by

DµΦ = (∂µ − ig
σa

4
W a

µ − ig′ 1

2
Bµ)Φ . (2.4)

Combining Eqs.(2.3) and (2.4) yields

(Dµ〈Φ〉)†(Dµ〈Φ〉) =
1

2

v2

4

(

g2(W 1
µ)2 + g2(W 2

µ)2 + (−gW 3
µ + g′Bµ)2

)

=
g2v2

4
(W 1

µ + iW 2
µ)(W 1 µ − i W 2 µ) +

1

2

√

g2 + g′2 v

2

1√
g2 + g′2 (g W 3

µ − g′Bµ)2 .

(2.5)

As it turns out, there are three massive gauge bosons

W ±
µ =

1√
2

(W 1
µ ± iW 2

µ) with masses MW =
g v

2
, (2.6)

Z0
µ =

1√
g2 + g′2 (g W 3

µ − g′Bµ) with mass MZ =
√

g2 + g′2 v

2
. (2.7)

The non-vanishing VEV of the scalar field hence gives masses to the gauge bosons.
If µ2 is not smaller than zero, Φ is just a massive gauge-coupled scalar field with
self-interactions but cannot give masses to the gauge bosons.
There is a fourth vector field, which remains massless and can thus be identified with
the photon field

Aµ =
1√

g2 + g′2 (gW 3
µ + g′Bµ) .

Expressed in mass eigenstates, the covariant derivative (2.4) becomes

Dµ = ∂µ− i
g√
2

(W +
µ T + +W −

µ T −)− i
1√

g2 + g′2 Zµ(g2T 3−g′2Y )− ieAµ(T 3 +Y ) , (2.8)

with T ± = 1
2
(σ1 ± iσ2) , T 3 = 1

2
σ3 and e = g g′√

g2+g′2
. The combination

Q = T 3 + Y (2.9)

can be identified with the electric charge quantum number in units of the elementary
charge e. We have e.g. Q=-1 for the electron.
Expanding the Lagrangian around the vacuum expectation value

Φ(x) =

(

θ2(x) + iθ1(x)
1√
2
(v + H(x))− iθ3(x)

)

= eiθa
σa
2v

(

0
1√
2
(v + H(x))

)

(2.10)

and using the unitary gauge
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Φ→ Φ′ = e−iθa
σa
2v Φ =

(

0
1√
2
(v + H(x))

)

(2.11)

leaves a real field H - the Higgs field. Linear combinations of the other three would-be
Goldstone bosons are “eaten” by the massive gauge bosons. As this three Goldstone
fields could be rotated away, they only appear in the spectrum as the longitudinal
polarizations of the W and Z bosons [19]. By inserting Eq. (2.11) into Eq. (2.1),
the covariant derivative not only gives masses to the gauge bosons but also provides
couplings of the Higgs to the gauge bosons and the kinetic term for the Higgs particle.
The mass term of the Higgs boson and its self-couplings are included in the potential
term V (Φ) of (2.1)

V (H) = −µ2

2
(v + H)2 +

λ

4
(v + H)4 =

λ

4
H4 + λvH3 +

1

2
2 λv2
︸ ︷︷ ︸

M2
H

H2 + const. . (2.12)

As the Higgs self-couplings are part of the Higgs potential, the measurement of Higgs
self-couplings gives an insight into the mechanism of electroweak symmetry breaking
and is therefore very important for the experimental verification of the Higgs mecha-
nism.

2.1.2. The Yukawa couplings

As the W bosons only couple to the left-handed fermions, left- and right-handed
fermions belong to different representations (fundamental and trivial respectively) of
the SU(2)L gauge group. In the first generation the fermionic fields are given by the
left-handed doublets and the right-handed singlets

L =

(

νe

e

)

L

, eR, QL =

(

u
d

)

L

, uR, dR . (2.13)

It is not possible to just write down a mass term L = −me(ēLeR + ēReL), because the
left- and right-handed fermionic fields are in different representations (e.g. eL is part
of an SU(2)L doublet and eR is an SU(2)L singlet). Such a term would violate the
SU(2)L gauge invariance. There are, however, gauge-invariant Yukawa couplings to
the Φ field. For the electrons they read

Lf = −λeL̄ · Φ eR + h.c. . (2.14)

When Φ acquires a vacuum expectation value, the fermions obtain their masses. For
example, for the electron we have

Lf = − 1√
2

λe v ēLeR + h.c. me =
1√
2

λe v . (2.15)

The couplings of the Higgs particles to fermions can be obtained by inserting (2.11)
into (2.14).
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2.1.3. Custodial symmetry

The SM has an additional symmetry: An approximate global SU(2) symmetry. This
symmetry fixes the ratio [20]

ρ =
MW

MZ cos θW

≡ 1 . (2.16)

This can be seen if the scalar field Φ is extended to a bidoublet under SU(2)L×SU(2)R.

Φ̃ =
1√
2

(ΦC, Φ) , (2.17)

where ΦC = iσ2Φ∗ denotes as usual the charged conjugate of Φ. This means that Φ
transforms under SU(2)R × SU(2)L as a (2,2). A general global SU(2)L × SU(2)R

transformation is given by
Φ̃ 7→ ULΦ̃U †

R
, (2.18)

with UR ∈ SU(2)R and UL ∈ SU(2)L. The Lagrangian (2.1) can be rewritten as

Ls = Tr
[

(DµΦ̃)†(DµΦ̃)
]

− µ2Tr
[

Φ̃†Φ̃
]

− λTr
[

(Φ̃†Φ̃)
]2

. (2.19)

Compared to (2.4) the covariant derivative becomes

DµΦ̃ = ∂µΦ̃− igW a
µ

σa

4
Φ̃ + ig′ 1

2
BµΦ̃σ3 (2.20)

In the Bµ term an additional σ3 occurs that originates from the different hypercharges
(Y = −1

2
and Y = 1

2
) of ΦC and Φ. The Lagrangian is still invariant under the SU(2)L

transformation but not under the SU(2)R transformation,

Dµ

(

Φ̃U †
R

)

6=
(

DµΦ̃
)

U †
R

(2.21)

because [σ3, UR] 6= 0 in general. So the SU(2)R+L symmetry is broken if g′ 6= 0.
Furthermore, the Yukawa couplings are not SU(2)R+L invariant because mu 6= md. So
the SU(2)R is only an approximate symmetry.

2.1.4. Partial wave unitarity in the SM

In the SM without the Higgs Boson an inconsistency in the description at high energies
occurs: Perturbative unitarity is violated in processes that involve external longitudi-
nally polarized vector bosons [21] (for reviews, see [7, 15, 19, 22]). Omitting the
contribution of the Higgs boson the Feynman diagrams for the elastic scattering of W
bosons are shown in Fig. 2.1.
The scattering amplitude grows with E2 at energies much higher than the mass of the
W bosons. This occurs because each longitudinal polarization vector gives a factor

ǫL

p0≫MW−→ p

MW

+
MW

2p0
(−1, 0, 0, 1) . (2.22)
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W +

W −

W +

W −

Z0, γ
W +

W −

W +

W −

Z0, γ

W +

W −

W +

W −

Figure 2.1.: Feynman diagrams for W +W − → W +W − scattering without a Higgs
boson.

The E4 dependence cancels when summed over all three diagrams, leaving only an E2

dependence. So for high energies (i.e. all terms with MW

E
are dropped) the amplitude

is

M(W +
L W −

L → W +
L W −

L )
E≫MW−→ g2

4M2
W

(s + t) . (2.23)

The dependence on E2 (or s) of the amplitude violates partial wave unitarity.
The amplitude can be expanded in partial waves

M = 16 π
∞∑

l=0

(2l + 1)Pl(cos θ)al , (2.24)

where al is the partial wave amplitude of the l-th wave. For 2 → 2 processes the
differential cross section in the centre-of-mass system (CMS) is given by

(

dσ

dΩ

)

CMS

=
|M|2
64 π2s

. (2.25)

Using (2.24) and integrating over the solid angle Ω leads to

σ =
16 π

s

∞∑

l=0

(2l + 1)|al|2 . (2.26)

The optical theorem on the other hand leads to the identity

σ =
1

s
Im(M(θ = 0)) . (2.27)

Combining (2.26) and (2.27), it follows that

|al|2 = Im(al) =⇒ Re(al)
2 +

(

Im(al)−
1

2

)2

=
1

4
. (2.28)

This means that the partial wave amplitude is constrained to lie in a unitary circle
with radius 1

2
in the complex plane. So for unitarity reasons

Re(al) <
1

2
(2.29)
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W +

W −

W +

W −

H
W +

W −

W +

W −

H

Figure 2.2.: The Feynman diagrams for the process W +W − → W +W − involving a
Higgs boson.

must be fulfilled. In W +
L W −

L -scattering the 0-th1 partial wave is given by

a0
E≫MW−→ s

32πv2
. (2.30)

In accordance with (2.29), unitarity is lost at

√
s = 4

√
πv ≈ 1.7 TeV . (2.31)

Even though this is only a tree-level result, it is not possible to determine whether uni-
tarity can be restored by including higher-order corrections, since the theory becomes
strongly interacting and thus pertubation theory is not longer reliable.
In the SM, unitarity can be restored by taking the Higgs boson into account. The cor-
responding Feynman diagrams can be found in Fig. 2.2. With the Higgs contribution
the amplitude becomes

M E≫MW−→ g2

4M2
W

[

s + t− s2

s−M2
H

− t2

t−M2
H

.

]

(2.32)

and the 0-th partial wave therefore yields

a0
E≫MW−→ M2

H

8πv2
. (2.33)

For
MH . 870 GeV (2.34)

the unitarity condition (2.29) is fulfilled.2

2.1.5. The fine-tuning problem

Even though the SM explains the electroweak precision data very well, there are still
some unsolved problems. For example, electroweak symmetry breaking is not generated
dynamically but is instead introduced ad hoc through a scalar field. Furthermore, the
SM gives no candidate for cold dark matter. There is also the unanswered question

1The 0-th partial wave gives the strictest bounds [7].
2The energy bound of Eq. (2.31) and the restriction on the Higgs mass of Eq. (2.34) becomes

stricter, if a full coupled-channel computation is done involving W , Z and H cf. Ref. [21].
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H W ±, Z0 t

Figure 2.3.: Feynman graphs for the dominant contributions to the Higgs mass at one-
loop level

about the unification of all four fundamental forces cf. Ref. [23, 24]. Besides these
reasons, a strong motivation for physics beyond the Standard Model is the fine-tuning
problem, which originates from the radiative corrections to the Higgs boson mass. At
one-loop the contributing Feynman graphs can be found in Figure 2.3. If these divergent
contributions are regularized by a cut-off Λ, the physical Higgs mass becomes

M2
H

= (M0
H

)2 +
3Λ2

8π2v2
(M2

H
+ 2M2

W
+ M2

Z
− 4m2

t ) . (2.35)

Here only the dominant contributions in the scale Λ are kept.3 M0
H denotes the bare

mass contained in the unrenormalized Lagrangian. Consequently, the Higgs mass is
quadratically divergent. Therefore, one would expect the Higgs mass to be of the same
order as the cut-off. This is called the hierarchy problem. But the Higgs mass should
be of the order of the electroweak symmetry breaking scale, v ≈ 246 GeV. This can
be achieved through renormalization by adding appropriate counterterms. Supposing
that the SM is valid up to some high-scale as e.g. the GUT scale MGUT = 1016 GeV
or the Planck scale MP = 1019 GeV, fine-tuning will be necessary. This means M0

H

must be adjusted to the 16th digit for the Higgs mass to be O(v) if the cut-off is
of the order of the GUT scale cf. Ref. [19]. There is no symmetry of the SM that
guarantees this cancellation. Attempts to solve this problems include for example,
supersymmetric extensions [7, 26–32] of the Standard Model, which introduce bosonic
partners for fermions and fermionic partners for bosons. This additional symmetry
reduces the divergence to a logarithmic divergence. Another possibility is to lower the
scale Λ, as in models with extra dimensions [33, 34]. In the following, an alternative
solution in which the Higgs boson is realized as a pseudo-Nambu-Goldstone boson will
be discussed.

3The quadratic divergence cannot be cancelled by simply setting the Higgs mass to MH =√

4m2
t −M2

Z
− 2M2

W
∼ 320 GeV, because by taking more loops into account, the general form of

the corrections becomes Λ2
∞∑

n=0

cn(λi) logn
(

Λ

µ

)

, where µ is the renormalization scale and cn denotes

the coefficient, which depends on the couplings. These coefficients cannot be cancelled in all orders,
cf. Refs. [19, 25].
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2.2. Composite Higgs models

Composite Higgs models are models where a light Higgs emerges as a bound state of a
strongly interacting sector. The Higgs boson is realized as a pseudo Nambu-Goldstone
boson4 and is therefore naturally lighter than the other usual resonances of the strong
sector [8–14]. In such models the hierarchy problem is solved because the Higgs mass
arises only at loop level and is protected by an approximate global symmetry. The
Higgs mass is not sensitive to virtual effects above the compositeness scale [15]. In the
next part of this section, the model-independent scenario of a strongly-interacting light
Higgs (SILH) of Ref. [35] will be discussed. Afterwards two concrete models [16, 17]
will be presented.

2.2.1. The strongly-interacting light Higgs (SILH)

The composite Higgs boson emerges as a pseudo Nambu-Goldstone boson of an enlarged
global symmetry G. This symmetry G is broken at a scale f to a subgroup H. It must
be possible to embed the SM electroweak group SU(2)L × U(1)Y in H. The G/H
coset space must hence contain at least one SU(2)L doublet, which could be identified
with the Higgs doublet. Concrete models are, for example, the custodially symmetric
SO(5)/SO(4) (discussed later) or the Littlest Higgs model based on SU(5)/SO(5) [36].
The Higgs potential vanishes at tree level, but G is broken by the couplings of the SM
fields to the strong sector (only SU(2)L×U(1)C has to be preserved), so that loops of
SM fermions and gauge bosons generate a Higgs potential at one-loop. The new strong
sector is parameterized by two parameters, namely the coupling gρ with gSM . gρ . 4π
(gSM stands for a generic SM coupling) and mρ, the mass of the heavy resonances of
the strong sector. For the effective low-energy Lagrangian these heavy resonances will
be integrated out. These parameters are related through

mρ = gρ f . (2.36)

The Higgs gets at one-loop a much lighter mass than the heavy resonances

MH ∼ gSM v . (2.37)

4A pseudo Nambu-Goldstone boson gets a mass at loop level in contrast to a Goldstone boson of
an exact symmetry
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With these assumptions, a low-energy effective Lagrangian can be constructed cf.
Ref. [35]. The Lagrangian, which contains six-dimensional operators, takes the form

LSILH =
cH

2f 2
∂µ
(

Φ†Φ
)

∂µ

(

Φ†Φ
)

+
cT

2f 2

(

Φ†←→DµΦ
) (

Φ†←→DµΦ
)

− c6λ

f 2

(

Φ†Φ
)3

+

(

cyyf

f 2
Φ†Φf̄LΦfR + h.c.

)

+
icW g

2m2
ρ

(

Φ†σi←→DµΦ
)

(DνWµν)i +
icBg′

2m2
ρ

(

Φ†←→DµΦ
)

(∂νBµν)

+
icHW g

16π2f 2
(DµΦ)† σi (DνΦ) W i

µν +
icHBg′

16π2f 2
(DµΦ)† (DνΦ) Bµν

+
cγg′2

16π2f 2

g2

g2
ρ

Φ†ΦBµνBµν +
cgg2

S

16π2 f 2

y2
t

g2
ρ

Φ†ΦGa
µνGaµν .

(2.38)

The Bµν , W µν and Gaµν denote the gauge field strengths of the corresponding gauge
fields.

←→
Dµ is defined as follows:

Φ†←→DµΦ = Φ†DµΦ− (DµΦ†)Φ . (2.39)

The coefficients are expected to be of order one. The coefficient cT vanishes in every
model that preserves custodial symmetry. The ρ parameter [37]

ρ =
M2

W

M2
Z

cos2 ΘW

= 1 (2.40)

is experimentally measured up to a precision of ∼ 0.3% [38]. In order to fulfill this
relation cT has to be very small. In the following cT will always be set to zero.
Only the operators proportional to the coefficients cH, c6 and cy give sizeable contribu-
tions to the Higgs couplings. The operators with coefficients cW and cB are suppressed
by a factor g

m2
ρ

= g
g2

ρf2 and therefore are of a similar size as a one-loop correction in a

strongly-coupled theory with gρ ≫ g . This also holds true for the operators with the
coefficients cγ and cg. As the operators with the coefficients cHW and cHB are suppressed

by a factor
(

g
f2

)2
, they are also of one-loop order.

The Feynman rules of the leading order operators can be calculated by inserting

Φ =
v√
2

(

0
H
v

+ 1

)

(2.41)

into (2.38). The operator
(

∂µ
(

Φ†Φ
))2

gives rise to additional terms of the form

• ∂µH∂µH

• ∂µH∂µH H

• ∂µH∂µH H2 .
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The first is a kinetic term, which has to be absorbed through a field redefinition in the
kinetic term of the SM part of the Lagrangian. The other two terms are interactions
between three and four Higgs fields. But as they depend on the derivatives of the Higgs
field (or on the momentum in momentum space) it is easier to take them into account
through a field redefinition as well

H → H − cHξ

2

(

H +
H2

v
+

H3

3v2

)

. (2.42)

This result was obtained through an expansion to first order in ξ = v2

f2 . The results of
this subsection can therefore only be used for small values of ξ. For high values of ξ a
resummation must be done. With the redefinition of (2.42) we have for (2.41)

Φ =
v√
2

(

0
1
v

(

H − cHξ
2

(

H + H2

v
+ H3

3v2

))

+ 1

)

. (2.43)

The operator
(

Φ†Φ
)3

gives an additional contribution to the Higgs potential. Calcu-
lating the vacuum expectation value (VEV) of the whole potential with (2.43) leads to
a redefinition of the VEV [39] while keeping its value fixed to that known by measure-
ments

v2

2
=

µ2

2λ

(

1− 3

4
c6 ξ

)

=
(246 GeV)2

2
. (2.44)

Due to the field redefinition (2.42) and the new SILH operators, new mass terms for
the fermions and the Higgs boson arise. As with the vacuum expectation value, they
have to be absorbed by a redefinition, while fixing their values to their experimental
ones

mf =
1√
2

yfv

(

1 +
ξ

2
cy

)

, (2.45)

M2
H

2
=

(√
2λv

)2

2

(

1− cH ξ +
3

4
c6 ξ

)

. (2.46)

Taking all this into account leads to

LSILH = ξ

(

−M2
H

2v

[(

c6 − 3
cH

2

)

H3 +
(

6 c6 −
25 cH

3

)
H4

4v
+ ...

]

+
mf

v
f̄f

[(

cy +
cH

2

)

H + (3 cy + cH)
H2

2v
+ ...

]

−cHM2
W

(

H

v
+

2 H2

v2
+ ...

)

W +
µ W −µ − cHM2

Z

2

(

H

v
+

2 H2

v2
+ ...

)

ZµZµ + ...

)

.

(2.47)

The ellipses denote terms in higher order in H . So the Higgs-coupling to vector bosons
HV V , to fermions Hff and the trilinear Higgs self-couplings H3 read in terms of the
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corresponding SM couplings

gHV V = gSM

HV V

(

1− cH

2
ξ
)

with gSM

HW W = g MW and gSM

HZZ =
g MZ

2
(2.48)

gHff = gSM

Hff

(

1− ξ
cH

2
+ ξcy

)

with gSM

Hff
=

g mf

2 MW

(2.49)

gHHH = gSM

HHH

(

1 + ξc6 − ξ
3 cH

2

)

with gSM

HHH =
3 g M2

H

2 MW

. (2.50)

Since the coupling of the Higgs boson to gauge bosons is modified, the Higgs boson
cannot fully unitarize the longitudinally polarized gauge boson scattering amplitude
any more. In Ref. [35] the high-energy limit of the scattering amplitudes is calculated.
For example, the authors obtained for longitudinal W ± scattering

M
(

W ±
L W ±

L →W ±
L W ±

L

)

≈ −cHs

f 2
. (2.51)

So there is still an E2
CMS

dependence, but it is suppressed by a factor of 1/f 2. This
means that the scale at which the amplitude does not fulfill the unitarity condition
of (2.29) is shifted to higher energies. The growth with energy of the amplitude is
strictly only valid up to the energy scale of the cut-off of the effective theory, which
corresponds to mρ. The description above the cut-off depends on the specific model.
But unitarity can eventually be restored by the exchange of the heavier resonances.
The same energy behaviour is expected for the process W +

L W −
L → HH . But this will

be investigated in detail in chapter 3 and 4.

2.2.2. Holographic Higgs

The Holographic Higgs Model is the four-dimensional description of a five-dimensional
theory in Anti de-Sitter (AdS) space-time. The AdS space-time is slightly curved even
in absence of matter. The curvature is hyperbolic.5 The five dimensional space-time
metric with curvature radius 1

k
is given by [16, 34, 41]

ds2 =
1

(kz)2 (ηµνdxµdxν)− dz2 = gMNdxMdxN , (2.52)

with M, N = {0...5}. The fifth dimension is denoted by the coordinate z and has
got two boundaries, one at z = L0 = 1

k
∼ 1

MP lanck
(UV boundary) and the other at

z = L1 ∼ µIR ∼ 1
TeV

(IR boundary). As gauge symmetry of the bulk6 the SU(3)C ×
SO(5) × U(1)B−L was proposed by [16, 17] which is reduced to the SM gauge group
SU(3)C × SU(2)L × U(1)Y on the IR boundary. On the UV boundary it is broken to
SU(3)C ×SO(4)×U(1)B−L in the model of Ref. [16] whereas in the model of Ref. [17]
it is broken to SU(3)C ×O(4)×U(1)B−L. These are the minimal possible scenarios, if
the global symmetry is assumed to contain the SM symmetry group, the Higgs boson

5Often the word warped is used, because the five-dimensional space-time is curved. But the four
dimensional universe still appears to be static and flat for an observer on a boundary [40].

6Bulk is the interval z∈]L0, L1[.
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is a pseudo Nambu-Goldstone boson and SO(3) acts as a custodial symmetry group.7

The five-dimensional model can be described by a four-dimensional effective theory.
In the four-dimensional effective description the heavier resonances of the strongly-
interacting sector - the Kaluza-Klein states - are integrated out. As long as the global
SO(5) symmetry is exact the Higgs field is an exact Goldstone boson and hence its
potential vanishes in all orders of perturbation theory. In order to obtain a Higgs
potential at loop order there must be SO(5) violating terms of SM fields. The potential
can be generated by SM fermions or gauge bosons. Since gauge bosons do not tend to
misalign the vacuum (they can only align the vacuum in the SU(2)× U(1) preserving
direction), electroweak symmetry breaking has to be triggered by fermions in particular
by the top quark, whose contribution to the Higgs mass is dominant due to its large
mass. But the gauge bosons nevertheless give a contribution to the Higgs potential.
The terms, which violate the the SO(5) symmetry and therefore lead to the generation
of the Higgs potential, are the linear couplings of the fermions to fermionic composite
operators O of the strongly-interacting sector with the same SU(3)C×SU(2)L×U(1)Y

quantum numbers of the SM fermion to which it couples [15]

λLf̄LOR + λRf̄ROL . (2.53)

where λL,R are matrices in flavour space. The four Goldstone bosons that arise through
the symmetry breaking SO(5)→SO(4)8 can be parameterized by

Σ = 〈Σ〉eΠ

f , 〈Σ〉 = (0, 0, 0, 0, 1), Π = −iT âhâ
√

2 , (2.54)

where T â denotes the broken generators and â = 1, 2, 3, 4. The scalar field is taken to
be dimensionless, so that

Σ2 = 1 . (2.55)

The couplings between the Higgs boson and the gauge fields can be obtained from the
kinetic term

Lkin =
f 2

2
(DµΣ) (DµΣ) . (2.56)

In the unitary gauge where Σ = (sin h/f, 0, 0, 0, cos h/f) (with h =
√

(hâ)2) this be-
comes

Lkin =
1

2
∂µh∂µh + M2

W (h)
(

WµW µ +
1

2 cos θW

ZµZµ
)

with MW (h) =
g f

2
sin

h

f
.

(2.57)
To calculate the Higgs couplings to the gauge fields, MW must be expanded in h =
〈h〉+ H . The couplings are then found to be

gHV V = gSM

HV V

√

1− ξ , gHHV V = gSM

HHV V
(1− 2ξ) , (2.58)

with ξ defined as

ξ =
v2

f 2
= sin2 〈h〉

f
. (2.59)

7For a non-minimal model see Ref. [42].
8Or SO(5) → O(4) in the model of Ref. [17].
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The couplings of the fermions to the Higgs boson depend on the representation of
the fermions. In MCHM4 (the model of Ref. [16]), the fermions are in the spinorial
representation of SO(5). In MCHM5 (the model of Ref. [17]), the fermions are in
the fundamental representation. In Ref. [17] another model, MCHM10, is discussed,
where the fermions are in the antisymmetric representation, but since the couplings
are modified in the same way as in MCHM5 this model will not be discussed separately
here.

MCHM4

The fermion masses and couplings to the Higgs boson are given by

Lyuk = −mf (h)f̄ f with mf = yf f sin
h

f
. (2.60)

The parameter yf depends on the couplings λR and λL of Eq.(2.53). For the light
fermions these couplings need to be very small to explain their light masses. In order to
have a large top mass, these couplings must be much stronger for the third generation,
so the right-handed top is mostly composite.9 The masses of the fermions and the
couplings to the Higgs boson can be calculated by performing an expansion in h around
the VEV. This results in

gHff = gSM

Hff

√

1− ξ . (2.61)

The Higgs potential is given by

V (h) = α cos
h

f
− β sin2 h

f
(2.62)

where α and β are integrals of self-energies of SM-fields - in particular of the top
quark and the SU(2)L gauge bosons. These self-energies encode the effects of strong
dynamics. They can be computed in terms of the 5d propagators and hence cannot be
calculated perturbatively in 4d. The potential has its minimum at cos h/f = −α/(2 β)
and hence

√

ξ = sin
〈h〉
f

=

√
√
√
√1−

(

α

2β

)2

. (2.63)

The effects of gauge fields only enter in β. Consequently, the gauge fields only con-
tribute to the sin2 operator with an overall positive coefficient βgauge < 0 and hence the
gauge fields tend to align the vacuum in the SU(2)L preserving direction. A misalign-
ment of the vacuum can only come from top loops and only if α is comparable in size
to β. To calculate the Higgs self-couplings the potential has to be expanded around
the VEV [43]

V (H) = V (〈h〉) +
1

2
M2

H
H2 + gSM

HHH

√

1− ξ H3 + gSM

H4

(

1− 7

3
ξ
)

H4 , (2.64)

with the Higgs mass given by

M2
H =

4β2 − α2

2βf 2
. (2.65)

9 In the next subsection the new fermionic states will not only be taken into account through form
factors but also explicitly through terms such as (2.53). There this compositeness can be seen.
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The SM coupling gSM
HHH

can be found in Eq. (2.50) and

gSM

H4 =
M2

H

8 v2
. (2.66)

If the Higgs couplings to the fermions and gauge bosons are expanded to first order, the
coefficients in the couplings of the model-independent description can be determined.
It is found that cH = 1, cy = 0 and c6 = 1.10 With the full couplings, however, it is
also possible to look at high values for ξ.

MCHM5

In MCHM5, where the fermions are in the fundamental representation of SO(5), the
Yukawa coupling of the fermions to the Higgs boson becomes

Lyuk = −mf (h)f̄ f with mf = yf f sin
h

f
cos

h

f
. (2.67)

Again the masses of the fermions and the couplings to the Higgs boson can be calculated
by performing an expansion in h around the VEV. This results in

gHff = gSM

Hff

1− 2 ξ√
1− ξ

. (2.68)

The Higgs potential also changes compared to MCHM4. We have

V (h) = α sin2 h

f
− β sin2 h

f
cos2 h

f
. (2.69)

Here again α and β are integral functions of form factors encoding the strong dynamics,
but here gauge fields only contribute to α. For β > |α| the electroweak symmetry is
broken and the minimum of the potential is given by

√

ξ = sin
〈h〉
f

=

√

β − α

2β
. (2.70)

If β < |α|, the minimum is at cos 〈h〉
f

= 0, which corresponds to ξ = 1. But then the
masses of the fermions of Eq. (2.67) vanish. So 0 ≤ ξ < 1 must be fulfilled. Expansion
of h in H around the VEV leads to

V (H) = V (〈h〉) +
1

2
M2

H
H2 + gSM

H3

(

1− 2ξ√
1− ξ

)

H3 + gSM

H4

(

1− 28
3

ξ (1− ξ)

1− ξ

)

H4 , (2.71)

with

M2
H =

2 (β2 − α2)

βf 2
. (2.72)

This corresponds to cy=1 in (2.49) and c6=0 in (2.50). The coefficient cH is of course
the same as in MCHM4, because the coupling of the Higgs boson to the gauge bosons

10With these coefficients the mass of the fermions, the Higgs boson and the gauge bosons are still
generated for every choice of ξ (see Eq.(2.45), (2.46)).
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does not depend on the representation of the fermions. The parameter space for the
Higgs mass and the compositeness parameter ξ is constrained. In direct Higgs searches
at LEP and Tevatron a Higgs mass of ∼ 80-115 GeV and of ∼ 162-167 GeV is excluded
for small values of ξ. However, for ξ & 0.7 smaller values of MH are also possible.
In MCHM5 an additional region with 110 GeV . MH . 200 GeV is excluded by the
Tevatron for large ξ. Electroweak precision data give further constraints. There are
three contributions to oblique parameters [37]. The one concerning the T parameter
will vanish if custodial symmetry is preserved as assumed in the last subsection. The
contribution to the S parameter gives a lower bound on the masses of the heavier
resonances mρ ≥ 2.5 TeV, and hence imposes a lower bound for the cut-off of the
effective theory. A third contribution arises because there are no longer complete
cancellations between the Higgs and the gauge boson contributions to the S and T
parameters as in the SM. They both become logarithmically divergent [44]. This gives
rise to an upper bound, ξ . 0.3, which can be relaxed by a factor of approximately 2
if a partial cancellation of about 50% with contributions from new states is allowed.11

2.2.3. Partially composite top

In the last subsection, the fermions of new strongly interacting sector are only taken
into account through form factors. Here we consider fermions with masses lighter
than the cut-off of the effective theory, which enter the Lagrangian explicitly. As the
top quark will be much more composite12 than the other quarks (because of its much
larger mass), only direct couplings of the third generation to the composite sector
will be taken into account. In Refs. [46–48] a model is described with new vector-
like fermions that transform in the fundamental representation of SO(5). These new
fermionic states can be described as an SO(4) ∼= SU(2)L × SU(2)R-bidoublet formed
by Q and X and a SO(4)-singlet T.13 Denoting the vector-like resonances of composite
fermions transforming in the fundamental representation of SO(5) by Ψ we have

Ψ =






Q
X
T




 , Q =

(

T̃
B̃

)

, X =

(

X 5

3

X 2

3

)

,

where Q has the same quantum numbers as the SM doublet qL, T has the same quantum
numbers as tR and X is an exotic fermion with hypercharge YX = 7

6
. The Lagrangian

reads

L = iqL
/DqL + itR /DtR + ibR /DbR + Ψ

(

i /D −mΨ

)

Ψ+

1

2
f 2 (DµΣ) (DµΣ)− yf

(

Ψ · Σ
) (

Σ† ·Ψ
)

−
(

mLqLQR + mRT LtR

)

.

(2.73)

11For more details see, e.g. [45].
12The quarks are composite in the sense of a mixing between the SM quarks and the quarks of the

strongly interacting sector. “More composite” means a stronger admixture of the heavy particles.
13Another scenario is, for example, where Q is not a doublet of new fermions but the SM doublet

of left-handed top and bottom (cf. Refs. [44, 49]). But as that seems to be excluded by B-physics and
contributions to the T parameter, this will not be discussed further here.
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The elementary SM fermions do not have a mass term, but obtain their mass through
mixing with the new fermions. The fermions of the new sector have a mass term and
a coupling to the Goldstone field Σ. Due to the linear couplings of the top to the new
fermions a mixing occurs [50]. With (2.73) and Σ = ( 1√

2
sin h

f
, 0, 0, 1√

2
sin h

f
, cos h

f
) the

mass terms of the Lagrangian can be written down:

−Lmass =








tL

Qu
L

Xu
L

TL

















0 mL 0 0

0 mΨ + s2
α

2
fy s2

α

2
fy cα

v√
2
y

0 s2
α

2
fy mΨ + s2

α

2
fy cα

v√
2
y

mR cα
v√
2
y cα

v√
2
y mΨ + c2

αfy

















tR

Qu
R

Xu
R

TR








+ h.c. , (2.74)

where sα denotes here sin α = v
f
. A diagonalization can be performed by mixing

elementary tops with fermions of the new sector. For v = 0, this diagonalization can
be done rather easily. Since v = 0 means before electroweak symmetry breaking, the
top still does not get a mass, but mixes with the quarks of the new sector

qL → cos θLqL − sin θLQL QL → sin θLqL + cos θLQL with tan θL =
mL

mΨ

tR → cos θRtR − sin θRTR TR → sin θRtR + cos θRQR with tan θR =
mR

m̃Ψ

.
(2.75)

The mass m̃Ψ is defined as mΨ + f y. For large θL (θR) the left-handed (right-handed)
top is thus mostly composite. For v = 0 the masses of the other quarks are

mQ =
mΨ

cos θL

, mX = mΨ , mT =
m̃Ψ

cos θR

. (2.76)

Constraints on the allowed parameter space come from the S and T parameters and
the process Z → b̄LbL. In Refs. [46, 47], it was found that the allowed parameter
space is rather small. Nevertheless, for large f nearly every parameter constellation is
possible. But for f < 500 GeV only sin(θL) = 0.1 and mΨ ∼ − y f or sin θL ∼ 1, which
means a mostly composite left-handed top, are allowed. In these parameter regions f
can be as low as ∼ 400 GeV. A very composite left-handed top, however, is disfavoured
by flavour physics [47]. The allowed parameter space is much larger if one assumes a
second multiplet of new fermions below the cut-off [46].



CHAPTER 3

Higgs pair production at the LHC

To reconstruct the Higgs potential the Higgs self-couplings have to be measured. This
can be done using multi-Higgs production processes - especially Higgs pair production
for the trilinear coupling. The most important processes at the LHC for Higgs pair pro-
duction are gluon fusion [51], vector boson fusion [52–55] and double Higgs-strahlung
off W and Z bosons [56]. These three processes will be investigated in MCHM4 and
MCHM5 in the following chapter, cf. also Ref. [43].

3.1. Gluon fusion

The gg → HH process proceeds at leading order through heavy quark loops - mainly
top and bottom loops. The amplitudes for the gluon fusion process are in principle
the same as in the SM with modified Higgs couplings. But there is an additional
Feynman diagram arising due to a new coupling of two Higgs bosons to two fermions.1

This coupling can be derived from Eq. (2.60) and from Eq. (2.67) by expanding the
fermionic mass to O(H2). This yields

MCHM4 : gHHff =
mf

2v2
2 ξ

MCHM5 : gHHff =
mf

2v2
8 ξ .

(3.1)

As this coupling grows linearly with ξ it can play an important role for large values of
ξ. In the SM limit it vanishes as expected. The sign of the new coupling is opposite to
the coupling gHff̄ . The same result for the couplings can be obtained if the Lagrangian
(2.47) of the model-independent description and the coefficients cy and cH as determined
for MCHM4 and MCHM5 are used.

1Despite the new coupling the process γ → HH is still zero as expected due to angular momentum
conservation (the photon has spin 1 and the Higgs boson has spin 0).
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Figure 3.1.: Generic Feynman diagrams of the process gg → HH

The Feynman diagrams for the process can be found in Fig. 3.1. In principle there are
2 possible permutations of external lines for the triangle diagrams and 6 for the box
diagrams. But as the permutations not shown in Fig. 3.1 simply correspond to reversed
directions of the arrows in the fermion lines they can be taken into account by using a
factor of 2. First the traces of the matrix elements were calculated with FeynCalc [57].
Two linearly independent tensor structures arise, which can be found in Appendix A
in Eqs. (A.1) and (A.2). Due to the relations given in (A.3), the expressions (A.1) and
(A.2) can be used to project out the scalar form factors corresponding to these two
tensor structures. Afterwards, the loop integrals were expressed by the usual tensor
integrals, which were then reduced to scalar integrals with Passarino-Veltman reduction
[58].
The matrix element with generic couplings then yields

M =M△ +M△,new +M�

with

M△ = g2
sgHffgHHH

1

s−M2
H

F△Aµν
1 ǫµ(p1)ǫν(p2)δab

M△,new = g2
sgHHffF△Aµν

1 ǫµ(p1)ǫν(p2)δab

M� = g2
sg2

Hff
(F�Aµν

1 + G�Aµν
2 ) ǫµ(p1)ǫν(p2)δab .

(3.2)

The color indices are denoted by a, b = 1, ..., 8, ǫµ and ǫν are the polarization vectors
of the gluons. The triangle form factor F△ and the box form factors F� and G� can be

found in Appendix A. The strong coupling constant is αs = g2
s

4π
. The other couplings

are model-dependent and can be found in Eq. (3.1) and the previous chapter. The
results were checked against the results of Ref. [59] for the SM limit ξ → 0. In (3.2)
the factor of 2 due to the the permutation of the diagrams is cancelled by a factor of
one half, which arises through the colour structure of the diagrams,

Tr
(

T aT b
)

=
1

2
δab , (3.3)
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where T a are the SU(3)-generators.
To derive the cross section it is more convenient to express the remaining angular
integration of the phase space integral through an integration over the Mandelstam
variable t

t =
1

2



−s− s

√

1− 4 M2
H

s
cos θ



+ M2
H

. (3.4)

The integration limits need to be changed accordingly. Additionally, as u also depends
on cos θ it must be replaced through the relation

s + t + u = 2 M2
H

. (3.5)

The cross section is given by

σ̂(gg → HH) =
∫ t2

t1

dt
1

256 π

1

2 s2

∣
∣
∣
∣

∑

t,b

M
∣
∣
∣
∣

2

, (3.6)

where the sum runs over the top and bottom quarks. For the full process pp →
HH + X the partonic cross section has to be convoluted with the parton density
functions (PDFs) of the gluon taken at a typical scale Q

σ(pp→ HH) =
∫ 1

4 M2
H /s

dτ
∫ 1

τ

dx

x
f g
(

τ

x
, Q2

)

f g
(

x, Q2
)

σ̂(ŝ = τs)

=
∫ 1

4 M2
H /s

dτ
dLgg

dτ
σ̂(ŝ = τ s) .

(3.7)

The parton distribution functions f g give the probability density for a parton state as a
function the momentum fraction carried by the parton in the proton at a scale Q. The
parton in this case is a gluon, which is denoted by the index g in f g. So all momenta
(and therefore the Mandelstam variables) in the amplitude have to be replaced by the
corresponding partonic variables, i.e. s→ ŝ = τ s and t, u→ t̂, û. To produce on-shell
Higgs bosons the gluons must have a momentum of at least 2 MH , i.e. ŝ ≥ 4 M2

H
.

The integration is done numerically. Consequently, everything was implemented in a
FORTRAN program, in which the numerical integration was done by the Monte Carlo
integration routine VEGAS2. Monte Carlo integration is an integration with random
numbers in an interval [0 : 1]n (for an n dimensional integration). In principle in Monte
Carlo integration the value of the integrand function is taken for a large amount of
random numbers given by a random number generator. The integral is given by the
average of the integrands with these random numbers. This method is much faster
than other methods for multidimensional integrals.
The VEGAS routine is an advanced version of Monte Carlo integration. To get an
exacter value for the integration it does an importance sampling. This means that the
random numbers are not uniformly distributed but more random numbers are taken
in the region where the integrand gives the largest contribution. In order to achieve
that a probability distribution is modelled, which maps the integrand as exactly as

2The algorithm can be found in Ref. [60].
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possible. This is done by the VEGAS routine by subdividing the integration space in a
rectangular grid and performing the calculations in each subspace. The grid is adjusted
in every iterative step, according to where the integral receives dominant contributions
[61].
VEGAS can only evaluate integrals in the intervals [0 : 1]n. So an integral with different
limits can only be solved if a substitution is done that ensures the limits to be between
0 and 1. It is very useful to do the substitution in such a way that it resembles the
integrand, because then it is easier for the VEGAS-routine to find the most important
integration region. If this is done in the right way, the integration becomes exacter and
converges much faster. In my program this is done by the substitution

τ =

(

4M2
H

s

)x1

(3.8)

x =

(

4M2
H

s

)x1 x2

, (3.9)

where x1 and x2 are the random numbers given by VEGAS.
For the parton distribution functions CTEQ6L1 [62] was used. These PDFs are valid
up to leading order. For the parton distribution functions and αs the scale was set to

Q =
√

ŝ .

For the strong coupling constant αs and the scalar integrals FORTRAN routines from
the program HPAIR were used.3 For the quarks in the loop only the top and the
bottom quark were taken into account. The contribution of the top loop is by far the
dominant one due to the large coupling of the Higgs boson to the tops.
The QCD corrections to this process are rather large. Since the Composite Higgs model
does not change the QCD corrections as only the Higgs couplings are modified they
can be taken over directly from the SM calculation. As the QCD corrections show
little variation with MH they can be taken into account by simply multiplying the
leading-order cross section with a K factor of ∼ 2 [63].

3.2. W and Z fusion

The Feynman diagrams for this process can be found in Fig. 3.2. The W and Z fusion
cross sections were calculated with Madgraph/Madevent [64] after implementing the
Composite Higgs model in two new model files - one for MCHM4 and one for MCHM5

- and introducing the compositeness parameter ξ. In order to have the possibility
of varying the triple Higgs coupling a parameter κ was introduced. In Madgraph/-
Madevent new variables can be declared in the file VariableName.dat. In the program
couplings.f, the Higgs couplings were modified with the newly introduced parameter ξ
according to the Composite Higgs models. The triple Higgs coupling was additionally

3HPAIR is a program written by M.Spira and can be found at
http://people.web.psi.ch/spira/proglist.html.
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multiplied with κ, which parametrizes triple Higgs coupling variations in terms of the
composite Higgs self-coupling.
As a typical scale for the process

Q = MV

was chosen [65]. QCD corrections are much smaller for this process than in gluon
fusion, so that the scale dependence of this process should be smaller. As a PDF set
CTEQ6L1 was chosen as in the gluon fusion process.
As emphasized in Ref. [66], the cross section can increase with rising energy in the high-
energy limit if the couplings of the Higgs boson to the vector bosons are modified with
respect to the SM. As the structure of the propagator for the longitudinally polarized
vector bosons is responsible for the increase with the energy, only this contribution is
calculated.4 The longitudinal polarization vectors are

ǫL(k) =
1

M2
W









|~k|
0
0
k0









with k =









k0

0
0
|~k|









. (3.10)

In Fig. 3.2 in the second diagram an interchange of the two external W boson lines
must be taken into account. The amplitude is calculated in the c.m. frame of the W
bosons. This yields5

MLL = GF

s√
2

{

(1 + β2
W

)

[

(1− 2ξ) +
A · λSM

HHH

(s−M2
H

)/M2
Z

]

+
1− ξ

βW βH

[

(1− β4
W

) + (βW − βH cos θ)2

cos θ − xW

− (1− β4
W

) + (βW + βH cos θ)2

cos θ + xW

]}

with βW/H =

√

1− 4 M2
W/H

s
and xW =

1− 2 M2
H

s

βW βH

. (3.11)

The Higgs production angle is denoted by θ. The contribution of the diagram with the

triple Higgs coupling λSM
HHH

=
3 M2

H

M2
Z

is modified by a factor of A = 1− ξ in MCHM4 and

H

H

q

q

W/Z

W/Z H

H

H
W/Z

H

H

Figure 3.2.: Generic Feynman diagrams for the process qq → qqHH .

4In a lot of papers [53, 65] the whole process is calculated in the effective W -approximation anyway.
The effective W -approximation treats the W bosons as constituents of the proton.

5For the SM this formula can be found in Ref. [67].
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by a factor of A = 1− 2ξ in MCHM5. The high energy behaviour can easily be found.
With βW,H

s→∞−→ 1 and xW

s→∞−→ 1 the amplitude becomes

M s→∞−→ −
√

2GF s ξ . (3.12)

The amplitude therefore increases linearly with the energy. This is the same high
energy behaviour as for longitudinal gauge boson scattering, which can be found in
Ref. [35, 66].

3.3. Double Higgs-strahlung off W and Z bosons

The Feynman diagrams for this process can be found in Fig. 3.3. As for the W and Z
fusion, this process was calculated with Madgraph/Madevent. This time as a typical
scale

Q =
√

(MV + 2 MH)2 , V = Z, W ±

was chosen.
An analytical formula for the differential cross section of e+e− → ZHH can be found
in Appendix B. The interference structure of Higgs-strahlung at the LHC is the same
as for Higgs-strahlung at an e+e−-collider. The cross section for the process qq̄ →
ZHH/WHH can be evaluated, mutatis mutandis, at the quark level for the LHC in
the same way as for e+e−-collisions, just the couplings have to be adjusted properly
[68]. The interference structure hence does not change.

H

H

q

q

W/Z
W/Z

H

H

W/Z

H

H

W/Z

H

Figure 3.3.: Generic Feynman diagrams for the process qq̄ → ZHH/WHH .

3.4. Results

The Composite Higgs pair production cross sections as functions of the Higgs mass for
three representative values of ξ can be found in Fig. 3.4 for MCHM4 and in Fig. 3.5 for
MCHM5. For comparison the SM cross sections are also shown. They correspond to
ξ = 0. For all plots in this chapter a c.m. energy of

√
s=14 TeV was assumed. The top

mass was set to 173.3 GeV. The gluon fusion process is by far the dominant process,
followed by the W/Z fusion. The behaviour of the cross sections with varying ξ and
the sensitivity to λHHH can be understood by examining the interference structure of
the contributing diagrams.
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Figure 3.4.: Higgs pair production cross sections as a function of the Higgs boson mass
in the SM (ξ = 0, upper left) and MCHM4 with ξ = 0.2 (upper right),
0.5 (bottom left) and 0.8 (bottom right). Arrows indicate the change in
the cross section for a variation of λHHH from 0.5 to 1.5 times its value
in the corresponding model. Some arrows are rescaled as indicated by
appropriate factors to make them visible.

gg Fusion
Due to the new diagram involving the HHqq̄ coupling the cross section increases with
rising ξ. The reason is that this diagram is not suppressed by a Higgs propagator as is
the other triangle diagram involving the triple Higgs coupling. For MCHM5 this leads
to an increase compared to the SM cross section of up to a factor of 30. In MCHM5

the increase in the cross section is stronger than in the MCHM4. On the one hand
this is due to the larger HHqq̄ coupling, on the other hand the other diagrams would
also be larger than the corresponding diagrams in MCHM4 for ξ & 2/3. In MCHM4

the increase is only due to the additional new diagram, because all other diagrams are
only modified by a factor of (1− ξ) compared to the SM.
In MCHM5 the diagrams with the triple Higgs coupling and the box diagrams vanish
completely for ξ = 0.5, because the triple Higgs coupling and the coupling of one Higgs
to two fermions is zero. Accordingly, the sensitivity to the triple Higgs coupling is also
zero.
The arrows in the plots indicate a variation of λHHH from 0.5 pointing to 1.5 times
its value in the corresponding model. The curve itself has of course the coupling as
expected in the model. In some of the plots, the arrows are rescaled as indicated in



26 Chapter 3. Higgs pair production at the LHC

 0.01

 0.1

 1

 10

 100

 1000

 80  100  120  140  160  180  200

MH [GeV]

gg → HH

WW+ZZ→ HH

WHH+ZHH

SM: pp →HH+X
LHC: σ[fb]

 0.01

 0.1

 1

 10

 100

 1000

 80  100  120  140  160  180  200

MH [GeV]

x2

x2

x2

gg → HH

WW+ZZ→ HH

WHH+ZHH

MCHM5: pp →HH+X
LHC: σ[fb]
ξ=0.2

 0.01

 0.1

 1

 10

 100

 1000

 80  100  120  140  160  180  200

MH [GeV]

gg → HH

WW+ZZ→ HH

WHH+ZHH

MCHM5: pp →HH+X
LHC: σ[fb]
ξ=0.5

 0.01

 0.1

 1

 10

 100

 1000

 80  100  120  140  160  180  200

MH [GeV]

x3

x3

x3

gg → HH

WW+ZZ→ HH

WHH+ZHH

MCHM5: pp →HH+X

LHC: σ[fb]

ξ=0.8

Figure 3.5.: As in Fig. 3.4 but for MCHM5

order to make them visible.
The direction of the arrows in the gluon fusion curves can be explained by destructive
interferences. The triangle diagram has an additional minus sign compared to the other
diagrams and therefore interferes destructively. This is the case for all values of ξ even
in MCHM5, where the triple Higgs coupling changes its sign for ξ > 0.5. But since
gHHH and gHff̄ have the same modification factor, the resulting modification factor
in the triangle involving the triple Higgs coupling is quadratic and therefore cannot
change the relative sign.
In MCHM4 the sensitivity to a variation of the triple Higgs coupling decreases with
growing ξ. This is due to the rising dominance of the HHqq̄-diagram and to the
decreasing triple Higgs coupling. In MCHM5 the sensitivity also decreases for increasing
ξ. But compared to MCHM4 the sensitivity for ξ=0.8 is a bit larger because of the
larger triple Higgs coupling, cf. Eqs. (2.64) and (2.71).

W/Z fusion
The cross section for W/Z fusion increases with rising ξ up to a factor of 5 compared
to the SM. The reason for this is that for ξ < 0.5 the cross section increases due to
the destructive interference between the diagram with the V V HH coupling and the
u- and t-channel diagrams, which get smaller with growing ξ. For ξ=0.5 the V V HH
coupling is zero. For ξ > 0.5 the V V HH coupling changes its sign and the interference
becomes constructive.
The diagram involving the triple Higgs coupling interferes destructively with the u- and
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t-channel diagrams in the SM case and MCHM4. In MCHM5 this situation changes
for ξ > 0.5 because the triple Higgs coupling then changes sign and so the relative sign
between the triple Higgs coupling diagram and the u- and t- channel diagram becomes
constructive. This can be seen in Fig. 3.5, as the direction of the arrow changes for
ξ = 0.8. In MCHM4 the direction of the arrow does not change as anticipated.
The sensitivity to a variation of the triple Higgs coupling becomes smaller with growing
ξ due to the increasing dominance of the strong sector: In the scattering amplitude
there is no complete cancellation of the terms only involving gauge couplings ∼ s
anymore due to the modified gV V H and gV V HH couplings. This behaviour can also be
derived from formula (3.11). Hence in composite Higgs models double Higgs production
in WLWL fusion becomes strong [35, 66].
The W fusion dominates the Z fusion by a factor of ∼ 2.2-2.8 for ξ = 0 − 0.8. The
ratio depends on ξ as due to the modification of the couplings in minimal Composite
Higgs models with respect to the SM the diagrams among each other play a more or
less important role. For example the u- and t-channel diagrams, which have an extra
vector boson propagator, can become more important. This of course can lead to a
different ratio between W and Z fusion.

WHH/ZHH
The cross sections here are much smaller than for the gluon fusion and the W and Z
fusion. For the minimal Composite Higgs models they even become smaller than for
the SM.
In the SM all diagrams interfere constructively. Consequently, the arrow which indi-
cates the variation of the triple Higgs coupling, points upwards. For non-zero ξ and
ξ < 0.5 all couplings become smaller and consequently the cross section is reduced as
well. For ξ > 0.5 the HHV V coupling changes its sign and the corresponding diagram
interferes destructively. This leads to a change of direction of the arrow in MCHM4.
In MCHM5 the triple Higgs coupling also changes its sign, so that the interference
between these two diagrams is still constructive. The direction of the arrow does not
change. The cross section increases for ξ > 0.5 for both models. This is because the
contribution of the HHV V diagram is increasing again. In MCHM5 the contribution
from the diagram with the triple Higgs coupling also increases. The cross section for
ξ = 0.8 is therefore larger than in MCHM4, whereas for ξ = 0.2 and ξ = 0.5 the cross
section in MCHM5 is smaller than in MCHM4 due to the smaller triple Higgs coupling
of MCHM5 for these values of ξ.
The ratio of the WHH process to the ZHH process is ∼ 1.6− 2.2 for ξ = 0− 0.8.

3.4.1. Sensitivities

In this part two questions will be discussed:

• Can the Composite Higgs model be distinguished from the SM in Higgs pair
production processes?

• What are the chances of extracting the triple Higgs coupling in MCHM?
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To find the answer to these questions sensitivity regions are constructed for various
final states. These final states were obtained by multiplying the cross sections with the
corresponding branching ratios. This is a good approximation if the Higgs width is very
small, which is the case in the investigated mass range and for the investigated models.
The branching ratios were obtained by means of the program HDECAY [69, 70]. Since
in MCHM4 all modified couplings are changed by the same factor the branching ratios
are the same as in the SM. The SM branching ratios as a function of the Higgs mass can
be found in Fig. 3.6. As it can be inferred from the figure, the Higgs boson dominantly
decays into bb̄ until the gauge boson threshold is reached. Above MH ∼ 140 GeV the
dominant decay channel is H → W +W − followed by H → Z0Z0.

80 100 150 200
Mh [GeV]

10-1

10-2

10-3

1
bb

-

τ+τ-

gg

cc
-

ZZ

WW

γγ

Zγ

BR(H)
SM

Figure 3.6.: The branching ratios in the SM and MCHM4 as a function of MH .

However, in MCHM5 the branching ratios change considerably. They can be found in
Fig. 3.7 as functions of ξ for two representative values of MH . The branching ratios into
fermions are now governed by the modification factor of the Higgs coupling to fermions.
For 0 ≤ ξ ≤ 0.5 they decrease with rising ξ. At ξ = 0.5 they vanish completely. For
ξ > 0.5 they increase again with rising ξ. For ξ near 0.5 due to the vanishing of the
branching ratios into fermions, the branching ratio into W bosons is the largest. Even
the branching ratio into γγ can be as large as a few percent. Above the gauge boson
threshold the decays are dominated by W +W − followed by ZZ final states. However,
near the technicolor limit ξ → 1 the gauge boson couplings become very small and
therefore the branching ratios into gauge bosons. The fermion modification factors,
however, become very large. Therefore, the branching ratio into bb̄ dominates. More
details to the branching ratios in the minimal Composite Higgs models can be found
in Refs. [43, 45].
For the production processes only the gluon fusion will be discussed as due to its
much larger cross section it is the most promising of measuring Higgs pair production.
For Higgs masses below ∼ 140 GeV the branching ratio for the decay H → bb̄ is the
largest. If the Higgs pair decays into four bottom quarks, however, the signal will be
overwhelmed by the large QCD background [71]. The bb̄bb̄ final state will therefore not
be investigated. For low Higgs masses the Higgs decay into bb̄ has to be combined with
a rare decay of the second Higgs boson in order to reduce the background. For the
Higgs mass range >140 GeV the W boson branching ratio is the largest. This decay
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Figure 3.7.: The branching ratios in MCHM5 as a function of ξ for MH = 120 GeV
(left) and MH = 180 GeV (right).

seems to be promising in the SM for the extraction of λHHH cf. Refs. [72, 73]. As
possible final states W +W −W +W −, bb̄τ+τ−, bb̄µ+µ− and bb̄γγ were investigated.
The following analysis addresses the question in which parameter region it is in prin-
ciple possible to measure a difference between the Composite Higgs model and the
SM. Subsequently the parameter regions are identified where the trilinear Higgs self-
coupling can be measured in a specific minimal Composite Higgs model. We assume
here that a Higgs boson has been found and realized as a Composite Higgs state. The
analysis represents a first estimate, which has to be backed by sophisticated experi-
mental simulations taking into account background processes and detector effects. The
results of this analysis, however, show in which parameter region such an analysis is
worth doing.

Can Composite Higgs pair production be distinguished from the SM case?
In order to answer this question sensitivity regions in the MH−ξ plane were constructed.
These can be found in Figs. 3.8 and 3.9 for MCHM4 and MCHM5 respectively. The
criterion used to identify the regions was

SSM + β
√

SSM < SMCHM or SSM − β
√

SSM > SMCHM (β = 1, 2, 3, 5) , (3.13)

where SSM denotes the number of signal events in the SM and SMCHM the corresponding
number in the minimal Composite Higgs models. The square roots of the signal events
quantify the statistical fluctuation. The number of signal events was obtained by
multiplying the cross section of the process pp → gg → HH + X with the branching
ratios for the investigated final states and the integrated luminosity, which is here
assumed to be 300 fb−1. This integrated luminosity can be achieved after several years
of running of the LHC at high luminosity [74, 75]. In MCHM4 the most promising
decay channels for the deviation of MCHM4 from the SM are W +W −W +W − for MH &

140 GeV and bb̄τ+τ− for MH . 140 GeV. For higher values of ξ in both channels an
even larger mass region is possible (MH . 150 GeV for bb̄τ+τ− and MH & 120 GeV for
W +W −W +W −). The MCHM4 can be distinguished from the SM at 5σ in the bb̄τ+τ−

channel for ξ > 0.2 and in the W +W −W +W − channel for ξ ≥ 0.1.
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Figure 3.8.: Areas in the MH−ξ plane for the deviation of the SM Higgs pair production
via gluon fusion from the one in the MCHM4. From dark blue to light blue
the regions correspond to 5, 3, 2, 1 σ deviation. The final states are from
left top to right bottom bb̄µ+µ−, bb̄γγ, bb̄τ+τ− and W +W −W +W −.

Since the branching ratio H → µ+µ− is very small, there is no hope of distinguishing
MCHM4 from the SM in the bb̄µ+µ− channel. The branching ratio of H → γγ is also
relatively small, but a bit bigger than H → µ+µ−.6 However, the region where the
MCHM4 is distinguishable from the SM is rather small at least for 5σ. The 3σ region
is a bit larger (starting from ξ & 0.6 for MH . 140 GeV). Altogether, as long as ξ is
not too small MCHM4 can be distinguished from the SM with 5σ over the whole of
the considered mass range.
In MCHM5 (Fig.3.9) the situation is different. Due to the modified branching ratios
and the much larger cross section with respect to the SM, the sensitivity regions differ
strongly from MCHM4. The larger cross section in MCHM5 leads to larger sensitivity
regions for the rare decay channels. Even the bb̄µ+µ− channel is now possible for
MH . 100 GeV and 0.3 . ξ . 0.5, for very high ξ over the whole considered mass
range. This results from an interplay between the much higher cross section with

6The decay channel bb̄γγ is the most promising for the measurement of the trilinear Higgs coupling
in the SM for low Higgs masses [76].
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Figure 3.9.: As in Fig. 3.8 but for MCHM5.

respect to the SM for high values of ξ and the larger branching ratio of bb̄ even for
high masses for ξ & 0.7. A very similar behaviour due to the same reasons can be
found in the plots for bb̄γγ and bb̄τ+τ−. The sensitivity region for the W +W −W +W −

final state is extended in MCHM5 to the whole mass range for 0.3 . ξ . 0.6. This is
because the fermionic branching ratios vanish for ξ = 0.5 and the W +W − branching
ratio therefore becomes much larger, cf. Fig. 3.7.
For ξ → 0.5 the fermionic branching ratios vanish. Therefore below and above ξ = 0.5
there must be a region where the composite Higgs and the SM rates must be the same
and therefore the sensitivity vanishes. The blobs in the bb̄τ+τ− channel are due to
this reason. With a finer grid they tend to form a connected line extending down to
MH = 80 GeV. The region between these lines (dots) is distinguishable from the SM
because the number of events is much smaller (and zero for ξ = 0.5) than the one
expected from SM calculations. This can also be seen in the bb̄µ+µ− and bb̄γγ channel
around ξ = 0.5. The SM rates are in this decay channels very small so that it can
not be distinguished from the composite Higgs rate with 5σ anymore for ξ ≈ 0.5. The
blobs of low-sensitivity in the W +W −W +W − final state result from the falling W +W −

branching ratio with growing ξ.



32 Chapter 3. Higgs pair production at the LHC

Can the trilinear Higgs coupling be measured in MCHM4 and MCHM5?
We assume here that the Higgs boson has already been found, the couplings to gauge
bosons and fermions are already known and EWSB is realized in the framework of a
Composite Higgs model.7 To investigate if the trilinear Higgs self-coupling can be ex-
tracted from Higgs pair production in gluon fusion sensitivity areas in the MH−ξ plane
were constructed, where the cross section with vanishing Higgs self-coupling deviates
by more than 5, 3, 2, 1 σ at

∫ L = 300 fb−1 from the composite Higgs process with
non-zero Higgs self-interaction strength. In Fig. 3.10 they can be found for MCHM4,
in Fig. 3.11 for MCHM5. Only the final states bb̄γγ, bb̄τ+τ− and W +W −W +W − are
presented here, because for the bb̄µ+µ− final state the prospects to measure the trilinear
coupling are rather bad.
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Figure 3.10.: Areas in the MH − ξ with sensitivity to non-vanishing λHHH in MCHM4

for the gluon fusion process with subsequent decay. From dark blue to
light blue the regions correspond to 5, 3, 2, 1 σ. The final states are from
left to right bb̄γγ, bb̄τ+τ− and W +W −W +W −. The assumed integrated
luminosity is

∫ L = 300 fb−1.

In MCHM4, there is sensitivity in the bb̄τ+τ− final state for MH . 150 GeV and in
the W +W −W +W − final state for MH & 110 GeV. For the bb̄τ+τ− final state the 5σ
region only includes the region ξ . 0.7. Since the diagram with the HHqq̄ coupling,
which is linear in ξ, gives the dominant contribution for high ξ, the sensitivity to a
non-vanishing λHHH becomes smaller. This can be anticipated from Fig. 3.4, where
the arrows indicating a variation in λHHH became smaller with rising ξ. In the bb̄γγ
final state there is no 5σ region. Only in a small region between 100 GeV . MH .

140 GeV and ξ . 0.2 can a non-vanishing triple Higgs coupling be distinguished from
the anticipated coupling with 3σ. However, this region is complementary to the one in
Fig. 3.8 where the sensitivity to a deviation from the SM prediction was investigated.
In the bb̄τ+τ− and W +W −W +W − final states the areas have a large overlap with those
from Fig. 3.8. In summary, one can say that there is sensitivity to a non-vanishing
λHHH over the whole mass range, but for large ξ (ξ & 0.7) only if MH & 130 GeV.
In MCHM5, the situation is quite different due to the changed branching ratios with
respect to the SM. For the bb̄γγ and bb̄τ+τ− final states, there is sensitivity for large ξ
over the whole of the considered mass range due to the enhanced fermionic branching

7In Ref. [77], it was found that ξ can be extracted with an accuracy of O(20%) at the LHC.
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Figure 3.11.: As in Fig. 3.10 but for MCHM5

ratios for large ξ. For ξ = 0.5 the fermionic branching ratios vanish due to the vanishing
gHff coupling as does λHHH. Accordingly, there is no sensitivity in the region around
ξ = 0.5 in every investigated decay channel over the whole mass range.
Still, for MH . 150 GeV there is a sensitivity region in the bb̄τ+τ− channel as long as
ξ . 0.4 or ξ & 0.6. The same holds for the W +W −W +W − final state in the mass
range MH & 110 GeV.
The question arises if the triple Higgs coupling might be measurable within these
models with higher precision. To give an answer, sensitivity areas for a variation of
λHHH of +30%8 were constructed. The trilinear Higgs coupling is hence varied as

λ′
HHH

= 1.3
√

1− ξ λSM

HHH
for MCHM4

λ′
HHH

= 1.3
1− 2ξ√

1− ξ
λSM

HHH
for MCHM5 .

(3.14)

The plots can be found in Fig. 3.12 for MCHM4 and in Fig. 3.13 for MCHM5. To achieve
considerable sensitivity regions here the integrated luminosity needs to be higher.
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Figure 3.12.: Areas in the MH − ξ plane with sensitivity to a 30% variation of λHHH in
MCHM4 for the gluon fusion process with subsequent decay of the Higgs
pair. The regions correspond from dark blue to light blue to 5, 3, 2, 1
σ. The final states are from left to right bb̄γγ at

∫ L = 3000 fb−1 and
bb̄τ+τ−, W +W −W +W − at

∫ L = 600 fb−1.

8Choosing -30% would lead to quite similar sensitivity areas as was checked during the calculations.
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It was chosen
∫ L = 600 fb−1 for the bb̄τ+τ− and W +W −W +W − final states. For

comparison the bb̄γγ final states are also shown but with
∫ L = 3000 fb−1, which might

be possible with a SLHC. The sensitivity areas shrink considerably. For the bb̄γγ final
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Figure 3.13.: As in Fig. 3.12 but for MCHM5.

state - even though the integrated luminosity was assumed to be very high - there can
only be some hope in MCHM5 and for very large values of ξ. The sensitivity region in
the decay bb̄τ+τ− also becomes smaller. In MCHM4 only in a region with MH . 130
GeV and ξ up to ∼ 0.3 the process is sensitive to a 30% deviation of λHHH at 5σ. In
MCHM5 there is only a small region for low values of ξ. The region for large ξ also
shrinks, but not as much as the region for low ξ. The W +W −W +W − final state for
MH & 120 GeV is the most promising process. Here the sensitivity regions shrink, but
not greatly.
Altogether, a vanishing λHHH might be accesssible over nearly the whole possible pa-
rameter space, whereas the prospects of measuring λHHH with 30% accuracy are much
less promising. This has been found in the SM case before [72, 73, 76].

Feasibility
As mentioned at the beginning of this section, this analysis reveals the regions in the
parameter space, where the trilinear Higgs self-coupling might be extracted from Higgs
pair production in gluon fusion. For a full analysis the background reactions and
detector properties have to be taken into account. Although we have not performed
such an analysis here a qualitative answer to the question can be given nevertheless.
In Refs. [71, 76] a full analysis was done for the SM for the mass regime where the
branching ratio into b quarks is the largest. In Refs. [72, 73] this is done for large
Higgs masses where the Higgs boson decays mostly into W +W −. It was found that
good signal-background ratios for the SM can only be obtained in the decay channel
HH → bb̄γγ for low Higgs masses and HH →W +W −W +W − for large Higgs masses.
But as in the investigated Composite Higgs models the cross section is much larger
than the SM cross section, a better signal-background ratio might be possible. So
even in the decay channels bb̄τ+τ− and bb̄µ+µ−. It was found in this section, however,
that only in the bb̄τ+τ− channel there is a realistic chance to measure the triple Higgs
coupling for small Higgs masses.
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In a full analysis of the W +W −W +W − decay channel, with subsequent decay
W +W −W +W − → (jjl±ν) (jjl′±ν), it was found in Ref. [73] that a vanishing Higgs
coupling can be excluded at 95% C.L. or better in the mass range 150 GeV ≤ MH ≤
200 GeV. The main background originates from W ±W +W −jj production followed by
the tt̄W ± background, where one top quark decays leptonically and the other hadroni-
cally. The backgrounds in the Composite Higgs models change only if an intermediate
Higgs is involved. Such backgrounds would be the subleading electroweak process of
Higgs-strahlung off a W or Z boson, where the Higgs boson would decay subsequently
into W +W −. But in MCHM4 and MCHM5 the Higgs couplings to gauge bosons are
modified by a factor of

√
1− ξ with respect to the SM, so the background would be

smaller than in the SM. A Higgs boson with couplings to tt̄ does not present any dan-
ger, since the top quark pair threshold is not reached, so that such processes do not
play a role. The dominant contributions in the backgrounds will always come from
processes involving at least two QCD couplings. But there are no such background
processes involving at least one Higgs. So a rough estimate of the background pro-
cesses for MCHM4 and MCHM5 would give the same result as for the SM. Since the
signal process of Higgs pair production in gluon fusion with subsequent decay of the
Higgs bosons in 4 W exceeds the SM process for all ξ in MCHM4 and in MCHM5

as long as ξ is not too large9 the prospects of measuring the triple Higgs coupling are
encouraging. The next step is now to perform a realistic analysis including background
processes, signal cuts and detector effects.

9Since for ξ near 1 the branching ratio into 4W in the MCHM5 becomes much smaller than in the
SM.





CHAPTER 4

Higgs pair production at e+e−-colliders

As a complementary collider to the LHC, a new linear e+e−-collider, the International
Linear Collider (ILC), is in the planning stages. Due to clean signatures and the well-
known centre-of-mass energy for every process, which does not depend on PDFs as for
proton-proton collisions, a measurement of the Higgs properties could be possible with
very high precision at such a collider [78–82]. Additionally, the number of background
events would be strongly reduced compared to the jet-rich LHC environment, especially
for the bb̄ final state, which has the largest branching ratio for MH . 140 GeV.
The ILC in the TESLA design [79, 80] is planned to be built for a centre-of-mass
energy of

√
s = 500 GeV with a possible upgrade to

√
s = 1 TeV. Within the first four

years a luminosity of 500 fb−1 will be accumulated. Later, a luminosity of 1000 fb−1 is
expected to be achieved [81, 82]. In the CLIC design [83] the centre-of-mass energy is
3 to 5 TeV with integrated luminosities of 3 to 5 ab−1.
For the TESLA design, Higgs pair production via double Higgs-strahlung off Z bosons
is investigated in the first part of this chapter. In the second part, the production of
two Higgs bosons in W boson fusion is studied.

4.1. Double Higgs-strahlung off Z bosons

The diagrams which contribute to double Higgs-strahlung are depicted in Fig. 4.1.
The differential cross section for the process e+e− → ZHH can be found in Appendix
B. The numerical calculation was performed by Madgraph/Madevent with the new
model files used for the double Higgs-strahlung and W boson fusion at the LHC. To
understand the interference structure, an own Fortran routine for the cross section was
used. The cross sections in dependence on the Higgs mass can be found in Fig. 4.2
for MCHM4 and in Fig. 4.3 for MCHM5. The cross section is shown for two collider
energies:

√
s = 500 GeV and

√
s = 1 TeV. The cross section can be increased by a

factor of 2 if polarized electrons and positrons are used. The degree of polarization for

37
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Figure 4.1.: Generic Feynman diagrams for the process e+e− → ZHH

electrons is at least 80% and could be up to 90% at the ILC. However, the degree of
polarization for the positrons is only 60% [84]. The cross sections in the plots are for
unpolarized beams.
The behaviour of the cross sections in Fig. 4.2 and 4.3 is nearly the same as was seen
in the double Higgs-strahlung at the LHC. The SM cross section is larger than the
cross sections for ξ 6= 0 due to constructive interference of all diagrams - at least for an
energy of

√
s = 500 GeV. The size of the couplings diminishes for ξ < 0.5 and therefore

the cross sections decrease as well. For ξ > 0.5 the HHZZ coupling changes its sign
but the absolute value increases again and so does the cross section. In MCHM5, the
diagram involving λHHH has the same modification factor as the HHZZ coupling and
hence also increases for ξ > 0.5. Therefore, the cross section for ξ = 0.8 is bigger in
MCHM5 than in MCHM4, where the HHH coupling becomes smaller with increasing
ξ. This behaviour cannot only be found for the curves with

√
s = 500 GeV but also

for the ones with
√

s = 1 TeV. However, for the
√

s = 1 TeV cross section not all
diagrams interfere constructively. The diagrams with the additional Z propagator can
change their sign, depending on the centre-of-mass energy. But since the diagram with
the HHZZ vertex is dominant for ξ as long as ξ is not near 0.5, it also dominates the
interference structure (at least for ξ = 0.2 and ξ = 0.8).
In the SM, the cross section for

√
s = 500 GeV is larger for MH . 140 GeV than the

cross section for
√

s = 1 TeV due to the scaling behaviour of the s-channel Z-exchange.
This still holds for ξ = 0.2. For ξ = 0.5 and ξ = 0.8 the cross sections for

√
s = 1 TeV

become larger than the cross sections for
√

s = 500 GeV. The difficulty here is that the
energy dependence cannot be easily seen with the help of the cross section formula, since
a three-particle phase space is involved. However, the energy dependence must come
from the diagrams with the additional Z propagator and the one involving the HHZZ
coupling. As can be found in Appendix B, the diagram involving the triple Higgs
coupling is suppressed by an extra Higgs propagator i.e. the squared diagram involving
the HHH coupling is multiplied by an additional (Higgs propagator)2 compared to the
squared diagram with the HHZZ coupling.
The impact of this can also be seen in the directions of the arrows that indicate the
change of the cross section if λHHH is changed by ±50% in terms of the Composite Higgs
trilinear self-coupling. The direction of the arrows depends on the interference structure
of the diagram with the triple Higgs coupling and the other diagrams, especially the
one with the HHZZ coupling, since the interference between either of them is much
larger than the interference term of the diagrams with λHHH and the ones with the
additional Z propagator. For ξ = 0.5, the HHZZ coupling is zero, as is λHHH in
MCHM5, so that there is no sensitivity at all to λHHH. For MCHM4, this means that
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Figure 4.2.: The cross section for the process e+e− → ZHH as a function of the Higgs
mass in the SM (upper left), and the MCHM4 with ξ = 0.2 (upper right),
ξ = 0.5 (bottom left) and ξ = 0.8 (bottom right) for two different collider
energies

√
s = 500 GeV (red curve) and

√
s = 1 TeV (blue curve). Arrows

indicate the change in the cross section for a variation of λHHH from 0.5 to
1.5 of its value corresponding to the used model.

the direction of the arrow for ξ = 0.5 is given by the interference structure between the
diagrams with the additional Z propagator and, of course, the one with the trilinear
Higgs coupling. For an energy of

√
s = 500 GeV the interference is constructive, though

for an energy of
√

s = 1 TeV the interference is destructive. For larger energies the
sensitivity to a variation in λHHH becomes smaller, since the corresponding diagram is
suppressed by a Higgs propagator whereas the diagram involving the HHZZ coupling
is not suppressed by an additional propagator and hence dominates for large energies.
As the Z propagator has a different energy structure than the Higgs propagator, the
diagram with the additional Z propagator also dominates the diagram with the triple
Higgs coupling for large energies. An explanation for the directions of the other arrows
can be found in section 3.4.
The energy behaviour of the cross section is shown in Fig. 4.4 for MCHM4 and MCHM5

for MH = 120 GeV. For larger MH the shape of the curves does not change but they
are shifted to higher energies. The maximal cross section for the SM and for ξ = 0.2
is reached at

√
s ∼ 2 MH + MZ + 200 GeV. For ξ = 0.5 and ξ = 0.8, the cross section

seems to increase with energy. For the SM and ξ = 0.2, the cross section peaks around√
s ≈ 530 GeV and then decreases. As can be anticipated from the curve in the
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Figure 4.3.: As in Fig. 4.2 but for the MCHM5.

MCHM5 for ξ = 0.5, where only the diagrams with an additional Z propagator are
non-zero, these diagrams lead to an increase of the cross section with

√
s. So does the

diagram with the HHZZ coupling. In the SM, however, the interference between these
diagrams becomes destructive for large energies and so the cross section decreases. For
ξ > 0.5, however, the diagram involving gHHZZ changes its sign, so the interference
between these diagrams becomes constructive for large energies. Therefore, the cross
section increases with energy, unlike in the SM. In MCHM4, the curve has a small
peak for ξ = 0.5 whereas in MCHM5 there is no peak. The reason for this is that in
MCHM5 only the diagrams with the additional Z propagator are non-zero and these
diagrams increase with the centre-of-mass energy. However, in the MCHM4 not only
the diagrams with the additional Z propagator but also the one with the trilinear Higgs
coupling is non-zero. The peak is caused by the diagram with λHHH, which decreases
with the energy.
One question is still open: Does the growth with energy in the Composite Higgs model
with large ξ lead to problems with partial wave unitarity? To answer this question the
cross sections in these cases are studied for larger energies. In Fig. 4.5 it can be seen
that the cross sections for large energies become constant. In both models, the cross
section for large energies is nearly the same since the high energy behaviour is given by
the diagrams with the additional Z propagator and the one with the HHZZ coupling.
In both models these diagrams receive the same modification factors in the Composite
Higgs models. Hence the cross sections for large energies are nearly the same in both
models.
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Figure 4.4.: Energy dependence of the cross section of the process e+e− → ZHH for
the SM (red), ξ = 0.2 (blue), ξ = 0.5 (black) and ξ = 0.8 (green). The
plot on the left is calculated in the MCHM4, the plot on the right is in the
MCHM5. The Higgs mass is assumed to be 120 GeV.
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Figure 4.5.: High energy behaviour of the cross section of the process e+e− → ZHH
in the MCHM4 (left) and the MCHM5 (right) for ξ = 0.5 (red) and ξ = 0.8
(blue).

To investigate the prospects of measuring the trilinear Higgs self-coupling in double
Higgs-strahlung, sensitivity areas in the MH − ξ plane are constructed in Fig. 4.6 for
MCHM4 and in Fig. 4.7 for the MCHM5. The sensitivity areas show the prospects of
measuring a non-vanishing λHHH for two final states: bb̄bb̄ and W +W −W +W −. Below
the gauge boson threshold the dominating decay channel is H → bb̄. For MH &

140 GeV the Higgs boson decays dominantly via W +W −W +W −. At the ILC, bb̄bb̄
backgrounds are much smaller than at the LHC. However, the cross sections for Higgs
pair production are also smaller than at the LHC. Hence combining the bb̄ decay channel
with one of the rare Higgs decays would lead to a too small number of events for
the assumed energies and luminosities. Experimental simulations taking into account
detector properties have demonstrated that for Higgs masses in the intermediate range
and an integrated luminosity of

∫ L = 1000 fb−1 the triple Higgs coupling may be
determined with an accuracy of ∼ 20% in the SM [79, 85].
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Figure 4.6.: Areas in the MH−ξ plane with sensitivity to a non-vanishing λHHH for the
process e+e− → ZHH with subsequent decay for MCHM4. The regions
correspond from dark blue to light blue to 5, 3, 2, 1 σ. The final states are
bb̄bb̄ on the left and W +W −W +W − on the right at

∫ L = 500 fb−1

In the sensitivity plots, a collider energy of
√

s = 500 GeV is assumed, since for 1
TeV the prospects of measuring the triple Higgs coupling are worse due to smaller
sensitivities cf. Figs. 4.2 and 4.3. For luminosities of 500 fb−1 and 1000 fb−1 no regions
with 5σ sensitivity can be found. Also for polarized cross sections the prospects are not
significantly better. The reason is that for low values of ξ the cross section decreases
with energy. For higher values of ξ, even though the cross section increases with energy,
the sensitivity to λHHH is diluted by the other diagrams since the diagram involving
the triple Higgs coupling decreases with energy. The sensitivity areas are shown for an
integrated luminosity of 500 fb−1. They slightly increase for an integrated luminosity
of 1000 fb−1.
The behaviour of the sensitivity regions for MCHM4 can be explained as follows: For
MH & 160 GeV there is no sensitivity in the bb̄bb̄ final state due to the small branching
ratio in this mass range. The same holds for the W +W −W +W − final state for MH .

100 GeV. The non-sensitivity regions for 0.5 . ξ . 0.6 for both final states are due
to the small cross section in this region. The cross section is minimal there since for
ξ = 0.5 the diagram involving the HHZZ coupling vanishes. For ξ ≥ 0.5 the HHZZ
coupling becomes larger again but the contributions of the other diagrams decrease
with rising ξ, so the minimal cross section is reached for a value of ξ which is slightly
larger than 0.5. For a finer grid, these regions tend to form a connected line.
In MCHM5, the mass range for the sensitivity areas are also dictated by the branching
ratios: For the final state bb̄bb̄ there is no sensitivity for MH & 160 GeV for ξ < 0.5
and for W +W −W +W − the sensitivity vanishes for MH . 100 GeV. For ξ = 0.5, the
triple Higgs coupling is zero, so around this value there is no sensitivity at all. For
large Higgs masses, these non-sensitivity regions are a slightly larger since the cross
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Figure 4.7.: Areas in the MH−ξ plane with sensitivity to a non-vanishing λHHH for the
process e+e− → ZHH with subsequent decay for MCHM5. The regions
correspond from dark blue to light blue to 5, 3, 2, 1 σ. The final states are
bb̄bb̄ on the left and W +W −W +W − on the right at

∫ L = 500 fb−1.

section for large Higgs masses and ξ ∼ 0.5 is very small because the assumed collider
energy is only slightly bigger than the threshold energy of

√
s = 2 MH + MZ (e.g. for

a Higgs mass of 200 GeV the threshold energy would be
√

s ≈ 490 GeV).
The cross section is minimal for a ξ value which is slightly larger than 0.5 since for
ξ = 0.5 only the diagrams involving the additional Z propagator are non-zero. But
these diagrams become smaller with rising ξ. The other diagrams, however, increase
for ξ ≥ 0.5. This interplay leads to the region between ξ ∼ 0.5 and ξ ∼ 0.6 in the
contour plot for the W +W −W +W − final state, where the sensitivity with rising ξ is
larger in the beginning, than drops and finally increases again. The mass region with
sensitivity in the W +W −W +W − final state for large ξ becomes smaller due to the
decrease of the branching ratio H →W +W − for large ξ. The branching ratio H → bb̄
for large ξ and for large Higgs masses increases with rising ξ. Accordingly, there is
sensitivity in the bb̄bb̄ channel for large ξ over the whole mass range.
Altogether, the triple Higgs coupling can be measured over the whole parameter space
except in a region between 0.5 . ξ . 0.6 in MCHM4 and 0.45 . ξ . 0.6 in MCHM5

using an e+e−-collider with a centre-of-mass energy of
√

s = 500 GeV for an integrated
luminosity of 500 fb−1. The regions will shrink if a more detailed analysis, taking into
account background processes and detector properties, is done.

4.2. W boson fusion

W boson fusion, together with double Higgs-strahlung, is the most important Higgs pair
production process at e+e−-colliders. This section concentrates on W fusion. Z fusion
is not taken into account here, since the SM cross section for Z fusion is about eight
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Figure 4.8.: Generic Feynman diagrams for the process e+e− → ν̄νHH .

times smaller than the one of W boson fusion, as the electron-Z couplings are smaller
[67]. The ratio, however, could slightly change in Minimal Composite Higgs models,
but it is not expected that this change would make the cross sections comparably
large. Additionally, in contrast to the LHC, the final states for both processes can be
distinguished in an e+e−-collider. The Feynman diagrams for this process can be found
in Fig. 4.8. The numerical calculation of the cross sections for W boson fusion was done
with Madgraph/Madevent. As for double Higgs-strahlung unpolarized cross sections
are investigated. However, with 100% polarized electron and positron beams the cross
section can be increased by a factor of 4. The dependence of the cross sections on

 0.0001

 0.001

 0.01

 0.1

 1

 80  100  120  140  160  180  200

MH [GeV]

500 GeV

1 TeV

SM: e
+
e

-
 →ν-νHH

ILC: σ[fb]

 0.0001

 0.001

 0.01

 0.1

 1

 80  100  120  140  160  180  200

MH [GeV]

500 GeV

1 TeV

MCHM4: e
+
e

-
 →ν-νHH

ILC: σ[fb]
ξ=0.2

 0.0001

 0.001

 0.01

 0.1

 1

 80  100  120  140  160  180  200

MH [GeV]

500 GeV

1 TeV

MCHM4: e
+
e

-
 →ν-νHH

ILC: σ[fb]
ξ=0.5

 0.0001

 0.001

 0.01

 0.1

 1

 80  100  120  140  160  180  200

MH [GeV]

x5

x5

500 GeV

1 TeV

MCHM4: e
+
e

-
 →ν-νHH

ILC: σ[fb]
ξ=0.8

Figure 4.9.: The cross section for the process e+e− → ν̄νHH as a function of the Higgs
mass in the SM (upper left), and the MCHM4 with ξ = 0.2 (upper right),
ξ = 0.5 (lower left) and ξ = 0.8 (lower right) for two different collider
energies

√
s = 500 GeV (red curve) and

√
s = 1 TeV (blue curve). Arrows

indicate the change in the cross section for a variation of λHHH from 0.5 to
1.5 times its value in the corresponding model.
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Figure 4.10.: As in Fig.4.9 but for MCHM5.

the Higgs mass for two different collider energies can be found in Fig. 4.9 for the SM
and in MCHM4 for three representative values of ξ. In Fig. 4.10 the corresponding
plots for MCHM5 can be found. The interference structure is the same as at the LHC.
In chapter 3, explanations for the behaviour of the cross sections with rising ξ can be
found, as well as explanations for the length and direction of arrows indicating the
change in the cross section for a variation in the triple Higgs coupling of 0.5 λHHH to
1.5 λHHH, where λHHH denotes the coupling in the SM for the SM process and the
MCHM coupling for the Composite Higgs pair production process. The cross section
for W boson fusion is slightly larger than the one for double Higgs-strahlung as long as
a collider energy of

√
s = 1 TeV is assumed. Due to its scaling behaviour, double Higgs-

strahlung dominates over the W boson fusion process at lower energies and for very low
values of ξ and MH . In W fusion the cross sections increase with rising centre-of-mass
energy as anticipated from formula (3.12). The length of the arrows, however, and
hence the sensitivity to λHHH becomes smaller for larger energies. The reason for this
is that the diagram involving the triple Higgs coupling is suppressed by an additional
Higgs propagator and therefore does not increase with the energy, whereas the other
two diagrams do. Consequently, for large energies the u- and t- channel diagrams and
the diagram involving the HHWW coupling dominate.
The energy behaviour of the cross section can be found in Fig. 4.11. As anticipated from
Eq. (3.12), the cross section increases with rising centre-of-mass energy. The increase
is stronger for larger ξ. In the Composite Higgs models the amplitude increases in
contrast to the SM with M ∼ ξ s. This behaviour was also checked for even larger
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energies, as in the plots of Fig. 4.11. The same results were found in Ref. [66] for
W boson fusion at the LHC. Due to the modified Higgs couplings to gauge bosons
the composite Higgs can only partly unitarize this scattering amplitude. The loss of
perturbative unitarity is postponed to larger energies compared to the case without a
Higgs boson. The Minimal Composite Higgs models, however, are only valid up to the
cut-off of the effective theory, which should be smaller than the unitarity bound.
In order to investigate the prospects of measuring λHHH in W fusion, sensitivity areas
in the MH − ξ plane were constructed. The contour plots in Fig. 4.12 for MCHM4 and
in Fig. 4.13 for MCHM5 show whether a triple Higgs coupling equal to zero can be
distinguished from a non-zero λHHH, where λHHH denotes the triple Higgs coupling in
the corresponding model, in two different final states - bb̄bb̄ and W +W −W +W −. In the
upper plot an integrated luminosity of 500 fb−1 is assumed, the plots below correspond
to a luminosity of 2000 fb−1. This factor of 4 in the luminosity can also be achieved if
polarized cross sections are used instead of unpolarized cross sections. The sensitivity
areas are always shown for a centre-of-mass energy of

√
s = 1 TeV, since for

√
s = 500

GeV the cross sections are very small.
In both the MCHM4 and MCHM5 the 5σ sensitivity areas become much larger if the
luminosity is increased. Due to the small branching ratios, the cross sections for W
boson fusion are too small in the bb̄bb̄ final state for MH & 160 GeV (in MCHM5 only
for small ξ) and for the W +W −W +W − decay channel for MH . 110 GeV to have any
sensitivity at all to a non-vanishing λHHH.
In MCHM4, the sensitivity decreases with rising ξ since the triple Higgs coupling is
modified by a factor of

√
1− ξ with respect to the SM and hence becomes smaller with

rising ξ. This means that for a luminosity of 2000 fb−1 in the bb̄bb̄ channel deviations
from a vanishing λHHH can only be measured up to ξ ≈ 0.7 and in the W +W −W +W −

final state up to ξ ≈ 0.75 with 5 σ. For a luminosity of 500 fb−1 this border lies at even
smaller ξ. In the W +W −W +W − final state the maximal ξ of the 5 σ region becomes
smaller with rising MH . The reason for this behaviour is the branching ratio into W
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Figure 4.11.: Energy behaviour of the cross section of the process e+e− → ν̄νHH
in the MCHM4 (left plot) and the MCHM5 (right plot). The red curve
corresponds to the SM, the blue to ξ = 0.2, the black to ξ = 0.5 and the
green to ξ = 0.8.
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bosons, which is largest for MH ≈ 170 GeV.
In MCHM5, there is no sensitivity for ξ ≈ 0.5 since λHHH = 0 for ξ = 0.5. In the
W +W −W +W − final state, there is only a small 5 σ region for ξ > 0.5 for an integrated
luminosity of 500 fb−1. The triple Higgs coupling is only large enough for ξ > 0.8 to
show deviations from the case with a vanishing λHHH. The mass range of this 5 σ region
is determined by the branching ratio H →W +W −, which is largest in this region. For
ξ > 0.5 the mass range for the sensitivity in the W +W −W +W − decay channel becomes
smaller with rising ξ, whereas in the bb̄bb̄ final state the range becomes larger. This is
due to the branching ratios: The bb̄ branching ratio is larger for very high ξ than the
branching ratio H →W +W −, even for large Higgs masses. The latter branching ratio
diminishes with rising ξ and vanishes at ξ = 1.
Altogether, the sensitivity areas can be enlarged very much if the luminosity is increased
or if the electron and positron beams are polarized. For a luminosity of 2000 fb−1, the
triple Higgs coupling can be measured over the whole mass range for ξ . 0.7 in MCHM4

and in MCHM5 for ξ . 0.35 and ξ & 0.65.
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Figure 4.12.: Sensitivity areas in the MH − ξ plane for the measurement of a non-
vanishing λHHH in the process e+e− → ν̄νHH in MCHM4 with a centre-
of-mass energy of

√
s = 1 TeV. The regions correspond from dark blue

to light blue to 5, 3, 2, 1 σ. The final states are bb̄bb̄ on the left and
W +W −W +W − on the right with

∫ L = 500 fb−1 for the two upper plots
and

∫ L = 2000 fb−1 for the two lower plots.
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Figure 4.13.: Sensitivity areas in the MH − ξ plane for the measurement of a non-
vanishing λHHH in the process e+e− → ν̄νHH in MCHM5 with a centre-
of-mass energy of

√
s = 1 TeV. The regions correspond from dark blue

to light blue to 5, 3, 2, 1 σ. The final states are bb̄bb̄ on the left and
W +W −W +W − on the right with

∫ L = 500 fb−1 for the two upper plots
and

∫ L = 2000 fb−1 for the two lower plots.





CHAPTER 5

The Higgs boson in a model with partially

composite top

In this chapter, a modified Composite Higgs model is investigated, in which the top
quark is partially composite. A description of the properties of the used model as well
as the notation was given in subsection 2.2.3. The first section of this chapter deals
with the diagonalization of the mass matrix of Eq. (2.74). To study the properties
of the Higgs boson and the new fermions, single Higgs production via gluon fusion is
investigated as an example in the second section. The main focus is on the last section
of this chapter, where Higgs pair production via gluon fusion is discussed.

5.1. Diagonalization of the mass matrix

As mentioned in subsection 2.2.3, the masses of the SM fermions are generated through
a mixing with fermions of the new strong sector. Since the top quark mass is much
larger than the masses of the other SM quarks, the mixing between the top and the
new fermions is much stronger than the mixing between the new particles and the other
quarks. So the discussion will be constrained to the top sector.
In order to do calculations involving the new fermions or the top, the quark mass
eigenstates are needed, so the mass matrix (2.74) must be diagonalized. Since the
mass matrix M maps the space of right-handed fermions to the space of left-handed
fermions, a diagonalization always has to be done with two different matrices, where
one of them (here V ) rotates the left-handed quarks and the other one (here U) the
right-handed quarks, hence

V †MU = Mdiag . (5.1)

51
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As V and U should only rotate the states they have to be unitary.1 This means

V †V = V V † = 1 and U †U = UU † = 1 . (5.2)

So for the fermionic interaction states ΨL and ΨR we have

Ψ̄LMΨR =
(

Ψ̄LV
) (

V †MU
) (

U †ΨR

)

= Ψ̄′
LMdiagΨ

′
R

,
(5.3)

where the fermionic interaction states are rotated to the mass eigenstates Ψ′
L

and Ψ′
R

Ψ′
L

= V †ΨL (5.4)

Ψ′
R

= U †ΨR . (5.5)

This rotation does not change the kinetic term and therefore the propagators, because

iΨ̄/∂Ψ = i
(

Ψ̄L
/∂ΨL + Ψ̄R

/∂ΨR

)

= i
(

Ψ̄′
LV † /∂V Ψ′

L + Ψ̄′
RU † /∂UΨ′

R

)

= iΨ̄′ /∂Ψ′ (5.6)

with the unitarity conditions of (5.2). The rotation matrices are needed to derive the
coupling matrices for the couplings of the fermions to the Higgs boson in the mass
basis. With

HΨ̄LGΨR = HΨ̄′
L
V †GUΨ′

R
= HΨ̄′

L
G′Ψ′

R
(5.7)

the new coupling matrix G′ in the basis of the fermion mass eigenstates can be cal-
culated by multiplication of the coupling matrix G of the interaction states with the
rotation matrices V † and U . The coupling matrices can be found in Appendix C. Since
the fermions are in the fundamental representation of SO(5), the couplings gHHH, gHV V

and gHHV V are of course modified in the same way as in MCHM5. Altogether, all Higgs
couplings in the mass eigenstates can be found if the matrices V and U are known.
So the question is how to find U and V . In subsection 2.2.3 and Refs. [46, 47]2 these
matrices have already been found before electroweak symmetry breaking, which means
the VEV is equal to zero. However, this also has to be done for v 6= 0. First, an ana-
lytical approximation will be discussed. Later, a numerical method will be explained.

Analytical method
An exact analytical way to diagonalize the mass matrix and to find the rotation matri-
ces V and U was not found. But as the diagonalization could easily be done for v = 0,
an expansion in ǫ =

√
ξ = v

f
can be done. Such an expansion is very useful because

one can for example gain some insight into what exactly happens with the masses and
how the couplings behave. Furthermore, the expansion can be used for small values of
ǫ, which are preferred by electroweak precision data.

1A proof that it is always possible to find such a biunitary transformation to diagonalize a matrix
M can be found in Ref. [86].

2In Ref. [46] there seems to be a mistake in the signs. But the result of subsection 2.2.3 agrees
with Ref. [47].
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The expansion is done in first order in ǫ = v
f
. As an ansatz for the matrices

V =








cos θL + v1 ǫ sin θL + v2 ǫ v3 ǫ v4 ǫ
− sin θL + v5 ǫ cos θL + v6 ǫ v7 ǫ v8 ǫ

v9 ǫ v10 ǫ 1 + v11 ǫ v12 ǫ
v13 ǫ v14 ǫ v15 ǫ 1 + v16 ǫ








(5.8)

and

U =








cos θR + u1 ǫ u2 ǫ u3 ǫ sin θR + u4 ǫ
u5 ǫ 1 + u6 ǫ u7 ǫ u8 ǫ
u9 ǫ u10 ǫ 1 + u11 ǫ u12 ǫ

− sin θR + u13 ǫ u14 ǫ u15 ǫ cos θR + u16 ǫ








(5.9)

can be taken. There are 32 parameters v1...v16 and u1...u16 that have to be determined.
Also, the mass matrix has to be expanded to first order in ǫ. Therefore, the VEV v
was expressed through v = ǫ f . Additionally, sα = ǫ and cα = 1 + O(ǫ2) have to be set.
In order to restrict the 32 parameters, the unitarity conditions of (5.2) can be used.
For each of the two matrices this fixes ten parameters, because U †U is a symmetric
matrix and therefore ten parameters are needed to set U †U = 1. So every matrix still
has six free parameters. However, Eq. (5.1) is not yet fulfilled. Consequently, another
condition is that the result of the multiplication V †MU has to be diagonal. A diagonal
4×4 matrix has four free parameters. Hence another twelve parameters are constrained.
So (5.1) together with the conditions in (5.2) constrains all free parameters.
The matrix multiplications were done with Mathematica. The masses of the new
quarks were found to be

mQ =
mΨ

cos θL

, mX = mΨ , mT =
m̃Ψ

cos θR

. (5.10)

Note that this is the same result as obtained for v = 0. However, in first order in ǫ the
top quark also gets a mass

mt =
1√
2

ǫ f y sin θL sin θR . (5.11)

This result corresponds to the one in Ref. [47]. In order to ensure that mt = 173.3 GeV
and that y is not larger than 4π (so that it is still possible to perform perturbation
theory) sin θL or sin θR must not be too small. This indicates that either the right-
handed top or the left-handed top is mostly composite, which means that the mass
eigenstate of the left-handed/right-handed top quark consists mainly of contributions
from fermions of the new sector. Even though the top quark only gets its mass in
first order in ǫ, a finite mass for the top quark can still be guaranteed in the SM limit
f →∞ since the f cancels with the one in ǫ = v

f
.

Setting the top mass to mt = 173.3 GeV determines one of the parameters. The others
are still free but constrained by electroweak precision data. As free parameters sin θL,
y, f and the ratio m̃Ψ/mΨ are chosen. The parameter sin θR will always be determined
through the top mass (5.11). The rotated coupling matrices in first order in ǫ can
be found in Appendix D. The full result for the rotation matrices V and U are not
presented here, since they are very long and do not provide more to the understanding.
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Another way to diagonalize the mass matrix analytically is to take the squared mass
matrix

M2
diag

= V †MUU †M †V = V †MM †V

M2
diag = U †M †V V †MU = U †M †MU .

(5.12)

These relations allow us to find the matrices V and U as matrices of the eigenvectors
of the matrix M †M (or MM †) and the quark masses by taking the square root of the
eigenvalues of these matrices. However, calculating the eigenvalues of these matrices
leads to very long and complicated relations. The obtained top mass in dependence
of the free parameters cannot be solved analytically for one of these variables. This
would not allow the top mass to be set to 173.3 GeV except when the equation is solved
numerically.

Numerical method
Numerically the mass matrix was diagonalized by a singular value decomposition with
LAPACK [87], a linear algebra package for FORTRAN. In order to do this, three
routines of the LAPACK package are needed. First, the routine DGEBRD reduces the
mass matrix to a bidiagonal matrix. The basis changing matrices for this procedure
can only be given back completely if another routine named DORGBR is called (twice,
i.e. one time for each matrix). These matrices and the bidiagonal matrix is needed as
an input for the routine DBDSQR, which computes the singular value decomposition
of a bidiagonal matrix. Also the matrices noted earlier with V and U can be obtained
with this routine. The correct application of this procedure was checked against some
examples calculated with the singular value decomposition function of Mathematica.
The singular value decomposition does not order the singular values in a particular way.
The convention of LAPACK is to order the largest singular value in the first position
and from there on the singular values are ordered with decreasing size on the diagonal.
Consequently, the masses must be ordered in the way corresponding to the fermions,
which means the lightest mass has to stand in the first matrix element, since it should
denote the top mass. This is achieved with an auxiliary matrix O. An estimation
of how the others have to be ordered can be found by looking at the analytic results
in first order in ǫ. If the allowed parameter space where m̃Ψ ≪ mΨ is chosen, then
mT ≪ mQ, mX must hold. The diagonal mass matrix has to be multiplied with

O =








0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0








(5.13)

so that

Mnew

diag = O†MdiagO . (5.14)

With O†O = OO† = 1, the original mass matrix can be obtained by

V OO†MdiagOO†U † = M (5.15)
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Consequently, the matrices V and U have to be multiplied with

Vnew = V O (5.16)

Unew = UO . (5.17)

If the masses were to be placed in a different order then of course the matrix O has to
be changed.
Another problem is how to set the top mass to its value of 173.3 GeV. The dependence
on the parameters of the model is not known if the matrix diagonalization is done
numerically. As already mentioned, one of the parameters is not free but has to be
chosen in a way which fixes the top mass to its measured value. This was done by
fitting the value for sin θR by a bisection method until the top mass is fixed to its
experimental value.
This works in the following way: In the beginning an interval of values for sin θR is
chosen. Then the singular value decomposition is performed for both the minimal and
the maximal value of this interval. The value of the top mass corresponding to sin θR

in the middle of the interval is also computed. Now a comparison has to be made:
If the obtained mass value of the middle of the sin θR interval is smaller than the top
mass, then either the maximal or minimal sin θR value will be replaced by the value of
the middle of the sin θR interval, depending on which one also corresponds to a lower
mass value than the top mass. If the mass value of the middle of the interval is larger
than the top mass, then of course the sin θR value which also gives a larger top mass is
replaced. So a new interval is chosen at every step of this procedure. This procedure
will last as long as a given precision for the top mass is not yet reached. Here a precision
0.05 GeV is assumed. For the lower and upper bound of the interval, one has to be
careful because in the parameter space where m̃Ψ ≪ mΨ, the interval for sin θR has to
be chosen negative (e.g. [-1 : 0] seems sensible). Since y will be negative, this ensures
the top mass to be positive. This can be seen from formula (5.11) for the first order
top mass.
To assure the correctness of this procedure, the following checks were done

• As already mentioned, the LAPACK procedure was checked against the same
calculation in Mathematica.

• The SM limit was checked. For f →∞ the masses of the new fermions should go
to∞. Indeed, a check for very large f shows that the masses of the new fermions
get very large.

• For very large f , the results of the numerical method and the first order calcula-
tion should lead to the same results. This could be confirmed.

• For f →∞, gHtt should have the SM value, which is indeed the case.

Of course, the masses of the fermions should not be too high, because they have to be
below the cut-off of the theory. So large masses, that of instance arise for f →∞, are of
purely theoretical interest. In such a case heavy resonances of the strongly-interacting
sector also have to be taken into account in principle.
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Figure 5.1.: Generic Feynman diagram for the process gg → H . The m indicates that
four particles can run in the triangle: The top and the three new fermions.

5.2. Single Higgs production in gluon fusion

The production of one Higgs boson in gluon fusion is the most important Higgs dis-
covery channel at the LHC, since it provides the largest cross section (for reviews, see
Refs. [19, 88]). This still holds in MCHM5 as long as ξ is not near 0.5, where the gHff̄

coupling and therefore also the cross section vanishes [45]. The question is whether
the effects of the new quarks in a model with partially composite top can be seen in
such a process. In a recent study [89], it was found that in the low energy limit Higgs
production via gluon fusion does not depend on any parameter other than f . This will
be examined here in the context of the full amplitude including the new fermions.
For the process only two diagrams contribute. The second one, arising through a
permutation of the external gluon lines, is equivalent to the first one and can therefore
be taken into account by a factor of 2. The Feynman diagram can be found in Fig. 5.1.
Not only the top quark but also the new quarks can run in the triangle. Their couplings
to the gluons are the same as for the top quark, since they have the same quantum
numbers.3 Apart from the new fermions, that have to be taken into account, only the
coupling gHff changes with respect to the SM. The calculation of the amplitude of the
triangle is nearly the same as for the triangle in chapter 3 but there is now only one
particle in the final state which means that the phase space integral can be integrated
out easily. For the SM this process can be found in Ref. [90]. The partonic cross section
is given by

σ(gg → H) =
σ0

M2
H

δ
(

ŝ−M2
H

)

(5.18)

with

σ0 =
GF α2

s

288
√

2π

9

16
|

∑

f=t,Q,X,T

Af(τf)|2 (5.19)

and with τf =
M2

H

4m2
f
.

For the fermion loops the top as well as the new fermions Q, X and T are taken into

3The couplings of the fermions to the gluons do not change through the transformation into mass
eigenstates. This can be directly inferred from Eq. (5.6), since the kinetic term and the fermion gluon
coupling have the same Lorentz structure.
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account in the form factor Af , which reads

Af(τ) = 2 [τ + (τ − 1) f(τ)]
1

τ 2

gHff v

mf

. (5.20)

The function f(τ) is given by

f(τ) =







arcsin2
√

τ τ ≤ 1

−1
4

[

log 1+
√

1−τ−1

1−
√

1−τ−1
− iπ

]2
τ > 1 .

(5.21)

For the coupling gHff the corresponding matrix element of the coupling matrix GHff

must be inserted. Denoting the gluon luminosity with

dLgg

dτ
=
∫ 1

τ

dx

x
f g
(

τ

x
, Q2

)

f g
(

x, Q2
)

, (5.22)

the cross section of the full process pp→ gg → H is given by

σ(pp→ H) = σ0τH

dLgg

dτH

(5.23)

with τH =
M2

H

s
. There, s denotes the collider energy squared which is taken to be

(14 TeV)2.

Results
In MCHM5, there are no new fermions with masses beyond the cut-off. The fermions
of the strongly interacting sector are integrated out and are only taken into account
through modified couplings. If the new fermions are integrated out there is no depen-
dence on the new parameters which arise in the model with partially composite top.
Thus, the dependence of the cross section on these new parameters, as well as the
behaviour of the cross sections of the model with partially composite top compared to
MCHM5, is investigated. For the parton distribution functions, CTEQ6L1 is used. A
scale

Q = MH

was assumed, as proposed in Ref. [90]. In order to take into account the QCD correc-
tions, the cross section was multiplied by a K factor of 1.6 [90]. The QCD corrections
do not change with respect to the SM in the models discussed here, since the virtual
corrections stay the same due to the same couplings of the new fermions to the glu-
ons as for the SM quarks. The real corrections involve only quarks of the proton and
are therefore the same as in the SM. A centre-of-mass energy of

√
s = 14 TeV was

used. The parameters of the model are always chosen in a way that they fulfill the
electroweak precision tests. In Ref. [47] the corresponding allowed parameter regions
were derived.
A comparison of the cross sections of MCHM5 and the model with partially composite
top can be found in Fig. 5.2. In these plots the blue curves correspond to the SM or
MCHM5 where the new fermions are integrated out. The red curve corresponds to
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Figure 5.2.: Plots for the comparison of the MCHM5 (blue dots), where the new
fermions are integrated out, and a model, where the new fermions are
taken into account explicitly (red line). The parameters for this model are
here y = −10.2, m̃Ψ/mΨ = 0.1 and sin θL = 0.1. The masses of the new
fermions mQ, mX and mT , are 8973 GeV, 8843 GeV and 4063 GeV for
ξ = 0.1 and for ξ = 0.2, they are 6459 GeV, 6255 GeV and 2875 GeV and
for ξ = 0.3, they are 5403 GeV, 5107 GeV and 2347 GeV.

the model where the new fermions emerge explicitly. The cross sections decrease with
increasing ξ because the coupling gHff̄ decreases for ξ < 0.5 which corresponds to the
examined parameter region.
The SM limit of the new model (f →∞) corresponds very well with the SM case and
the two curves overlap. The masses of the new fermions become very large in the limit
f →∞ and therefore the new fermions do not play a role. The coupling of the Higgs
boson to tt̄ also becomes the same as in the SM.
For ξ 6= 0, it was found in Ref. [89] that for low energies the new fermions can be
integrated out. The effects of the strong dynamics were encoded in a modification
factor of the Higgs coupling to the fermions of

(

1− 3
2
ξ
)

. This is the same coupling
modification factor as in MCHM5 for the gHff̄ coupling expanded in first order in ξ.
As can be found in Fig. 5.2, the curves for ξ 6= 0 where the new fermions are taken
into account explicitly coincides very well with the one where they are integrated out.
Hence the same conclusions as in Ref. [89] can be drawn, even for the LHC energy of√

s = 14 TeV. If the new fermions are integrated out a change in the masses and in
their couplings to the Higgs boson and therefore in the new parameters of the model
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should not lead to large deviations in the cross section, as in the case where they are
integrated out the cross section only depends on ξ.

sin θL y m̃Ψ/mΨ mQ [GeV] mX [GeV] mT [GeV] σ [pb]
- - - > cut-off > cut-off > cut-off 12.086

0.1 -10.2 0.1 5842 5595 2571 12.408
0.1 -10.2 0.05 5351 5298 1260 12.402
0.1 -12.2 0.1 6719 6684 1187 12.286
0.1 -12.2 0.05 6355 6327 599 12.227
0.95 10.2 5 3685 1285 6514 12.155

Table 5.1.: Cross sections for different model parameters for the process pp→ H + X.

In the Table 5.1, the cross section for different parameters are listed. For all cross
sections ξ = 0.25 and MH = 120 GeV was chosen. The first row of data is calculated
in MCHM5 where the new fermions are integrated out. The table shows that shifting
the parameters can lead to very different particle masses, but the cross section does
not vary much. This confirms once more that the new fermions can be integrated out
for this process.

5.3. Higgs pair production

In the Higgs pair production process in the model with a partially composite top,
there are some changes compared to MCHM5. Since the coupling of the Higgs boson
to the fermions is now a non-diagonal matrix, the Higgs can couple to two different
fermions, which leads to new types of diagrams. The triangle diagrams do not change
with respect to MCHM5, only that in the loop the top quark as well as the new quarks
can run. But in the box diagrams not only one fermion but also two different fermions
can run. The Feynman diagrams can be found in Fig. 5.3. The masses m1 and m2

should indicate the different fermions. m1 and m2 can even stand for the same masses,
because of course the processes, where only one kind of fermion runs in the loop,
are also possible. The amplitudes for these diagrams were calculated with FeynCalc
analogous to the ones in section 3.1. All field contractions are again taken into account
by multiplying the amplitude with a factor 2 as the diagrams with the fermion lines
in the opposite direction give the same contribution. The tensor structure does not
change, because it was derived with the help of Ward identities. Therefore, the same
projectors can be used. The form factors can be found Appendix E. However, one
thing is a bit tricky: Since the coupling matrix is not symmetric, one needs to pay
attention to the non-diagonal matrix elements:

HΨ̄L,iGijΨR,j + HΨ̄R,i(G
†)ijΨL,j = H

(

Ψ̄iGij

(
1 + γ5

2

)

Ψj + Ψ̄iGji

(
1− γ5

2

)

Ψj

)

= HΨ̄i

(
Gij

2
+

Gji

2

)

Ψj

︸ ︷︷ ︸

(1)

+ HΨ̄i

(
Gij

2
− Gji

2

)

γ5Ψj

︸ ︷︷ ︸

(2)

(5.24)
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As can be seen here, for the non-diagonal matrix elements a new Lorentz structure of
the couplings arises. The first part (1) gives a structure as expected: The coupling
matrix for that part is symmetric. But the second part (2) has a different structure:
The coupling gets an additional γ5 and is not symmetric anymore. It differs by a
minus sign depending on whether the fermion i or j is incoming or outgoing.4 This
coupling is illustrated in Fig. 5.4. The form factors for the coupling structure of part
(2) were calculated separately, since the additional γ5 changes the traces that have to
be calculated for the fermion loop. Only diagrams where the γ5 coupling is present
in both Higgs vertices to two fermions give a contribution, because diagrams with
only one γ5 are cancelled by the corresponding diagrams with the fermion lines in the
opposite direction. As explained above for the coupling without γ5 they are taken into
account by a factor of 2. The form factors can also be found in Appendix E. They
look very similar to the other form factors for the same projectors but some terms
have a different sign. For the diagrams with two γ5 matrices an extra minus sign is
always needed because each diagram involves a vertex where particle i is incoming and
j outgoing and vice versa.
To calculate the cross section numerically, a FORTRAN program was written, which
performs the mass matrix calculation and the phase space integration. For details on
the phases space integration see section 3.1. As PDF set CTEQ6L1 was again used.
The QCD corrections do not change with respect to the SM and are taken into account
by a K factor of 2 [63]. Again a centre-of-mass energy of

√
s = 14 TeV is assumed.

The same scale as in chapter 3 for gluon fusion was assumed. Here LoopTools [91] was
used for the scalar integrals.

Results
Unfortunately, results for very large f or low Higgs masses MH (depending on the choice
of the other values) cannot be presented here, since there are still some numerical
problems in the program which means that the Monte Carlo integration does not
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Figure 5.3.: Generic Feynman diagrams for the process gg → HH . The masses m1 and
m2 in the box diagrams denote that it is possible that two different fermions
are in the loop. Here, m1 and m2 stand for every possible combination of
the masses mt, mQ, mX and mT . Also m also stands for these masses.

4Such a behaviour is not completely new: This is also the case in the MSSM, where the neutral
pseudoscalar Higgs boson and the Goldstone boson couple in this manner to squarks [7].
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sin θL y m̃Ψ/mΨ mQ [GeV] mX [GeV] mT [GeV] σ [fb]
- - - > cut-off > cut-off > cut-off 65.164

0.1 -10.2 0.1 5842 5595 2571 40.179
0.1 -10.2 0.05 5351 5298 1260 40.306
0.1 -12.2 0.1 6719 6684 1187 49.238
0.1 -12.2 0.05 6355 6327 599 49.952
0.95 10.2 5 3685 1285 6514 58.510

Table 5.2.: Cross sections for different model parameters for the process pp→ HH+X.

converge. In the beginning the value of the error to the cross section seems to converge,
but suddenly the error becomes large and the value for the cross section jumps. This
problem could be solved for some parameters by the introduction of a small ǫ for the
integration limits of the integration over the Bjorken variable x, which means that the
random numbers given by the Vegas routine are substituted in such a way that they
lie in [ǫ, 1-ǫ]. Usually, ǫ is chosen O(10−8). The numerical problem is caused in the
form factors G� and G�,5. Presumably, the problem lies in the mass hierarchies since
it only emerges for light Higgs masses or large f . For large f , the masses of the new
fermions are very high, which leads to a large mass hierarchy between the Higgs mass
and the masses of the new fermions.
To start with, the question of whether the effects of the new fermions in the loop can
be seen is investigated. For that purpose, a table of some values of the cross section
for different parameters is helpful. The Higgs mass for the cross sections in Table 5.2
is chosen to be MH=180 GeV and ξ = 0.25. As it can be found in Table 5.2, the
parameters of the model affect the cross section much more than in the single Higgs
production. But the reason does not seem to be the change in the masses but rather
the change in the couplings. A shift in the parameter m̃Ψ/mΨ does not change the cross
section very much, but the masses, especially mT , change. However, m̃Ψ/mΨ does not
change the coupling gHff as much as a change in the other parameters would do. This
can be anticipated from the coupling matrix GHff̄ in first order in v

f
of Appendix D,

since most of the matrix elements do not depend on m̃Ψ/mΨ in first order, especially not
gHtt, which has the largest effect on the cross section. Shifting the value of the coupling
y has a much larger effect on the cross section. Examining the allowed parameter

Ψi

Ψj

γ5 = -

Ψi

Ψj

γ5

Figure 5.4.: Illustration of part (2) of Eq. (5.24). This part of the coupling of the Higgs
to two different fermions depends on the direction of the fermion lines.
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space where sin θL ∼ 1, the cross section changes significantly compared to case where
sin θL = 0.1. Every parameter set chosen in this table shows that the cross section in
the model with partially composite top is smaller than the cross section where the new
fermions are integrated out (cf. the first row of Table 5.2). For comparison, the cross
section was also calculated for the fictitious case in which the coupling matrix GHff̄

is diagonal in order to get an answer to the question of whether the diagrams with
two different fermions have an effect on the cross section. Indeed, if in this case the
parameters are chosen in the same way as in the second row of the table (y = −10.2,
sin θL = 0.1, m̃Ψ/mΨ=0.1, ξ = 0.25 and MH = 180 GeV) the cross section more than
doubles. The fact that the cross section becomes smaller if the diagrams with two
different fermions in the loop are also taken into account is mainly due to the diagrams
with the coupling with the new Lorentz structure (the form factors F�,5 and G�,5).
Another interesting question is the behaviour of the cross section with respect to ξ. In
Fig. 5.5 cross sections as a function of MH are shown for two values of ξ. In chapter
3, it was found that the cross section in MCHM5 increases with ξ due to the new
triangle diagram with the new gHHff̄ coupling. The cross section in the model with
partially composite top should show the same behaviour. Indeed, in Fig. 5.5 the cross
section increases if ξ is shifted from 0.1 to 0.25. But as already seen in the table, the
cross sections are smaller in the model with partially composite top than in MCHM5.
As expected, the cross sections are larger than the SM cross section (which would
correspond to ξ = 0).
The arrows in Fig. 5.5 indicate the behaviour of the cross section under a change
in the triple Higgs coupling. The arrows point from the value of the cross section
with 0.5 λHHH to the value of the cross section for 1.5 λHHH. The direction of the
arrows can be explained by the interference structure: As already described for the SM
and MCHM5 in section 3.4, the diagram involving the triple Higgs coupling interferes
destructively with the other diagrams and so the arrow points downwards. For the
cross section in the model with partially composite top, the situation is of course more
complicated, since all the diagrams must in principle be taken into account to answer
this question. But since the top loop is the most important one, and the signs of the
top couplings do not change compared to the MCHM5, the interference structure stays
the same. The arrows become smaller with increasing ξ. This is due to the increasing
importance of the triangle diagram with the gHHff̄ coupling. This coupling also gets
larger with rising ξ = v2

f2 in the model with partially composite top because the coupling

matrix scales with 1
f
.

In Fig. 5.6 the effects on the cross section for a variation of λHHH, which is given by
λ′

HHH
= κλHHH, can be seen. The slope of the curves for different parameters and even

for the case where the new fermions are integrated out is nearly the same. Of course,
for smaller cross sections the change in per cent with varying κ is more important
than for larger cross sections. This behaviour can be explained with the help of the
results of single Higgs production. There, the cross section varies only slightly with
the parameters (except for ξ). The structure of the Feynman diagrams for this process
are nearly the same as for the Feynman diagram involving the trilinear Higgs coupling
in Higgs pair production. The amplitude is only multiplied by an additional Higgs
propagator and the triple Higgs coupling. But the structure involving the new fermions
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does not change. According to this, the behaviour of the cross section with a variation
of κ should be the same for the curves with different parameters at a given value of ξ.
This is the reason why the shape of the curves are nearly the same for every parameter
set. The shift in the curves can be explained by the other Feynman diagrams, especially
the box diagrams of the Higgs pair production process. The same behaviour will be
found for other values of ξ.
The prospects of measuring e.g. a non-vanishing Higgs coupling should lie between
the SM and MCHM5 for the corresponding value of ξ. As is shown in Fig. 5.5, the
cross sections for the model with partially composite top are always smaller for the
investigated parameters than in MCHM5 but larger than in the SM. The slope of the
curve showing the cross section with varying κ is the same. The effects on the variation
of λHHH of the cross section in the investigated model are therefore larger than in
MCHM5 but smaller than in the SM. The prospects of measuring a non-vanishing λHHH

for the small values of ξ, which are preferred in this model by electroweak precision tests,
are very good in MCHM5 (Fig. 3.11) and even better in the SM for HH → bb̄τ+τ− and
HH → W +W −W +W −. So the prospects of measuring a non-vanishing λHHH should
be as good as in MCHM5 in the model with partially composite top. However, taking
all background processes into account might lead to a worse result because the cross
section is slightly smaller than in the MCHM5 and so the background to signal ratio
could be reduced.
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Figure 5.5.: These plots give a comparison between the MCHM5 (red curve), where
the fermions of the strongly interacting sector are integrated out, and the
model with partially composite top (blue curve) for the parameters y =
−10.2, m̃Ψ/mΨ=0.1 and sin θL=0.1, and the SM (black curve). In the upper
plot ξ=0.1, in the lower plot ξ = 0.25. The masses of the new fermions,
mQ, mX and mT , are for ξ = 0.1 given by 8416 GeV, 8369 GeV and 1946
GeV and for ξ = 0.25, they are 5842 GeV, 5595 GeV and 2571 GeV. The
arrows indicate the change in the cross section for a variation of λHHH 0.5
to 1.5 times its value in the corresponding model. For the plot for ξ = 0.1
the arrows are scaled by a factor of 0.5.
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Figure 5.6.: Variation of the cross section for a modified trilinear coupling according
to λ′

HHH = κλHHH for ξ = 0.25. The upper plot shows the cross section for
varying κ for the parameter sets of y = −10.2, sin θL = 0.1 and m̃Ψ/mΨ =
0.1 (black line), y = −12.2, sin θL = 0.1 and m̃Ψ/mΨ = 0.1 (red line),
y = 10.2, sin θL = 0.95 and m̃Ψ/mΨ = 5 (green line) and for comparison
in MCHM5 (blue line). The value κ = 1 is marked by a dashed line, as it
belongs to the cross section with a λHHH given by the model. The lower
plot shows the variation of the cross section in percent. 0% corresponds to
no variation of the cross section. The colours code is the same as in the
upper plot.





CHAPTER 6

Summary

The understanding of the origin of electroweak symmetry breaking is still an out-
standing issue. In the SM, electroweak symmetry breaking is explained by the Higgs
mechanism. A short review of it was given in chapter 2. Even though the SM is
in very good agreement with all measurements so far, there are still some important
unanswered questions related to the size of the Higgs mass of the Higgs boson in the
context of the SM being valid up to some high mass scale as e.g. MGUT = 1016 GeV.
To solve this and other problems alternatives to the SM have been developed. In this
work a model is discussed where the Higgs boson is not a fundamental scalar particle
anymore but a bound state of a strongly-interacting sector. Thus, the Higgs boson
emerges as a pseudo Nambu-Goldstone boson of an enlarged global symmetry with a
mass arising through loops of fermions and gauge bosons which can naturally be kept
small. An introduction into the model was given in the second part of chapter 2 based
on a minimal approach leading to two different models - MCHM4 and MCHM5. For
low energies the particle content of these models is the same as in the SM but the
Higgs couplings are modified in terms of a new parameter ξ measuring the degree of
compositeness.
For an understanding of electroweak symmetry breaking the Higgs potential must be
reconstructed. This involves the measurement of Higgs self-couplings. The quartic
Higgs self-coupling is neither accessible at the LHC nor the ILC, in contrary to the
trilinear Higgs self-coupling. The focus of this work is therefore on the measurement
of the trilinear Higgs self-interaction, which is accessible in Higgs pair production pro-
cesses. They have been discussed in the framework of MCHM4 and MCHM5 in chapter
3 for the LHC. In that context, Higgs pair production via gluon fusion, via vector boson
fusion and via double Higgs-strahlung off vector bosons was studied. For the gluon fu-
sion process, sensitivity areas for the deviation of the minimal Composite Higgs models
with respect to the SM in the MH−ξ plane were constructed for various final states. In
the same way the sensitivity to a non-vanishing triple Higgs coupling λHHH was inves-
tigated. Especially for the W +W −W +W − final state, the results were very promising.
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This analysis concentrated on the identification of parameter regions in the MH − ξ
plane, where the trilinear Higgs self-coupling can be extracted in the framework of a
minimal Composite Higgs model. The results now have to be backed by a more so-
phisticated analysis taking into account all background processes as well as detector
properties.
In chapter 4, Higgs pair production at an e+e−-collider was discussed. A centre-of-
mass energy of 500 GeV and of 1 TeV was assumed. This is the energy region of the
ILC TESLA design. In this context, the cross sections for double Higgs-strahlung off
Z bosons and W fusion were presented. For the double Higgs-strahlung process, it
was found that the cross sections are smaller than in the SM for low ξ but if ξ & 0.5
the cross sections become larger for large energies. They also show a different energy
behaviour as in the SM case for large ξ. In double Higgs-strahlung, the prospects of
measuring a non-vanishing trilinear Higgs coupling for a collider energy of

√
s = 500

GeV are rather good in the final states bb̄bb̄ and W +W −W +W − even for a luminosity of
500 fb−1 which is hoped to be achieved in an early stage at the ILC. However, a larger
centre-of-mass energy of 1 TeV would not allow to measure the triple Higgs-coupling
due to the decreasing contribution of the Feynman diagram involving the trilinear Higgs
self-coupling with the energy. In W boson fusion, the cross sections increase with rising
ξ. The energy behaviour also changes compared to the SM: The amplitude is now ∼ s,
due to the modification of the Higgs couplings to the gauge bosons. The triple Higgs
coupling can be measured in W boson fusion for an integrated luminosity of 2000 fb−1

and a collider energy of 1 TeV over the whole mass range for ξ . 0.7 in MCHM4 and
in MCHM5 for ξ . 0.35 and ξ & 0.65.
A model, where the new fermions of the strongly interacting sector have masses below
the cut-off of the effective theory, is investigated in chapter 5. For the calculation of
single Higgs production and Higgs pair production in gluon fusion the new fermions
have to be taken into account explicitly. The results of both processes are compared
to the results obtained where the new fermions are integrated out. For single Higgs
production, the cross sections have been found to be nearly the same in both cases
whereas for Higgs pair production the cross section depends on the choice of the model
parameters. This process is still under investigation. A variation in the triple Higgs
coupling shows similar effects as in the MCHM5.
With the caveat of a lacking background study in the Minimal Composite Higgs models
but backed by SM studies, a non-vanishing triple Higgs coupling can be measured at the
LHC as soon as the full centre-of-mass energy and a luminosity of 300 fb−1 is reached.
At a future e+e− collider, a measurement of a non-zero λHHH is possible over nearly the
whole considered parameter space in double Higgs-strahlung for

√
s = 500 GeV and an

integrated luminosity of 500 fb−1 and in W fusion for
√

s = 1 TeV and a luminosity of
2000 fb−1.



APPENDIX A

Gluon fusion: Form factors

Notation
p1 and p2 are the four-momenta of the gluons; p3 and p4 are the four-momenta of the
Higgs bosons. The Mandelstam variables are defined as

s = (p1 + p2)
2 t = (p1 + p3)2 u = (p2 + p3)2

The scalar integrals are defined as

Cij =
∫ d4q

(2π)4

1

(q2 −m2) ((q + pi)
2 −m2)((q + pi + pj)

2 −m2)

Dijk =
∫ d4q

(2π)4

1

(q2 −m2) ((q + pi)
2 −m2)((q + pi + pj)

2 −m2)((q + pi + pj + pk)2 −m2)

The analytic expressions can be found in Refs. [58, 92].

Tensor basis and projectors
The tensor basis was obtained by reducing the general tensor structure consisting of
gµν , pν

1pµ
2 , pν

1pµ
3 , pµ

2 pν
3 and pµ

3pν
3 with the help of Ward identities. Through an appropriate

linear combination the two remaining tensor structures were rewritten to the ones of
Ref. [59]

Aµν
1 =

1√
2

(

gµν − pν
1 pµ

2

(p1 · p2)

)

(A.1)

Aµν
2 =

1√
2

(

gµν +
p2

3 pν
1 pµ

2

p2
T (p1 · p2)

− 2 (p3 · p2) pν
1 pµ

3

p2
T (p1 · p2)

− 2 (p3 · p1) pν
3 pµ

2

p2
T (p1 · p2)

+
2pµ

3 pν
3

p2
T

)

(A.2)

with p2
T = 2

(p1 · p3) (p2 · p3)

(p1 · p2)
− p2

3

and A1 · A2 = 0 and A1 ·A1 = A2 · A2 = 1 (A.3)
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Triangle form factor

F△ = 2
(

2m +
(

4m3 − s m
)

C12

)

(A.4)

Box form factors
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APPENDIX B

Differential cross section for double Higgs-strahlung

off Z bosons

Coupling factors

fHZZ =
2 M2

Z

v

√

1− ξ (B.1)

fHHZZ =
2 M2

Z

v2
(1− 2 ξ) (B.2)

fHHH =
3 M2

H

v

√

1− ξ in MCHM4 (B.3)

fHHH =
3 M2

H

v

(1− 2 ξ)√
1− ξ

in MCHM5 (B.4)

The differential cross section of the process

e−(k−) + e+(k+)→ H(p1) + H(p2) + Z(p3)

is [67, 93, 94]

dσ

dE1 dE2

=
GF M2

Z

384π3
√

2

1

(s−M2
Z
)2

(

a2
e + v2

e

) 1

2
A (B.5)

with

A = f 4
HZZ

Aaa + f 2
HHZZ

Abb + f 2
HZZ

f 2
HHH

Acc

+ f 2
HZZ fHHZZ Aab + f 3

HZZ fHHH Aac + fHZZ fHHH fHHZZ Abc

(B.6)
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and

Aaa = d2
1d4 +

d2

M4
Z

+
2

M2
Z

d1d3 (B.7)

Abb = d4 (B.8)

Acc = d4
1
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H)2 (B.9)

Aab = 2 d1 d4 + 2
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)
(B.11)

Abc =
2 d4

(2 p1 · p2 + M2
H

)
, (B.12)

with

d1 =
1

2 p1 · p3 + M2
H

+
1

2 p2 · p3 + M2
H

d2 =
(E2

1 −M2
H)
{

−M2
H M2

Z + (p2 · p3)2
}

M2
Z

(2 p2 · p3 + M2
H

)2 +
(E2

2 −M2
H)
{

−M2
H M2

Z + (p1 · p3)
2
}

M2
Z

(2 p1 · p3 + M2
H

)2

+ 2
(E1E2 − p1 · p2)

{

−M2
Z p1 · p2 + (p1 · p3) (p2 · p3)

}

M2
Z (2 p2 · p3 + M2

H) (2 p1 · p3 + M2
H)

d3 =
M2

Z (p1 · p2 − E1E2) + p2 · p3 (E1E3 − p1 · p3)

M2
Z

(2 p2 · p3 + M2
H

)

+
M2

Z
(p1 · p2 − E1E2) + p1 · p3 (E2E3 − p2 · p3)

M2
Z

(2 p1 · p3 + M2
H

)

d4 = 2 +
E3

M2
Z

.

The axial and vector current couplings are

ae = −1 ve = 4 sin2 θW − 1 , (B.13)

where θW denotes the Weinberg angle.



APPENDIX C

Coupling matrices

The coupling matrices of the Higgs bosons to the fermions can be derived from the
Lagrangian (2.73) by an expansion in h around v. As for the Higgs pair production the
coupling matrix of one Higgs boson to two fermions, as well as the coupling matrix of
two Higgs bosons to two fermions is needed they are given here. The coupling matrix
of one Higgs boson to two fermions can also be found in Ref. [48]. The notation here
is the same as in subsection 2.2.3.

The coupling matrix GHff

The Lagrangian of the couplings of one Higgs boson to two fermions is

−LHff = y H








tL

Qu
L

Xu
L

TL

















0 0 0 0

0 sαcα sαcα
1−2 s2

α√
2

0 sαcα sαcα
1−2 s2

α√
2

0 1−2 s2
α√

2

1−2 s2
α√

2
−2 sαcα










︸ ︷︷ ︸

GHff̄








tR

Qu
R

Xu
R

TR








+ h.c. . (C.1)

Note that as long as no transformation to mass eigenstates is done, the coupling gHtt̄ =
GHff̄(1, 1) = 0. This is not surprising, as before the rotation to mass eigenstates the
fundamental top (the top quark with no mixing) does not have a mass and therefore
no coupling to the Higgs boson is expected.
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The coupling matrix GHHff̄

The Lagrangian of the couplings of two Higgs bosons to two fermions is

−LHHff =
y

f
H2








tL

Qu
L

Xu
L

TL
















0 0 0 0
0 1− 2 s2

α 1− 2 s2
α −4 cαsα√

2

0 1− 2 s2
α 1− 2 s2

α −4 cαsα√
2

0 −4 cαsα√
2
−4 cαsα√

2
−2 (1− 2 s2

α)









︸ ︷︷ ︸

GHHff̄








tR

Qu
R

Xu
R

TR








+ h.c. (C.2)

Note that this coupling will vanish in the SM limit f →∞, because it is ∼ 1
f
.



APPENDIX D

Coupling matrices in O(ǫ)

The coupling matrices in first order are

GHff̄ =










y sin θL sin θR√
2

vyA −mLvy cos θLB −mLy cos θL cos θR√
2mΨ

−y cos θL sin θR√
2

−vy cos θLC vy cos θLD y cos θL cos θR√
2

−y sin θR√
2

−vy cos θLE
m2

Rvy(2mΨ+fy)

2fmΨ(m2
R

+fy(2mΨ+fy))
y cos θR√

2
1
2
yvF y√

2

y√
2

vy cos θRG










(D.1)

where A − G are functions of f, y, mL, mR and mΨ and are too long to be written
down here. The first matrix element, which corresponds to the coupling of the Higgs
bosons to two tops, is in first order in ǫ = v

f
given by gHtt̄ = mt

v
as in the SM. For the

coupling of two fermions to two Higgs bosons only the diagonal elements of the matrix
are written down here, since the other matrix elements are not needed for the Higgs
pair production process

GHHff̄(1, 1) =

mLmRvy



 2fy
m2

R
+(mΨ+fy)2 −

fy
mΨ

+
fmΨy

m2
L

+m2
Ψ

+4

mΨ+fy



 cos θL cos θR

√
2f 2mΨ

GHHff̄(2, 2) =
y cos θL

f

GHHff̄(3, 3) =
y

f

GHHff̄(4, 4) = −2y cos θR

f
.

(D.2)

As expected these couplings vanish in the SM limit f → ∞. The coupling gHHtt̄ only
arises in first order in v

f
.
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APPENDIX E

Gluon fusion in a model with partially composite

top: Form factors

The scalar integrals are here defined by

A0(m
2) =

∫ d4q

(2π)4

1

q2 −m2
(E.1)

B0(p2
1, m2

1, m2
2) =

∫ d4q

(2π)4

1

(q2 −m2
1)((q + p1)2 −m2

2)
(E.2)

C0(p
2
1, p2

2, (p1 + p2)
2, m2

1, m2
2, m2

3) =
∫ d4q

(2π)4

1

(q2 −m2
1) ((q + p1)

2 −m2
2)((q + p1 + p2)2 −m2

3)
(E.3)

D0(p
2
1, p2

2, p2
3, (p1 + p2 + p3)2, (p1 + p2)2, (p2 + p3)2, m2

1, m2
2, m3

3, m4
4) =

∫ d4q

(2π)4

1

(q2 −m2
1) ((q + p1)

2 −m2
2)((q + p1 + p2)2 −m2

3)((q + p1 + p2 + p3)
2 −m2

3)
.

(E.4)

The tensor basis and the form factor for the triangles can be found in Appendix A.
For the boxes, the form factors are

F� =2
[

2 s + 4 m2
1 s C0(0, 0, s, m2

1, m2
1, m2

1)+

(m2
1 M2

H
+ 2 m1 m2 M2

H
+ m2

2 M2
H
−M4

H
−m2

1 t − 2 m1 m2 t −m2
2 t + M2

H
t)

C0(M
2
H , 0, t, m2

1, m2
2, m2

2)

+ (m2
1 M2

H
+ 2 m1 m2 M2

H
+ m2

2 M2
H
−M4

H
−m2

1 t − 2 m1 m2 t −m2
2 t + M2

H
t)

C0(M
2
H

, 0, t, m2
2, m2

1, m2
1)

+ (m2
1 M2

H + 2 m1 m2 M2
H + m2

2 M2
H −M4

H −m2
1 u − 2 m1 m2 u −m2

2 u + M2
H u)

C0(M
2
H , 0, u, m2

1, m2
2, m2

2)
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+ (m2
1 M2

H
+ 2 m1 m2 M2

H
+ m2

2 M2
H
−M4

H
−m2

1 u − 2 m1 m2 u −m2
2 u + M2

H
u)

C0(M
2
H , 0, u, m2

2, m2
1, m2

1)

+ (−3 m2
1 M4

H
− 6 m1 m2 M4

H
− 3 m2

2 M4
H

+ M6
H

+ m4
1 s + 2 m3

1 m2 s + 2 m2
1 m2

2 s

+ 2 m1 m3
2 s + m4

2 s + m2
1 M2

H
t + 4 m1 m2 M2

H
t + m2

2 M2
H

t −m1 m2 t2 + m2
1 M2

H
u

+ 4 m1 m2 M2
H u + m2

2 M2
H u + m2

1 t u + m2
2 t u −M2

H t u −m1 m2 u2)

D0(M2
H , 0, M2

H, 0, t, u, m2
1, m2

2, m2
2, m2

1)

+ (2 m4 s + 4 m3
1 m2 s + 2 m2

1 m2
2 s − 2 m2

1 M2
H

s −m1 m2 s2)

D0(M2
H

, M2
H

, 0, 0, s, t, m2
1, m2

2, m2
1, m2

1)

+ (2 m4
1 s + 4 m3

1 m2 s + 2 m2
1 m2

2 s − 2 m2
1 M2

H s −m1 m2 s2)

D0(M
2
H , M2

H , 0, 0, s, u, m2
1, m2

2, m2
1, m2

1)
]

/s (E.5)

G� =
[

4 s A0(m
2
1)− 4 s A0(m

2
2) + (−4 m2

1 s + 4 m2
2 s) B0(0, m2

1, m2
2)+

(4 m4
1 s + 8 m3

1 m2 s − 8 m1 m3
2 s − 4 m4

2 s − 2 M4
H s + 4 m1 m2 s t + 4 m2

2 s t−
s t2 + 4 m1 m2 s u + 4 m2

2 s u − s u2) C0(0, 0, s, m2
1, m2

1, m2
1)+

(−2 m4
1 M2

H
− 4 m3

1 m2 M2
H

+ 4 m1 m3
2 M2

H
+ 2 m4

2 M2
H

+ 2 m4
1 t + 4 m3

1 m2 t−
4 m1 m3

2 t − 2 m4
2 t + m2

1 M2
H t −m2

2 M2
H t −m2

1 t2 + m2
2 t2 + m2

1 M2
H u −m2

2 M2
H u−

m2
1 t u + m2

2 t u) C0(0, t, M2
H

, m2
2, m2

2, m2
1)+

(2 m4
1 M2

H
+ 4 m3

1 m2 M2
H
− 4 m1 m3

2 M2
H
− 2 m4

2 M2
H
−m2

1 M2
H

t + m2
2 M2

H
t − 2 m4

1 u−
4 m3

1 m2 u + 4 m1 m3
2 u + 2 m4

2 u −m2
1 M2

H
u + m2

2 M2
H

u + m2
1 t u −m2

2 t u + m2
1 u2−

m2
2 u2) C0(0, u, M2

H, m2
1, m2

1, m2
2)+

(−2 m4
1 M2

H
− 4 m3

1 m2 M2
H

+ 4 m1 m3
2 M2

H
+ 2 m4

2 M2
H

+ 2 M6
H

+ 2 m4
1 t + 4 m3

1 m2 t−
4 m1 m3

2 t − 2 m4
2 t − 3 m2

1 M2
H

t − 8 m1 m2 M2
H

t − 5 m2
2 M2

H
t − 2 M4

H
t + 3 m2

1 t2 +

8 m1 m2 t2 + 5 m2
2 t2 + 2 M2

H t2 − 2 t3 + m2
1 M2

H u −m2
2 M2

H u −m2
1 t u + m2

2 t u)

C0(M
2
H

, 0, t, m2
2, m2

1, m2
1)+

(−2 m4
1 M2

H
− 4 m3

1 m2 M2
H

+ 4 m1 m3
2 M2

H
+ 2 m4

2 M2
H

+ m2
1 M2

H
t −m2

2 M2
H

t +

2 m4
1 u + 4 m3

1 m2 u − 4 m1 m3
2 u − 2 m4

2 u + m2
1 M2

H u −m2
2 M2

H u −m2
1 t u + m2

2 t u−
m2

1 u2 + m2
2 u2) C0(M

2
H , 0, u, m2

1, m2
2, m2

2)+

(−4 m4
1 M2

H
− 8 m3

1 m2 M2
H

+ 8 m1 m3
2 M2

H
+ 4 m4

2 M2
H

+ 2 M6
H

+ 2 m2
1 M2

H
t−

2 m2
2 M2

H
t + 4 m4

1 u + 8 m3
1 m2 u − 8 m1 m3

2 u − 4 m4
2 u − 2 m2

1 M2
H

u−
8 m1 m2 M2

H u − 6 m2
2 M2

H u − 2 M4
H u − 2 m2

1 t u + 2 m2
2 t u + 2 m2

1 u2 + 8 m1 m2 u2 +

6 m2
2 u2 + 2 M2

H
u2 − 2 u3) C0(M

2
H

, 0, u, m2
2, m2

1, m2
1)+

(4 m2
1 M4

H
+ 8 m1 m2 M4

H
+ 4 m2

2 M4
H
− 2 M4

H
t − 2 m2

1 t2 − 4 m1 m2 t2 − 2 m2
2 t2 +

t3 − 2 M4
H u + t2 u − 2 m2

1 u2 − 4 m1 m2 u2 − 2 m2
2 u2 + t u2 + u3)

C0(M
2
H , M2

H , s, m2
1, m2

2, m2
1)+
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(2 m4
1 M4

H
+ 4 m3

1 m2 M4
H

+ 4 m2
1 m2

2 M4
H

+ 4 m1 m3
2 M4

H
+ 2 m4

2 M4
H
− 2 m6

1 s−
4 m5

1 m2 s + 2 m4
1 m2

2 s + 8 m3
1 m3

2 s + 2 m2
1 m4

2 s − 4 m1 m5
2 s − 2 m6

2 s + 2 m4
1 M2

H t−
4 m2

1 m2
2 M2

H
t + 2 m4

2 M2
H

t −m2
1 M4

H
t −m2

2 M4
H

t −m4
1 t2 + 2 m2

1 m2
2 t2−

m4
2 t2 + 2 m4

1 M2
H

u − 4 m2
1 m2

2 M2
H

u + 2 m4
2 M2

H
u −m2

1 M4
H

u −m2
2 M4

H
u−

4 m4
1 t u − 4 m3

1 m2 t u − 4 m1 m3
2 t u − 4 m4

2 t u + m2
1 t2 u + m2

2 t2 u −m4
1 u2 +

2 m2
1 m2

2 u2 −m4
2 u2 + m2

1 t u2 + m2
2 t u2 )D0(M2

H , 0, M2
H, 0, t, u, m2

2, m2
1, m2

1, m2
2)+

(4 m4
1 M4

H
+ 8 m3

1 m2 M4
H

+ 4 m2
1 m2

2 M4
H

+ 2 m2
1 M6

H
− 2 m6

1 s − 4 m5
1 m2 s

+ 2 m4
1 m2

2 s + 8 m3
1 m3

2 s + 2 m2
1 m4

2 s − 4 m1 m5
2 s − 2 m6

2 s + 2 m4
1 M2

H
s−

m2
2 M4

H s −m4
1 s2 − 8 m4

1 M2
H t − 16 m3

1 m2 M2
H t − 4 m2

1 m2
2 M2

H t − 3 m2
1 M4

H t +

8 m1 m3
2 s t + 5 m4

2 s t + M4
H

s t + 4 m4
1 t2 + 8 m3

1 m2 t2 + 2 m2
1 m2

2 t2−
4 m1 m2 s t2 − 4 m2

2 s t2 + s t3 − 4 m2
1 m2

2 M2
H

u − 3 m2
1 M4

H
u + m4

2 s u +

2 m2
1 M2

H t u −m2
2 s t u + m2

1 t2 u + 2 m2
1 m2

2 u2 + m2
1 t u2)

D0(M
2
H , M2

H , 0, 0, s, t, m2
1, m2

2, m2
1, m2

1)+

(4 m4
1 M4

H
+ 8 m3

1 m2 M4
H

+ 4 m2
1 m2

2 M4
H

+ 2 m2
1 M6

H
− 2 m6

1 s − 4 m5
1 m2 s

+ 2 m4
1 m2

2 s + 8 m3
1 m3

2 s + 2 m2
1 m4

2 s − 4 m1 m5
2 s − 2 m6

2 s + 2 m4
1 M2

H
s−

m2
2 M4

H s −m4
1 s2 − 4 m2

1 m2
2 M2

H t − 3 m2
1 M4

H t + m4
2 s t + 2 m2

1 m2
2 t2−

8 m4
1 M2

H
u − 16 m3

1 m2 M2
H

u − 4 m2
1 m2

2 M2
H

u − 3 m2
1 M4

H
u + 8 m1 m3

2 s u +

5 m4
2 s u + M4

H
s u + 2 m2

1 M2
H

t u −m2
2 s t u + m2

1 t2 u + 4 m4
1 u2 + 8 m3

1 m2 u2 +

2 m2
1 m2

2 u2 − 4 m1 m2 s u2 − 4 m2
2 s u2 + m2

1 t u2 + s u3)

D0(M
2
H , M2

H , 0, 0, s, u, m2
1, m2

2, m2
1, m2

1))
]

/(M4
H − t u) (E.6)

The form factors are all finite, since the divergent one- and two-point scalar integrals
A0 and B0 cancel if all combinations for the fermions are taken into account. For
m1 = m and m2 = m (E.5) and (E.6) become the same as F� and G� in Appendix A.
The form factors for part (2) of the couplings where each Higgs coupling gets a γ5

matrix are:

F�,5 =2
[

2 s + 4 m2
1 s C0(0, 0, s, m2

1, m2
1, m2

1)+

(m2
1 M2

H − 2 m1 m2 M2
H + m2

2 M2
H −M4

H −m2
1 t + 2 m1 m2 t −m2

2 t + M2
H t)

C0(M
2
H

, 0, t, m2
2, m2

2, m2
1)

+ (m2
1 M2

H
− 2 m1 m2 M2

H
+ m2

2 M2
H
−M4

H
−m2

1 t + 2 m1 m2 t −m2
2 t + M2

H
t)

C0(M
2
H , 0, t, m2

2, m2
1, m2

1)

+ (m2
1 M2

H
− 2 m1 m2 M2

H
+ m2

2 M2
H
−M4

H
−m2

1 u + 2 m1 m2 u −m2
2 u + M2

H
u)

C0(M
2
H

, 0, u, m2
1, m2

1, m2
2)

+ (m2
1 M2

H − 2 m1 m2 M2
H + m2

2 M2
H −M4

H −m2
1 u + 2 m1 m2 u −m2

2 u + M2
H u)

C0(M
2
H , 0, u, m2

1, m2
2, m2

2)
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+ (−3 m2
1 M4

H
+ 6 m1 m2 M4

H
− 3 m2

2 M4
H

+ M6
H + m4

1 s− 2 m3
1 m2 s + 2 m2

1 m2
2 + 2 m1m3

2 s + m4
2 s

+ m2
1 M2

H
t − 4 m1 m2 M2

H
t + m2

2 M2
H

t + m1 m2 t2

+ m2
1 M2

H
u − 4 m1 m2 M2

H
u + m2

2 M2
H

u + m2
1 t u + m2

2 t u

−M2
H t u + m1 m2 u2) D0(M

2
H , 0, M2

H, 0, t, u, m2
2, m2

1, m2
1, m2

2)

+ (2 m4 s − 4 m3
1 m2 s + 2 m2

1 m2
2 s − 2 m2

1 M2
H s + m1 m2 s2)

D0(M
2
H

, 0, 0, M2
H

, t, s, m2
2, m2

1, m2
1, m2

1)

+ (2 m4
1 s − 4 m3

1 m2 s + 2 m2
1 m2

2 s − 2 m2
1 M2

H
s + m1 m2 s2)

D0(M2
H

, 0, 0, u, s, M2
H
, m2

2, m2
1, m2

1, m2
1)
]

/s (E.7)

G�,5 =
[

4 s A0(m
2
1)− 4 s A0(m

2
2) + (−4 m2

1 s + 4 m2
2 s) B0(0, m2

1, m2
2)+

(4 m4
1 s − 8 m3

1 m2 s + 8 m1 m3
2 s − 4 m4

2 s − 2 M4
H s − 4 m1 m2 s t + 4 m2

2 s t−
s t2 − 4 m1 m2 s u + 4 m2

2 s u − s u2) C0(0, 0, s, m2
1, m2

1, m2
1)+

(−2 m4
1 M2

H
+ 4 m3

1 m2 M2
H
− 4 m1 m3

2 M2
H

+ 2 m4
2 M2

H
+ 2 m4

1 t − 4 m3
1 m2 t +

4 m1 m3
2 t − 2 m4

2 t + m2
1 M2

H t −m2
2 M2

H t −m2
1 t2 + m2

2 t2 + m2
1 M2

H u −m2
2 M2

H u−
m2

1 t u + m2
2 t u) C0(0, t, M2

H
, m2

2, m2
2, m2

1)+

(2 m4
1 M2

H
− 4 m3

1 m2 M2
H

+ 4 m1 m3
2 M2

H
− 2 m4

2 M2
H
−m2

1 M2
H

t + m2
2 M2

H
t − 2 m4

1 u +

4 m3
1 m2 u − 4 m1 m3

2 u + 2 m4
2 u −m2

1 M2
H

u + m2
2 M2

H
u + m2

1 t u −m2
2 t u + m2

1 u2−
m2

2 u2) C0(0, u, M2
H, m2

1, m2
1, m2

2)+

(−2 m4
1 M2

H
+ 4 m3

1 m2 M2
H
− 4 m1 m3

2 M2
H

+ 2 m4
2 M2

H
+ 2 M6

H
+ 2 m4

1 t − 4 m3
1 m2 t +

4 m1 m3
2 t − 2 m4

2 t − 3 m2
1 M2

H
t + 8 m1 m2 M2

H
t − 5 m2

2 M2
H

t − 2 M4
H

t + 3 m2
1 t2−

8 m1 m2 t2 + 5 m2
2 t2 + 2 M2

H t2 − 2 t3 + m2
1 M2

H u −m2
2 M2

H u −m2
1 t u + m2

2 t u)

C0(M2
H

, 0, t, m2
2, m2

1, m2
1)+

(−2 m4
1 M2

H
+ 4 m3

1 m2 M2
H
− 4 m1 m3

2 M2
H

+ 2 m4
2 M2

H
+ m2

1 M2
H

t −m2
2 M2

H
t +

2 m4
1 u − 4 m3

1 m2 u + 4 m1 m3
2 u − 2 m4

2 u + m2
1 M2

H u −m2
2 M2

H u −m2
1 t u + m2

2 t u−
m2

1 u2 + m2
2 u2) C0(M

2
H , 0, u, m2

1, m2
2, m2

2)+

(−4 m4
1 M2

H
+ 8 m3

1 m2 M2
H
− 8 m1 m3

2 M2
H

+ 4 m4
2 M2

H
+ 2 M6

H
+ 2 m2

1 M2
H

t−
2 m2

2 M2
H

t + 4 m4
1 u − 8 m3

1 m2 u + 8 m1 m3
2 u − 4 m4

2 u − 2 m2
1 M2

H
u +

8 m1 m2 M2
H u − 6 m2

2 M2
H u − 2 M4

H u − 2 m2
1 t u + 2 m2

2 t u + 2 m2
1 u2 − 8 m1 m2 u2 +

6 m2
2 u2 + 2 M2

H
u2 − 2 u3) C0(M

2
H

, 0, u, m2
2, m2

1, m2
1)+

(4 m2
1 M4

H
− 8 m1 m2 M4

H
+ 4 m2

2 M4
H
− 2 M4

H
t − 2 m2

1 t2 + 4 m1 m2 t2 − 2 m2
2 t2 +

t3 − 2 M4
H u + t2 u − 2 m2

1 u2 + 4 m1 m2 u2 − 2 m2
2 u2 + t u2 + u3)

C0(M2
H , M2

H, s, m2
1, m2

2, m2
1)+
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(2 m4
1 M4

H
− 4 m3

1 m2 M4
H

+ 4 m2
1 m2

2 M4
H
− 4 m1 m3

2 M4
H

+ 2 m4
2 M4

H
− 2 m6

1 s +

4 m5
1 m2 s + 2 m4

1 m2
2 s − 8 m3

1 m3
2 s + 2 m2

1 m4
2 s + 4 m1 m5

2 s − 2 m6
2 s + 2 m4

1 M2
H t−

4 m2
1 m2

2 M2
H

t + 2 m4
2 M2

H
t −m2

1 M4
H

t −m2
2 M4

H
t −m4

1 t2 + 2 m2
1 m2

2 t2−
m4

2 t2 + 2 m4
1 M2

H
u − 4 m2

1 m2
2 M2

H
u + 2 m4

2 M2
H

u −m2
1 M4

H
u −m2

2 M4
H

u−
4 m4

1 t u + 4 m3
1 m2 t u + 4 m1 m3

2 t u − 4 m4
2 t u + m2

1 t2 u + m2
2 t2 u −m4

1 u2 +

2 m2
1 m2

2 u2 −m4
2 u2 + m2

1 t u2 + m2
2 t u2 )D0(M

2
H , 0, M2

H, 0, t, u, m2
2, m2

1, m2
1, m2

2)+

(4 m4
1 M4

H
− 8 m3

1 m2 M4
H

+ 4 m2
1 m2

2 M4
H

+ 2 m2
1 M6

H
− 2 m6

1 s + 4 m5
1 m2 s

+ 2 m4
1 m2

2 s − 8 m3
1 m3

2 s + 2 m2
1 m4

2 s + 4 m1 m5
2 s − 2 m6

2 s + 2 m4
1 M2

H
s−

m2
2 M4

H s −m4
1 s2 − 8 m4

1 M2
H t + 16 m3

1 m2 M2
H t − 4 m2

1 m2
2 M2

H t − 3 m2
1 M4

H t−
8 m1 m3

2 s t + 5 m4
2 s t + M4

H
s t + 4 m4

1 t2 − 8 m3
1 m2 t2 + 2 m2

1 m2
2 t2 +

4 m1 m2 s t2 − 4 m2
2 s t2 + s t3 − 4 m2

1 m2
2 M2

H
u − 3 m2

1 M4
H

u + m4
2 s u +

2 m2
1 M2

H t u −m2
2 s t u + m2

1 t2 u + 2 m2
1 m2

2 u2 + m2
1 t u2)

D0(M2
H , M2

H , 0, 0, s, t, m2
1, m2

2, m2
1, m2

1)+

(4 m4
1 M4

H
− 8 m3

1 m2 M4
H

+ 4 m2
1 m2

2 M4
H

+ 2 m2
1 M6

H
− 2 m6

1 s + 4 m5
1 m2 s

+ 2 m4
1 m2

2 s − 8 m3
1 m3

2 s + 2 m2
1 m4

2 s + 4 m1 m5
2 s − 2 m6

2 s + 2 m4
1 M2

H
s−

m2
2 M4

H s −m4
1 s2 − 4 m2

1 m2
2 M2

H t − 3 m2
1 M4

H t + m4
2 s t + 2 m2

1 m2
2 t2−

8 m4
1 M2

H
u + 16 m3

1 m2 M2
H

u − 4 m2
1 m2

2 M2
H

u − 3 m2
1 M4

H
u − 8 m1 m3

2 s u +

5 m4
2 s u + M4

H
s u + 2 m2

1 M2
H

t u −m2
2 s t u + m2

1 t2 u + 4 m4
1 u2 − 8 m3

1 m2 u2 +

2 m2
1 m2

2 u2 + 4 m1 m2 s u2 − 4 m2
2 s u2 + m2

1 t u2 + s u3)

D0(M
2
H , M2

H , 0, 0, s, u, m2
1, m2

2, m2
1, m2

1))
]

/(M4
H − t u) (E.8)

The matrix elements are

M =M△ +M△,new +M�

with

M△ =
4∑

i=1

m=mi

g2
s GHff(i, i) ghhh

1

s−M2
H

F△Aµν
1 ǫµ(p1)ǫν(p2)δab

M△,new =
4∑

i=1

m=mi

g2
s GHHff(i, i) F△Aµν

1 ǫµ(p1)ǫν(p2)δab

M� =
4∑

i=1

m1=mi

4∑

j=1

m2=mj



g2
s

(

GHff(i, j) + GHff(j, i)

2

)2

(F�Aµν
1 + G�Aµν

2 ) + g2
s

(

GHff(i, j)−GHff(j, i)

2

)2

(F�,5A
µν
1 + G�,5A

µν
2 )] ǫµ(p1)ǫν(p2)δab .

(E.9)
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GHff/HHff(i,j) is a matrix element of the coupling matrix in the basis of the fermion
mass eigenstates. The sums in (E.9) are needed because it is essential to take into
account all combinations of the fermions t, Q, X and T in the fermion loop.
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Zusammenfassung

Das Standardmodell der Elementarteilchenphysik beruht auf einer SU(3)C×SU(2)L×
U(1)Y -Eichtheorie. Die SU(3)C ist die Farbsymmetrie der Quantenchromodynamik,
die SU(2)L × U(1)Y beschreibt den elektroschwachen Sektor. Die SU(2)L × U(1)Y

wird spontan zur elektromagnetischen Gruppe U(1)em gebrochen. Im Standardmodell
wird die elektroschwache Symmetriebrechung auf die einfachst mögliche Art verwirk-
licht: Ein einzelnes skalares Feld Φ erhält einen Vakuumerwartungswert ungleich Null.
Dafür wird ein Φ4-Potential mit der typischen Minimaxform für das skalare Feld Φ
benötigt. Das skalare Feld transformiert sich unter der fundamentalen Darstellung der
SU(2)L. Massen für die Eichbosonen werden mittels des skalaren Feldes und seines
von Null verschiedenen Vakuumerwartungswertes generiert. Dadurch gehen drei der
vier Freiheitsgrade des skalaren Feldes in die longitudinalen Polarisationszustände der
massiven Eichbosonen über. Ein Freiheitsgrad jedoch bleibt übrig: Das Higgs Boson.
Durch die Einführung des skalaren Feldes und damit des Higgs Bosons bekommen die
Eichbosonen nicht nur ihre Masse, sondern es wird auch die Unitarität der Streuung
longitudinaler Eichbosonen hergestellt.
Obwohl das Higgs Boson bis jetzt experimentell noch nicht gefunden wurde, konnte das
Standardmodell bisher alle elektroschwachen Präzessionsmessungen erklären. Außer
der Tatsache, dass das Higgs Boson bisher noch nicht gefunden wurde, gibt es noch
weitere Gründe, die für eine Erweiterung des Standardmodell sprechen: Beispielsweise
wird im Standardmodell keinerlei Erklärung für die vierte fundamentale Kraft - die
Gravitation - geliefert, weswegen das Standardmodell häufig als eine effektive Niederen-
ergietheorie bezeichnet wird. Im ersten Teil des Kapitels 2 wird eine kurze Beschrei-
bung des Standardmodells mit Schwerpunkt auf den Higgssektor gegeben. Am Ende
des ersten Teils wird auf ein weiteres Problem des Standardmodells eingegangen, das
Hierarchieproblem.
Der zweite Teil des Kapitels 2 beschäftigt sich mit einer Alternative zum Standardmod-
ell, den Composite Higgs Modellen. In den Composite Higgs Modellen ist das Higgs
Boson kein fundamentales Teilchen mehr, sondern ein gebundener Zustand eines neuen
stark wechselwirkenden Sektors. Das Higgs Boson ist ein Pseudo-Nambu-Goldstone
Boson einer näherungsweisen globalen Symmetrie, welche bei einer Skala f gebrochen
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wird. Die ungebrochene Symmetrie muss die Standardmodelleichguppe als Unter-
gruppe enthalten. Da das Higgs Boson als Pseudo-Nambu-Goldstone Boson auftritt,
ist es ganz natürlich durch einen großen Massenunterschied von den anderen typischen
Resonanzen des stark wechselwirkenden Sektors getrennt. Zunächst wurden solche
Modelle unabhängig von der zugrunde liegenden Eichsymmetrie im Rahmen einer ef-
fektiven Theorie bei niedrigen Energien, bei denen außer dem Higgs Boson alle weiteren
Resonanzen des stark wechselwirkenden Sektors ausintegriert werden können, disku-
tiert. Die effektive Lagrangedichte dieses stark wechselwirkenden leichten Higgs Bosons
gewinnt man durch eine Entwicklung erster Ordnung in ξ = (v/f)2, wobei v die Skala
der elektroschwachen Symmetriebrechung ist und f die Skala des stark wechselwirk-
enden Sektors. Für ξ = 0 ist man beim Standardmodell, ξ → 1 entspricht dem Techni-
colorlimes. Da diese Lagrangedichte eine Entwicklung in ξ darstellt, ist sie nur für sehr
kleine ξ und damit in der Nähe des Standardmodelllimes ausreichend. Für größere
ξ ist eine Resummation notwendig, die man erhält, wenn man explizit eine globale
Symmetrie zugrunde legt. Dies wurde in Kapitel 2 im Rahmen minimaler Modelle
diskutiert. Diese minimalen Modelle haben als globale Symmetriegruppe die SO(5),
welche bei einer Skala f zur SO(4) gebrochen wird. Sie unterscheiden sich jedoch durch
die Darstellung der Gruppe, in der die Fermionen transformieren. In diesem Kontext
wurden das MCHM4 mit Fermionen in der spinoriellen Darstellung und das MCHM5

mit Fermionen in der fundamentalen Darstellung diskutiert. Phänomenologisch unter-
scheiden sich die bislang genannten Modelle für niedrige Energien vom Standardmodell
nur dahingehend, dass die Higgs-Kopplungen modifiziert werden. Am Ende des Kapi-
tels 2 wurde jedoch noch eine Alternative zu diesen Modellen betrachtet, in der die
Fermionen des neuen Sektors Massen unterhalb des Abschneideparameters der effek-
tiven Theorie haben, weswegen sie explizit in der Theorie auftreten. Dieses Modell ist
eine Erweiterung des MCHM5. Die neuen Fermionen koppeln auch an das Top-Quark,
wodurch ein Mischen des Tops mit den neuen Teilchen stattfindet. Dadurch erhält das
Top-Quark seine Masse.
Um den Mechanismus der elektroschwachen Symmetriebrechung zu verstehen, muss das
Potential bekannt sein. Dieses kann experimentell bestimmt werden, indem man Hig-
gsselbstkopplungen misst. Diese sind in der Multihiggsproduktion zugänglich. Diese
Diplomarbeit konzentriert sich auf die Higgspaarproduktion, mit deren Hilfe man die
Higgs-Selbstkopplung zwischen drei Higgs Bosonen messen kann. Die Produktion von
mehr als zwei Higgs Bosonen führt zu sehr kleinen Wirkungsquerschnitten, die daher
nicht am LHC gemessen werden können.
In Kapitel 3 werden die drei wichtigsten Prozesse für Higgspaarproduktion betrachtet:
Gluonfusion, Vektorbosonfusion und doppelte Higgsstrahlung. Auch in den betra-
chteten minimalen Composite Higgs Modellen ist die Gluonfusion wie im Standard-
modell der Prozess mit dem höchsten Wirkungsquerschnitt. Dieser vergrößert sich
sogar drastisch für große ξ. Der Grund hierfür ist, dass eine weiteres Feynmandi-
agramm hinzukommt, da es im Composite Higgs Modell eine Kopplung gibt, bei der
zwei Higgs Bosonen an zwei Fermionen koppeln. Diese wurde im Rahmen dieser Diplo-
marbeit für die beiden betrachteten minimalen Composite Higgs Modelle hergeleitet.
Die Wirkungsquerschnitte der drei verschiedenen Prozesse wurde verglichen. Es zeigt
sich, dass sowohl der Wirkungsquerschnitt der Vektorbosonfusion als auch der Glu-
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onfusion mit wachsendem ξ ansteigt. Bei der doppelten Higgsstrahlung sind für die
betrachteten Werte von ξ die Wirkungsquerschnitte immer kleiner als im Standard-
modell. Um dieses Verhalten zu verstehen wurde die Interferenzstruktur des jeweiligen
Prozesses diskutiert.
Im Anschluss daran wurden die Aussichten untersucht, das angenommene Modell vom
Standardmodell bei einer Luminosität von 300 fb−1 in der Gluonfusion zu unterschei-
den. Dies wurde für verschiedene Endzustände gemacht. Im MCHM4 ist dies ab ξ & 0.2
möglich, je nach Higgs Masse entweder im bb̄τ+τ− oder W +W −W +W − Endzustand.
Im MCHM5 ist dies mit diesen beiden Endzuständen schon für wesentlich kleinere
Werte von ξ möglich.
Um die Aussichten für eine Messung der Triple-Higgs-Selbstkopplung λHHH zu un-
tersuchen, wurde angenommen, dass zur Zeit ihrer Messung alle anderen Kopplungen
hinreichend gut bestimmt sind und im Rahmen der betrachteten minimalen Composite
Higgs Modelle realisiert sind. Es wurden Sensitivitätsschaubilder in der MH − ξ-Ebene
erstellt für verschiedene Endzustände und verschiedene Variationen von λHHH: Zum
einen die Sensitivität auf nicht-verschwindendes λHHH zum anderen auf eine Bestim-
mung von λHHH mit 30% Genauigkeit. Dabei wurde festgestellt, dass eine nichtver-
schwindende Triple-Higgskopplung über nahezu den gesamten Parameterbereich in ver-
schiedenen Endzuständen gemessen werden kann. Bei einer Bestimmung der Triple-
Higgs-Kopplung auf 30% Genauigkeit sind die Aussichten deutlich schlechter. Auch bei
einer höheren integrierten Luminosität (600 fb−1) sind die Parameterbereiche vor allem
bei niedrigen Higgsmassen deutlich reduziert. Da für eine komplette Analyse auch Un-
tergrundprozesse und Detektoreigenschaften miteinbezogen werden müssen, stellt die
durchgeführte Analyse nur die maximalen Parameterbereiche dar. In einem kurzen
Abschnitt am Ende des dritten Kapitels wurde eine Abschätzung gegeben, wie sich die
Untergründe in den betrachteten Modellen verhalten.
In Kapitel 4 wurde die Higgspaarproduktion an einem zukünftigen e+e−-Beschleuniger
untersucht. Ein solcher e+e−-Beschleuniger wäre zum Beispiel der ILC - ein Lin-
earcollider (der sich gerade in der Planungsphase befindet). Die wichtigsten Hig-
gspaarproduktionsprozesse am e+e−-Beschleuniger sind doppelte Higgsstrahlung und
W -Bosonfusion. Für diese beiden Prozesse wurden die Wirkungsquerschnitte bes-
timmt. Das Hochenergieverhalten ändert sich gegenüber dem Standardmodell in beiden
Fällen. Bei der doppelten Higgsstrahlung kann für große ξ festgestellt werden, dass im
Gegensatz zum Standardmodell der Wirkungsquerschnitt mit steigender Schwerpunk-
tsenergie zunimmt, jedoch für hohe Energien wird dieser Anstieg sehr viel schwächer.
Bei der W -Bosonfusion wurde herausgefunden, dass die Amplitude der longitudinalen
W-Bosonen mit Schwerpunktsenergie quadratisch zunimmt. Durch die modifizierten
Higgskopplungen kann das Higgs Boson die Unitarität für diesen Prozess nicht mehr
vollständig herstellen. Die Energie, bei der die Unitarität verletzt ist, ist jedoch zu
höheren Energien als in einem Modell ohne Higgs Boson verschoben. Da die betra-
chteten Modelle jedoch immer auf effektiven Theorien beruhen, ist die Unitarität nicht
verletzt, solange der Abschneideparameter der effektiven Theorie niedriger ist als die
Energie, bei der die Unitarität verletzt wird. Diese kann durch die anderen Resonanzen
des stark wechselwirkenden Sektors wiederhergestellt werden. Am Ende der jeweiligen
Abschnitte wurden noch die Aussichten diskutiert, eine nichtverschwindende Triple-
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Higgs-Kopplung zu messen. Diese sind in der doppelten Higgsstrahlung für eine Schw-
erpunktsenergie von

√
s = 500 GeV und einer Luminosität von 500 fb−1 sehr gut, für

höhere Schwerpunktsenergien werden sie schlechter. In der W -Fusion kann man für eine
sehr hohe Luminosität (2000 fb−1) oder polarisierte Elektronen- und Positronenstrahlen
bei eine Luminosität von 500 fb−1 in den Endzuständen bb̄bb̄ und W +W −W +W − bei
einer Schwerpunktsenergie von

√
s = 1 TeV über einen großen Parameterbereich ein

nichtverschwindendes λHHH messen.
In Kapitel 5 wird Gluonfusion am LHC in einem Composite Higgs Modell untersucht,
in dem es neue Fermionen mit Massen unterhalb des Abschneideparameters der effek-
tiven Theorie gibt. Um in diesem Modell Rechnungen durchführen zu können, muss die
Fermionen-Massenmatrix diagonalisiert werden. Dies wird im ersten Teil des Kapitels
ausführlich erläutert. Der zweite Teil beschäftigt sich mit der Produktion von einem
Higgs Boson mittels Gluonfusion. Anhand dieses etwas einfacheren Prozesses konnte
überprüft werden, ob die Massendiagonalisierung richtig durchgeführt wurde. Beispiel-
sweise sollte man den gleichen Wirkungsquerschnitt wie im Standardmodell erhalten,
wenn in dem neuen Modell die Skala f →∞ gesetzt wird. In der Tat war dies der Fall.
Desweiteren wurde festgestellt, dass man in der Higgsproduktion mittels Gluonfusion
die Effekte der neuen Fermionen nicht direkt sehen kann. Man erhält nahezu den gle-
ichen Wirkungsquerschnitt, wie in dem Fall, in dem die neuen Fermionen ausintegriert
werden. Im letzten Teil des Kapitels wird Higgspaarproduktion mit den neuen Fermio-
nen berechnet. Hier konnte festgestellt werden, dass der Wirkungsquerschnitt von den
neuen Parameter des Modells abhängt und diese somit nicht einfach ausintegriert wer-
den können. Am Ende des Kapitels wurde die Sensitivität des Wirkungsquerschnitts
auf eine Änderung der Triple-Higgs-Kopplung untersucht. Die Wirkungsquerschnitte
sind etwas kleiner als im MCHM5, dafür ändern sie sich jedoch im Verhältnis etwas
stärker bei einer Variation von λHHH.
Insgesamt stehen die Aussichten gut in den untersuchten Modellen die Triple-Higgs-
Selbstkopplung zu messen und damit einen großen Schritt in Richtung Rekonstruktion
des Higgspotentials zu unternehmen. Dafür muss der LHC jedoch bei voller Schwer-
punktsenergie und höherer Luminosität laufen.
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