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CHAPTER 1

MOTIVATION

Our current understanding of the universe is based on two theories: General Relativity de-
scribes gravity and the Standard Model (SM) of particle physics the electromagnetic, weak
and strong interactions between particles. The SM is a quantum field theory, that was devel-
oped in the early 1970s. Its predictions have been confirmed in experiments with remarkable
precision. It is a gauge theory, which means that the Lagrangian describing the interaction
between particles is invariant under given gauge transformations.
The SU(2)L × U(1)Y gauge group describes the electroweak part of the SM. This symmetry
is spontaneously broken down to the U(1)em gauge group that describes quantum electrody-
namics (QED), the theory of interactions between photons and electrically charged particles.
Spontaneous symmetry breaking via the Higgs mechanism enables gauge bosons like the W
and Z bosons to have a non-zero mass.
The gauge bosons are the force carriers, which are exchanged between fermions when they
interact. Protons and neutrons, the main components of the visible matter that surrounds
us, consist of partons. Their interaction is described by quantum chromodynamics (QCD), a
SU(3)c gauge theory. Although the Standard Model is a remarkably successful theory, there
are still several phenomena that do not fit into its framework:

• It seems likely that all three interactions evolved from only one interaction in the early
universe. Therefore, a unification of all three SM interactions is expected, in analogy
to the unification of the electromagnetic and the weak interaction. This unification of
forces is not possible in the Standard Model.

• Gravity, the very first fundamental force that physicists recognized as such, is not
described by the Standard Model.

• From the trajectories of stars, we know that there must be more mass in the universe
than the baryonic matter we observe [1]. The theory of Big Bang nucleosynthesis tells us
that this additional matter can not be baryonic. The SM does not provide a candidate
for this so-called dark matter.

• We know that the universe is expanding and that this expansion is accelerating. This
can be inferred from the observation of the redshift of distant type 1a supernovae. Since
gravitation is expected to slow down the expansion there must be a negative pressure
on the universe acting contrary to gravity. This is called dark energy, which is another
phenomenon described neither by the Standard Model nor by General Relativity.
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2 1. Motivation

• When the Standard Model was formulated, the neutrino masses were set to zero since
they were known to be extremely small. From neutrino oscillation experiments, we
know that at least two of the three neutrinos have a mass greater than zero. Although
this can be described in the SM, there is no explanation as to why the neutrino masses
are so much smaller than the masses of the other fermions.

• The measured g-factor of the muon, the constant of proportionality between its spin
and magnetic moment, shows a significant deviation from its SM expectation [2].

• The fundamental parameters of the Standard Model i.e. masses and couplings have to
be determined experimentally. A more satisfying situation would be if a general theory
was able to predict these parameters.

• The loop corrections to the Higgs mass are proportional to the energy scale squared
up to which the theory is valid. Assuming the Standard Model valid up to the Planck
scale, the physical parameters have to be extremely fine-tuned, which is very unnatural.
This is called the hierarchy problem.

These features do not mean that the Standard Model is wrong but rather that it is probably
an effective field theory (EFT), which is only valid up to a certain energy scale. This would
imply that we need a new theory to describe the fundamental interactions of particles at
higher energies. There are many such theories describing physics beyond the SM, including
Supersymmetry or String Theory.

Currently, the most powerful tool in the search for new physics is the Large Hadron Collider
(LHC) at CERN. It provides physicists with the opportunity to examine phenomena at un-
precedented energies. Since a scalar boson has been discovered recently [3, 4], a lot of effort is
being put into measuring its quantum numbers and its couplings to other particles, in order
to determine whether it is the Standard Model Higgs boson.
The dominant Higgs production channel at 8 TeV is gluon fusion, because gluons give the
largest partonic contribution to protons at small values of Feynman x. The second largest
channel is vector boson fusion (VBF), which provides a relatively clear detector signal be-
cause of its two tagging jets. The corresponding leading order Feynman diagram is depicted
in figure 1.1a1. Moreover, this channel will become more important at higher energies since
the cross section of VBF processes does not decrease with rising center-of-mass energy.

H

W,Z

W,Z

(a) Higgs production via VBF

W+

Z, γ γ

W+

ν

l+

(b) W+γ production via VBF

Figure 1.1: The left Feynman diagram shows Higgs production via vector boson fusion. The right
diagram shows one contribution to W+γ production via VBF.

1The Feynman diagrams and drawings in this work were created with the Gnu program JaxoDraw.
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In addition to the examination of the newly discovered scalar boson and its properties, triple
and quartic gauge boson couplings provide a promising avenue to probe the electroweak sec-
tor of the Standard Model. Deviations from the SM values of those couplings, which occur
for example in diboson production via vector boson fusion, would be a strong hint for new
physics. In order to simulate anomalous gauge boson couplings, we have implemented opera-
tors that allow us to modify the triple and quartic couplings. The approach is to extend the
Standard Model with an effective field theory. This EFT contains terms in its Lagrangian that
modify triple and quartic gauge boson couplings via dimension 6 and dimension 8 operators,
respectively.

These couplings can occur in the production of multiple weak gauge bosons, e.g. pp→Wγ +X.
Final state photon processes are especially interesting since they have a relatively high cross
section. The higher the cross section, the higher the number of events one obtains for a given
luminosity.
There are two basic mechanisms for Wγ production in association with two jets: the QCD
induced process, which is of order O(α3

emα
2
S), and the VBF process, which is of order O(α5

em)
at leading order and including the leptonic decay of the W . One contribution to electroweak
W+γ production via VBF is depicted in figure 1.1b and two contributions to QCD W+γjj
production are shown in figure 1.2. Despite the suppression by a factor of (αem/αS)2, the
VBF mechanism is very promising since it has a very clear signal, which helps to increase the
signal to background ratio.

γ

W+ ν

l+

(a) QCD W+γjj production via t-channel
gluon exchange

W+ W+

l+

ν

γ

g

g

(b) QCD W+γjj production via s-channel

Figure 1.2: These two Feynman diagrams occur in QCD W+γjj production. The right diagram
contains the WWγ coupling.

The QCD diboson mechanism contains at most triple gauge boson couplings. However, these
couplings occur already in W+γ diboson production, which is, including the leptonic decay
of the W , of order O(α3

em) and presented in figure 1.3.

W+ W+

l+

ν

γ

Figure 1.3: This Feynman diagram repre-
sents one contribution to W+γ diboson pro-
duction. It contains the WWγ coupling.

The QCD induced contributions to pp → Wγjj depicted in figure 1.3 contribute to the
real emission of the NNLO QCD corrections to Wγ diboson production. Although they are

3



4 1. Motivation

suppressed by a factor of α2
S , the new channels and topologies, e.g. the gluon induced channel

gg → Wγjj, can result in non-negligible corrections in some regions of the phase space [5].
But in general, diboson production is more suitable for the examination of triple gauge boson
couplings. Those couplings are currently under investigation at the LHC and the parameters
of the dimension 6 operators describing deviations from their SM expectations are already
strongly constrained [6]. But the parameters of the dimension 8 operators, which modify
quartic gauge boson couplings, are currently significantly less restricted [7]. These couplings
occur at leading order in triboson and diboson VBF processes.

Figure 1.1b shows that two quartic gauge boson couplings, namely WWγγ and WWZγ,
occur in W±γ production via VBF, or in other words, electroweak Wγjj production. These
couplings can be probed by looking for deviations from the SM predictions in suitable ob-
servables. Effects of anomalous couplings are usually visible at high energies. Therefore the
14 TeV runs of the LHC scheduled for 2014 will provide us with the possibility to investigate
quartic gauge boson couplings with high precision for the first time.

In order to probe the theoretical predictions in an experiment, these predictions need to be
very precise. For our calculation of the W±γjj cross section, we use perturbative quantum
field theory, which implies that we are left with a theoretical uncertainty on our results.
The scale dependence of the cross section is usually used to estimate this uncertainty. The
scale dependence, and with it the uncertainty, can be significantly reduced by calculating the
next-to-leading-order (NLO) cross section, which is one of the central topics of this thesis.
After the NLO calculation, we focus on phenomenological implications, especially anomalous
coupling effects. Our calculation includes the leptonic decay of the W boson with all off-shell
effects and spin correlations.

Following the discussion of the motivation in this chapter, the theoretical background will be
explained in chapter 2. The implementation of the process in the parton-level Monte-Carlo
program VBFNLO [8] will be described in chapter 3. In order to assure the correctness of
the implementation, we conducted numerous checks, which will be listed in chapter 4. In
chapter 5, Phenomenology, we examine the physical effects. Finally, a summary and outlook
is given in chapter 6.

4



CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, the underlying theory for the calculation presented in this thesis will be
explained. After a general introduction to quantum field theory, the Standard Model of
particle physics will be presented. These topics are treated in more detail in textbooks like
e.g. ‘An Introduction to Quantum Field Theory’ by Peskin and Schroeder [9]. The approach
of effective field theories will be explained as well as how it can be used to parametrize the
effects of anomalous gauge boson couplings. Since this calculation is intended to simulate the
process pp→W±γjj at the LHC, we will also look at the basics of collider physics.

2.1. Quantum field theory

The theoretical basis of most theories in particle physics is quantum field theory. Our goal is
to predict quantities that can be measured in experiments, such as cross sections, differential
distributions or decay rates. Therefore, we need a mathematical framework that describes
the transition of a given set of initial state particles to a given set of final state particles.
We make use of the Lagrange and Hamilton formalisms familiar from classical mechanics.
The transition of two particles with momenta ~pa and ~pb to final state particles with momenta
~k1 . . . ,~kn can be described using the bra-ket formalism used in quantum mechanics

〈~k1,~k2, . . . ,~kn|~pa, ~pb〉out in = lim
t→∞
〈~k1,~k2, . . . ,~kn, t|~pa, ~pb,−t〉

= lim
t→∞
〈~k1,~k2, . . . ,~kn|e−iH(2t)|~pa, ~pb〉

≡ 〈~k1,~k2, . . . ,~kn|S|~pa, ~pb〉 . (2.1)

The initial and the final state can be described as asymptotic states in the limit t→ ±∞, as
in the first line of equation (2.1). In the second line, we just express this time dependence by
the time-evolution operator. The Hamilton operator comprises a free term and an interaction
term, which are closely related to the Lagrangian describing the interaction

H = H0 +HI , HI = −
∫
d3xLI . (2.2)

It is useful to separate the Hamiltonian into an interaction part HI describing the dynamics
and a free part H0 describing the kinematics. HI can be interpreted as a small perturbation

5



6 2. Theoretical background

of H0. In the last line of equation (2.1), we define the S matrix as the time-evolution operator
in the limit of large t.

In quantum field theory, so-called second quantization is used, which is reflected in the multi-
particle initial and final states in equation (2.1). This allows us to express the fields in terms
of the annihilation and creation operators. To illustrate this, in the case of the Klein-Gordon
field we have

φ(x) =

∫
d3p

(2π)3

1√
2Ep

(
ape
−ip·x + a†pe

ip·x
)
. (2.3)

The creation operator a†p creates a particle with momentum p while the annihilation operator
ap annihilates a particle with momentum p.

The next step is to divide the S matrix into two parts

S = 1 + iT. (2.4)

The identity part of the S matrix represents the diagrams, in which the particles do not
interact while iT denotes the part with the interaction diagrams. With this, we can define
the transition matrix element M via

〈~k1,~k2, . . . ,~kn|iT |~pa, ~pb〉 = (2π)4δ4

(
pa + pb −

∑
i

kif

)
iM

(
pa, pb → {kif}

)
. (2.5)

The matrix element squared |M|2 is the probability of the transition pa, pb → {kif} and the

delta function assures the conservation of momenta. So far, 〈~k1,~k2, . . . ,~kn| and |~pa, ~pb〉 are
eigenstates of H, but we would like to replace them with the corresponding eigenstates of H0.
This is indeed possible and after a lengthy calculation one obtains

〈~k1,~k2, . . . ,~kn|iT |~pa, ~pb〉 =

1

N
lim

t→∞(1−iε)

(
〈~k1,~k2, . . . ,~kn|T

(
exp

[
−i
∫ t

−t
dt′HI(t

′)

])
|~pa, ~pb〉

0 0

)
connected,
amputated

, (2.6)

where T denotes the time ordering operator and 1/N is a normalization factor. The shift of
the t integration by a small imaginary part is done to remove all eigenstates of H above the
ground state. The subscript ‘connected’ means that we do not take vacuum bubble diagrams
into account and ‘amputated’ indicates that we do not consider diagrams with loops just on
one external leg as these loops do not affect the scattering process.

The initial and the final state in equation (2.6) can be expressed in terms of their correspond-
ing fields and the ground state of H0. The exponential function can be rewritten as

lim
t→∞(1−iε)

exp

[
−i
∫ t

−t
dt′HI(t

′)

]
= exp

[
i

∫
d4xLI

]
. (2.7)

The general idea now is to expand the exponential function in the coupling, which is usu-
ally small. After applying Wick’s theorem and the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula, we obtain the Feynman rules for our theory. With these rules, it is possi-
ble to calculate the transition matrix elementM using a diagrammatic representation called
Feynman diagrams.

Expanding the exponential function, we get diagrams of different orders in the coupling. The
first non-vanishing order is called leading order (LO) and the next higher order is referred

6



2.1. Quantum field theory 7

to as next-to-leading order (NLO). For the calculation of one fixed order, one has to take
all possible Feynman diagrams into account. This concept will be explained briefly with a
well known example from quantum electrodynamics, namely Compton scattering. At leading
order, we have two Feynman diagrams presented in figure 2.1.

e−(p2)γ(k1)

γ(k2)e−(p1) e−(p2)

γ(k1) γ(k2)

e−(p1)

Figure 2.1: These are the two possible Feynman diagrams for Compton scattering at leading order.

At next-to-leading order, two new topologies arise. An additional photon can be radiated off
the fermion line. These contributions are called real emission. Moreover, a virtual photon
can be produced and annihilated on one fermion line. Due to the uncertainty principle this
photon can carry all possible momenta. For illustration, two diagrams are depicted in figure
2.2.

e−(p2)γ(k1)

γ(k2)e−(p1)

γ(k3)

e−(p2)

γ(k1) γ(k2)

e−(p1)
γ∗

Figure 2.2: At next-to-leading order, real emission diagrams (left diagram) appear as well as virtual
corrections (right diagram).

The LO and the NLO cross section are related by the so-called K-factor, which is defined as

K =
σNLO
σLO

. (2.8)

Thus the K-factor indicates how large the NLO corrections are.

2.1.1. Regularization and renormalization

The loop integrals that occur at higher perturbative orders can be mathematically divergent.
Since physical quantities in nature are always finite these divergences need to be regularized.
This is done by introducing renormalized physical quantities

X0 = ZXX = X + δX with δX = (Z − 1)X, (2.9)

where X0 and X denote the bare and renormalized quantities respectively, ZX is the renormal-
ization constant and δX the counterterm. Technically, one can use dimensional regularization,

7



8 2. Theoretical background

which means that the loop integrals are evaluated in d = 4− 2ε dimensions, to transform the
divergences into 1/εn terms that can be analytically absorbed into the counterterms.

The transformation in equation (2.9) changes the Lagrangian and leads to additional Feynman
diagrams, which have to be taken into account. If one considers all possible diagrams when
calculating a matrix element M, it will be finite. The counterterms can be written as

δX =
∑
i

1

εi
CTi + δXfin, (2.10)

where
∑

i
1
εi
CTi represents the counterterms that cancel the divergences and δXfin is an

additional finite term. There are several possible schemes for the choice of δXfin. In the
minimal substitution (MS) scheme, this term is simply set to zero, δXfin = 0. In the on-
shell scheme, one demands that the renormalized quantity agrees with the tree-level quantity,
X = Xtree, at a given phase space point.

For the renormalization of the coupling constant, it is necessary to introduce an additional
scale in order to maintain the correct dimension. This leads to a general dependence of the
physical quantities on this renormalization scale µR. This dependence is described by the
renormalization group equations (RGEs), partial differential equations with respect to µR.
The dependence of the coupling on µR is given by the β function

β ≡ µR
dg

dµR
. (2.11)

This effect is called running and leads to very different effects depending on the underlying
theory, which will be demonstrated later on.

2.2. Standard Model

The Standard Model (SM) of particle physics is a relativistic quantum field theory. It com-
prises quantum chromodynamics and the electroweak interaction. Quantum chromodynamics
(QCD) describes the interaction between quarks and gluons, which make up the baryonic mat-
ter. The electroweak (EW) sector covers the electromagnetic interaction, namely the coupling
of photons to electrically charged particles, and the weak interaction, which describes e.g. β-
decay. Matter consists of spin 1/2 fermions and the forces are mediated via spin 1 bosons.
In addition, the spin 0 Higgs boson arises from spontaneous symmetry breaking in the EW
sector.

The Standard Model can be described with the gauge symmetry groups

SU(3)c × SU(2)L × U(1)YW . (2.12)

The c with SU(3)c stands for the color charge of QCD. Fermions with right-handed chirality
are singlets under SU(2)L, thus the L indicates that only left-handed fermions posses a non-
zero weak isospin and YW stands for the weak hyper charge.

8



2.2. Standard Model 9

2.2.1. Electroweak sector

The electroweak sector of the SM is described by the Glashow-Weinberg-Salam (GWS) theory
[10, 11, 12]. Its symmetry group is

SU(2)L × U(1)YW . (2.13)

Each gauge group is associated with a gauge field

SU(2)L → W a
µ , a = 1, 2, 3, (2.14)

U(1)YW → Bµ. (2.15)

These gauge fields transform under the adjoint representation of the corresponding symmetry
group. With the covariant derivative

Dµ = ∂µ + igW a
µ

σa

2
+ ig′Bµ

YW
2
, (2.16)

where g and g′ are the couplings of SU(2) and SU(1), respectively and σa the Pauli matrices,
we can already write down the Lagrangian for the fermions

LFerm =
∑

x={l,q}
j

iL
x
j /DL

x
j +

∑
x={l,u,d}

j

iR
x
j /DR

x
j . (2.17)

The index j runs over the three particle generations and L stands for fermion doublets under
SU(2)L with left-handed chirality. The fermions with right-handed chirality denoted by R are
singlets under this group and thus g′ = 0 for right-handed fermions. The index x runs over
leptons and quarks for the left-handed fermions and over leptons and up-type and down-type
quarks for right-handed fermions. Table 2.1 shows all fermions and their SU(2)L × U(1)YW
quantum numbers.

SU(2) doublets L Q T 3
W YW(

νe

e−

)
L

(
νµ

µ−

)
L

(
ντ

τ−

)
L

0

−1

+1
2

−1
2

-1(
u

d

)
L

(
c

s

)
L

(
t

b

)
L

+2
3

−1
3

+1
2

−1
2

+1
3

SU(2) singlets R Q T 3
W YW

e−R µ−R τ−R -1 0 -2

uR cR tR +2
3 0 +4

3

dR sR bR −1
3 0 −2

3

Table 2.1: This table shows all SM fermions arranged according to their transformations under SU(2)
and their EW quantum numbers.

T 3
W denotes the weak isospin, the quantum number of SU(2)L. The electrical charge can be

computed from the weak quantum numbers according to

Q = T 3
W +

YW
2
. (2.18)

9



10 2. Theoretical background

The GWS theory is a non-abelian gauge theory, which leads to gauge boson self interactions.
If we look at the gauge part of the Lagrangian,

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν with (2.19)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gfabcW b
µW

c
ν and Bµν = ∂µBν − ∂νBµ, (2.20)

we can see the origin of the triple and quartic gauge boson couplings. These couplings occur
in non-abelian gauge theories and are very important for the production of W±γ via VBF.

So far, we have not introduced any mass terms, but we know from experimental data that
the fermions and three of the four electroweak bosons are massive. A classic QED mass term
of the form m(LR + RL) for fermions or a similar one for the gauge bosons would violate
gauge invariance. In order to solve this problem, an additional scalar SU(2)L doublet was
introduced by P. Higgs et al. [13]

φ =

(
φ+

φ0

)
. (2.21)

It carries YW = 1 and its Lagrangian is

LHiggs = Dµφ
†Dµφ−µ2φ†φ+ λ(φ†φ)2︸ ︷︷ ︸

V (φ)

. (2.22)

For the choice µ2, λ > 0, the Higgs potential V (φ) takes on the typical Mexican hat shape
with a minimum for

|φ0| =
(
µ2

2λ

) 1
2

≡ v√
2
. (2.23)

The ground state is usually chosen to be

φ0 =
1√
2

(
0

v

)
, (2.24)

which is invariant under U(1) but not under SU(2) transformations anymore. Thus, the
symmetry of the ground state is broken down from SU(2)L × U(1)YW to U(1)em, where em
indicates the electromagnetic interaction. One can now expand the Higgs field around the
ground state

φ =
1√
2

(
0

v +H(x)

)
, (2.25)

where H(x) describes a scalar boson, which is known as the Higgs boson. Here, we chose the
unitary gauge to remove the Goldstone fields that would actually appear in equation (2.25).
After the symmetry breaking, the Lagrangian of the Higgs field becomes

LHiggs =
1

2
(∂µH)2 − 1

2
m2
HH

2 − λvH3 − 1

4
λH4

+

[
m2
WW

+
µ W

−µ +
1

2
m2
ZZµZ

µ

](
1 +

H

v

)2

,

with m2
W =

(gv
2

)2
, m2

Z =

(
g2 + g′2

2
v

)2

, m2
H = 2λv2. (2.26)

10



2.2. Standard Model 11

The Higgs field H obtains a mass term that makes it a massive boson. The Higgs boson
couples to itself and to the three new massive bosons that arise, namely the W± bosons,
which are defined as

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.27)

and the Z boson, which is a linear combination of the two remaining fields(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
. (2.28)

Aµ denotes the field of the massless photon, which is the gauge boson of the unbroken U(1)em
group. The Weinberg or weak mixing angle θW is defined by

cos θW =
g√

g2 + g′2
and sin θW =

g′√
g2 + g′2

. (2.29)

After the introduction of the scalar field φ, fermion mass terms for leptons and quarks can
be added in the form

Lml = −
∑
i,j

λlijL
l
iφR

l
j + h.c. Lmq = −

∑
i,j

λdijL
q
iφR

d
j −

∑
i,j

λuijε
abL

q
i,aφ
†
bR

u
j + h.c. (2.30)

The indices i and j run over the different generations and εab denotes the two dimensional
epsilon tensor. These terms are invariant under SU(2)L×U(1)YW . The complex mass matrices
λxij can be diagonalized using the unitary transformations

Lui = UuijL
′u
j , Ldi = UdijL

′d
j , etc. (2.31)

These transformation also affect the W boson current

Jµ+
W =

1√
2
L
u
i γ

µLdi =
1√
2
L
′u
i γ

µ(Uu†Ud︸ ︷︷ ︸
VCKM

)ijL
′d
i . (2.32)

The unitary matrix VCKM is the Cabbibo-Kobayashi-Maskawa matrix. Its off-diagonal ele-
ments allow transitions between different quark generations mediated by W bosons. These
off-diagonal elements are small and we will show in section 3.2.4 that we can neglect these
quark mixing effects in W±γ production via VBF.

The coupling of the photon is described by αem ≡ e2/4π. As explained in section 2.1.1, the
strength of the coupling is not fixed but depends on the present energy scale. Therefore, it is
called running coupling ‘constant’. For QED, it is at the one loop level given by

αem(Q2) =
αem(µ2)

1− αem(µ2)
3π ln

(
Q2

µ2

) . (2.33)

This means that the coupling becomes stronger, the higher the energy scale and thus, the
shorter the distance is. A good reference scale for W±γ production via VBF is the W boson
mass mW . At this scale, the electromagnetic coupling is

αem(m2
W ) = αem(80.42 GeV2) ≈ 0.00778. (2.34)

11



12 2. Theoretical background

2.2.2. Quantum chromodynamics

The strong interaction is described by a SU(3)c symmetry group. Its Lagrangian reads

L = −1

4
GaµνG

aµν︸ ︷︷ ︸
Lgauge

+
∑
q

q̄i
(
i( /D)ij −mqδij

)
ij
qj︸ ︷︷ ︸

Lferm

+
1

2ξ0
(∂µA

µ)2︸ ︷︷ ︸
Lf ix

−ca∗∂µDac
µ c

c︸ ︷︷ ︸
Lghost

. (2.35)

Gaµν denotes the gluon field strength tensor

Gaµν = ∂µG
a
ν − ∂νGaµ + gfabcGbµG

c
ν , (2.36)

where Gaν is the gluon field, g the coupling and fabc the structure constant. The non-abelian
gauge group leads again to gauge boson self interactions. The covariant derivative is given by

(Dµ)ij = δij∂µ + igT aijG
a
µ, (2.37)

where T aij are the generators of the SU(3)c symmetry group. The sum over q in Lferm
runs over the different quark flavors. The gauge fixing term Lfix is chosen according to the
Feynman ’t Hooft gauge. The last term, Lghost, contains the so-called ghost fields denoted by
c. These are scalar, anticommutative fields that are needed to remove two unphysical degrees
of freedom in the Lagrangian.

The running of the strong coupling αS ≡ g2/(4π) at the one loop level is described by

αS(Q2) =
αS(µ2)

1 + αS(µ2)
12π (33− 2nf ) ln

(
Q2

µ2

) . (2.38)

nf denotes the number of quark flavors, which is 6 in the Standard Model. This leads to two
interesting phenomena

• For Q2 → ∞, the coupling αS(Q2) goes to zero, which means that for large energies
quarks and gluons interact almost as free particles. This phenomenon is called asymp-
totic freedom and was discovered by Politzer, Wilczek and Gross [14, 15].

• In the other limit, Q2 → 0, we see the exactly opposite behavior, the coupling goes
to infinity. This means that one would need all the energy of the universe to separate
two quarks and thus quarks are always bound in hadrons. This is called confinement.
The scale, at which αS(Q2) becomes infinite, is called ΛQCD and was experimentally
determined to be ΛQCD ≈ 200 MeV, e.g. [16].

In our NLO QCD calculation, we use the running coupling constant at the two loop level,
which is given by

αS(Q2) =
4π

β0 ln(Q2/Λ2
QCD)

[
1− 2β1

β2
0

ln[ln(Q2/Λ2
QCD)]

ln(Q2/Λ2
QCD)

]
, (2.39)

with β0 = 11− 2/3nf and β1 = 51− 19/3nf .

At our reference scale of the W mass, mW , the strong coupling is

αS(m2
W ) ≈ 0.120. (2.40)

αS(m2
W ) is approximately 15 times larger than αem(m2

W ), which is the reason why we calculate
the NLO QCD corrections and neglect the NLO EW corrections.

12



2.2. Standard Model 13

2.2.3. Ward identities

Ward identities are general relations between Green’s functions. Their existence is a direct
consequence of gauge symmetry. For the sake of simplicity, the QED Ward identities will be
explained here.
The total QED Lagrangian, Ltot, reads

Ltot = Lgauge + Lfix + Lferm + Jµ(x)Aµ(x) + JΨ(x)Ψ(x)− Ψ̄(x)JΨ̄(x) with

Lgauge = −1

4
FµνFµν , Lfix =

1

2ξ
[∂µAµ]2 , Lferm = Ψ̄(x) [iγµ(∂µ − ieAµ)−m] Ψ(x).

(2.41)
Here, Lgauge is the Lagrangian of the gauge field, Lfix is the gauge fixing term and Lferm is
the Lagrangian for the fermions. Jµ, JΨ, JΨ̄ are the sources that generate and annihilate the
respective particles.

The generating functional for the Green’s functions is constructed as

Z[J, JΨ, JΨ̄] =

∫
ei

∫
LtotdxdAdΨ̄dΨ. (2.42)

This functional can be used to determine the Green’s function by

δTc
δJa(x)δJb(y)

∣∣∣
J=0

= Gabc (x, y) with T [J ] = eiTc and T =
Z[J ]

Z[0]
. (2.43)

Here, T is the normalized generating functional and Tc is a modified version of T that con-
tains only the connected parts. Gabc (x, y) is the two-point Green’s function for a particle
a generated at x becoming particle b and getting annihilated at y. It contains all possible
diagrams in all orders of perturbation theory.

Using an infinitesimal gauge transformation of the generating functional Z in equation (2.42)
and the principle of equation (2.43), one can derive the Ward identity

− kµGAAiΨΨ̄
Cµµi

(k, ki, pj , qj) = e
∑
l

[
GAiΨΨ̄
Cµi

(ki, pj + δjlk, qj)−GAiΨΨ̄
Cµi

(ki, pj , qj + δjlk)
]
.

(2.44)

GAAiΨΨ̄
Cµµi

(k, ki, pj , qj) denotes Green’s function for n photon fields Ai with momenta ki, m

fermion and anti-fermion fields Ψ and Ψ̄ with their respective momenta pj and qj and the
external photon field A, that will be replaced with its momentum k. To illustrate this, figure
2.3 shows a diagrammatic version of equation (2.44).

13



14 2. Theoretical background

Figure 2.3: The diagrammatic illustration of the Ward identity shows an arbitrary QED Green’s
function with at least one external photon field A. If the photon is replaced by its momentum, the
Green’s function will decompose into the difference of two topologies without the replaced photon.

Figure 2.3 and equation (2.44) show that a Green’s function for an arbitrary number of
fermion-anti-fermion pairs and at least one photon decomposes into a sum over the difference
of the two next simpler Green’s functions without this photon, if the photon is replaced by its
momentum. This is the Ward identity, which will be used to control the numerical stability
of the virtual corrections in section 3.6.1.
After truncating all the external lines in figure 2.3 and setting all the momenta on-shell,
equation (2.44) can be written as

− kµGAAi Ψ Ψ̄
c µµi

∣∣
k2i=0, p2j=m

2, q2j=m2 = 0. (2.45)

The underlined fields, e.g. Ai, symbolize the truncated fields. Equation (2.45) is also valid
for matrix elements. So the amplitude will vanish if the photon is replaced by its momentum.
This is also referred to as ‘gauge invariance’ and will be used for several gauge tests in section
4.4.

2.3. Effective field theory

An effective field theory (EFT) is an approximation of a more general theory including the
relevant symmetries and degrees of freedom. It is often used to describe physics at an energy
E, which is much lower than the energy scale Λ, at which the details of a more general theory
have to be taken into account. The EFT averages out the microscopic effects of a higher
theory that are negligible at much lower energies.
EFTs are often used to parametrize the effects of new physics originating from an unknown
theory at an energy scale much higher than the one that is experimentally accessible. For
this purpose, it is not necessary to know the exact behavior of the ‘correct’ theory at a much
higher energy. The Lagrangian of an effective field theory comprises operators that respect
the symmetries and degrees of freedom of the known theory at the experimentally accessible
energy

LEFT =
∑
d

∑
i

f
(d)
i

Λd−4
O(d)
i . (2.46)

Here, d denotes the energy dimension and i runs over all possible operators of fixed dimension.
The dimension of the Lagrangian is 4 because the action S is dimensionless and S =

∫
d4xL.

Therefore, an operator with dimension d must be divided by the appropriate power of the

14



2.3. Effective field theory 15

energy scale Λd−4 so that the coupling constants f
(d)
i are dimensionless. Note that theories

containing operators with d > 4 are not renormalizable any more (e.g. [9]).
Although the sum over the dimensions in equation (2.46) can go up to infinity, we only need
to take a limited number of operators into account. The reason for this is that the energy E
reached in the experiment is usually much lower than the scale Λ, up to which the EFT is

valid. This leads to a suppression of the operators O(d)
i by (E/Λ)d.

2.3.1. Fermi’s theory of β-decay

The best known example of an EFT is Fermi’s interaction [17]. This theory was developed
by Enrico Fermi to describe the β-decay of the neutron via the interaction of four fermions
in one vertex as depicted in figure 2.4.

n ν̄e

p+

e−

GF

Figure 2.4: The neutron decays via the four fermion vertex in Fermi’s theory.

When Fermi set up a phenomenological Lagrangian for this, he did not know the exact
structure of the couplings. By now, we know that the couplings of the weak interaction
have a vector minus axial vector structure. Taking this into account, we can write down the
Lagrangian for Fermi’s interaction

L = −GF√
2
p̄γα(1− γ5)nēγα(1− γ5)νe. (2.47)

The fermion fields are denoted with n, p+, e− and ν̄e and GF is Fermi’s constant. It’s value
has been determined experimentally

GF = 1.16637(1) · 10−5 GeV−2. (2.48)

We can express the Lagrangian in equation (2.47) in terms of the general structure of an EFT
as in equation (2.46)

LF =
fF
Λ2
OF with

fF
Λ2

=
GF√

2
, OF = p̄γα(1− γ5)nēγα(1− γ5)νe. (2.49)

A general problem of EFTs is that the cross section rises with the center of mass energy. This
leads to violation of the unitarity of the S-matrix above a certain scale.

At and above that scale, a more general theory is needed to solve this problem. In our case,
this is the GWS-theory, which was introduced in 2.2.1. In the GWS theory the massive
W-bosons mediate the beta decay as depicted in figure 2.5.
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16 2. Theoretical background

n ν̄e

p+

e−

g

g

W−

Figure 2.5: In the GWS theory the beta decay is mediated by the W boson.

This interaction can be described by

O =
g2

8
p̄γα(1− γ5)n

1

q2 −m2
W

ēγα(1− γ5)νe. (2.50)

Now, the propagator of the massive W boson prevents the cross section from rising with the
CMS energy s = q2 and thus from violating unitarity. Fermi’s interaction can be interpreted
as the low energy limit of the GWS theory since

1

q2 −m2
W

≈ − 1

m2
W

for q2 � m2
W , (2.51)

which leads to

GF√
2

=
g2

8m2
W

. (2.52)

When we compare this to the EFT parametrization of Fermi’s interaction in equation (2.49),
we can see that the scale for new physics is Λ = mW and the coupling constant fF = g2/8.

2.4. Anomalous couplings

In VBFNLO, an EFT is used to parametrize the effects of anomalous couplings of weak
gauge bosons beyond the SM. The basic idea is to assume that the Standard Model is the
first term of this field theory, which is written as a series in 1/Λ. For each power 1/Λn, we
can construct operators with the corresponding dimension that respect the SU(2)L×U(1)YW
gauge symmetry and Lorentz invariance. There are only operators with even energy dimension
as odd dimensions would violate gauge or Lorentz invariance. We want to modify only weak
boson self and weak boson Higgs couplings since couplings between fermions and weak bosons
are already strongly constrained [18]. Since high powers of 1/Λn are strongly suppressed,
we introduce only dimension 6 and 8 operators denoted by Oi and Lj , respectively. The
Lagrangian of our EFT has the structure

LEFT = LSM +
∑
i

fi
Λ2
Oi +

∑
j

fj
Λ4
Lj . (2.53)
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2.4. Anomalous couplings 17

For the construction of the operators, the following building blocks are available

Ŵµν = i
g

2
W a
µνσ

a , (2.54a)

B̂µν = i
g′

2
Bµν , (2.54b)

Dµ = ∂µ + igW a
µ

σa

2
+ i

g′

2
Bµ , (2.54c)

Φ =
1√
2

(
0

v +H

)
, (2.54d)

where W a
µν and Bµν are the field strength tensors that were introduced in section 2.2.1. All

operators should form gauge invariant quantities.

Here, just a few operators will be explained explicitly. A full list of all possible dimension
8 operators can be found in appendix A. In case of the dimension 6 operators, we must
distinguish between CP-even and CP-odd operators. Two examples for CP even dimension 6
operators are

OWW = Φ†ŴµνŴ
µνΦ, (2.55a)

OBB = Φ†B̂µνB̂
µνΦ. (2.55b)

OWW modifies the HW+W− coupling and both operators affect the HZZ coupling. In
addition, both operators give rise toHZγ andHγγ couplings that do not exist in the Standard
Model. In order to construct CP-odd dimension 6 operators, we need the dual field strength
tensors

Ŵµν → ˆ̃
Wµν =

1

2
εµνρσŴ

ρσ, (2.56a)

B̂µν → ˆ̃
Bµν =

1

2
εµνρσB̂

ρσ. (2.56b)

The CP-odd operators that correspond to the ones above are

O
W̃W

= Φ†
ˆ̃
WµνŴ

µνΦ, (2.57a)

O
B̃B

= Φ†
ˆ̃
BµνB̂

µνΦ. (2.57b)

They affect the same couplings as the corresponding CP-even operators.

As pointed out earlier, the focus of this work lies on dimension 8 operators for two reasons.
Firstly, dimension 6 operators occur already in QCD diboson production like e.g. pp →
W±γ. Diboson processes have significantly larger cross section than the corresponding VBF
processes and thus are much more sensitive to anomalous couplings. Secondly, the dimension
6 operators are already strongly constrained by experimental data [6]. The parametrization
of the dimension 8 operators follows Ref. [19]. They can be divided into three categories

• Operators that contain only Dµφ, e.g.

LS,0 =
[
(Dµφ)†(Dνφ)

]
×
[
(Dµφ)†(Dνφ)

]
. (2.58)

• Operators that contain Dµφ and field strength tensors (Ŵµν , B̂µν), e.g.

LM,0 = Tr
[
ŴµνŴ

µν
]
×
[
(Dβφ)†(Dβφ)

]
, (2.59a)

LM,5 =
[
(Dµφ)†Ŵβν(Dνφ)

]
× B̂βµ. (2.59b)
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18 2. Theoretical background

• Operators that contain only field strength tensors (Ŵµν , B̂µν), e.g.

LT,0 = Tr
[
ŴµνŴ

µν
]
× Tr

[
ŴαβŴ

αβ
]
, (2.60a)

LT,5 = Tr
[
ŴµνŴ

µν
]
× B̂αβB̂αβ. (2.60b)

The last category of operators is the one with the largest influence on the WWγγ and WWZγ
couplings that occur in W±γ production via VBF.

2.4.1. Form factor

Analogously to the violation of unitarity in Fermi’s interaction in section 2.3.1, the EFT
describing anomalous couplings will violate unitarity above a certain scale. The reason for
this is that for high energies the assumption E � Λ is not valid any more. This can happen
when the available energy in the gauge boson scattering process reaches several TeV, which
is already possible in the 7 and 8 TeV runs of the LHC. We can see the unitarity violating
behavior in the dσ/dpγT and dσ/dmWγ

T distributions in figure 2.61.
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Figure 2.6: The dσ/dpγT and dσ/dmWγ
T distributions show a strong increase in the high energy region

for anomalous couplings without form factor. When the form factor of equation (2.61) with n = 2 and
ΛFF = 1700 GeV is applied, this strong increase can be suppressed.

The steep increase of anomalous couplings effects in the high energy region leads to |M|2 > 1,
which violates the unitarity of the S matrix. In this region, the terms with energy dimension
higher than 8 that we neglected in equation (2.53) become important.

In order to avoid the violation of unitarity, we apply a form factor that suppresses the anoma-
lous couplings effects in the high energy region. This form factor is given by

F(s) =
1(

1 + s
ΛFF

)n , (2.61)

where ΛFF is the energy scale, at which one expects the unitarity violating behavior of the
anomalous couplings. This scale is in general different for each operator. The exponent n is
basically arbitrary but should be chosen not too big to avoid a too strong suppression but
big enough to prevent the unitarity violation. For dimension 6 operators, we usually choose
n = 1 and for dimension 8 operators n = 2. Figure 2.6 shows that the form factor prevents
the unitarity violation while anomalous couplings effects are still observable.

1All plots in this thesis were created with Gnuplot.

18



2.5. Proton-proton collider 19

2.5. Proton-proton collider

The Large Hadron Collider (LHC) is the largest particle collider available at present. Bunches
of protons are accelerated using electrical fields and forced on a circular path by magnetic
fields. When the bunches reach the highly relativistic limit, they collide inside one of the
detectors. These detectors allow us to observe the trajectories of the particles produced in
the collision and thus to reconstruct the events.

Because the energies at the LHC are on the order of TeV, not the protons themselves, but their
constituents, the partons, interact. The momentum that these partons carry is distributed
statistically and described by the so-called parton distribution functions (PDF).

2.5.1. PDFs

The fraction of the proton momentum that a parton carries is denoted by the parameter
x, which was introduced by R. Feynman. A parton distribution functions (PDF) gives the
probability that a parton of a given flavor carries a specific momentum fraction x. The
running of the strong coupling αS leads to large values of the coupling at low energies. That
way, sea quarks and gluons are continuously generated and annihilated alongside the valence
quarks. Furthermore, this is the reason why the PDFs can not be calculated perturbatively,
but have to be fitted to experimental data.
The PDFs depend on the energy scale Q2 of the proton and have to be evolved to the present
energy scale of the proton once they were fitted for a specific scale. To perform this evolution,
the so-called DGLAP equations [20, 21, 22] are used.
A common interface to multiple PDF sets is LHAPDF [23]. Among others, it contains the
CTEQ6m PDF, for which the relevant PDFs are shown in figure 2.7. The PDFs are dominated
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Figure 2.7: This plot shows
the parton density functions of
the CTEQ6m set for the rel-
evant flavors. Note that the
gluons dominate the region of
small Feynman x values.

by up quarks for large Feynman x. Charm, strange and all anti-quarks, which are the sea
quarks, carry only a little share of the proton momentum. For small values of Feynman x
the PDFs are dominated by gluons. This can lead to large enhancements of diagrams with
initial state gluons. The PDFs used in this work are the CTEQ6l1 [24] for LO and CT10 [25]
for NLO calculations.
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20 2. Theoretical background

2.6. Event selection at colliders: Cuts

In general, cuts are used to simulate the experimental detector acceptance in a theoretical
calculation. Moreover, they can be used to remove singularities or to increase the signal to
background ratio by suppressing undesired contributions. It is convenient and conventional
in collider physics to introduce several variables:

• The pseudo-rapidity of a particle is defined as

η = − ln

(
tan

θ

2

)
, (2.62)

where θ is the angle between the particle and the beam axis. This transformation
maps particles that are very close to the beam axis to very large, positive or negative
pseudo-rapidities. These particles can hardly be detected and are therefore discarded.
Moreover, the pseudo-rapidity can be expressed as

η =
1

2
ln
|~p|+ pL
|~p| − pL

, (2.63)

with the three dimensional momentum ~p and the longitudinal momentum pL of the
particle.

• Strongly related to the second definition of the pseudo-rapidity is the rapidity

y =
1

2
ln
E + pL
E − pL

, (2.64)

where E is the energy of the particle. For massless particles, rapidity and pseudo-
rapidity are identical.

• The R-separation is introduced to measure angular distances between two particles. It
is defined as

∆R12 =
√

(η2 − η1)2 + (φ2 − φ1)2. (2.65)

φi is the azimuthal angle of particle i. Restricting this variable by imposing cuts has
two purposes. In a theoretical calculation, it helps to avoid collinear singularities, e.g. if
the photon is radiated off the lepton. Furthermore, the angular separation is necessary
between jets and leptons or photons since the detector resolution in the experiment is
limited.

The full list of cuts that were applied for the calculation of W±γ production in VBF can be
found in table 5.2.

In addition, we need a technical cut to avoid singularities in our calculation. The photon
propagator of the t-channel photon in figure 2.8 is proportional to 1/p2

γ , which can lead to
singularities for p2

γ → 0. For this reason, we apply a cutoff on the momentum squared of

the photon p2
γ > 4 GeV2. The phase space region that is removed by this cut is strongly

suppressed by the vector boson fusion cuts.
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γ
W+

νe

e+
γ

pγ

Figure 2.8: The photon in the t-
channel can lead to singularities if its
momentum squared p2γ gets small.

2.6.1. Vector boson fusion cuts

For weak boson scattering and vector boson fusion processes, we apply the following cuts

yj1 · yj2 < 0, |yj1 − yj2 | > 4, mj1j2 > 600 GeV. (2.66)

j1 and j2 denote the jets with the highest and the second highest transverse momentum, pjiT ,
respectively, or in other words, the two hardest jets. These two jets are called tagging jets
since they are used to identify VBF events in the experiment. yj1 ·yj2 < 0 requires the tagging
jets to be in opposite detector hemispheres. By imposing |yj1 − yj2 | > 4, we separate the
rapidities of the tagging jets significantly. The cut on the invariant mass of the tagging jets
mj1j2 > 600 GeV leads to a large R-separation of the tagging jets. In summary, the VBF
cuts require the tagging jets to be approximately back-to-back.

The VBF cuts are not only necessary for the event identification in the experiment. They
also suppress s-channel contributions, which are not included in the calculation done in this
thesis. Two example diagrams of s-channel contributions are shown in figure 2.9. In these
diagrams, the two jets are produced in the decay of weak bosons.

j1

j2
γ

ν

l+
W+

W−, Z, γ

γ, Z,W+

γ

j2

j1

l+

ν

W+

W−, Z, γ

Figure 2.9: These Feynman diagrams show two s-channel contributions to W+γ production that
occur at leading order.

Considering the masses of mW = 80.4 GeV and mZ = 91.2 GeV and the widths of ΓW =
2.1 GeV and ΓZ = 2.5 GeV of the dominating W and Z bosons, we see that these channels
are almost completely removed by the mj1j2 > 600 GeV cut.

At NLO QCD, a third jet can be created in addition to the two s-channel jets from figure 2.9.
With this third jet, topologies such as the one in figure 2.10 are able to pass the VBF cuts in
some cases. However, these topologies are not included in this calculation of W±γ production
via VBF since they are considered to be part of the corresponding QCD triboson production
processes in VBFNLO. In section 4.2, it will be explicitly shown that these contributions are
small.
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γ
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ν

W+

W−, Z, γ

j3

Figure 2.10: At NLO QCD the ad-
ditional jet can lead to s-channel con-
tributions passing the VBF cuts.

Furthermore, the VBF cuts suppress the dominant QCD W±γjj production mode presented
in figure 1.2, where the event and the radiation are characterized to be more central.

2.6.2. Frixione photon isolation

For processes with final state photons and jets, it is very important to isolate the photon
properly from the partons. In scattering phenomena, photons can be produced either in the
direct process or via photon fragmentation. Obviously, the photons produced by the latter
method can lie inside of hadronic jets. This is a potential source of collinear singularities.
A straightforward approach to solving this problem is the so-called cone approach. One can
calculate a cone around the photon axis and then impose that no parton can be found inside
of that cone. The problem with this method is that it also cuts away soft gluons lying in the
cone, which are needed to cancel infrared singularities. A proper solution to this problem
was proposed by S. Frixione [26]. Here, the implementation of the formalism in VBFNLO is
explained, which involves three steps:

1. For each parton, calculate angular distance between the photon and the parton i

Rpiγ =
√

(ηpi − ηγ)2 + (φpi − φγ)2. (2.67)

2. Reject event unless ∑
i

ETpiΘ(δ −Rpiγ) ≤ χ(δ) ∀δ ≤ δ0, (2.68)

with χ(δ) = εγETγ

(
1− cos δ

1− cos δ0

)n
, (2.69)

where ETγ is the transverse energy of the photon, εγ the efficiency of the cut and n
some arbitrary exponent.

3. Apply jet finding algorithm and all remaining cuts.

In this way, soft gluons are allowed inside the cone while collinear singularities are avoided.
We use εγ = 1 and n = 1. This procedure is available in VBFNLO [8] and has to be applied
for W±γjj production at NLO QCD.
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CHAPTER 3

IMPLEMENTATION

In the course of this diploma thesis, W±γ production via vector boson scattering was calcu-
lated at NLO QCD and implemented into the program VBFNLO [8]. After an introduction
to the general structure of VBFNLO, the implementation of this process will be described
in detail.

3.1. VBFNLO

VBFNLO is a parton level Monte-Carlo program, which was written to calculate vector bo-
son fusion processes at next-to-leading order accuracy. By now it also contains QCD di- and
triboson production processes as well as Higgs production via gluon fusion. It is written in
FORTRAN and developed at the ITP 1 in the group of Dieter Zeppenfeld.

VBFNLO uses an adaptive Monte-Carlo approach to solve the phase space integral, which
yields the cross section. In the following, the Monte-Carlo integration method will be ex-
plained.

3.1.1. Numerical integration

In order to calculate the cross section of a process pp → X, the following integral has to be
solved [27]

σ =

∫
dx1dx2

∑
sub−

processes

fa1/p1(x1)fa2/p2(x2)
1

2ŝ

∫
dΦ2→nΘ(cuts)

∑
spin,
color

|M|2 (a1a2 → f1 . . . fn).

(3.1)
Here, fa/p(x) is the parton distribution function (PDF), xi is the Feynman x,

√
ŝ is the avail-

able center of mass energy in the partonic subprocess and dΦ2→n is the Lorentz invariant
phase space element. In general, one uses cuts to restrict the phase space in order to take
experimental constraints into account or to avoid singularities in the calculation of the inte-
gral. This is represented by Θ(cuts). The remaining part |M|2 (a1a2 → f1 . . . f2) stands for

1Institute for Theoretical Physics, Karlsruhe Institute of Technology
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the transition matrix element, which corresponds to one subprocess. It has to be summed
over the colors and polarizations of all outgoing particles and averaged over those quantum
numbers of all incoming particles.
It is not possible to evaluate the integral of equation (3.1) analytically since the PDFs are only
known numerically. Furthermore, it is not trivial to evaluate the phase space integral analyt-
ically. The complexity rises with the number of external legs, which also rises the dimension
of the integral. Including the two x integrations, there are 12 non-trivial integrations, that
have to be solved for the calculation of pp → l±

(—)

ν γjj at leading order. For the numerical
integration it is convenient to map the phase space onto a d-dimensional unit cube V = [0, 1]d.

For the sake of simplicity and without loosing generality, the integral will be written in the
following form

I =

∫
V=[0,1]d

f(~x)ddx. (3.2)

The Monte-Carlo program now randomly chooses points ~xi in the hyper cube and evaluates
the integrand f(~xi) in those points. In a simple Monte-Carlo program, those random numbers
are uniformly distributed and the Monte-Carlo approximation of the integral is

IMC =
1

N

N∑
i=1

f(~xi). (3.3)

According to the law of large numbers, the approximate value IMC converges towards the
exact value I

lim
N→∞

IMC = I. (3.4)

The variance of the integrand σ2
f is defined as

σ2
f =

1

N − 1

N∑
i=1

(f(~xi)− IMC)2 . (3.5)

This can be used to estimate the variance of the Monte-Carlo result

σ2
IMC

=
1

N2

N∑
i=1

σ2
f =

σ2
N

N
. (3.6)

This means that the error of IMC , δIMC ≈
√
σ2
IMC

, scales as 1/
√
N and is independent of the

hyper cube dimension. This is another point in favor of the usage of Monte-Carlo integration
for higher dimensional problems.

3.1.2. Importance sampling

Importance sampling is a technique to improve the convergence of the Monte-Carlo integra-
tion. The basic idea is to sample more points in the hyper space regions where the integrand
is large and vice versa. This is done by modeling a probability distribution P (~x) that ap-
proximates f(~x) as good as possible. With this, the integral can be transformed into∫

f(~x)ddx =

∫
f(~x)

p(~x)
dP (~x) with dP (~x) = p(~x)ddx. (3.7)
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3.1. VBFNLO 25

Here p(~x) is the probability density of P (~x). The Monte-Carlo approximation of the integral
in equation (3.7) is now

IMC =
1

N

N∑
i=1

f(~xi)

p(~xi)
, (3.8)

with the points ~xi chosen according to the probability distribution P (~x). With this improve-
ment, the statistical error of the Monte-Carlo result is

1√
N
σ

(
f

p

)
, (3.9)

which can be significantly reduced for good choices of p(~x).

VBFNLO uses a modified version of the VEGAS algorithm [28], which is an adaptive Monte-
Carlo algorithm that does importance sampling over several iterations. In the first iteration,
it starts with a constant probability density and divides up the phase space into a plane
grid. After each iteration, the borders within the grid are moved such that the individual
segments give the same contribution to the integral. Thus the algorithm puts many points in
regions where the integrand is large and vice versa. The advantage of this kind of importance
sampling is that the probability distribution does not need to be known but will be constructed
by VEGAS.

In addition to the importance sampling done by VEGAS, we also use manual importance
sampling in VBFNLO. We know where some of the resonances of the matrix element |M|2 in
equation (3.1) lie, since the decay of massive vector bosons follows a Breit-Wigner distribution.
This knowledge can be used to improve the phase space generator. This will be explained in
detail in section 3.3.

3.1.3. Program architecture

In this subsection, the general program architecture of VBFNLO will be explained. VBFNLO
is written in FORTRAN and has a modular structure, which is very useful e.g. for the im-
plementation of theories that modify the gauge boson couplings. The input data for the
process is read from the file vbfnlo.dat. The cuts can be set in cuts.dat. Those parameters
are read in at the very beginning of the program by the main routine, which is stored in
vbfnlo main.F. Then all the parameters for the phase space, the PDFs, the couplings, the
histograms and the random number generator are initialized. The main operations for the
calculation of a leading order cross section are done in three loops. The outer loop is over the
iterations, which optimize the grid as described in section 3.1.2. The middle one loops over
the different phase space channels that will be described in section 3.3 for W±γjj production.
The inner loop goes through the individual phase space points sampled by the integration
routine. For each point, the following steps are done:

1. The integration routines yields an array of random numbers and the weight of this point
in the hypercube. The weight is determined by the importance sampling.

2. The routine phasespace converts the random numbers into the momenta of the external
particles (section 3.3).

3. In the routine cuts, it is checked whether the phase space point is within the cuts
specified in cuts.dat. If the point does not pass the cuts, the rest of the code will be
skipped and a new point will be sampled.
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26 3. Implementation

4. The routine scales calculates factorization and renormalization scales, which can in
general depend on the phase space point.

5. Now the function amplitude is called. The calculation of the transition matrix element
|M|2 takes place here and will be described in detail in section 3.2.1.

6. Finally, the matrix element |M|2 is multiplied by the phase space factor and returned
to the integration routine.

In the last iteration, the events are passed to the histogram routine. Within this routine, one
can easily add custom one and two dimensional histograms. All the histograms presented in
this diploma thesis were calculated with this routine. Furthermore, it is possible to write the
LO events to a file as Les-Houches-Accord [29] or HepMC [30] events.

The integration routine sums up all the contributions from the individual phase space points.
At the end of each iteration, the Monte-Carlo result and the corresponding error estimate are
returned.

In the following, the description of the leading order calculation of Wγ production via VBF
is given.

3.2. Leading order calculation

The function amplitude called by the main routine is only an interface for all the processes
in VBFNLO. For W±γjj via VBF, amplitude calls the function m2s wbfw. This function
has two main purposes. First, it calculates the leptonic tensors, the polarization vector of the
photon and the off-shell current of the W boson. Furthermore, it calculates the values of the
PDFs for the given scale and Feynman x values. How this works will be explained in detail
in sections 3.2.1 - 3.2.3.
Then, it calls a routine named wbf w2j with every possible combination of particles and anti-
particles for the four external quarks. This routine now finally calls the routines qqwpaqq or
qqwmaqq where the matrix elements for W+γjj or W−γjj are calculated, respectively.

The matrix elements are only calculated for four specific flavor combinations:

W+γjj

u c → u s l+ ν γ

d c → d s l+ ν γ

u c → d c l+ ν γ

u s → d s l+ ν γ

W−γjj

d c → u c l− ν̄ γ

d s → u s l− ν̄ γ

d s → d c l− ν̄ γ

u s → u c l− ν̄ γ

After being calculated in qqwpaqq or qqwmaqq, the four matrix elements are generalized to
all possible flavor combinations in m2s wbfw and multiplied by the PDFs.
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3.2. Leading order calculation 27

3.2.1. Matrix element

For the calculation of the leading order matrix element, there are 72 Feynman diagrams that
have to be taken into account. They can be classified into six topologies, presented in figure
3.1.

γ
W+

νe

e+
Z, γ

(a) Gauge boson scattering in
W V → W γ

γ

V

W+
νe

e+

(b) Three gauge bosons on one quark
line

γ

V

W+ νe

e+

(c) Two gauge bosons on each quark line
respectively.

γ

W+ νe

e+

W

W

(d) W+ W− → γ

γ

W+
νe

e+
Z, γ

(e) W V → W

γ

V

W+
νe

e+

(f) W →Wγ

Figure 3.1: The figures above show the six general topologies. The black circles represent the leptonic
tensors (section 3.2.2).

The black circles represent the leptonic tensors, which contain all possible electroweak leading
order diagrams for the given initial and final state particles. The quartic couplings, WWγγ
and WWZγ, occur only in the topology of figure 3.1a. This topology is also the only one
that will get only vertex corrections at next-to-leading order. The topology with three gauge
bosons on one quark line (figure 3.1b) will get virtual corrections up to a pentagon at NLO
QCD. All remaining topologies give rise to box corrections at NLO. The topology with two
gauge bosons on each quark line will have two box corrections, one for the upper and one
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28 3. Implementation

the lower line separately. This topology will give rise to a Heptagon diagram if one considers
gluon exchange between the quark lines. But the interference terms of these contributions
with the corresponding Born contributions are identically zero due to their color structure,
and therefore not considered.
In the following, it will be illustrated how to calculate the contribution of one topology to the
total matrix element. As an example the topology WW → γ (figure 3.1d) is chosen. First of
all, we need the leptonic tensor.

3.2.2. Construction in VBFNLO

The leptonic tensors contain the electroweak part of the diagrams. This is especially handy
since they are the same for all subprocesses and the NLO QCD corrections only affect the
quark lines. Therefore, the leptonic tensors have to be calculated only once per phase space
point. This saves a significant amount of computing time. For the calculation of the leptonic
tensors, the routines of the HELAS package [31] are used. With the help of the HELAS
routines, one can compute different wave functions for a fixed set of external helicities. For
fermions, the routines that generate an in- or outgoing particle are:

• IXXXXX (pµf , mf , hel, part, |f〉),

• OXXXXX (pµf , mf , hel, part, 〈f |),

respectively. Here pµf , denotes the fermion’s 4-momentum, mf its mass and hel its helicity.
part represents whether the fermion is a particle or an anti-particle. hel and part are quan-
tities that can be either +1 or −1. The routines IXXXXX and OXXXXX return the bra 〈f |
or ket |f〉 as an array, respectively. |f〉 corresponds to the Dirac spinor u for particles and v
for anti-particles and 〈f | to ū and v̄.
Another important HELAS routine is:

• VXXXXX (pµV , mV , hel, In/F in, εµV ),

which calculates the polarization vector of an external vector boson. Analogously to the
routines above, pµV is the momentum of the vector boson, mV its mass and hel its helicity.
In/F in is ±1 and denotes whether the vector boson is in the initial or the final state. εµV
is the polarization vector computed by VXXXXX. A routine, which is not included but very
similar to the ones in the HELAS package, is:

• VCARTX (pµV , mV , ΓV , polcart, In/F in, εµV ).

It computes the polarization vector εµV of an off-shell vector boson. These bosons couple
to quark lines and other vector bosons. ΓV stands for the decay width and polcart for the
Cartesian polarization of the vector boson.

The leptonic tensor ΓµνWW→γ in figure 3.2 is constructed by calling the routine VCARTX for
each W boson and each Cartesian polarization, which is done in two loops. The external
photon is created with VXXXX. The triple gauge boson coupling is built with the routine
VVVXXX.

Now that we have the leptonic tensor, we need to compute the off-shell current jµW of the W
that is attached to the upper line in figure 3.1d. For this, we use the following routine:

• JIOXXX (|fin〉, 〈fout|, GF , mW , ΓW , jµW ).

|fin〉 and 〈fout| are the wave functions of the W decay products and GF is the Fermi coupling
constant.
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Γ
µν
WW→γ =

V CARTX(..., µ, ...)

V CARTX(..., ν, ...)

V XXXXX(...,−1, ...)

γ

V V V XXX(...)

W+

W−

Figure 3.2: For each com-
ponent of the leptonic tensor
ΓµνWW→γ two W bosons with
Cartesian polarizations µ and ν
are generated with the routine
VCARTX. Then these off-shell
currents are contracted with the
polarization vector of the photon
εµγ via the function VVVXXX.
The photon polarization vector
is calculated with the function
VXXXXX.

The fermions are generated with the functions IXXXXX and OXXXXX as described above.
Their helicity is fixed since the W boson couples only to left-handed particle and right-handed
anti-particles. The routine JIOXXX connects them and creates the W off-shell current jµW
as shown in figure 3.3.

j
µ
W =

e+

νe

IXXXXX(..., 1,−1, ...)

OXXXXX(...,−1, 1, ...)

W+
JIOXXX(...)

Figure 3.3: The off-shell cur-
rent for the W+ boson is con-
structed by calling the function
JIOXXX. This routine needs
the bra and the ket vectors of
the positron and the electron
neutrino as input and returns
jµW .

Now that we have the electroweak part, we need to look at the quark lines. For the calculation
of the bra and ket vectors for the quarks, the following routine is used:

• psi0m(nf , pµi , sign(i), Ψ),

where nf is the number of fermions, for which the bras and kets are to be calculated, pµi is
an array containing the momenta of the quarks and sign(i) indicates whether particle i is a
quark or an anti-quark. The subroutine returns a complex array Ψ containing the ket vector
for outgoing and the bra vector for incoming quarks, respectively.

With those bras and kets, we can already calculate a current jµq2q1 = 〈p2| γµ |p1〉. For this
purpose, we use the routine:

• curr6 (sigmax, 〈p2|, pµ2 , |p1〉, pµ1 , jµq2q1).

sigmax is an upper limit for the helicity of the current. 〈p2| and |p1〉 are the output of
psi0m with their respective momenta pµ2 and pµ1 that are needed for the calculation of jµq2q1 .
Moreover, the subroutine curr6 also stores the momentum of the current in its 4th and 5th

component.

It is also possible to use the subroutines ket2c and bra2c in order to attach a vector boson to
a quark line:

• ket2c(|p〉, chreal, pµ, sigma, kνW , jνW , |p+W 〉, (p− k)µ),

• bra2c(〈p|, chreal, pµ, sigma, kνW , jνW , 〈p+W |, (p+ k)µ).
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Here, chreal indicates whether one component of the ket (bra) is real and sigma is the helicity
of the quark. kνW is the momentum of the vector boson (here the W) and jνW is its off shell
current. The output of the subroutines are the new ket (bra) of the quark with the attached
vector boson and its new momentum.

Now we have all the building blocks for the matrix element WW → γ (figure 3.1d). The
following functions are used to contract the building blocks:

• contract T1j( ΓνµWW→γ, jq3q4ν , εµWW→γ),

• dotcc(Aµ,Bµ),

• dotrc(Cµ,Bµ).

contract T1j contracts a complex rank two tensor with a current and returns the resulting
current. dotcc and dotrc compute scalar products. dotcc contracts two complex 4-vectors
and dotrc a real one with a complex one. In order to calculate the matrix element, the
leptonic tensor ΓνµWW→γ is contracted with the current of the lower line jνq3q4 first and then

the resulting current εµWW→γ is contracted with the current of the upper line jνq2q1W . The
remaining coupling constants are then multiplied to the matrix element. The construction of
the whole example matrix element is depicted in figure 3.4.

γ
W

W

Γ
µν
WW→γ

curr6

psi0m psi0m

curr6

psi0m psi0m

W+

JIOXXX

bra2c

e+

νe

q1 q2

q3 q4

Figure 3.4: This figure shows the construction of the Feynman diagram WW → γ depicted in figure
3.1d. The off-shell current of the W boson jµW is attached to the final state quark of the upper line
using bra2c. Now the upper and the lower line quarks are put together to currents using curr6. The
lower line current is then contracted with the leptonic tensor ΓνµWW→γ with the help of contract T1j.

The resulting current εµWW→γ is finally contracted with the current of the upper line quarks using
dotcc.
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3.2.3. Gauge terms

So far, we have only considered the gµν term of the gauge boson propagator. Using the
complex mass scheme [32], the full gauge boson propagator in unitary gauge is:

Dµν
V =

−i
k2 −m2 + imΓ

(
gµν − kµkν

k2

)
. (3.10)

Although the remaining kµkν terms are usually small in most phase space regions at collider
energies around 14 TeV, they can not be neglected since this would violate gauge invariance.
For the calculation of the kµkν terms one can simply contract εµWW→γ with the momentum
of jνW and multiply the result with the scalar product of the upper line quark current with
the W boson current jµq1q2j

W
µ .

With the subroutines mentioned above, it is possible to construct all the topologies of figure 3.1
except for the diagrams with three gauge bosons attached to one line (figure 3.1b). Those
diagrams are built using the routine s1c:

• s1c(〈p+ V1|, jµV2 , timeex, sigma, |q + V3〉).

This function returns the matrix element 〈p+ V1| /JµV2 |q + V3〉. The bool variable timeex
indicates whether the time component of the current jµV2 vanishes. The bra 〈p+ V1| (ket
|q + V3〉) represents the incoming (outgoing) quark with momentum pµ (qµ), to which the
vector boson V µ

1 (V µ
3 ) is attached.

3.2.4. CKM matrix

In this work, the Cabibbo-Kobayashi-Maskawa matrix VCKM introduced in section 2.2.1 has
been set to the identity matrix. This will be justified in this section following the reasoning
of Ref. [33].
Let us consider only the subprocess d c → d s l+ ν γ of W+γjj production. We need to
distinguish between two types of diagrams:

• Diagrams with only one W boson being emitted from the quark lines. These diagrams
are necessarily proportional to Vcs.

• Diagrams with two W bosons attached to one quark line and one to the other. These
diagrams are proportional to VcsV

†
diVid with i = u, c, t. If we assume that all quarks are

massless the sum over all flavors becomes∑
i=u,c,t

VcsV
†
diViu = Vcs

∑
i=u,c,t

V †diVid = Vcs1, (3.11)

since VCKM is unitary. The error that we make by neglecting the top mass is propor-
tional to |Vdt|2 ≈ 10−4 and thus negligible.

In both cases, the matrix element squared is proportional to |Vcs|2. Additional to d c → d s
l+ ν γ, the channels d c → d d l+ ν γ and d c → d b l+ ν γ contribute to d c → j j l+ ν γ
scattering. The sum over the three channels above is proportional to:

|Vcs|2 + |Vcd|2 + |Vcb|2 = 1, (3.12)

by unitarity. So one obtains the same result by calculating only the first subprocess with
VCKM set to unity.
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32 3. Implementation

3.3. Phase space

In order to calculate the total cross section, one does need the matrix element as well as
the corresponding phase space element dΦn from equation (3.1). For a given process q1q2 →
f1 . . . fn, it reads

dΦn = (2π)4δ4

(
pq1 + pq2 −

n∑
i=1

pfi

)
n∏
i=1

d3 ~pfi
(2π)32Efi

. (3.13)

Here, pqi are the 4-momenta of the incoming partons and pfi (Efi) the momenta (energies)
of the final state particles. The product is constructed in a Lorentz invariant way and the
δ-function assures the conservation of momenta.

Since we use the complex mass scheme [32], the propagators of massive gauge bosons are given
by equation (3.10). In the squared amplitude |M|2, this leads to Breit-Wigner-resonances

|M|2 ∝ p(q2) ∝ 1

(q2 −m2)2 +m2Γ2
. (3.14)

Here, p(q2) is the probability to create a gauge boson with invariant mass q2. It peaks at
q2 = m2 and its width is determined by the decay width Γ of the gauge boson.
We can use this knowledge and do some manual importance sampling to improve the conver-
gence of the Monte-Carlo integration. This means that we map more phase space points into
the resonant regions from the very beginning.
The photon can be created in two different phase space channels, shown symbolically in fig-
ure 3.5. It can be either created as an additional jet since there is no difference between
jets and photons at the level of the phase space generation, or it can be radiated off the W
boson (figure 3.1f). Both cases cover different regions of the phase space and a multi-channel
generator can be used to get a good phase space sampling in both regions.

W

γ

jet

jet

TwoToJetsP lusX

TwoBodyDecay0

Resonance

l

ν

γ

jet

jet

ThreeBodyDecay0

TwoToJetsP lusX

l

ν
X

Resonance

Figure 3.5: For W±γjj production two phase space channels are necessary to improve the conver-
gence of the Monte-Carlo. The photon can be either created as a jet or it can be radiated off the W
boson as in the topology W →Wγ (figure 3.1f).

The contribution of each channel is calculated separately in VBFNLO. To avoid double
counting of phase space points, there is a function called Choose PS that determines the
correct channel for each phase space point. The decision criterion is the invariant mass of
the lνγ system. If it is close to the mass of the W boson the point must be in the W →Wγ
channel.

How the phase space is built up will be explained in detail for the channel W → Wγ. With
the first random number rand[1] from VEGAS [28], the function Resonance calculates the
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3.3. Phase space 33

invariant mass of the lνγ system. This is done via tan mapping, which will be briefly explained
in the following. The phase space integral has the following form:

I =

∫ q2max

q2min

dq2

2π

f(q2)

(q2 −m2)2 + (mΓ)2
. (3.15)

Here, the function f(q2) represents the remaining part of the matrix element |M|2. In our
case, m and Γ are the mass and the width of the W boson, respectively. Our goal is to map
this integral onto the plane space of the random numbers. We make the substitutions:

q2 = m2 +mΓ tanx and dq2 = mΓ(1 + tan2 x)dx, (3.16)

and obtain:

I =

∫ xmax

xmin

f(x)dx with xi = arctan

(
q2
i −m2

mΓ

)
, i = min,max. (3.17)

This integral can be mapped to the interval [0,1] via the substitution:

x = xmin + (xmax − xmin) ∗R dx = (xmax − xmin) ∗ dR. (3.18)

The resulting integral is:

I =
xmax − xmin

2πmΓ

∫ 1

0
f(q2(x(R)))dR. (3.19)

Now, the integrand is flat and the random numbers can be sampled from the interval [0,1].
Thus, the integral can be evaluated with the Monte-Carlo method very efficiently.

The function Resonance:

• Resonance(m2, mΓ, q2
min ,q2

max , rand[1], weight, q2
lνγ),

does not only yield the invariant mass of the lνγ system, but also the new weight of the phase
space point by taking the Jacobi-factors of the substitutions into account:

weightnew = weight ∗ xmax − xmin
2π

mΓ(1 + tan2 x). (3.20)

Now, the function TwoToJetsPlusX is used to calculate the momenta of the two incoming
partons ~k1 and ~k2, their corresponding Feynman x values x1 and x2, the momenta of the
outgoing jets pµjeti and the lνγ system pµlνγ and the new weight:

• TwoToJetsPlusX (#Jets, rand[7], 0, Ecm, pcutT , q2
lνγ , ~k1, ~k2, x1, x2, pµlνγ , pµjeti , weight).

To achieve this the function requires the number of jets #Jets, 3 random numbers for each
jet stored in rand[7, ..., 12], the collider energy Ecm, the cut on the transverse momentum of
the jet definition pcutT and q2

lνγ .

Finally, the decay of the intermediate state particle into lepton, neutrino and photon is
calculated with the function ThreeBodyDecay0 :

• ThreeBodyDecay0 (rand[2], pµlνγ , q2
lνγ , pµl , pµν , pµγ , weight).

It uses the momentum and the invariant mass of the lνγ system and 5 random numbers to
generate the momenta of the decay particles pµl , pµν and pµγ and a new weight. All generated
momenta are now passed to the routine Cuts in cuts.F.
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34 3. Implementation

3.4. Next-to-leading-order calculation

In order to calculate the next-to-leading-order cross section, one needs to calculate the real
emission (RE) and the virtual corrections part. This has been explained in section 2.1. The
total next-to-leading-order cross section for a process with m particles in the final state has
the form

σNLO =

∫
m+1

dσR +

∫
m
dσV +

∫
m
dσC . (3.21)

Here, dσR denotes the real emission part, which has to be integrated over the m+ 1 particle
phase space and dσV denotes the virtual loop corrections. dσC is the collinear subtraction
counterterm, which is needed to absorb parts of the initial state singularities into a redefinition
of the PDFs. The calculation of these parts is more complex and time consuming than the
leading order calculation, but we will see that the scale uncertainty is significantly reduced
at NLO QCD.

The LO cross section is of order O(α5
em) so the NLO QCD cross section is of order O(α5

emαS).
The real emission Feynman diagrams have one additional gluon coupling compared to lead-

ing order, which corresponds to a factor α
1/2
S . Thus the real emission cross section can be

calculated by

σR =

∫
dx1dx2

∑
sub−

processes

fa1/p1(x1)fa2/p2(x2)
1

2ŝ

∫
dΦ2→m+1Θ(cuts)

∑
spin,
color

|MRE |2 . (3.22)

However, in the matrix elements with virtual corrections the gluon couples in two places,
which leads directly to a factor αS . Therefore, we calculate the interference term given by

σV =

∫
dx1dx2

∑
sub−

processes

fa1/p1(x1)fa2/p2(x2)
1

2ŝ

∫
dΦ2→mΘ(cuts)

∑
spin,
color

2Re [MBMV ] . (3.23)

This term is of order O(α5
emαS).
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3.5. Real emission contribution

To obtain the QCD real emission corrections, an additional gluon has to be added to each
diagram. It can be in the initial or in the final state. The following Feynman diagrams in
figure 3.6 show the topologies, that have to be taken into account for the calculation of the
real emission.

γ
W+

νe

e+
Z, γ

g

γ

V

W+
νe

e+

g

γ

V

W+ νe

e+

g

γ

W+
νe

e+

W

W

g

γ

W+
νe

e+
Z, γ

g

γ

V

W+
νe

e+
g

Figure 3.6: The figures above show again the six general topologies found in figure 3.1 with an
additional gluon attached to each diagram. The red crosses mark all the places where the gluon can
be attached.

In each topology, the gluon is attached at an example spot. The red crosses mark all possible
positions where the gluon can be attached. In total, 369 diagrams have to be calculated for
the real emission.
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36 3. Implementation

Instead of a quark going to a quark and a gluon, it is also possible that an initial state gluon
splits into a quark and an anti-quark. The initial state gluons access the gluon PDFs, which
are enhanced at the LHC and could result in potentially large NLO QCD corrections. This
is a completely new channel entering at NLO QCD, which is basically calculated at LO. The
remaining scale uncertainty at NLO is partly due to this channel. However, due to our scale
choice and the VBF cuts we will apply, the initial state gluon contributions do not result in
large NLO QCD corrections.

The construction of the matrix elements for the real emission diagrams is very similar to the
leading order. The main difference is the gluon, which can be generated using the subroutine
polvec.

• polvec(pµg , pol, εµg )

pµg is the momentum of the gluon and εµg its polarization vector. Since the gluon is a massless
gauge boson, it can have two different polarizations, represented by pol.

The gluon now can be attached to the quarks using the routines ket2c and bra2c. Furthermore,
it is possible to attach several gauge bosons to a quark using those functions. In this way, all
the necessary diagrams can be constructed similarly to the leading order diagrams.

3.5.1. Catani-Seymour dipole subtraction

A general problem in numerical next-to-leading-order calculations arises, because the real
emission and the virtual corrections have to be calculated separately, since their phase space
is different. These two parts of equation (3.21) are separately divergent in four dimensions
and only their sum, the total NLO cross section, is finite. Thus, without further modifications
it is not possible to calculate these integrals separately using numerical methods.

A general solution for this problem was proposed by Catani and Seymour [34]. With the help
of dimensional regularization, which means solving these integrals in d = 4− 2ε dimensions,
the divergences appear as 1/ε and 1/ε2 poles. The structure of the poles is the same for the
virtual correction and the real emission, but the overall sign is different.

The idea is to introduce a local counterterm dσA for the real emission part dσR. dσA is
constructed in such a way that it reproduces the singular behavior of dσR. This counter-
term is then subtracted from the real and added to the virtual part of the cross section,
correspondingly

dσNLO =
[
dσR − dσA

]
+ dσA + dσV + dσC . (3.24)

An additional condition for dσA is that it must be integrable analytically over the one parton
phase space, such that one can cancel the divergences analytically against the virtual part

σNLO =

∫
m+1

[
dσR − dσA

]
+

∫
m+1

dσA +

∫
m
dσV +

∫
m
dσC (3.25)

ε→0
=

∫
m+1

[
(dσR)ε=0 − (dσA)ε=0

]
+

∫
m

[
dσV + dσC +

∫
1
dσA

]
ε=0

. (3.26)

We remind that the contribution dσC is needed to absorb parts of the initial state singularities
into a redefinition of the PDFs. Now all the individual integrals are finite in four dimensions
and can be solved using the Monte-Carlo method.

36



3.5. Real emission contribution 37

If one carries out the integration over the one particle phase space in the second part of
equation (3.26) one will obtain∫
m
dσV +

∫
m+1

dσA +

∫
m
dσC =

∫
m

[
dσV + dσB ⊗ I (ε)

]
+

∫ 1

0
dx

∫
m
dσB ⊗ (P(x) + K (x)) .

(3.27)
Here, dσB denotes the born cross section, I (ε) the insertion operator and the operators P
and K correspond to the finite collinear remainder.

According to [33], the insertion operator I (ε) is given by

〈I (ε)〉 =
αS(µR)

2π
CF

(
4πµR
Q2

)ε
Γ(1 + ε)

[
2

ε2
+

3

ε
+ 9− 4

3
π2

]
, (3.28)

for this process. The poles of the I operator cancel exactly against the poles of the virtual
cross section dσV according to the Kinoshita-Lee-Nauenberg (KLN) theorem [35].

Obviously, the crucial part of this subtraction method is the construction of dσA. One of the
big advantages of the Catani-Seymour method is that it makes use of the Born cross section
dσB, which we already know

dσA =
∑
dipoles

dσB ⊗ dVdipole. (3.29)

The symbol ⊗ stands for a properly defined phase space mapping of the real emission contri-
butions to the born kinematics and dVdipole for the dipole factors that reproduce the singular
behavior of dσR.

There are two types of singularities that occur in dσR:

• Soft singularities occur in the so-called soft region where the gluon momentum is:

pµg = λqµ, λ→ 0, (3.30)

with an arbitrary 4-momentum qµ. In this region, the matrix element |Mm+1|2 behaves
as 1/λ2.

• The collinear region is characterized by two partons whose R-separation goes to zero.
We have to distinguish between two cases. Two final state partons with momenta pµi
and pµj can become collinear, which can be defined as

pµi = zpµ + kµ⊥ −
k2
⊥
z

nµ

2p · n, pµj = (1− z)pµ − kµ⊥ −
k2
⊥

1− z
nµ

2p · n,

2pi · pj = − k2
⊥

z(1− z) , k⊥ → 0.

(3.31)

Here, k⊥ denotes the transverse component, pµ the collinear direction and nµ is an
auxiliary vector specifying the collinear limit (k⊥p = k⊥n = 0). z is the momentum
fraction that is involved in the splitting ij → i + j. In this region, the matrix element
|Mm+1|2 behaves as 1/pi · pj .
Moreover, a final-state parton i can become collinear to an initial-state parton a

pµi = (1− x)pµa + kµ⊥ −
k2
⊥

1− x
nµ

2pa · n
,

2pi · pa = − k2
⊥

1− x, k⊥ → 0.

(3.32)
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The momentum of the parton ai that is generated in the splitting a → ai + i is xpµa
where x is a dimensionless kinematic variable denoting its fraction of momentum. In
this case, the matrix element behaves as 1/(xpi · pa).

The singular behavior of the real emission matrix element Mm+1 factorizes with respect to
the born matrix element Mm analogously to equation (3.29)

|Mm+1|2 → |Mm|2 ⊗Vij,k. (3.33)

The structure of Vij,k corresponds to a classical dipole with respect to the color and spin
indices. These dipoles are universal and the reason why this is called dipole factorization
formula. For the calculation of |Mm|2 the partons (i) and (j) are combined to one external
parton (ij). In addition, a spectator parton (k) is used to get the parton (ij) back on the mass
shell. This transformation leads to the so-called tilde kinematics, which will be described
below.

The explanation of the subtraction procedure follows the one in reference [36] since the sin-
gular behavior is exactly the same for Higgs and Wγ production in VBF. Let us look at the
subprocess:

q̄(pa) +Q(pb)→ g(p1) + q̄(p2) +Q(p3) + l+(pl) + ν(pν) + γ(pγ), (3.34)

denoted by the real emission matrix element Mq̄
r and represented by figures 3.7a and 3.7b.

This subprocess has collinear singularities from initial- or final-state splitting and soft gluon
singularities.

γ

ν

l+

Q(p3)Q(pb)

q̄(pa) q̄(p2)

g(p1)

V (q)

(a)

γ

ν

l+

Q(p3)Q(pb)

q̄(pa) q̄(p2)

g(p1)

V (q)

(b)

γ

ν

l+

Q(p3)Q(pb)

q(p1)

q̄(p2)g(pa)

V (q)

(c)

γ

ν

l+

Q(p3)Q(pb)

q̄(p2)

q(p1)g(pa)

V (q)

(d)

Figure 3.7: This figure shows an example topology with all the possible real emission contributions.
A final-state gluon can be produced in either initial- (a) or final-state q̄ → q̄g splitting (b). In gluon
initiated processes shown in subfigures (c) and (d) we only have initial-state splitting but the gluon
can become collinear to either, the quark (c) or the anti-quark (d).
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For the construction of the counterterm that reproduces those singularities we need the born
matrix element Mq̄

B for the process

q̄(p̃a) +Q(pb)→ q̄(p̃2) +Q(p3) + l+(pl) + ν(pν) + γ(pγ), (3.35)

with the tilde kinematics

p̃a = xpa, p̃2 = p1 + p2 − (1− x)pa, (3.36)

and the dimensionless kinematic variables

x = 1− p1 · p2

(p1 + p2) · pa
,

z = 1− p1 · pa
(p1 + p2) · pa

=
p2 · pa

(p1 + p2) · pa
.

(3.37)

The counterterm can now be constructed as

|Mq̄|2sub = Dq̄12 +Dq̄12 = 8παS(µR)CF
1

Q2

x2 + z2

(1− x)(1− z) |M
q̄
B(p̃a, p̃2, q)|2. (3.38)

Dq̄12 and Dq̄12 are the dipoles for initial- and final-state q̄ → q̄g splitting on the upper line,
respectively and CF = 4/3. q is the momentum transferred on the upper line, q = p1 +p2−pa,
and Q2 = −q2 is a measure for the virtuality of the exchanged weak boson V (q). The
subtraction matrix element squared in equation (3.38) reproduces the singular behavior of
|Mq̄

r|2 for

• soft final-state gluons (p1 → 0 ⇒ x→ 1, z → 1)

• collinear final-state partons (p1 ‖ p2, p1 · p2 → 0 ⇒ x→ 1 )

• collinear initial-state splitting (p1 → (1− x)pa ⇒ z → 1)

For the gluon initiated subprocess denoted by Mg
r and depicted in figures 3.7c and 3.7d

g(pa) +Q(pb)→ q(p1) + q̄(p2) +Q(p3) + l+(pl) + ν(pν) + γ(pγ), (3.39)

where we have g → q̄q splitting, the counterterm is different, namely

|Mg|2sub = Dg12 +Dg21 = 8παS(µR)TF
1

Q2

(
x2 + (1− x)2

1− z |Mq̄
B(p̃a, p̃2, q)|2

+
x2 + (1− x)2

z
|Mq

B(p̃a, p̃2, q)|2
)
.

(3.40)

The dipoleDg12 (Dg21 ) corresponds to the gluon becoming collinear with the anti-quark (quark),
TF = 1/2 and the born matrix elements Mq̄ and Mq correspond to the LO subprocesses

q̄(p̃a) +Q(pb)→ q̄(p̃2) +Q(p3) + l+(pl) + ν(pν) + γ(pγ) and (3.41)

q(p̃a) +Q(pb)→ q(p̃2) +Q(p3) + l+(pl) + ν(pν) + γ(pγ), (3.42)

respectively.
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The subtraction matrix element in equation (3.40) covers the two possible singular constella-
tions

• gluon collinear with quark (pa ‖ p1, pa · p1 → 0 ⇒ z → 1)

• gluon collinear with anti-quark (pa ‖ p2, pa · p2 → 0 ⇒ z → 0)

Not only the renormalization of the matrix elements leads to divergences, but divergent terms
also occur when the PDFs are renormalized. In order to regularize these divergences we absorb
some of the divergent parts of the subtraction matrix elements in equations (3.38) and (3.40)
into the PDFs. The remaining part of the cross section is called the finite collinear term
σNLO2,coll . For the process listed in equation (3.34), it is given by

σNLO2,coll (q̄Q→ q̄Qglνγ) =

∫ ∫ 1

0
dxa

∫ 1

0
dxb f

c
q̄,p(xa, µF , µRa)fQ,p(xb, µF )

× 1

2ŝ

∣∣Mq̄
B

∣∣2 F (2)
J (p2, p3)dΦ5(p2, p3, pl, pν , pγ ; pa + pb) (3.43)

Here, the center of mass energy is denoted by ŝ = (pa + pb)
2, F

(2)
J is the jet finding algorithm

for 2 jets, fQ,p is the normal quark PDF for Q and f cq̄,p is the modified anti-quark PDF for q̄

f cq̄,p(x, µF , µR) =
αs(µR)

2π

∫ 1

x

dz

z

{
fg/p

(x
z
, µF

)
A(z)[

fq̄/p

(x
z
, µF

)
− zfq̄/p (x, µF )

]
B(z) + fg/p

(x
z
, µF

)
C(z)

}
+
αs(µR)

2π
fq̄/p (x, µF )D(x), (3.44)

with its integration kernels

A(z) = TF
[
z2 + (1− z)2

]
ln
Q2(1− z)
µ2
F z

+ 2TF z(1− z), (3.45)

B(z) = CF

[
2

1− z ln
Q2(1− z)

µ2
F

− 3

2

1

1− z

]
, (3.46)

C(z) = CF

[
1− z − 2

1− z ln z − (1 + z) ln
Q2(1− z)
µ2
F z

]
, (3.47)

D(x) = CF

3

2
ln

Q2

µ2
F (1− x)

+ 2 ln(1− x) ln
Q2

µ2
F

+ ln2(1− x) +
2π2

3
− 13

2︸ ︷︷ ︸
c′real

 . (3.48)

The kernel D(x) yields a constant term that is proportional to the born matrix element
squared, denoted by c′real. In VBFNLO, we add the finite part of the I operator to this finite
term and obtain a new constant

creal = c′real + 9− 4π2

3
= −2π2

3
+

5

2
(3.49)
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From the virtual corrections we will also obtain a finite term that is proportional to |MB|2,
denoted by cvirt. Only the sum of these two terms is fixed but the terms can be shifted by a
constant. This will be used to implement a consistency check later on in section 4.6.

The integration kernels are the same for the modified quark PDF f cq,p needed for the subpro-
cess qQ→ qQlνγ. For real emission corrections to the lower quark line the procedure works
completely analogously to the one above with the replacements (pa ←→ pb) and (p2 ←→ p3).
Note that we strictly separate the real emission contribution and the virtual corrections for
both quark lines. This allows us to use different scales for both lines, namely the momentum
transferred squared between the initial- and the final-state partons of the line.

3.6. Virtual corrections

For the calculation of the virtual-loop corrections, the subroutines Boxline and Penline have
been used. They were created by Francisco Campanario [37]. The Boxline routine calcu-
lates the matrix element for all possible virtual QCD corrections to a quark line with two
vector bosons attached. That includes one box, two vertex and one self energy diagrams as
demonstrated in figure 3.8.

γ V γ V γ V γ V

Figure 3.8: The subroutine Boxline computes not only the box correction to a quark line with two
vector bosons but also the self energy and the two vertex corrections.

Similarly, the Penline routine computes the pentagon correction to a quark line with three
vector bosons. Furthermore, it also calculates the two box and the three vertex corrections
as well as the self energy diagrams as shown in figure 3.9.

γ
VW+ γ V

W+ γ
V

W+
γ VW+

γ VW+ γ VW+ γ VW+ γ VW+

Figure 3.9: The subroutine Penline computes the pentagon, two box, three vertex and two self
energy corrections to a quark line with three gauge bosons attached in a fixed order.

The Boxline routine needs the momenta of the quarks pµqi , their spinors Ψi, the momenta of
the vector bosons pµVj and their polarization vector εµVj or current jµVj as input. Furthermore,
the renormalization scale µRi and the helicity sig of the quark line have to be given to the
routine.

• boxlineABETotal(pµq1 , p
µ
V1
, pµV2 , p

µ
q2 , Ψ2, Ψ1, ε

µ
V1
, jµV2 , µRi, sig,M

g
V ,MV ,Mg

B,MB, div)
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It returns four different matrix elements; the matrix element for the virtual corrections MV

and the corresponding Born matrix element MB. Moreover, these two matrix elements are
calculated with the replacements εµV1 → pµV2 or jµV2 → pµV2 . They are called Mg

V and Mg
B and

used to create Ward identity tests in GaugeTest.F, that allow us to control the numerical
stability. The parameter div can be set to 0, 1 or 2, to return the matrix elements for the
finite part, the 1/ε or the 1/ε2 poles, respectively. The in- and output of the Penline routine
works completely analogously.

In the calculation of the loop corrections, one uses Passarino-Veltman tensor reduction [38]
to reduce complicated integral to simpler ones. For this, one has to solve relatively simple
systems of linear equation with the structure

(
G1 G2

G3 G4

)(
C1

C2

)
=

(
R1

R2

)
. (3.50)

Although, this is not difficult to solve on an analytic level by inverting the matrix

(
C1

C2

)
=

1

G1G4 −G2G3

(
G4 −G2

−G3 G1

)(
R1

R2

)
, (3.51)

numerical problems will arise if the Gram determinant (G1G4 − G2G3) is small. The phase
space points, in which this happens, can produce instabilities depending on the severity of
the cancellations and have to be rejected.

To reduce the instabilities we use a numerically more stable procedure to invert the matrix,
namely the LU decomposition method. The idea is to decompose the Gram matrix into a
lower and an upper triangular matrix

(
G1 G2

G3 G4

)
=

(
L1 0

L2 L3

)(
U1 U2

0 U3

)
. (3.52)

Now, equation (3.50) can be inverted by solving the two systems of linear equations consecu-
tively. This method is numerically a lot more stable compared to simply inverting the matrix.
Moreover, it is not more time consuming.

3.6.1. Ward identity test

Despite a reduction of instabilities by a factor 10, the LU decomposition method does not
solve the problem of vanishing Gram determinants. To control the accuracy of the result, we
make use of Ward identities, described in section 2.2.3. In case those are not satisfied with a
required level of accuracy, the point is considered unstable and rejected.
The quintessence of the Ward identity is that a loop diagram with at least one external gauge
boson decomposes into several simpler diagrams if one of its external bosons is replaced with
its respective momentum. In case of the Penline there are three external gauge bosons. Each
of them can be replaced by its momentum to get three quantities that we can check.
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3.6. Virtual corrections 43

For the calculation of a pentagon correction the following integral has to be solved

Eµ2µ3µ4(p1, p2, p3, p4, p5) =

∫
ddq

(2π)d
1

q2
γα

1

/q + /p14

γµ4
1

/q + /p13

γµ3
1

/q + /p12

γµ2
1

/q + /p1

γα. (3.53)

The momenta are defined as in figure 3.10 and the convention for the momenta is p1 + p2 +
p3 + p4 + p5 = 0. For the sake of clarity, the notation p1j ≡

∑j
i=1 pi has been used.

p1 p5 p1 p4

p2 p3 p4 p2 p3

µ3µ2 µ4 µ2 µ3

q q

Figure 3.10: The diagram on the left hand side is a pentagon represented by the function
Eµ2µ3µ4

(p1, p2, p3, p4, p5). The diagram on the right is a box denoted by Dµ2µ3
(p1, p2, p3, p4).

When we contract Eµ2µ3µ4(p1, p2, p3, p4, p5) with the momentum of the first gauge boson pµ22 ,
we can analytically express /p2

as a difference of denominators of two propagators, which is
used to reduce the pentagon to a difference of two boxes

pµ22 Eµ2µ3µ4(p1, p2, p3, p4, p5) = [(p2 + p1 + q)µ2 − (p1 + q)µ2 ] Eµ2µ3µ4(p1, p2, p3, p4, p5)

=Dµ3µ4(p1, p2 + p3, p4, p5)−Dµ3µ4(p1 + p2, p3, p4, p5).
(3.54)

This procedure works completely analogously when the pentagon Eµ2µ3µ4(p1, p2, p3, p4, p5) is
contracted with one of the other momenta pµ33 or pµ44

pµ33 Eµ2µ3µ4(p1, p2, p3, p4, p5) = Dµ2µ4(p1, p2, p3 + p4, p5)−Dµ2µ4(p1, p2 + p3, p4, p5),

pµ44 Eµ2µ3µ4(p1, p2, p3, p4, p5) = Dµ2µ3(p1, p2, p3, p4 + p5)−Dµ2µ3(p1, p2, p3 + p4, p5).
(3.55)

We use these identities to check the numerical accuracy by requiring that these equalities are
satisfied within a global precision ε. If the deviation is larger than ε the Ward test will fail
and the virtual contributions for this phase space point will be neglected. It will be shown in
section 4.5.5 that this is justified.

For the Boxline two Ward identities can be constructed corresponding to the replacement
of one of the two external bosons with its momentum. Analogously to the pentagon, the
expression for the box diagram reduces to the difference of two vertex corrections. One of
those vertex corrections vanishes and the other one can be written as a constant cte times
the corresponding Born matrix element since vertex corrections are directly proportional to
the Born matrix element

pµ22 Dµ2µ3(p1, p2, p3, p4) = cte ∗Mborn
µ3 . (3.56)
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44 3. Implementation

Again, we can check that the deviations from this equation is smaller than ε by building the
normalized quantity

∣∣∣pµ22 Dµ2µ3(p1, p2, p3, p4)/(cte ∗Mborn
µ3 )− 1

∣∣∣ < ε. (3.57)

If cte ∗Mborn
µ3 is small, numerical problems might arise. In this case, we subtract both sides

of equation (3.56) and check that the absolute value of the result is smaller than ε.

The precision of these tests ε affects the share of phase space points that fail the test and are
neglected. This will be examined in section 4.5.5.

3.6.2. Dimensional reduction

Dimensional reduction (DRED) [39] is a variant of dimensional regularization (DREG) [40].
Both methods are used to regularize loop integrals, which are in general divergent in D = 4
dimensions. In DREG, the whole loop integral is evaluated in D = 4 − 2ε dimensions. In
DRED, only the momenta are shifted to D = 4 − 2ε, whereas the γ matrices and the gauge
fields remain in D = 4 dimensions.

For the virtual corrections up to pentagons, the analytic expression for the poles of the matrix
element is known, independently of whether the external particles are massive or massless
[37]. It has the same structure in both schemes and can be written in the following form

MV1...Vn = gV1 ...gVnCF
αS(µRi)

4π

(
M̃V1...Vn

+

(
4πµ2

Ri

Q2
i

)ε
Γ(1 + ε)

[
A

ε2
+
B

ε
+ cvirt

]
MBV1...Vn

)
. (3.58)

Here, the indices Vj represent the vector bosons attached to the quark line, the corresponding
couplings are represented by gVj , αS is the strong coupling and µRi is the renormalization
scale of the quark line. M̃V1...Vn denotes the finite part of the total matrix element that is
not proportional to the Born matrix element MBV1...Vn . CF = 4/3 is the Casimir operator of
the color structure, cvirt is the constant of proportionality for the finite part proportional to
MBV1...Vn and A and B are the constants of proportionality for the divergent parts ofMV1...Vn .
For VBF processes, these constants are

A = −2 and B = −10−D
2

. (3.59)

Here, Q2
i = −(poutqi − pinqi )2 is minus the momentum squared transferred between the initial

and the final state of the quark line. In this work, the renormalization scale of quark line i

is chosen to be µRi = Qi ≡
√
Q2
i and the DRED scheme is used, which means that D = 4 in

equation (3.59) and we obtain B = −3 and cDREDvirt = π2

3 − 7.
In DREG, D = 4 − 2ε and one obtains a new finite term in equation (3.58). This term can
be absorbed in cvirt, which leads to

cDREGvirt = cDREDvirt − 1 =
π2

3
− 8. (3.60)

This is not inconsistent since this change is compensated in the real emission contribution
such that

cDREGreal = cDREDreal + 1 = −2π2

3
+

7

2
, (3.61)
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3.7. Anomalous couplings 45

and only the sum cvirt + creal is fixed. This points out the necessity to be consistent in the
calculation of both, the real and the virtual corrections. Since the DRED scheme will be used
throughout this work the index DRED will be omitted for the sake of clarity, which means
that in the following cvirt ≡ cDREDvirt .

3.6.3. Subtraction of Born-types

After canceling the singularities against the I operator, the vertex corrections are proportional
to the corresponding Born diagram and one can set M̃Vi ≡ 0, which defines the value of cvirt.
A significant fraction of the total finite part of the Box- and Penline corrections

Mfin
V1...Vn

≡ M̃V1...Vn + cvirt · MBV1...Vn , (3.62)

are the Born-type contributions, cvirt · MBV1...Vn . A trick is to reduce the Box- and Penline
contributions by shifting these Born-types to a different iteration and integrate the smaller
finite matrix elements

M̃fin
V V =Mfin

V V − cvirt ∗MBV V︸ ︷︷ ︸
small

= M̃V V , (3.63)

M̃fin
V V V =Mfin

V V V − cvirt ∗MBV V V︸ ︷︷ ︸
small

= M̃V V V . (3.64)

The advantage of these smaller quantities is that one can achieve a higher absolute precision
a lot faster in a Monte-Carlo integration. It has been checked that the resulting quantities
are indeed very small.

Of course we need to add back the terms we have subtracted. Since

M̃V = cvirt ∗MBV , (3.65)

one can put all remaining terms together and one obtains

cvirt ∗
(
MBV +MBV V +MBV V V

)
= cvirt ∗MBTot, (3.66)

which can be calculated by simply calculating MBTot and multiplying it by cvirt. This trick
saves a significant amount of CPU time.

3.7. Anomalous couplings

In the implementation of anomalous couplings, the crucial point are the new leptonic tensors.
For their calculation, a new file called towa anomal.F was created. The routines in this
file were renamed e.g. from vwptowma to vwptowma anomal. In the first step, the
routines contained only the same code as the corresponding ones in towa.F, which were
created with MadGraph [41]. In the second step, all HELAS routines for gauge boson self
couplings had to be replaced by the HELAS routines with anomalous couplings. For example,
the routine VVVXXX(...) was replaced with wwa anomal3(...). Since the anomalous
couplings modify only triple and quartic gauge boson couplings, only the routines containing
three or four vector bosons had to be modified.
Moreover, the anomalous couplings give rise to new vertices, e.g. γγH and ZγH as depicted
in figure 3.11. This yields a new contribution to the Wγ →Wγ and the WZ →Wγ tensor.
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46 3. Implementation

γ, Z

W W

γ

H

Figure 3.11: The anomalous gauge boson couplings give rise to the topology depicted above. These
diagrams are not allowed in the Standard Model but have to be included in the leptonic tensor
calculation when anomalous couplings are used.

Because of those additional Feynman diagrams, it can be necessary to add more channels to
the phase space generator. But since for W±γjj production via VBF the additional Higgs
propagator only occurs in the t-channel, no additional channels are needed.
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CHAPTER 4

CHECKS

In order to assure the correctness of the implementation of the W±γjj VBF production
process into VBFNLO a variety of checks have been performed.

4.1. Matrix elements

When calculating the matrix elements for the leading order and the real emission, it is possible
to check them against an independent calculation for individual phase space points. The
program MadGraph [41] was used to generate independent code for the calculation of the
matrix element for each flavor combination. The agreement between our and the MadGraph
results is on the order of 9 to 14 digits.

4.2. Cross sections

After making sure that the matrix elements are correct, still, the total cross sections remains
to be checked. For this purpose, the Monte Carlo event generator Sherpa [42] was used.
Since for vector boson fusion processes the t-channel contributions are very much dominant
once VBF cuts are applied, the s-channel contributions were not implemented into VBFNLO
[8] as shown in 2.6.1. However, Sherpa does calculate all possible contributions including
interferences of t- and u-channel diagrams, which are also not included in our calculation.
The VBF cuts were applied to keep non t-channel contributions small as described in section
2.6.1. The input parameters are listed in table 4.1.

• Proton-proton collider, Ecm = 14 TeV

• PDFs: CTEQ6l1 [24]

• µFi = µRi = mZ = 91.1876 GeV

• VBF cuts on tagging jets

– |ηj1 − ηj2 | > 4, ηj1 × ηj2 < 0, mj1j2 > 600 GeV
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48 4. Checks

• Inclusive cuts

– jets: pjT > 30 GeV, |ηj | < 4.5, ∆Rjj > 0.4

– leptons: pT,l > 20 GeV, |ηl,γ | < 2.5, ∆Rj l > 0.4

– photons: pT,γ > 30 GeV, ∆Rj γ > 0.7, ∆Rl γ > 0.4

Table 4.1: This table gives the setup that was used for the comparison with Sherpa.

The results of VBFNLO and Sherpa for the leading order (W±γjj) cross section are listed
in table 4.2.

Process VBFNLO σ [fb] Sherpa σ [fb] Deviation

W+γjj 8.152± 0.006 8.140± 0.017 0.16%

W−γjj 4.636± 0.003 4.632± 0.007 0.09%

Table 4.2: This table gives the LO W±γjj cross sections calculated by VBFNLO and Sherpa.

The agreement that was found is on the order of one per mille for both processes. The results
for the comparison of the leading order (W±γjjj) cross section are shown in table 4.3.

Process VBFNLO σ [fb] Sherpa σ [fb] Deviation

W+γjjj 2.057± 0.003 2.088± 0.002 -1.49 %

W−γjjj 1.088± 0.001 1.132± 0.001 -3.94 %

Table 4.3: This table shows the 3 jet LO (W±γjjj) cross sections calculated by VBFNLO and
Sherpa.

Here, we can see that our results deviate significantly from the Sherpa results. The reason
for this are mainly the s-channel contributions depicted in figure 2.10, which are included
in Sherpa but not in VBFNLO and can pass the VBF cuts in some phase space regions.
In order to examine these s-channel contributions, they were calculated with Sherpa using
the setup given in table 4.1. The results can be found in table 4.4 and 4.5 for W+γjjj and
W−γjjj production respectively.

Process Sherpa σ [fb]

W+γ(W−)∗j; (W−)∗ → jj (2.743± 0.004) · 10−2

W+γZ∗j; Z∗ → jj (1.172± 0.002) · 10−2

W+γγ∗j; γ∗ → jj (5.583± 0.007) · 10−5

Table 4.4: In this table we present the cross sections for the three different s-channel contributions
to W+γjjj production calculated by Sherpa.
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Process Sherpa σ [fb]

W−γ(W+)∗j; (W+)∗ → jj (3.964± 0.009) · 10−2

W−γZ∗j; Z∗ → jj (6.536± 0.007) · 10−3

W−γγ∗j; γ∗ → jj (1.653± 0.002) · 10−5

Table 4.5: This table gives the corresponding s-channel contributions to W+γjjj production.

The s-channel contributions are on the order of a few percent of the full cross section. A
s-channel W+ boson decaying into two jets is enhanced by the PDFs over a W− boson. This
explains why the deviation is larger for the W−γjjj case. The ∆Rjj > 0.4 cut has the same
effect as imposing a lower cut on the invariant mass of the two s-channel jets. This is why
the photon channel is strongly suppressed here.

When we subtract the s-channel contributions from the whole Sherpa results we can compare
this again to the VBFNLO results.

Process VBFNLO σ [fb]
Sherpa σ [fb]
without s-channel

Deviation

W+γjjj 2.057± 0.003 2.049± 0.002 -0.40 %

W−γjjj 1.088± 0.001 1.086± 0.001 -0.15 %

Table 4.6: In this table we subtracted the s-channel contributions from the Sherpa cross sections.

In table 4.6 one can see that both results agree within the Monte-Carlo errors. This proofs
that the deviation originates from neglecting s-channel diagrams in VBFNLO and that our
calculation is correct.

4.3. Dipoles

Since the dipole subtraction described in section 3.5.1 is done at the level of the matrix ele-
ments squared, one can compare the real emission matrix element |MRE |2 to the subtraction
term |Msub|2 by taking the ratio |Msub|2/|MRE |2 for individual phase space points. Then,
this ratio was plotted over pq ·pg for the collinear limit and over Eg for the soft limit. Here pq
and pg denote the 4-momenta of the gluon and a quark, respectively and Eg is the energy of
the gluon. The ratio |Msub|2/|MRE |2 is expected to converge to 1 with pq · pg or Eg going to
zero, respectively. One has to distinguish between final state gluons, depicted in figure 4.1,
and initial state gluons (figure 4.2). The convergence is very good in all three cases. This
shows that the dipole subtraction method works very well.
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Figure 4.1: Final state gluons: The left plot shows the collinear limit for a quark and the gluon. On
the right the soft limit is plotted.
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Figure 4.2: Initial state gluons: This plot shows
the collinear limit of a quark and the initial state
gluon. Note that there are no soft initial state glu-
ons.

4.4. Gauge tests

As explained in section 2.2, the standard model is a gauge theory. A direct consequence of
this is that the full matrix element with at least one external gauge boson vanishes, if the
polarization vector of the gauge boson is replaced by its momentum (see equation (2.45))

εµMµ → pµMµ = 0. (4.1)

This is called gauge invariance and it is very important not to violate gauge invariance when
doing approximations.

4.4.1. Leading order

To perform the gauge test for the leading order, we use a normalized replacement

εγµMµ
B ≡MBorn → pγµ

Eγ
Mµ
B ≡M

gauge
Born . (4.2)

The division by Eγ is done due to numerical reasons. The values of the photon momenta in
GeV are rather large compared to the photon polarization vector. After this replacement,
the matrix element Mgauge

Born is significantly smaller than before. The histogram of

log10

(
|Mgauge

Born /MBorn|
)

(4.3)

was made to demonstrate this and can be found in figure 4.3.
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As described in section 3.2.2 we calculate the matrix element for four flavor combinations
for each phase space point. For the filling of the histogram, only the worst of these four
results has been taken. Thus the satisfaction of the gauge test is on average better than in
the following figures (4.3, 4.4, 4.6, 4.7).
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Figure 4.3: This is a his-
togram of the results of the
gauge test for the leading or-
der matrix element. For each
phase space point, one obtains
a different result for each fla-
vor combination. Note that the
histogram is always filled with
the largest of those values.

Figure 4.3 shows that |Mgauge
Born | is usually between 8 and 14 orders of magnitude smaller than

|MBorn|. This means that gauge invariance is also satisfied numerically.

4.4.2. Real emission

In the case of the real emission, there are two external massless gauge bosons, the photon
and the gluon. The gauge test can be performed for either of them separately. The results
for both cases are depicted in figure 4.4.
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Figure 4.4: These two plots show histograms of the results of the gauge tests for the real emission
matrix element. The plot on the left hand side shows the result for the gluon gauge test and the plot
on the right shows the result for the photon gauge test.

Again the matrix elements are numerically consistent with zero after replacing one of the
massless gauge boson with its ‘normalized’ momentum.
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4.4.3. Virtual corrections

Here we exploit the fact that several diagrams are gauge related. This means that in general
a single diagram is not gauge invariant by itself but the sum of all diagrams contributing to
the matrix element is gauge invariant. In the case of Wγ production via vector boson fusion,
the topologies depicted in figure 4.5 are gauge related.

W γ

W γ

W

Figure 4.5: On the left, there is a pentagon diagram and on the right, a box diagram, in which the
photon is radiated off the W boson. These two topologies are gauge related.

This relation allows us to check the relative signs between pentagon and box diagrams. The
sign is correct if the virtual matrix element Mvirt vanishes under the replacement

εγµMµ
virt ≡Mvirt → pγµ

Eγ
Mµ

virt ≡M
Gauge
virt . (4.4)

In order to check whether the gauge check works, we took the normalized quantity

log10 (|Mgauge
virt /Mvirt|) (4.5)

for 100,000 phase space points and made a histogram (left plots in figure 4.6 and 4.7). This
approach can lead to numerical problems if Mvirt is small.

Another approach to checking that Mgauge
virt is zero is to compare it to a part of itself. Since

Mgauge
virt =

∑
iM

gauge
virti

= 0, where i runs over all Box- and Penline contributions, one can
subtractMvirt4 on both sides and then divide by it. After adding 1 on both sides and taking
the logarithm, one obtains

log10

(∣∣∣∣∣M
gauge
virt −M

gauge
virt4

Mgauge
virt4

+ 1

∣∣∣∣∣
)
. (4.6)

Mvirt4 corresponds to the topology on the right of figure 4.5, in which the photon is radiated
off the W boson with a box correction to the upper line. The matrix elementMvirt4 is usually
rather big and therefore a good reference for comparing the size of Mgauge

virt . The right plots
in figure 4.6 and 4.7 show the quantity of equation (4.6).

52



4.5. Virtual contributions 53

0

2000

4000

6000

8000

10000

12000

14000

-14 -12 -10 -8 -6 -4 -2 0 2

N
um

be
r

of
po

in
ts

log10(|M
gauge
virt
Mvirt

|)

0

2000

4000

6000

8000

10000

12000

14000

-14 -12 -10 -8 -6 -4 -2 0 2

N
um

be
r

of
po

in
ts

log10(|M
gauge
virt −M

gauge
virt4

Mvirt4
+ 1|)

Figure 4.6: These two plots show histograms of the results of the gauge check. For these histograms,
the internal Ward identity checks of the Box- and Penlines have not been applied.
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Figure 4.7: These two plots show again histograms of the result of the gauge check. But this time
the internal Ward tests of the Box- and Penlines had to be passed, which eliminates the points close
to zero. This shows that the internal Ward identity checks assure the conservation of gauge invariance.

For the plots in figure 4.6, the Ward identity test was not applied, which leads to violation
of gauge invariance. For the plots in figure 4.7, we required that the Ward identity test is
satisfied with a precision of ε = 10−2, which assures the conservation of gauge invariance.
Moreover, the average of these histograms is shifted to the left, which represents a stronger
satisfaction of the gauge test.

4.5. Virtual contributions

As described in section 3.6, the virtual contributions are calculated with the Box- and Penline
functions created by Francisco Campanario [37]. The Box- and Penline routines provide a
variety of possible checks.

4.5.1. Input

First of all, one has to assure that the input of these routines is correct. Since the Box- and
Penline functions do not only calculate the matrix elements of the virtual contributions but
also the Born ones, it is possible to check the output directly against the corresponding Born
matrix element. The agreement was found to be on the order of 10−8 − 10−12 depending on
the phase space points. This is well within the numerical accuracy.
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4.5.2. Poles

The Box- and Penline routines are able to use the corresponding 1/εi poles of the loop
integrals to calculate the divergent parts of MV1...Vn in equation (3.58), which will be called
Mvirt

V1...Vn
(div = i) for i = 1, 2, respectively. This can be used to calculate the total matrix

element using the Box- and Penline functions to numerically check the factorization of the
poles given by equation (3.58) and (3.59)

Mvirt
V1...Vn(div = 1) = B ∗MBV1...Vn = −3 ∗MBV1...Vn ,

Mvirt
V1...Vn(div = 2) = A ∗MBV1...Vn = −2 ∗MBV1...Vn .

(4.7)

In figure 4.8, one can see the numerical precision of the factorization for 100,000 phase space
points. For each of the phase space points, the normalized quantity∣∣∣∣∣ Mvirt

V1...Vn
(div = i)

const(i) ∗MBV1...Vn
− 1

∣∣∣∣∣ with i = 1, 2 and const(i) = B,A, (4.8)

has been calculated for each of the 4 channels in table 3.2. Then the log10 of these quantities
was taken and the result was added to the corresponding histogram below.
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Figure 4.8: These two plots show histograms of the number of phase space points over the accuracy
of the pole checks. The left plot represents the relation for the 1/ε poles and the right one the relation
for the 1/ε2 poles. The numerical accuracy peaks at 10−10 for the 1/ε poles and at 10−11 for the 1/ε2

poles.

The accuracy is significantly better for the 1/ε2 poles. The reason for this lies in the Passarino-
Veltman tensor reduction, which is performed in the Box- and Penlines. There are less scalar
integrals, and therefore less tensor integrals, that contribute to the 1/ε poles than to the
finite part and even less that contribute to the 1/ε2 poles. The more integrals contribute
with non-zero values, the more accuracy is lost through possibly small Gram determinants
and thus the 1/ε2 poles satisfy equation (4.7) better than the 1/ε poles.

Equation (4.7) also holds, if the renormalization scale µRi is chosen differently. This provides
an additional possibility to check that the couplings of the individual diagrams and their
summation have been implemented correctly.
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4.5.3. Comparison with different implementation

Before the Box- and Penline functions were available in VBFNLO the loop corrections were
calculated using an implementation by C. Oleari [43]. This implementation is able to calculate
loop corrections to quark lines with massive gauge bosons or off-shell photons attached.
A final state photon as in W±γ production via VBF leads to an additional infrared divergence.
This additional divergence could in principle change the factorization formula in equation
(3.58).
However, it has been shown in [37] that this is not the case. Thus it was possible to check the
results of the Box- and Penlines against the implementation by C. Oleari using the new scalar
integrals. This was done at the level of the matrix elements Mfin

V1...Vn
. The agreement that

was found was on the order of the numerical accuracy, which also confirms the correctness of
the implementation of the Box- and Penline functions.

4.5.4. Dependence on intrinsic scale

We can use equation (3.58) for another check, which is described in [37] in more detail. Let’s
consider Q2 as an independent energy scale and define it to be Q2 ≡ µ0. Now, one can do a
Taylor expansion of (µ0)−ε in ε and one obtains a new finite term

M′finV1...Vn =Mfin
V1...Vn

+ f(µ0) ∗MB with f(µ0) = −B ∗ log(µ0) +
1

2
∗A ∗ log2(µ0). (4.9)

The new quantity M′finV1...Vn is now independent of the intrinsic scale µ0 since the logarithms

in f(µ0) exactly cancel the log dependence of Mfin
virt.

This can be checked by calculating equation (4.9) for a specific phase space point twice. The
first time with the conventional choice of the intrinsic scale µ0 = Q2 and the second time
with µ0 = 1 GeV2. Now the expression should be the same for both choices of the intrinsic
scale µ0. Once again this is satisfied within the numerical accuracy of 10 to 14 digits. This
is a very strong check since it relates the calculation of the virtual corrections to the Born
matrix element and directly checks the finite contributions.

4.5.5. Precision of the Ward test

The precision ε of the Ward identity test described in section 3.6.1 influences the number
of phase space points that fail this check. It is important to check whether this affects
the cross section of the virtual corrections. The share of unstable points in the Boxlines is
very low, namely on the order of 10−6, which is negligible for our purposes. Due to more
Gram determinants we expect more instabilities with the Penlines, which will be investigated.
Figure 4.9 shows the share of points that fail the Ward identity check over its precision.

With increasing precision of the Ward test, the share of points that fail the test rises signifi-
cantly, which is expected. For the following calculations, the precision of the Ward test has
been set to ε = 10−2. Actually, one needs to correct the result of the Penlines by the share of
points that fail the Ward test. For ε = 10−2, the percentage of instabilities is 0.36%, so one
has to multiply the pentagon cross section with a factor 1/(1− 3.6 ∗ 10−3) ≈ 1 + 3.6 ∗ 10−3.
Since the pentagons make up less than one percent of the total cross section this is completely
negligible.
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Figure 4.9: The share of phase space
points identified as numerically unstable
rises significantly with increasing preci-
sion of the Ward test.
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Figure 4.10: The precision of the
Ward identity check affects the result
of the Penlines only in the outer re-
gions. This shows that ε = 10−2 is a
reasonable choice for the precision of
the Ward identity tests.

Figure 4.10 shows the result of the Penlines over the precision of the Ward identity test. For
ε ∈ [10−3 : 100] the Pentagon cross section is stable within its errors. This means that the
phase space regions that are removed by the rise of the precision do not contribute much to the
cross section and therefore are kinematically suppressed. Thus the pentagons are very stable
in this region. In the region log10(ε) ≥ 1 the errors of the Pentagons become significantly
larger since we are taking unstable phase space regions into account here. For ε < 10−3 the
Ward identity tests are too strict and we loose too many phase space points, which lowers
the pentagon cross section. This confirms that ε = 10−2 is a good choice.

4.6. Relation between real emission and virtual corrections

This check is based on the fact that it is possible to integrate terms proportional to |MB|2
either with the real emissions or the virtual corrections. The constants of proportionality
are creal and cvirt for the real emission and the virtual corrections, respectively. We take
advantage of the fact that only the sum

csum = creal + cvirt =

(
−2π2

3
+

5

2

)
+

(
π2

3
− 7

)
= −π

2

3
− 9

2
, (4.10)

is fixed. creal and cvirt can be varied but the NLO cross section should stay the same. This
check relates the 6 particle phase space of the real emissions to the 5 particle phase space of
the virtual corrections and is therefore very powerful. The results can be seen in table 4.7.
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W+γjj

creal cvirt csum σReal [fb] σvirt [fb] σ [fb]

−2π2

3 + 5
2

π2

3 − 7 −π2

3 − 9
2 1.076± 0.010 6.746± 0.010 7.822± 0.014

−π2

3 − 19
2 5 −π2

3 − 9
2 −2.367± 0.013 10.180± 0.008 7.813± 0.015

−π2

3 + 1
2 −5 −π2

3 − 9
2 1.616± 0.029 6.221± 0.015 7.836± 0.033

W−γjj

creal cvirt csum σReal [fb] σvirt [fb] σ [fb]

−2π2

3 + 5
2

π2

3 − 7 −π2

3 − 9
2 0.621± 0.007 3.912± 0.005 4.533± 0.008

−π2

3 − 19
2 5 −π2

3 − 9
2 −1.397± 0.009 5.932± 0.005 4.535± 0.010

−π2

3 + 1
2 −5 −π2

3 − 9
2 0.937± 0.020 3.604± 0.009 4.542± 0.022

Table 4.7: This table gives the real emission, the virtual contributions and the total cross section for
different values for creal and cvirt while their sum csum is fixed.

The results agree within the numerical error of the Monte-Carlo. This confirms that the
calculations of the finite parts of the real emission and the virtual contributions are correct.

4.7. Anomalous couplings

There are several possible checks for the implementation of anomalous gauge boson couplings.
The Lorentz invariance and the comparison to other implementations have already been
checked in the course of the diploma thesis of O. Schlimpert [44]. The only thing left to do
in order to check the correctness of the implementation for a new processes is to switch on
the anomalous couplings, set all of them to zero and compare the result to the one without
anomalous couplings. Both results agree within the numerical accuracy of the Monte-Carlo.
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CHAPTER 5

PHENOMENOLOGY

In this chapter, several phenomena will be examined starting with the differences between
the LO and the NLO results, where the K-factor will be discussed. It will be shown that
the scale dependence is significantly reduced by calculating the NLO QCD cross section.
Then the energy dependence of the cross section will be shown briefly. We will discuss final
state radiation, which is a phenomenon that occurs in processes with a charged lepton and a
photon in the final state, as in W±γjj production via weak boson scattering. Furthermore,
different photon helicities and the effects of a jet veto will be examined. Finally, we will look
at anomalous coupling effects.

5.1. Numerical results

Let us start with the numerical results for the LO and the NLO cross sections. The setup
that was used here and in the following is given in table 5.1 and the cuts that we applied are
given in table 5.2.

• Proton-proton collider, Ecm = 14 TeV

• PDFs: CTEQ6l1 [24] for LO and CT10 [25] for NLO calculation (αNLOS (mW ) = 0.120)

• Jet definition: Anti-kT algorithm [45]

• Scale of quark line i: µFi = µRi = Qi ≡
√
−(poutqi − pinqi )2

• Electroweak input parameters

– mZ = 91.1876 GeV

– mW = 80.398 GeV

– GF = 1.16637 · 10−5 GeV−2

• Calculated electroweak parameters 1

– sin2 ΘW = 0.22264585

– ΓW = 2.097673 GeV

– αem = 1/132.34070

• All fermions occurring in this calculation are assumed to be massless.

Table 5.1: This table gives the setup that was used to obtain the results of this and the following
analyses.
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• VBF cuts on tagging jets

– |ηj1 − ηj2 | > 4, ηj1 × ηj2 < 0, mj1 j2 > 600GeV

• Inclusive cuts

– jets: pjT > 30 GeV, |ηj | < 4.5, ∆Rjj > 0.4

– leptons: pT,l > 20 GeV, |ηl,γ | < 2.5, ∆Rj l > 0.4

– photons: pT,γ > 30 GeV, ∆Rj γ > 0.7, ∆Rl γ > 0.4

Table 5.2: This table gives the cuts that were applied here and in the following calculations.

The numerical results for the LO and the NLO cross sections and the individual contributions
given in table 5.3.

pp→W+γjj pp→W−γjj

σLO [fb] 7.828 ± 5 · 10−3 4.486 ± 3 · 10−3

σBorn−types [fb] 6.750 ± 5 · 10−3 3.934± 3 · 10−3

σBox [fb] (62.6± 0.4) · 10−3 (12.7± 0.2) · 10−3

σPent [fb] (12.2± 0.7) · 10−3 (5.4± 0.5) · 10−3

σReal [fb] 1.085 ± 6 · 10−3 0.636 ± 4 · 10−3

σNLO [fb] 7.910 ± 7 · 10−3 4.588 ± 5 · 10−3

K-factor 1.013 1.021

Table 5.3: This table shows the numerical results for the LO and the NLO cross sections, the
individual contributions and the K-factor.

Remember that the K-factor is defined as

K =
σNLO
σLO

. (5.1)

The LO and the NLO cross section are close to each other, which is reflected in the K-factors
that are very close to one. The reason for this is the scale choice of µRi = µFi = Qi, where
Q2
i is minus the square of the momentum transferred from quark line i to the EW process.

The advantage of such a dynamical scale over a fixed scale such as for example the W mass
mW is that it adapts to the energy, which is present in the interaction and thus is a good fit
in a large part of the phase space. The reason why the cross sections for pp → W+γjj are
larger than for pp→ W−γjj are the PDFs of the proton-proton collider, which enhance the
production of positively charged final state particles.

The box and pentagon contributions, which already include the subtraction of cvirt∗
∣∣MB

V1...Vn

∣∣2
are very small, so it is completely justified to evaluate them with lower statistics in the fol-
lowing. The dipoles were already subtracted from the real emission contribution, which also
contains the finite collinear remainders. This contribution dominates the error of the total

1We use the three input parameters mZ , mW and GF and the electroweak SM tree-level relations to determine
all other relevant EW parameters.

60



5.2. Scale dependence 61

cross section. For creal = −2π2

3 + 5
2 and cvirt = π2

3 − 7 the real emission accounts for 13.8%
of the NLO cross sections. The s-channel contributions that we neglected (figure 2.10) were
found to be approximately 1.5% for W+γjjj production and 4% for W−γjjj production (see
section 4.2). Thus, the error that we make is on the order of a few per mille and well below
the theoretical uncertainty, which we will see in section 5.2

5.2. Scale dependence

One of the key points of the motivation for calculating the NLO corrections was to reduce
the scale dependence. The scale dependence of the cross section is usually taken to estimate
the theoretical uncertainty of the calculation. The idea behind this approach is that the cross
section must be independent of the factorization and renormalization scales if it was calculated
to all orders of perturbation theory. But since we calculate only the order O(α5

emαS), our
cross section will depend on these two unphysical scales. So, the higher orders must cancel
this scale dependence and thus be on the same order of magnitude.
Therefore, the scale dependence of the cross section is a measure for the missing higher orders
and thus for the theoretical error of the calculation. This is controversially discussed among
theorists, since the choice of the scale and moreover, the choice of the interval, which is used
to determine the scale variation, are almost completely arbitrary. Nevertheless, it can be
seen as a lower limit for the theoretical error and thus gives us a feeling for the theoretical
uncertainty.
The plots in figure 5.1 and 5.2 show the scale dependence of the leading order cross section,
the next-to-leading-order cross section and all of its components for W+γjj production. The
NLO cross section depends on two different scales. Thus we can vary only the factorization
scale µFi (dotted blue lines), the renormalization scale µRi (dashed green lines) or both scales
together (solid red lines). The factorization scale is the energy scale of the PDFs and the
renormalization scale describes the running of αS , which affects all NLO diagrams and the
NLO PDFs. The scale variation plots have been created for two different scales, namely
µ0i = Qi and µ0i = mW , that have been varied (ξµ0i) over the interval ξ ∈ [0.1, 10].

Figure 5.1 shows that the scale dependence of the next-to-leading-order cross section is sig-
nificantly lower than the one of the leading order. Moreover, the scale dependence for the
dynamical scale µ0i = Qi is lower than for the fixed scale µ0i = mW . We can observe that
the choice of the scale affects the total K-factor. Figure 5.2 shows that the scale variation
of the real emission is negatively correlated with the scale variation of the Born-types. This
decreases the scale dependence of the full NLO cross section. Again, the range of the scale
variation is lower for µ0i = Qi. We suspect that the scaling of the real emission is dominated
by the gluon PDFs, whose scale behavior is depicted in figure 5.3. When one compares figure
5.3 to the scaling of the real emission in figure 5.2 one can see that the behavior is very
similar. Thus it is likely that the initial state gluon channels make up a significant share of
the real emission.
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Figure 5.1: The upper plot shows the scale dependence of the cross section for µ0i = Qi, the lower
one for µ0i = mW . Three different cases have been examined: variation of the renormalization scale
µRi (dashed green lines), variation of the factorization scale µFi (dotted blue lines) and variation of
both scales (solid red lines). The black line represents the leading order, which is only affected by the
factorization scale.
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Figure 5.2: These two plots show the scale dependence of the remaining components. The colors
are assigned as in figure 5.1. Boxes and pentagons represent the corresponding cross sections after the
subtraction of cvirt times the corresponding born cross section as described in section 3.6.3. These
contributions are included in the Born-types which also contain the vertex corrections. The real
emission already includes the Catani-Seymour subtraction terms and the finite collinear remainders
as described in section 3.5.1.

63



64 5. Phenomenology

650

700

750

800

850

900

0.1 0.2 0.5 1 2 5 10

f
(x
,Q

2
)

ξ

Q = ξmw

x = 0.01

15000

20000

25000

30000

35000

40000

0.1 0.2 0.5 1 2 5 10

f
(x
,Q

2
)

ξ

Q = ξmw

x = 0.001

Figure 5.3: These two plots show the scaling of the gluon PDFs for Q = ξmW and ξ ∈ [0.1, 10].

To determine the theoretical uncertainty, one usually uses the scale variation in the interval
ξ ∈ [0.5, 2]. Here, the maximum and the minimum cross section in this interval were taken
since the cross sections for µRi = µFi = 2±1Qi are lower than the one for µRi = µFi = Qi.
The difference of the minimum and the maximum cross section defines the scale variation,
which is given in table 5.4 for µ0i = Qi.

µ0i = Qi σ [fb] at ξ = 1 Variation ξ ∈ [0.5, 2] [fb] Relative variation

LO 7.832 ± 0.005 1.19 15.2%

NLO 7.909 ± 0.012 0.13 1.7%

Table 5.4: This table shows the variation of the LO and the NLO cross sections for µ0i = Qi.

The scale uncertainty of the cross section has been decreased from 15.2% to 1.7% by calculat-
ing the next-to-leading order. The corresponding scale variation for the fixed scale µ0i = mW

are shown in table 5.5.

µ0i = mW σ [fb] at ξ = 1 Variation ξ ∈ [0.5, 2] [fb] Relative variation

LO 8.27 ± 0.006 1.37 16.6%

NLO 7.83 ± 0.012 0.28 3.6%

Table 5.5: This table gives the scale uncertainties for µ0i = mW .

With this scale choice, the scale uncertainty decreases from 16.6% at leading order to 3.6% at
next-to-leading order. This shows that the scale uncertainty actually depends on the scale we
choose. Thus we can state that the scale dependence is only an estimation and not an exact
value for the theoretical uncertainty of our calculation. The remaining scale uncertainty is
partly due to the initial state gluon channels that arise in the real emission corrections at
NLO. This channel is basically calculated at LO and has no virtual counterterm that could
cancel its scale dependence.

So far, both scale choices are reasonable, since for ξ = 1 one is on the plateau of the NLO
cross section as shown in figure 5.1. In the following, both, the renormalization and the
factorization scale will be set to the absolute value of the momentum transferred from quark
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line i to the EW process, µRi = µFi = Qi, which is the common choice for vector boson
fusion processes (see [33, 36]). Q2

i can be interpreted as a measure for the virtuality of the
gauge boson emitted off quark line i and thus, it represents the kinematics of the process.
This scale choice yields relatively flat differential K-factor distributions for most observables,
which will be shown e.g. in figure 5.9.

Another point in favor of the dynamical scale Qi is the reduced scale uncertainty as seen in
tables 5.4 and 5.5. This is also observable in differential distributions. To demonstrate this,
the following ratio needs to be defined

R(µ0i, ξ) ≡
dσ(µRi = µFi = ξµ0)

dσ(µRi = µFi = µ0)
. (5.2)

In figure 5.4 this ratio is plotted over pj1T for the scales, µ0i = Qi and µ0i = mW , and the
canonical variations ξ = 2±1.
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R(mW , 2) Figure 5.4: This plot shows
the ratio defined in equation
(5.2) for ξ = 2±1 and the two
scales, µ0i = Qi and µ0i = mW .
For both scales the correspond-
ing curves cross at pj1T ≈ 120
GeV.

The scale variation for µ0i = Qi is approximately constant over the whole range. But one
can clearly see that above pj1T ≈ 120 GeV the spread between the curves for R(mW , 0.5) and

R(mW , 2) widens with increasing pj1T . Since the scale variation for ξ = 2±1 is used to determine
the theoretical error in experimental analyses, the preferable scale choice is µRi = µFi = Qi.

5.3. Energy dependence

In general, the cross section depends on the collider energy. To demonstrate this, the leading
order and the next-to-leading-order cross sections were calculated for a range of collider
energies and plotted in figure 5.5.

We can see that the LO and the NLO cross sections rise with increasing energy. The rising
discrepancy between LO and NLO is caused by the application of the cut

min(mj1j3 ,mj2j3) > 150 GeV. (5.3)

This cut was applied to remove the s-channel contributions described in section 2.6.1, which
we do not include in our calculation. These contributions get larger at higher energies and
therefore, we need this cut to remove them. This cut only affects the identified jets, namely
well separated partons with pT > 30 GeV.
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5.4. LO vs NLO distributions

Here and in the following, the analysis will focus on the process pp → W+γjj. The results
for pp→W−γjj are very similar and therefore not presented.
To examine the differences between the leading order and the next-to leading order result, it is
useful to look at differential distributions. Taking into account the cuts and input parameters
given in table 5.1 and 5.2, respectively, the total K-factor for W+γjj production is very close
to one, namely K ≈ 1.01. However, differences between LO and NLO results are in general
not just a constant factor, i.e. a rescaling of the differential distribution by the K-factor of the
integrated cross section can lead to under- or overestimating the NLO corrections in different
phase space regions. This can be observed in the differential distribution of the leading jet
dσ/dpj1T and its differential K-factor distribution K∂(pj1T ) shown in figure 5.6. The differential
K-factor of an observable O is defined as

K∂(O) =
dσNLO
dO

(
dσLO
dO

)−1

. (5.4)

0

0.01

0.02

0.03

0.04

0.05

0.06

d
σ
/d
p
j 1 T

[fb
/G

eV
]

0.75
1

1.25

0 100 200 300 400 500
pj1T [GeV]

K-factor

LO
NLO

Figure 5.6: This plot shows
the transverse momentum dis-
tribution of the hardest jet
dσ/dpj1T . In the region below

pj1T ≈ 150 GeV, the NLO re-
sult (solid red line) is larger
than the LO result (dashed blue
line). For high pj1T , it is the ex-
act opposite. This is reflected
in the decrease of the differen-
tial K-factor in the lower part of
the plot where the dashed line
represents the total K-factor of
the integrated cross section for
the cuts listed in appendix.

In figure 5.6 We can see that the LO result is smaller for low pj1T , which is reflected in the

K-factor that is greater than one for pj1T . 150 GeV and smaller than one for pj1T & 150 GeV.
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A distribution that shows a similar behavior is the invariant mass distribution of the tagging
jets dσ/dmj1j2 depicted in figure 5.7.
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Figure 5.7: The invariant
mass distribution of the tagging
jets dσ/dmj1j2 shows a cross-
ing of the LO and the NLO re-
sults. The K-factor is larger
than one in the region where
mj1j2 . 1500 GeV is small and
lower than one for mj1j2 & 1500
GeV.

Again, the K-factor is above 1 for small mj1j2 values and decreases with rising mj1j2 . Since
the differential K-factor is not flat in general, one can conclude that it is not possible to obtain
NLO distributions from LO ones by multiplying them with a total K-factor.

5.5. Final state radiation

Final state radiation occurs in processes with a final state photon and another gauge boson
that decays into charged particles. In those processes, the photon can be radiated off the
final state decay leptons as depicted in figure 5.8. This is called final state radiation or
Bremsstrahlung.

W+

γ

l+

ν
Figure 5.8: In processes with photons and charged leptons in the final state, the photon can be
radiated off the lepton. This is called final state radiation.

The coupling of the photon to the lepton is a simple QED coupling and those couplings have
been measured with very high accuracy. We want to examine anomalous effects in triple and
quartic gauge boson couplings. Therefore, we want to suppress the final state radiation to
increase the sensitivity to anomalous gauge boson couplings.
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For this purpose, one can introduce a cut on the transverse mass cluster of the Wγ system
[46]

mT (Wγ) =

([
(m2

lγ + p2
Tlγ

)
1
2 + 6pT

]2
− (pT lγ + 6pT )2

) 1
2

. (5.5)

Here, mlγ and pTlγ are the invariant mass and the transverse momentum of the lγ system
respectively. 6pT denotes the missing transverse momentum, which corresponds to the trans-
verse momentum of the neutrino.
The differential cross section plotted over mT (Wγ) shows a final state radiation peak at mW .
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Figure 5.9: This plot shows
the differential cross section
over the transverse mass clus-
ter of the Wγ system. The cut
mT (Wγ) > 70 GeV does not
remove the final state radiation
peak at mW yet, but mT (Wγ)
> 90 GeV does.

Figure 5.9 demonstrates that this peak can be removed with the cut mT (Wγ) >90 GeV.
Table 5.6 shows that this cut reduces the total cross section only by approximately 10%.

mT (Wγ)min σNLO [fb] Deviation K-Factor

0 GeV 7.916 ± 0.005 0.0% 1.01

70 GeV 7.593 ± 0.005 -4.1% 1.01

90 GeV 7.133 ± 0.005 -9.9% 1.01

Table 5.6: This table shows the effect of the mT (Wγ) on the NLO QCD cross section and the
K-factor.

Another distribution, in which final state radiation is observable, is the Rlγ distribution. The
peak at low Rlγ that is observable in figure 5.10 is caused by final state radiation. It can be
reduced significantly by applying the cut on mT (Wγ). Without the Rlγ > 0.4 cut the cross
section would be logarithmically divergent for Rlγ → 0. The peak at Rlγ = π is the back-to-
back peak. It arises from back-to-back Wγ scattering, which is enhanced by the phase space.
The two peaks in figure 5.10 are dominated by different helicities, which will be examined in
section 5.6.
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Figure 5.10: This plot of
the different cross section
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an interesting behavior.
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This means that the
majority of final state
radiation is emitted in
a small cone around the
lepton.

5.6. Helicity correlations

For final state photon processes, it is interesting to look at different photon helicities, since
in some distributions of differential cross sections one can see, that different regions are
dominated by different helicities. The reason for this are helicity correlations that arise from
the fermion chirality conservation in the vertices.
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Figure 5.11: This plot shows
the Rlγ distribution for the two
helicities separately. The red
lines represent the right-handed
photons (λγ = 1) and the
blue lines the left-handed ones
(λγ = −1). The final state
radiation peak at small Rlγ
is clearly dominated by right-
handed photons. By applying
the cut mT (Wγ) > 90 GeV
this peak can be removed com-
pletely (dashed lines).

The Rlγ distribution in figure 5.11 shows a back-to-back peak at Rlγ ≈ π for both photon
helicities. The final state radiation peak at Rlγ ≈ 0.5 is dominated by right-handed photons.

In the Φlγ distribution in figure 5.12 one can see back-to-back peaks for both helicities
and again, that the back-to-back region is dominated by left-handed photons. This dis-
tribution shows final state radiation peaks for both helicities, which are removed by the
mT (Wγ) > 90 GeV cut.
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Figure 5.12: The differential cross
section over the azimuthal angle be-
tween photon and lepton Φlγ shows
two different phenomena. The re-
gion of large Φlγ is dominated by
left-handed photons, which one can
also see in the dσ/dRlγ plot in figure
5.11. We can observe final state ra-
diation peaks at small Φlγ for both
helicities, which are removed by ap-
plying the mT (Wγ) > 90 GeV cut.
The labeling is analogous to figure
5.11.

5.7. Jet veto

At next-to-leading order an additional parton emerges from the real emission contribution.
This additional parton can be identified as a jet if it is well separated from the other partons
and has a minimum transverse momentum pjT > 30 GeV. In this work, the anti-kT algorithm
[45] was used for the jet definition. The term jet veto describes an additional cut on the
transverse momentum of this third jet that can occur at NLO. The jet veto cuts away events
where the third jet is ‘central’ and its transverse momentum is higher than a given threshold
pj3T > pjvetoT . Here ‘central’ means that the rapidity of the third jet must lie between the

rapidities of the tagging jets. For this analysis the threshold was set to pjvetoT = 50 GeV.
A jet veto is usually applied to remove the QCD background in experimental analyses. Table
5.7 shows that the effect of the veto is rather small for Wγjj production, independently of
the application of the mT (Wγ) > 90 GeV cut.

pjT,veto mT (Wγ)min σNLO [fb] Deviation K-Factor

— 0 GeV 7.916 ± 0.005 0.0% 1.01

50 GeV 0 GeV 7.588 ± 0.006 -4.1% 0.97

— 90 GeV 7.133 ± 0.005 -9.9% 1.01

50 GeV 90 GeV 6.834 ± 0.005 -13.7% 0.97

Table 5.7: This table shows the behavior of the NLO QCD cross section and the K-factor depending
on the jet veto and the mT (Wγ) > 90 GeV cut.

This behavior is desired since the jet veto is intended to reduce the QCD background and
to affect the electroweak process as little as possible. The ηj3 distribution in figure 5.13
demonstrates the effect of the jet veto very well. The mT (Wγ) > 90 GeV cut reduces
dσ/dηj3 mainly in the outer region, where |ηj3 | ∈ [2, 3]. The jet veto however, causes an
almost constant reduction of dσ/dηj3 in ηj3 ∈ [−3, 3], leading to strong suppression of the
central region, ηj3 ∈ [−1, 1]. The main background to vector boson scattering processes are
the corresponding QCD processes, depicted in figure 1.2 for W+γjj production. Since these
processes usually have a peak in the central region of the ηj3 distribution, the jet veto is a
powerful method to reduce this background.
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Figure 5.13: The dσ/dηj3 distribu-
tions for the four cases of table 5.7. As
desired, the jet veto affects mostly the
central region of the distribution.

A jet veto reduces the NLO cross section and leaves the LO cross section unchanged, which
reduces the K-factor. Therefore, it is interesting to look at differential K-factor distributions.
In figure 5.14, one can observe that for small values of pj1T the K-factor is not affected by the
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deviations at small pj1T . But for larger

values of pj1T the jet veto lowers the K-
factors. The horizontal lines represent
the total K-factors for the jet veto re-
sults (dashed blue line) and the normal
results (solid black line).

jet veto. But in the region of larger pj1T the jet veto reduces the K-factor. The reason for this
is that the hardest jet j1 can not recoil against a hard third jet anymore if the jet veto is
applied. K∂(pj1T ) is the only K-factor distribution, which shows a significant deviation for the
jet veto result. For all other distributions, the differential K-factors are just shifted to lower
values by the jet veto.
The application of a jet veto has only a very small impact on this process. However, it
makes the estimation of the theoretical uncertainty more difficult due to correlations and
cancellations between different phase space regions of the different contributions to the NLO
cross section. This has been shown e.g. in the diploma thesis of J. Bellm [47] or in [48] and
extensively discussed in the framework of Higgs physics. For those reasons, no jet veto has
been applied in the following analyses of anomalous couplings.
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5.8. Anomalous couplings

5.8.1. Differential distributions

For the examination of effects of anomalous gauge boson couplings, the mT (Wγ) > 90 GeV
cut has been applied to remove final state radiation. Hence, the processes W±γjj are more
sensitive to triple and quartic gauge boson couplings. Here, the analysis will focus on quartic
gauge boson couplings (QGC), since triple gauge boson couplings (TGC) occur already in
QCD diboson production such as pp → Wγ. The QCD diboson production processes result
in significantly larger cross section than diboson VBF processes and are therefore much more
sensitive to anomalous TGC.
For the whole examination of anomalous couplings the form factor from equation (2.61) has
been used with an exponent n = 2. The mass scale of the form factor ΛFF is set depending
on the size of the parameters of the operators according to table B.1 in appendix B.
Since there are 14 operators that affect the WWZγ and WWγγ couplings, the first step was
to determine the operators with the largest impact. For this purpose, the NLO cross section
was calculated for all 14 operators for the parameter values 100 TeV−4 and 800 TeV−4. Here
and in the following, we will omit the /Λ−4 in fi/Λ

−4 for the sake of clarity.

fi [TeV−4] σ [fb] ∆SM fi [TeV−4] σ [fb] ∆SM

SM 0 7.137 ± 0.004 0.00%

fM,0 100 7.136 ± 0.009 -0.04% 800 7.294 ± 0.014 2.2%

fM,1 100 7.213 ± 0.012 1.04% 800 7.799 ± 0.014 9.2%

fM,2 100 7.154 ± 0.009 0.22% 800 7.401 ± 0.009 3.7%

fM,3 100 7.163 ± 0.016 0.33% 800 7.585 ± 0.009 6.2%

fM,4 100 7.219 ± 0.009 1.13% 800 8.002 ± 0.011 12.1%

fM,5 100 7.201 ± 0.010 0.86% 800 7.912 ± 0.012 10.8%

fM,6 100 7.164 ± 0.011 0.35% 800 7.207 ± 0.011 0.9%

fM,7 100 7.158 ± 0.010 0.27% 800 7.394 ± 0.014 3.6%

fT,0 100 7.245 ± 0.011 1.48% 800 8.449 ± 0.022 18.4%

fT,1 100 7.290 ± 0.012 2.11% 800 8.669 ± 0.016 21.4%

fT,2 100 7.067 ± 0.012 -1.00% 800 7.247 ± 0.011 1.5%

fT,5 100 7.333 ± 0.015 2.72% 800 9.933 ± 0.018 39.1%

fT,6 100 7.288 ± 0.010 2.09% 800 9.508 ± 0.014 33.2%

fT,7 100 7.204 ± 0.011 0.91% 800 7.934 ± 0.013 11.1%

Table 5.8: This table shows the cross sections for all operators that affect the WWZγ and WWγγ
couplings evaluated at fi = 100 TeV−4 and fi = 800 TeV−4.

Table 5.8 shows that the operators with the largest influence on the cross section are LT,5,
LT,6, LT,1 and LT,0. For the following analyses we will focus on these four operators. First, we
want to look at anomalous coupling effects in differential distribution. Figures 5.15 to 5.17,
5.19 and 5.20 show a selection of distributions taking as an example the following parameters:

72



5.8. Anomalous couplings 73

• fT,0 = 400 TeV−4, ΛFF = 600 GeV (dot dot dashed magenta line)

• fT,1 = −400 TeV−4, ΛFF = 645 GeV (dashed black line)

• fT,5 = 100 TeV−4, ΛFF = 3475 GeV (dot dashed green line)

• fT,6 = 800 TeV−4, ΛFF = 1700 GeV (dotted blue line)

The SM values (solid red line) and the estimated theoretical uncertainty (short dashed red
lines) were included as well. For the estimation, the SM values were calculated for the
canonical scale variations µFi = µRi = ξQi with ξ = 0.5, 2. All the following plots show
results at NLO QCD.

A very promising distribution to look for effects of anomalous gauge boson couplings is
dσ/dΦj1j2 where Φj1j2 is the azimuthal angle between the two hardest jets, which are in
the case of VBF the tagging jets.
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Figure 5.15: The left plot shows the dσ/dΦj1j2 distribution. The right plot shows the normalized
1/σ dσ/dΦj1j2 distribution. This distribution shows a significant change in its shape due to anomalous
couplings.

In the left plot of figure 5.15, which shows the dσ/dΦj1j2 distribution, we can see that with
higher values of the parameters of the operators the cross section gets higher. The enhance-
ments are visible especially in the central region and in the outer regions. The K-factor
decreases in the central region for strong anomalous couplings. In the normalized distri-
bution, 1/σ dσ/dΦj1j2 , in the right panel of figure 5.15, one can see that the shape of the
distribution actually changes. For anomalous couplings, the central region is enhanced and
the outer regions are reduced compared to the SM distribution.

Another common observable to look for effects of anomalous couplings is the transverse mo-
mentum distribution of the photon dσ/dpγT . The plot of figure 5.16 shows this distribution
with a logarithmic scale on the y-axis. This plot illustrates very well that deviations from the
SM occur at high pγT , i.e. high energies. The K-factor is stable over the whole range of pγT .
It is interesting to see that the curves for fT,1 = −400 TeV−4 and fT,6 = 800 TeV−4 cross at
pγT ≈ 375 GeV. This is partly due to the form factor scale, which is lower for fT,1, leading to
a stronger suppression.
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Two more observable, that show effects of anomalous couplings at high energies, are dσ/dmT (Wγ)
and dσ/dmin(pWT , p

γ
T ).
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Figure 5.17: The distributions dσ/dmT (Wγ) and dσ/dmin(pWT , p
γ
T ) show anomalous coupling effects

at high energies.

Again, we can see clear deviations from the SM values in both plots of figure 5.17, if we use
a logarithmic scale on the y-axis. The curve for fT,6 = 800 TeV−4 becomes flat for high
energies again while all the other operators and the SM are continuously declining.
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In order to illustrate the high energy behavior of anomalous couplings, figure 5.18 shows the
dσ/dmT (Wγ) distributions normalized to the SM values. This figure demonstrates that the
deviations from the Standard Model rise with increasing energy.

Since we are examining a final state photon process, another promising observable is the
pseudo rapidity distribution of the photon dσ/dηγ .
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Figure 5.19: The dσ/dηγ distribution shows a larger cross section for smaller photon rapidities ηγ .
The normalized photon rapidity distribution 1/σ dσ/dηγ (right plot) shows significant changes in
shape for anomalous couplings.

The left plot of figure 5.19 shows that anomalous couplings increase the dσ/dηγ distribution
for small pseudo rapidities. This means that more photons are emitted perpendicularly to the
beam axis. In the right plot, where the normalized pseudo rapidity distribution 1/σ dσ/dηγ
is shown, we can see that the shape of this distribution changes significantly, if anomalous
couplings are applied.

The azimuthal angle between the photon and the lepton Φlγ provides another possibility to
see effects of anomalous couplings. The corresponding differential distribution is depicted in
figure 5.20.
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Figure 5.20: In the dσ/dΦlγ plot on the left hand side we can see that anomalous couplings become
visible for large values of Φlγ . This distribution changes its shape significantly for large anomalous
coupling parameters (right plot).

We can see that the region of large azimuthal angles, Φlγ > 130◦, is strongly enhanced for
fT,1 = −400 TeV−4 and fT,6 = 800 TeV−4. For these two setups, the shape of the distribution
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changes significantly. This can be seen in the right plot showing the normalized distributions.
Although, the dσ/dΦlγ distribution looks very promising for fT,1 = −400 TeV−4 and fT,6 =
800 TeV−4, the effects of fT,0 = 400 TeV−4 and fT,5 = 100 TeV−4 are barely visible in
this distribution. Notice that the K-factor here slightly decreases for fT,6 = 800 TeV−4 and
Φlγ > 130◦.

In conclusion, it can be stated that the we can see significant effects for fT,1 = −400 TeV−4

and fT,6 = 800 TeV−4 in all distributions. fT,0 = 400 TeV−4 leads to smaller effects but they
are still visible in most of the presented plots. The curves for fT,5 = 100 TeV−4 usually show
no significant deviations from the SM values since parameter values of 100 TeV−4 lead to
significant deviations only at energies much higher than the ones that were examined here.

5.8.2. Two dimensional cross sections analysis

So far, we have only examined one non-zero operator at a time. But there are correlations
between the operators since they affect the same couplings, namely WWγγ and WWZγ.
For the analysis of these correlations all possible combinations of the four operators LT,0,
LT,1, LT,5 and LT,6 were examined. Both coupling parameters were varied over the range
[−1500, 1500] TeV−4 in 11 steps. The scale of the form factor ΛFF was always set to the lower
value of the two possible scales. That way the form factor also suppresses the contribution
of the operator with the larger scale at high energies. Figure 5.21 shows the two dimensional
projection of the cross section depending on two operators.

The correlations are different for each pair of operators. The only plot, which looks symmetric
is the (fT,5, fT,6) plot on the bottom right of figure 5.21. This is also the plot, in which we
can see the largest effects, so there must be a strong, positive correlations between LT,5 and
LT,6. The upper left plot shows the cross sections for (fT,0, fT,1). This plot is not symmetric
but the cross section rises significantly for high negative values of both operators indicating
a positive correlation of the operators (LT,0,LT,1).
The remaining plots showing (fT,0, fT,5),(fT,0, fT,6), (fT,1, fT,5) and (fT,1, fT,6) look very sim-
ilar. The correlations between the corresponding operators are small and the change in the
cross section is dominated by fT,0 or fT,1, respectively while fT,5 or fT,6 only have a small
effect. In these four plots, negative values of the parameters on the x-axis have a stronger
influence on the cross section than positive ones.
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Figure 5.21: These plots show the NLO cross section depending on two coupling parameters. The
correlations are different for each pair of operators since the operators affect different helicities. The
black contours indicate integer values of the cross section in [fb].
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Figure 5.22: This figure shows the histograms dN/dpγT (left plot) and dN/dmT (Wγ) (right
plot) with the new binning. The parameters that were used to obtain this new binning are
Nmin = 30 and N bin

min = 3. The original widths of the histograms were pγT ∈ [0, 600] GeV and
dmT (Wγ) ∈ [0, 2500] GeV.

5.8.3. Sensitivity analysis

So far, we have only examined qualitative effects of anomalous gauge boson couplings. The
goal of this section is to calculate possible exclusion limits for the operators LT,0, LT,1, LT,5
and LT,6. For this purpose, we took all possible pairs of operators and calculated a variety
of histograms varying each parameter over the following values in TeV−4

0, ±25, ±100, ±400, ±800, ±1500. (5.6)

We point out that a pre-optimized grid and only one iteration was used, so the phase space
points are the same for all setups. We assumed a collider energy of Ecm = 14 TeV and a
luminosity of L = 100 fb−1.

The first step was to make a new binning of a given histogram. The number of events in the
i-th bin of a histogram of the observable O is

Ni = L

(
dσNLO
dO

)
i

∆bin,O. (5.7)

Here, ∆bin,O is the width of a bin in the histogram of the observable O and (dσNLO/dO)i is
the cross section that lies in bin i. For the histograms with and without anomalous couplings,
these bins were combined until the number of SM events in the new bin, NSM,new

k , exceeded
a lower limit Nmin. Since the size of the bins can lead to experimental uncertainties, we also
required that a minimum number of bins N bin

min were combined

NSM,new
k =

n∑
i

Ni > Nmin, n ≥ N bin
min. (5.8)

This procedure was started from the right end of the histogram, where the effects of anomalous
couplings are usually visible as shown in section 5.8.1. Figure 5.22 shows the histograms
dN/dpγT and dN/dmT (Wγ) with the new binning for Nmin = 30. One can see that the
significant deviation from the SM values is located in the last bin. The number of SM events
in this bin is close to Nmin = 30 as required. For the estimation of the theoretical uncertainty
we took again the scale variation in the interval ξ ∈ [0.5, 2]

∆N sys
k =

1

2

∣∣∣∣Nk(µRi = µFi = 2Qi)−Nk(µRi = µFi =
1

2
Qi)

∣∣∣∣ . (5.9)
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However, the statistical error is the dominant one. For its estimation it was assumed that
the number of events follows a Poisson distribution

∆N stat
k =

√
Nk. (5.10)

In the next step we want to determine a function that describes the number of events
NAC
k (fx, fy) in one new bin k, depending on the values of two coupling parameters fx and

fy. We know that the matrix element M is linear in the quartic couplings, hence it is linear
in fx and fy. The number of events is proportional to the cross section, which depends on
the matrix element squared |M|2. Therefore, we choose the following ansatz

NAC
k (fx, fy) = NSM

k + akfx + bkfy + ckf
2
x + dkf

2
y + ekfxfy. (5.11)

The parameters ak, . . . , ek were fitted to the calculated NAC
k values using the ‘fit’ function

of Gnuplot. 2 With this paraboloid it is possible to determine confidence levels (CLs) in
the fx − fy plane. This was done by scanning this plane in steps of ∆fi = 5 TeV−4 and
calculating the χ2 value for each point, which is given by

χ2 =

kmax∑
k

(NSM
k −NAC

k (fx, fy))
2(

∆N sys
k

)2
+
(
∆N stat

k

)2 + kmax − 1, (5.12)

where kmax denotes the maximum number of new bins. The function chisqprob, included
in the python module scipy.stats.stats, was used to calculate the corresponding probability
for each point in the plane. Several examples for confidence levels are shown in figure 5.23.
The shape of the CLs reflects again the correlations between the operators, which have been
examined already in section 5.8.2. From the plots in the first row of figure 5.23 one can see
that the size of the confidence levels depend strongly on the observable we choose.

In appendix C, several tables with the detailed results of this analysis are presented. Those
tables give the setup that was used for the new binning and the exclusion limits that were
reached. To obtain a measure for the correlation between the operators, the area of the
confidence levels is given in those tables. The observables that yield the strongest constraints
on the operators are mT (Wγ) and pγT . Depending on the observable and the pair of operators
that was examined, we reached exclusion limits of a few hundred TeV−4. In the analysis of
LT,5 with LT,6 the limit reached for fT,5 was -225 – 250 TeV−4 at 95% CL. Since this looks
very promising, it can be concluded that Wγ production via VBF will be an interesting
process in the search for new physics at the LHC.

2The ‘fit’ function of Gnuplot uses the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm.
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Figure 5.23: The plots in this figure show 90% (blue lines), 95% (black lines) and 99% (red lines)
confidence levels for a selection of operators and histograms. In the plots in the upper row the CLs
in the (fT,5 − fT,6) plane are presented for the observables pγT and mT (Wγ). The plots in the lower
row show the CLs for mT (Wγ) and the operators (fT,0−fT,1) and (fT,1−fT,6). The parameters that
were used for the new binning are Nmin = 30 and N bin

min = 3.
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CHAPTER 6

CONCLUSION

For this purpose, this process was implemented in the fully flexible parton-level Monte-Carlo
program VBFNLO. We included all off-shell effects and spin correlations. The Catani-
Seymour subtraction formalism [34] was used to calculate the real emission corrections. The
poles of the I operator were canceled analytically against the poles of the virtual loop cor-
rections. This allowed us to calculate only the finite part of the virtual corrections using the
Box- and Penline functions created by F. Campanario [37].
Two major advantages of VBFNLO are the use of leptonic tensors and the shift of all Born-
type contributions to one iteration in the calculation of the virtual corrections. This yields a
tremendous decrease in run time compared to other Monte-Carlo programs.

To assure the correctness of the calculation, the leading-order and the 3-jet-LO cross sections
were checked against the Monte-Carlo program SHERPA [42]. Our implementation com-
prises only t-channel Feynman diagrams. This would lead to deviations from the SHERPA
results, which also take s- and u-channel diagrams and interference terms into account. Due
to VBF cuts, complete agreement was found at LO. However, in the case of the 3 jet LO and
the real emission calculation s-channel contributions can pass the VBF cuts. These contri-
butions lead to deviations from the SHERPA results but it has been explicitly shown that
they are small.

When calculating final state photon processes at NLO QCD, one has to separate the photon
properly from the partons in the final state. In this calculation, this is done by imposing the
photon isolation cut by S. Frixione [26]. So far, no independent program is able to calculate
the electroweak process pp→W±γjj at NLO QCD. Therefore, the calculation of the virtual
corrections was checked very carefully.
The Box- and Penline functions are able to calculate the poles of the virtual matrix elements,
which are proportional to the corresponding Born diagrams. This allows us to calculate the
total matrix element using those functions and compare it to the result of the LO calculation,
which has been checked against Madgraph [41]. An expansion of the analytic form of the
virtual contributions in the scale leads to additional terms that cancel the scale dependence
of the finite virtual matrix elements. This was used to check the finite parts, which contribute
to the cross section. Furthermore, this check assures that the scale used for the calculation
of the virtual contributions is correct.
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82 6. Conclusion

The virtual corrections and the real emission contain terms that are proportional to the
born matrix element squared. These terms can be integrated over either of these two phase
spaces. We shifted parts of these terms from one phase space to the other and still found
agreement within the numerical accuracy. Due to all those checks, we are very confident that
our calculation is correct.

The main motivation for calculating the NLO QCD corrections was to reduce the scale depen-
dence of the cross section, which is usually used to estimate the theoretical error of a calcula-
tion. It was found that the NLO QCD corrections are small, i.e. the K-factor is close to 1, for
µFi = µRi = Qi. We obtained σLO = 7.828 ± 5 · 10−3 fb and σNLO = 7.910 ± 7 · 10−3 fb for
W+γjj production and σLO = 4.486 ± 3 ·10−3 fb and σNLO = 4.588 ± 5 ·10−3 fb for W−γjj
production. Qi is the absolute value of the momentum transferred from quark line i to the
electroweak part of the process. It can be interpreted as a measure for the virtuality of the
corresponding emitted gauge boson. This is the optimal scale for VBF and WBS processes
since it reflects their kinematics.
It was indeed possible to reduce the scale uncertainty significantly by calculating the NLO
QCD corrections. The scale variation in the interval ξ ∈ [0.5, 2] decreased from 15% at LO
to 2% at NLO for µ0i = ξQi.

Besides QCD triboson production, weak boson scattering processes will be used at the LHC
to probe quartic couplings of weak gauge bosons. For the simulation of effects of anomalous
triple and quartic couplings, a framework based on [19] was implemented into VBFNLO by
O. Schlimpert [44]. With this framework it was possible to include anomalous couplings in
W±γ production via weak boson scattering.

In processes with a lepton and a photon in the final state, the photon can be radiated off
the lepton, which is called final state radiation. This is a simple QED process, which is
very well known. By imposing a cut on the transverse mass cluster of the Wγ system
mT (Wγ) > 90 GeV, it is possible to remove final state radiation, which increases the sen-
sitivity to anomalous couplings.

Effects from anomalous couplings were shown in differential distributions for a selection of
parameters. The differential cross section for anomalous couplings increases with the center
of mass energy, which leads to violation of the unitarity of the S matrix at high energies.
The reason for this is that our EFT approach comprises only dimension 6 and 8 operators.
But effects from higher order operators become important in the high energy region. In
order to avoid the unitarity violation, we apply a form factor that suppresses the effects from
anomalous couplings in the high energy region. Since there are 14 operators that affect the
WWZγ and WWγγ couplings, the first step was to determine the operators with the largest
effect on the cross section. 4 operators were chosen for a more detailed examination.
Some operators affect the same helicities of the four bosons in the quartic couplings, which
leads to correlations between different operators. These correlations were shown for pairs of
two operators at the level of the total cross section.

Finally, the sensitivity of W±γ production via weak boson scattering to anomalous couplings
was examined. For this, the histograms were newly binned such that the last bin, where
usually the biggest deviation from the SM occurs, contains a minimum number of events.
A paraboloid was fitted to the calculated number of events for different values of a pair of
parameters. With this paraboloid, it was possible to determine confidence levels using a χ2

test. The most sensitive observables were found to be the transverse mass cluster of the Wγ
system mT (Wγ), and the transverse momentum of the photon pγT .
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Assuming an integrated luminosity of L = 100 fb−1 and a collider energy of ECM = 14 TeV,
the limits on the parameters that we obtained were relatively strict for some operator pairs.
Depending on the setup of the new binning we reached limits on the couplings of the operators
down to -215 – 250 TeV−4 at 95% CL. Since this setup seems realistic for the next LHC run
scheduled for 2014, Wγ production via VBF will soon play an important role in the search
for new physics.
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CHAPTER 7

ZUSAMMENFASSUNG

Gegenwärtig basiert unser Verständnis des Universums auf zwei Theorien. Die allgemeine
Relativitätstheorie von Albert Einstein beschreibt die Gravitation und das Standardmodell
(SM) die Wechselwirkungen der Elementarteilchen. Das SM ist eine lokale Eichtheorie, die in
den 1970er Jahren entwickelt wurde und die starke, die schwache und die elektromagnetische
Wechselwirkung mittels einer SU(3)c × SU(2)L × U(1)Y Eichgruppe beschreibt.
Die Materieteilchen werden durch Fermionfelder beschrieben und die Wechselwirkungen zwi-
schen ihnen werden durch Eichbosonen vermittelt. Die SU(3)c Eichgruppe beschreibt die
Quantenchromodynamik, die Wechselwirkung der Partonen. Quarks und Gluonen werden
zusammen als Partonen bezeichnet und sind die Bestandteile von Protonen und Neutronen,
der sichtbaren, baryonischen Materie, die uns umgibt.
Der elektroschwache Sektor des Standardmodells wird durch die Gruppe SU(2)L × U(1)Y
beschrieben. Diese Eichsymmetrie wird durch den Vakuumerwartungswert des Higgs-Feldes
zur U(1)em gebrochen, welche die Quantenelektrodynamik beschreibt, die Wechselwirkung
zwischen Photonen und elektrisch geladenen Teilchen. Durch diese sogenannte spontane
Symmetriebrechung ist es möglich Massenterme für die schwachen Eichbosonen, die W- und
Z-Bosonen, zu konstruieren. Die schwache Wechselwirkung vermittelt beispielsweise den
β-Zerfall.

Obwohl die Vorhersagen des Standardmodells bisher mit beeindruckender Präzision experi-
mentell bestätigt wurden, gibt es mehrere Phänomene, die das Standardmodell nicht oder
nicht korrekt beschreibt. So ist es beispielsweise im Standardmodell nicht möglich die Kop-
plungen der drei Wechselwirkungen zu vereinigen oder dunkle Materie zu beschreiben. Auch
die Vorhersage des Standardmodells für den g-Faktor des Myons stimmt nicht mit dem ex-
perimentell gemessenen Wert überein [2]. Darüber hinaus gibt es noch zahlreiche, weitere
Hinweise auf Physik jenseits des Standardmodells.

Mit dem
”
Large Hadron Collider“ (LHC) am CERN steht der Teilchenphysik ein Beschleu-

niger zur Verfügung, der es erlaubt, das Standardmodell bei noch nie erreichten Energien
zu untersuchen. Im Juli 2012 wurde bereits die Entdeckung eines skalaren Bosons bekannt
gegeben, bei dem es sich allem Anschein nach um das SM-Higgs-Boson handelt [3, 4]. Eine
weitere Möglichkeit die Vorhersagen des Standardmodells zu überprüfen, ist die Untersuchung
von sogenannten anomalen Kopplungen. Da die Theorie der elektroschwache Wechselwirkung
eine nicht-abelsche Eichtheorie ist, treten im Standardmodell Kopplungen von drei und vier
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86 7. Zusammenfassung

schwachen Eichbosonen in einem Vertex auf. Würde die Stärke dieser Kopplungen von den
Vorhersagen des Standardmodells abweichen, wäre dies ein starker Hinweis auf Physik jen-
seits des Standardmodells.
Die möglichen Abweichungen der Dreierkopplungen von ihren SM-Werten wurden bereits
durch die Analyse der Daten aus den 7 und 8 TeV Läufen des LHCs relativ stark eingeschränkt
[6]. Die Parameter der Operatoren, die Abweichungen der Viererkopplungen von den SM-
Vorhersagen modellieren, konnten jedoch nur leicht eingeschränkt werden [7]. Diese Kop-
plungen treten bei der QCD-Produktion von drei Eichbosonen und in Dibosonproduktion
in Vektorbosonstreuung auf. pp → W±γjj zählt zu diesen Prozessen und empfiehlt sich
besonders durch den relativ großen Wirkungsquerschnitt, der typisch für Prozesse mit einem
Photon im Endzustand ist.

Ziel dieser Arbeit war es, diesen Prozess auf nächst-führender Ordnung QCD zu berechnen.
Im Vergleich zur führenden Ordnung (engl. leading order, LO) wird die Skalenabhängigkeit
des Wirkungsquerschnitts auf nächst-führender Ordnung (engl. next-to-leading order, NLO)
deutlich verringert. Würde man alle Ordnungen der Störungstheorie berechnen, wäre der
Wirkungsquerschnitt unabhängig von der Renormierungs- und Faktorisierungsskala. Daher
wird die Skalenunsicherheit oft zur Abschätzung des theoretischen Fehlers einer Rechnung
verwendet. In dieser Arbeit werden nur die QCD-Korrekturen der nächst-führenden Ord-
nung berechnet und die QED-Korrekturen vernachlässigt, da die starke Kopplung bei der
Energieskala des Prozesses ungefähr 15 mal größer ist als die elektromagnetische.

Zur Berechnung der Wγ-Produktion in Vektorbosonstreuung wurde dieser Prozess in das
Monte-Carlo-Programm VBFNLO1 [8] implementiert. Das im Allgemeinen hochdimensio-
nale Integral, das zur Berechnung des Wirkungsquerschnitts zu lösen ist, wird durch nu-
merische Integration mit Hilfe des Vegas-Algorithmus [28] berechnet. Zur Berechnung
der Matrixelemente wird der HELAS-Formalismus [31] verwendet. Die Streureaktionen der
schwachen Eichbosonen und der Zerfall des W-Bosons werden in sogenannte leptonische Ten-
soren zusammengefasst, die für jeden Phasenraumpunkt nur einmal berechnet werden müssen.
Diese modulare Struktur beschleunigt die Berechnung des Wirkungsquerschnitts nicht nur,
sondern macht das Programm auch leicht zugänglich für Modifikationen der Kopplungen der
Eichbosonen.

Zur Berechnung des Wirkungsquerschnitts in nächst-führender Ordnung müssen die reelle
Emission und die virtuellen Schleifenkorrekturen berechnet werden. Diese beiden Anteile
sind divergent und nur ihre Summe ist endlich. Um eine numerische Integration über die
beiden unterschiedlich dimensionalen Phasenräume zu ermöglichen, wird daher der Dipol-
Formalismus von Catani und Seymour [34] verwendet. Dabei werden Subtraktionsmatrixele-
mente konstruiert, welche die divergente Struktur der reellen Emission wegheben und diese
somit numerisch integrierbar machen. Die entsprechenden Pole dieser Subtraktionsterme
heben sich genau mit den Polen der virtuellen Korrekturen weg.
Die Berechnung der Box- und Pentagonkorrekturen erfolgt mit Hilfe der Box- und Penline-
Funktionen, die von F. Campanario entwickelt wurden [37]. Die Anteile der Box- und
Pentagonkorrekturen, die proportional zum entsprechenden Born-Matrixelement sind, wer-
den von den endlichen Anteilen der virtuellen Korrekturen subtrahiert und zusammen mit
den Vertexorrekturen in einer getrennten Iteration berechnet. Die numerische Stabilität
der Berechnung der virtuellen Korrekturen wird durch Überprüfung von Ward-Identitäten
sichergestellt.

1VBFNLO wird am Institut für theoretische Physik in der Gruppe von Professor Zeppenfeld entwickelt.
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Um die Ergebnisse unserer Berechnung zu verifizieren, wurden die Wirkungsquerschnitte der
führenden Ordnung für die Prozesse pp→W±γjj und pp→W±γjjj mit dem unabhängigen
Monte-Carlo-Programm Sherpa [42] verglichen. Die Implementierung in VBFNLO umfasst
nur t-Kanal-Beiträge, während Sherpa auch s- und u-Kanal-Beiträge, sowie Interferenzterme
berechnet.
Experimentell werden Ereignisse, die durch Vektorbosonfusion (VBF) entstehen, durch die
zwei

”
tagging jets“ identifiziert, die in fast genau entgegengesetzte Richtung zeigen. Bei

einer theoretischen Rechnung wird dies durch spezielle VBF-Phasenraumschnitte simuliert.
Diese Phasenraumschnitte sorgen dafür, dass die t-Kanal-Diagramme den dominanten Beitrag
liefern.
Somit finden wir für den Prozess pp→W±γjj Übereinstimmung mit den Sherpa-Ergebnissen,
für pp → W±γjjj jedoch Abweichungen von bis zu 4%. Diese Abweichungen kommen
durch s-Kanal-Diagramme, die in manchen Bereichen des Phasenraums nicht durch die VBF-
Phasenraumschnitte eliminiert werden. Es wurde jedoch explizit gezeigt, dass diese Beiträge
klein sind.

Um die Berechnung der Schleifenkorrekturen zu überprüfen wurden verschiedene Tests durchge-
führt. Insbesondere ist es mit den Box- und Penline-Funktionen möglich, auch die Polterme
der virtuellen Korrekturen zu berechnen. Diese sind proportional zu den entsprechenden
Born-Matrixelementen. Somit war es möglich das Matrixelement mit den Box- und Penline-
Funktionen zu berechnen und mit dem Ergebnis der führenden Ordnung, das schon mit Mad-
Graph [41] überprüft wurde, zu verifizieren.

In Eichtheorien wie dem Standardmodell lässt sich die Eichinvarianz bei Prozessen mit einem
masselosen Eichboson im Endzustand direkt überprüfen. Ersetzt man den Polarisationsvektor
des masselosen Eichbosons durch seinen Impuls, ist das Matrixelement identisch null. Dieser
Test wurde für alle möglichen Beiträge durchgeführt und hat gezeigt, dass die Eichinvarianz
im Rahmen der numerischen Genauigkeit erhalten ist.

Als Ergebnis für die Wirkungsquerschnitte erhielten wir σLO = 7.828 ± 5 · 10−3 fb und
σNLO = 7.910 ± 7 · 10−3 fb für den Prozess pp → W+γjj und σLO = 4.486 ± 3 · 10−3 fb
und σNLO = 4.588 ± 5 · 10−3 fb für den Prozess pp→ W−γjj. Der Wirkungsquerschnitt in
führender Ordnung hängt nur von der Faktorisierungsskala ab, die die Energieskala der PDFs
darstellt. Die PDFs geben die Wahrscheinlichkeit an, ein Parton mit einem bestimmten

”
Flavor“ und dem Impulsanteil x des Protons zu finden. Auf nächst-führender Ordnung

kommt durch die zusätzlichen starken Kopplungen eine Abhängigkeit von der Renormie-
rungsskala hinzu.
Für die folgenden Analysen wurde für beide Skalen der Impulstransfer der entsprechenden
Quarklinie gewählt. Da dieser auch als Maß für die Virtualität des emittierten Eichbosons
interpretiert werden kann und diese Größe somit die Kinematik des Prozesses widerspiegelt,
ist diese Skalenwahl sehr gut für VBF-Prozesse geeignet. Bei der Untersuchung der Skalenab-
hängigkeit wurde gefunden, dass diese durch die Berechnung der nächst-führenden Ordnung
von 15% auf 2% reduziert werden konnte. Die Werte beziehen sich hier auf die relative
Variation des Wirkungsquerschnitts im Bereich von einhalb bis zweimal der Skala.

Bei Prozessen mit einem geladenen Lepton und einem Photon im Endzustand kann das Pho-
ton vom Lepton abgestrahlt werden, was als Bremsstrahlung bezeichnet wird. Da es sich
hierbei um einen reinen QED-Prozess handelt, wir aber an der Untersuchung der Kopplun-
gen der schwachen Eichbosonen interessiert sind, soll dieser Beitrag unterdrückt werden. Dies
kann bei der W±γ-Produktion in Vektorbosonstreuung durch Einführung einer Untergrenze
von 90 GeV an das transversalen Massenclusters des Wγ-Systems, mT (Wγ), erreicht werden.
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Zur Simulation von anomalen Kopplungen der schwachen Eichbosonen wurde im Rahmen
der Diplomarbeit von O. Schlimpert [44] die entsprechende Grundstruktur in VBFNLO im-
plementiert. Diese basiert auf einer effektiven Feldtheorie, die die Lagrangedichte des Stan-
dardmodells um Operatoren der Dimension 6 und 8 erweitert. Somit konnte die Simulation
von anomalen Kopplungen in die W±γ-Produktion in Vektorbosonstreuung implementiert
werden. Dabei werden nur die leptonischen Tensoren modifiziert, die die Selbstkopplungen
der schwachen Eichbosonen enthalten. QCD-Dibosonprozesse wie beispielsweise pp → W±γ
haben einen signifikant größeren Wirkungsquerschnitt als die entsprechenden Diboson-VBF-
Prozesse, beinhalten aber bereits Dreierkopplungen von schwachen Eichbosonen. Daher sind
sie wesentlich sensitiver auf Abweichungen von den Standardmodellwerten dieser Kopplun-
gen. Aus diesem Grund wurden in der Analyse der Effekte durch anomale Kopplung nur
Operatoren betrachtet die Viererkopplungen von schwachen Eichbosonen modifizieren.

Die Effekte der Anomalen Kopplungen steigen mit der Schwerpunktsenergie des elektro-
schwachen Prozesses an. Dies führt oberhalb einer gewissen Schwelle zur Verletzung der
Unitarität der S-Matrix. Um dies zu verhindern, wurde bei der Berechnung von pp→W±γjj
mit anomalen Kopplungen stets ein Formfaktor verwendet.

Die Effekte der anomalen Kopplungen lassen sich abhängig vom Operator und der Stärke
seiner Kopplung in verschiedenen differentiellen Verteilungen beobachten. Die Abweichun-
gen von den SM-Werten lassen sich besonders gut im Hochenergiebereich der mT (Wγ)- oder
der pγT -Verteilungen beobachten. Da die einzelnen Operatoren nur spezielle Helizitäten der
Eichboson beeinflussen, treten Korrelationen zwischen verschiedenen Operatoren auf. Be-
trachtet man die zweidimensionale Projektion des Wirkungsquerschnitts in Abhängigket von
den Parametern zweier Operatoren, werden diese Korrelationen sichtbar.

Um nun auch quantitative Ergebnisse für die Sensitivität von W±γ-Produktion in Vektor-
bosonstreuung angeben zu können, wurde folgendes Verfahren angewendet. Zuerst wurden
Paare von zwei Operatoren gebildet und für bestimmten Werte der Parameter Histogramme
berechnet. Unter der Annahme einer Luminosität von L = 100 fb−1 wurden die Bins dieser
Histogramme so lange zusammengefasst, bis sie eine Mindestanzahl an Ereignissen enthielten.
Dabei wurde vom rechten Ende der Histogramme begonnen, da hier die Abweichungen von
den Standardmodellwerten am größten ist.
Nun wurde ein Paraboloid an die für bestimmte Werte der Kopplungsparameter berechneten
Ereigniszahlen gefittet. Mit diesem Paraboloid und einem χ2-Test konnten dann Konfiden-
zintervalle für die Parameter der verschiedenen Operatoren bestimmt werden. Diese hängen
natürlich von den Histogrammen und den Details des Vorgehens bei der Zusammenfassung
der Bins ab. Für bestimmte Parameter und Observablen konnten jedoch schon sehr vielver-
sprechende Ausschlussgrenzen bestimmt werden.
Da bei dieser Analyse eine Beschleunigerenergie von ECM = 14 TeV angenommen wurde,
welche auch für den nächsten Lauf des LHCs im Jahr 2014 geplant ist, wird die W±γ-
Produktion in Vektorbosonstreuung schon bald eine wichtige Rolle bei der Suche nach

”
neuer

Physik“ spielen.
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APPENDIX

A. Dimension 8 operators

In this appendix all possible dimension 8 operators are listed. The parametrization of the
operators follows the one proposed in [19]. All operators but LS,0, LS,1, LT,8 and LT,9 affect
the WWγγ and WWZγ couplings that occur in Wγ production via VBF.

1. Operators containing only Dµφ:

LS,0 =
[
(Dµφ)†Dνφ

]
×
[
(Dµφ)†Dνφ

]
(7.1a)

LS,1 =
[
(Dµφ)†Dµφ

]
×
[
(Dνφ)†Dνφ

]
(7.1b)

2. Operators containing Dµφ, Ŵµν and B̂µν :

LM,0 = Tr
[
ŴµνŴ

µν
]
×
[
(Dβφ)†Dβφ

]
(7.2a)

LM,1 = Tr
[
ŴµνŴ

νβ
]
×
[
(Dβφ)†Dµφ

]
(7.2b)

LM,2 =
[
B̂µνB̂

µν
]
×
[
(Dβφ)†Dβφ

]
(7.2c)

LM,3 =
[
B̂µνB̂

νβ
]
×
[
(Dβφ)†Dµφ

]
(7.2d)

LM,4 =
[
(Dµφ)†ŴβνD

µφ
]
× B̂βν (7.2e)

LM,5 =
[
(Dµφ)†ŴβνD

νφ
]
× B̂βµ (7.2f)

LM,6 =
[
(Dµφ)†ŴβνŴ

βνDµφ
]

(7.2g)

LM,7 =
[
(Dµφ)†ŴβνŴ

βµDνφ
]

(7.2h)
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3. Operators containing Ŵµν and B̂µν :

LT,0 = Tr
[
ŴµνŴ

µν
]
× Tr

[
ŴαβŴ

αβ
]

(7.3a)

LT,1 = Tr
[
ŴανŴ

µβ
]
× Tr

[
ŴµβŴ

αν
]

(7.3b)

LT,2 = Tr
[
ŴαµŴ

µβ
]
× Tr

[
ŴβνŴ

να
]

(7.3c)

LT,5 = Tr
[
ŴµνŴ

µν
]
× B̂αβB̂αβ (7.3d)

LT,6 = Tr
[
ŴανŴ

µβ
]
× B̂µβB̂αν (7.3e)

LT,7 = Tr
[
ŴαµŴ

µβ
]
× B̂βνB̂να (7.3f)

LT,8 = B̂µνB̂
µνB̂αβB̂

αβ (7.3g)

LT,9 = B̂αµB̂
µβB̂βνB̂

να (7.3h)
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B. Form factors 91

B. Form factors

To prevent the anomalous couplings from violating unitarity, the form factor described in
section 2.4.1 with an exponent of n = 2 and the following form factor mass scales has been
used. These scales were determined in the diploma thesis of O. Schlimpert [44].

fi 25 50 100 200 400 600 800 1000 1500 2000

LS,0 1310 1100 925 775 650 590 545 515 465 435

LS,1 1100 920 775 650 545 495 460 435 390 365

LM,0 1480 1240 1045 875 735 665 620 585 530 490

LM,1 2105 1765 1480 1240 1045 940 875 830 750 695

LM,2 3595 2995 2500 2095 1755 1585 1470 1390 1255 1170

LM,3 5260 4335 3595 2995 2500 2255 2095 1980 1785 1660

LM,4 3005 2510 2100 1760 1475 1330 1240 1170 1055 985

LM,5 4350 3605 3005 2510 2100 1895 1760 1660 1500 1395

LM,6 1765 1480 1240 1045 875 790 735 695 630 585

LM,7 2515 2105 1765 1480 1245 1120 1045 985 890 830

LT,0 1200 1010 850 710 600 540 500 475 430 400

LT,1 1295 1085 910 765 645 580 540 510 460 430

LT,2 1450 1215 1020 860 720 650 605 575 515 480

LT,5 5075 4185 3475 2895 2420 2180 2025 1915 1725 1605

LT,6 4185 3475 2895 2420 2025 1825 1700 1605 1450 1345

LT,7 5910 4845 4005 3330 2775 2500 2320 2190 1975 1835

LT,8 7115 5770 4740 3920 3260 2930 2720 2565 2310 2145

LT,9 9290 7360 5955 4880 4035 3615 3350 3160 2840 2635

fi -25 -50 -100 -200 -400 -600 -800 -1000 -1500 -2000

LS,0 1335 1120 940 790 665 600 560 530 475 445

LS,1 1120 940 790 665 560 505 470 445 400 370

LM,0 1480 1240 1045 875 735 665 620 585 530 490

LM,1 2105 1765 1480 1240 1045 940 875 830 750 695

LM,2 3595 2995 2500 2095 1755 1585 1470 1390 1255 1170

LM,3 5260 4335 3595 2995 2500 2255 2095 1980 1785 1660

LM,4 3005 2510 2100 1760 1475 1330 1240 1170 1055 985

LM,5 4350 3605 3005 2510 2100 1895 1760 1660 1500 1395

LM,6 1765 1480 1240 1045 875 790 735 695 630 585

LM,7 2515 2105 1765 1480 1245 1120 1045 985 890 830

LT,0 1200 1010 850 710 600 540 500 475 430 400

LT,1 1295 1085 910 765 645 580 540 510 460 430

LT,2 1620 1355 1140 955 805 725 675 640 575 535

LT,5 5075 4185 3475 2895 2420 2180 2025 1915 1725 1605

LT,6 4150 3445 2875 2400 2010 1815 1685 1590 1435 1335

LT,7 5030 4150 3445 2875 2400 2165 2010 1900 1715 1590

LT,8 7115 5770 4740 3920 3260 2930 2720 2565 2310 2145

LT,9 9290 7360 5955 4880 4035 3615 3350 3160 2840 2635

Table B.1: This table shows form factor scales for different parameters of the dimension 8 operators
fi in TeV−4.
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C. Sensitivity analysis

The tables in this sections give the exclusion limits for the parameters of the dimension 8
operators, that have been reached in the analysis described in section 5.8.3. The observables
that were examined are listed in table C.2. Moreover, this table gives the range and the bin
width ∆bin,O of the original histograms.

Observable O Range Bin width ∆bin,O

ηγ 0 – 4 0.04

ηl 0 – 4 0.04

ηmiss 0 – 4 0.04

min(plT , p
γ
T ) 0 GeV – 300 GeV 3 GeV

min(pWT , p
γ
T ) 0 GeV – 300 GeV 3 GeV

mj1j2 0 GeV – 7000 GeV 70 GeV

mlγ 0 GeV – 2000 GeV 20 GeV

mT (Wγ) 0 GeV – 2500 GeV 25 GeV

φlγ 0◦ – 180◦ 18◦

pγT 0 GeV – 600 GeV 6 GeV

pj1T 0 GeV – 1000 GeV 10 GeV

pj2T 0 GeV – 600 GeV 6 GeV

plT 0 GeV – 600 GeV 6 GeV

pmissT 0 GeV – 600 GeV 6 GeV

Table C.2: This table gives the observables, for which the sensitivity analysis has been conducted
and the range and bin width of the original histograms.

For each pair of operators that have been examined the results are given for two setups:
Nmin = 20, N bin

min = 4 and Nmin = 30, N bin
min = 3. The exclusion limits are given at the 90%,

95% and 99% confidence levels. Empty fields indicate that it was not possible to determine
an exclusion limit within the examined range of fx ∈ [−1500, 1500] TeV−4.
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C.1. LT,0 − LT,1

Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,0 [TeV−4] fT,1 [TeV−4]

20 4 ηγ 90.0% 13 35325325.0 -790.0 – 950.0 -485.0 – 985.0

20 4 ηγ 95.0% 13 40151800.0 -855.0 – 1015.0 -535.0 – 1030.0

20 4 ηγ 99.0% 13 48251800.0 -955.0 – 1115.0 -610.0 – 1110.0

20 4 ηl 90.0% 13 36882925.0 -795.0 – 950.0 -495.0 – 1000.0

20 4 ηl 95.0% 13 41836025.0 -860.0 – 1015.0 -545.0 – 1045.0

20 4 ηl 99.0% 13 50156575.0 -960.0 – 1115.0 -625.0 – 1125.0

20 4 ηmiss 90.0% 13 36882925.0 -795.0 – 950.0 -495.0 – 1000.0

20 4 ηmiss 95.0% 13 41836025.0 -860.0 – 1015.0 -545.0 – 1045.0

20 4 ηmiss 99.0% 13 50156575.0 -960.0 – 1115.0 -625.0 – 1125.0

20 4 min(plT , p
γ
T ) 90.0% 8 41476675.0 -460.0 – 565.0 -300.0 – 575.0

20 4 min(plT , p
γ
T ) 95.0% 8 44375150.0 -495.0 – 605.0 -330.0 – 605.0

20 4 min(plT , p
γ
T ) 99.0% 8 48665800.0 -560.0 – 665.0 -375.0 – 655.0

20 4 min(pWT , pγT ) 90.0% 11 72979525.0 -500.0 – 635.0 -300.0 – 665.0

20 4 min(pWT , pγT ) 95.0% 11 75432350.0 -540.0 – 675.0 -330.0 – 700.0

20 4 min(pWT , pγT ) 99.0% 11 78917950.0 -610.0 – 740.0 -380.0 – 750.0

20 4 mj1j2 90.0% 11 45997100.0 -700.0 – 790.0 -475.0 – 930.0

20 4 mj1j2 95.0% 11 49645450.0 -755.0 – 845.0 -520.0 – 980.0

20 4 mj1j2 99.0% 11 55609700.0 -845.0 – 935.0 -595.0 – 1055.0

20 4 mlγ 90.0% 7 30152725.0 -600.0 – 830.0 -325.0 – 590.0

20 4 mlγ 95.0% 7 31925750.0 -655.0 – 885.0 -355.0 – 625.0

20 4 mlγ 99.0% 7 34895250.0 -745.0 – 975.0 -410.0 – 680.0

20 4 mT (Wγ) 90.0% 6 23588025.0 -570.0 – 795.0 -275.0 – 590.0

20 4 mT (Wγ) 95.0% 6 25367325.0 -620.0 – 850.0 -305.0 – 620.0

20 4 mT (Wγ) 99.0% 6 28087950.0 -705.0 – 935.0 -355.0 – 670.0

20 4 φlγ 90.0% 13 52932375.0 -885.0 – 875.0 -590.0 – 1120.0

20 4 φlγ 95.0% 13 59487075.0 -950.0 – 940.0 -645.0 – 1180.0

20 4 φlγ 99.0% 13 69760375.0 -1060.0 – 1050.0 -735.0 – 1275.0

20 4 pγT 90.0% 8 10419300.0 -420.0 – 500.0 -260.0 – 530.0

20 4 pγT 95.0% 8 12073450.0 -455.0 – 535.0 -285.0 – 560.0

20 4 pγT 99.0% 8 15011575.0 -515.0 – 590.0 -330.0 – 605.0

20 4 pj1T 90.0% 9 45510700.0 -495.0 – 530.0 -310.0 – 450.0

20 4 pj1T 95.0% 9 48295775.0 -530.0 – 570.0 -335.0 – 475.0

20 4 pj1T 99.0% 9 52517275.0 -595.0 – 630.0 -380.0 – 525.0

20 4 pj2T 90.0% 8 24385450.0 -710.0 – 875.0 -455.0 – 945.0

20 4 pj2T 95.0% 8 27444325.0 -765.0 – 935.0 -505.0 – 990.0

20 4 pj2T 99.0% 8 32569525.0 -865.0 – 1030.0 -580.0 – 1065.0

20 4 plT 90.0% 7 26886775.0 -555.0 – 630.0 -350.0 – 580.0

20 4 plT 95.0% 7 29599025.0 -600.0 – 675.0 -380.0 – 615.0

20 4 plT 99.0% 7 33910675.0 -670.0 – 745.0 -435.0 – 675.0

20 4 pmissT 90.0% 8 27060375.0 -625.0 – 700.0 -360.0 – 820.0

20 4 pmissT 95.0% 8 30709525.0 -675.0 – 750.0 -400.0 – 860.0

20 4 pmissT 99.0% 8 36562925.0 -755.0 – 830.0 -460.0 – 920.0
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Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,0 [TeV−4] fT,1 [TeV−4]

30 3 ηγ 90.0% 16 47611200.0 -810.0 – 970.0 -500.0 – 1000.0

30 3 ηγ 95.0% 16 53705525.0 -875.0 – 1035.0 -550.0 – 1045.0

30 3 ηγ 99.0% 16 63940350.0 -975.0 – 1135.0 -625.0 – 1125.0

30 3 ηl 90.0% 15 42947475.0 -810.0 – 965.0 -505.0 – 1010.0

30 3 ηl 95.0% 15 48779650.0 -875.0 – 1030.0 -555.0 – 1055.0

30 3 ηl 99.0% 15 58567950.0 -975.0 – 1130.0 -635.0 – 1135.0

30 3 ηmiss 90.0% 15 42947475.0 -810.0 – 965.0 -505.0 – 1010.0

30 3 ηmiss 95.0% 15 48779650.0 -875.0 – 1030.0 -555.0 – 1055.0

30 3 ηmiss 99.0% 15 58567950.0 -975.0 – 1130.0 -635.0 – 1135.0

30 3 min(plT , p
γ
T ) 90.0% 8 45382275.0 -480.0 – 595.0 -310.0 – 610.0

30 3 min(plT , p
γ
T ) 95.0% 8 48293850.0 -520.0 – 635.0 -340.0 – 640.0

30 3 min(plT , p
γ
T ) 99.0% 8 52393600.0 -585.0 – 700.0 -390.0 – 695.0

30 3 min(pWT , pγT ) 90.0% 11 78818275.0 -515.0 – 660.0 -310.0 – 695.0

30 3 min(pWT , pγT ) 95.0% 11 80872425.0 -555.0 – 700.0 -340.0 – 730.0

30 3 min(pWT , pγT ) 99.0% 11 83718375.0 -625.0 – 770.0 -390.0 – 780.0

30 3 mj1j2 90.0% 11 47492475.0 -700.0 – 790.0 -475.0 – 930.0

30 3 mj1j2 95.0% 11 51507425.0 -755.0 – 845.0 -520.0 – 980.0

30 3 mj1j2 99.0% 11 57790575.0 -845.0 – 935.0 -595.0 – 1055.0

30 3 mlγ 90.0% 7 31625475.0 -605.0 – 840.0 -325.0 – 600.0

30 3 mlγ 95.0% 7 33609200.0 -660.0 – 890.0 -360.0 – 635.0

30 3 mlγ 99.0% 7 36854950.0 -745.0 – 980.0 -410.0 – 690.0

30 3 mT (Wγ) 90.0% 6 26206400.0 -570.0 – 800.0 -280.0 – 605.0

30 3 mT (Wγ) 95.0% 6 27964775.0 -620.0 – 850.0 -310.0 – 635.0

30 3 mT (Wγ) 99.0% 6 30583125.0 -705.0 – 935.0 -360.0 – 685.0

30 3 φlγ 90.0% 11 40368625.0 -875.0 – 865.0 -575.0 – 1110.0

30 3 φlγ 95.0% 11 45961875.0 -940.0 – 930.0 -630.0 – 1165.0

30 3 φlγ 99.0% 11 55131875.0 -1045.0 – 1035.0 -725.0 – 1260.0

30 3 pγT 90.0% 8 13934150.0 -440.0 – 530.0 -265.0 – 565.0

30 3 pγT 95.0% 8 16139825.0 -475.0 – 565.0 -295.0 – 595.0

30 3 pγT 99.0% 8 20055425.0 -535.0 – 625.0 -340.0 – 640.0

30 3 pj1T 90.0% 9 48406600.0 -520.0 – 550.0 -320.0 – 475.0

30 3 pj1T 95.0% 9 51186825.0 -560.0 – 590.0 -350.0 – 505.0

30 3 pj1T 99.0% 9 55319100.0 -625.0 – 655.0 -395.0 – 555.0

30 3 pj2T 90.0% 8 25657400.0 -715.0 – 890.0 -460.0 – 950.0

30 3 pj2T 95.0% 8 28900200.0 -775.0 – 950.0 -505.0 – 995.0

30 3 pj2T 99.0% 8 34271100.0 -870.0 – 1045.0 -580.0 – 1075.0

30 3 plT 90.0% 8 38912125.0 -570.0 – 655.0 -360.0 – 610.0

30 3 plT 95.0% 8 41853575.0 -620.0 – 700.0 -395.0 – 650.0

30 3 plT 99.0% 8 46336075.0 -690.0 – 775.0 -455.0 – 705.0

30 3 pmissT 90.0% 8 29084700.0 -640.0 – 720.0 -365.0 – 830.0

30 3 pmissT 95.0% 8 32997150.0 -690.0 – 775.0 -405.0 – 870.0

30 3 pmissT 99.0% 8 39189950.0 -770.0 – 855.0 -470.0 – 935.0
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C.2. LT,0 − LT,5

Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,0 [TeV−4] fT,5 [TeV−4]

20 4 ηγ 90.0% 13 58133175.0 -755.0 – 905.0 -1370.0 – 1420.0

20 4 ηγ 95.0% 13 -815.0 – 965.0

20 4 ηγ 99.0% 13 -915.0 – 1060.0

20 4 ηl 90.0% 13 58607950.0 -765.0 – 910.0 -1370.0 – 1420.0

20 4 ηl 95.0% 13 -825.0 – 970.0

20 4 ηl 99.0% 13 -920.0 – 1070.0

20 4 ηmiss 90.0% 13 58607950.0 -765.0 – 910.0 -1370.0 – 1420.0

20 4 ηmiss 95.0% 13 -825.0 – 970.0

20 4 ηmiss 99.0% 13 -920.0 – 1070.0

20 4 min(plT , p
γ
T ) 90.0% 8 16641750.0 -405.0 – 480.0 -575.0 – 595.0

20 4 min(plT , p
γ
T ) 95.0% 8 17832625.0 -440.0 – 515.0 -620.0 – 640.0

20 4 min(plT , p
γ
T ) 99.0% 8 19950600.0 -495.0 – 565.0 -690.0 – 710.0

20 4 min(pWT , pγT ) 90.0% 11 31364300.0 -450.0 – 545.0 -665.0 – 690.0

20 4 min(pWT , pγT ) 95.0% 11 33404950.0 -485.0 – 585.0 -710.0 – 735.0

20 4 min(pWT , pγT ) 99.0% 11 36992225.0 -545.0 – 645.0 -790.0 – 815.0

20 4 mj1j2 90.0% 11 63509750.0 -680.0 – 770.0 -1290.0 – 1330.0

20 4 mj1j2 95.0% 11 67888350.0 -735.0 – 825.0 -1390.0 – 1430.0

20 4 mj1j2 99.0% 11 -820.0 – 910.0

20 4 mlγ 90.0% 7 15932575.0 -480.0 – 575.0 -605.0 – 620.0

20 4 mlγ 95.0% 7 17024750.0 -520.0 – 615.0 -650.0 – 665.0

20 4 mlγ 99.0% 7 18976625.0 -585.0 – 685.0 -725.0 – 745.0

20 4 mT (Wγ) 90.0% 6 13576450.0 -435.0 – 515.0 -550.0 – 560.0

20 4 mT (Wγ) 95.0% 6 14305125.0 -475.0 – 550.0 -590.0 – 605.0

20 4 mT (Wγ) 99.0% 6 15613950.0 -535.0 – 615.0 -660.0 – 675.0

20 4 φlγ 90.0% 13 -865.0 – 870.0

20 4 φlγ 95.0% 13 -930.0 – 935.0

20 4 φlγ 99.0% 13 -1035.0 – 1040.0

20 4 pγT 90.0% 8 9187150.0 -395.0 – 465.0 -570.0 – 590.0

20 4 pγT 95.0% 8 10627900.0 -430.0 – 500.0 -615.0 – 635.0

20 4 pγT 99.0% 8 13185950.0 -480.0 – 550.0 -685.0 – 705.0

20 4 pj1T 90.0% 9 59726225.0 -465.0 – 505.0 -755.0 – 795.0

20 4 pj1T 95.0% 9 62729225.0 -505.0 – 545.0 -815.0 – 850.0

20 4 pj1T 99.0% 9 66638150.0 -565.0 – 605.0 -905.0 – 945.0

20 4 pj2T 90.0% 8 13058225.0 -590.0 – 675.0 -740.0 – 765.0

20 4 pj2T 95.0% 8 15103000.0 -640.0 – 720.0 -800.0 – 820.0

20 4 pj2T 99.0% 8 18737750.0 -715.0 – 800.0 -890.0 – 910.0

20 4 plT 90.0% 7 39492850.0 -525.0 – 600.0 -920.0 – 955.0

20 4 plT 95.0% 7 42255500.0 -570.0 – 645.0 -990.0 – 1025.0

20 4 plT 99.0% 7 46309150.0 -640.0 – 715.0 -1105.0 – 1140.0

20 4 pmissT 90.0% 8 42282800.0 -600.0 – 670.0 -1095.0 – 1130.0

20 4 pmissT 95.0% 8 46437950.0 -645.0 – 720.0 -1180.0 – 1210.0

20 4 pmissT 99.0% 8 52442875.0 -725.0 – 795.0 -1315.0 – 1345.0
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Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,0 [TeV−4] fT,5 [TeV−4]

30 3 ηγ 90.0% 16 76619400.0 -775.0 – 920.0 -1400.0 – 1450.0

30 3 ηγ 95.0% 16 -835.0 – 985.0

30 3 ηγ 99.0% 16 -935.0 – 1080.0

30 3 ηl 90.0% 15 68876625.0 -775.0 – 925.0 -1395.0 – 1445.0

30 3 ηl 95.0% 15 -835.0 – 985.0

30 3 ηl 99.0% 15 -935.0 – 1085.0

30 3 ηmiss 90.0% 15 68876625.0 -775.0 – 925.0 -1395.0 – 1445.0

30 3 ηmiss 95.0% 15 -835.0 – 985.0

30 3 ηmiss 99.0% 15 -935.0 – 1085.0

30 3 min(plT , p
γ
T ) 90.0% 8 17650175.0 -425.0 – 505.0 -610.0 – 630.0

30 3 min(plT , p
γ
T ) 95.0% 8 18997475.0 -460.0 – 540.0 -655.0 – 675.0

30 3 min(plT , p
γ
T ) 99.0% 8 21396500.0 -520.0 – 600.0 -730.0 – 755.0

30 3 min(pWT , pγT ) 90.0% 11 37738050.0 -475.0 – 595.0 -795.0 – 825.0

30 3 min(pWT , pγT ) 95.0% 11 40751800.0 -515.0 – 635.0 -855.0 – 885.0

30 3 min(pWT , pγT ) 99.0% 11 46056775.0 -580.0 – 695.0 -950.0 – 985.0

30 3 mj1j2 90.0% 11 66346125.0 -680.0 – 770.0 -1295.0 – 1335.0

30 3 mj1j2 95.0% 11 70821175.0 -735.0 – 825.0 -1390.0 – 1430.0

30 3 mj1j2 99.0% 11 -820.0 – 910.0

30 3 mlγ 90.0% 7 14933350.0 -450.0 – 515.0 -555.0 – 570.0

30 3 mlγ 95.0% 7 15867725.0 -490.0 – 555.0 -595.0 – 615.0

30 3 mlγ 99.0% 7 17535900.0 -550.0 – 615.0 -665.0 – 685.0

30 3 mT (Wγ) 90.0% 6 14108475.0 -450.0 – 540.0 -570.0 – 590.0

30 3 mT (Wγ) 95.0% 6 14921625.0 -490.0 – 580.0 -615.0 – 635.0

30 3 mT (Wγ) 99.0% 6 16383375.0 -555.0 – 645.0 -690.0 – 705.0

30 3 φlγ 90.0% 11 -855.0 – 860.0

30 3 φlγ 95.0% 11 -920.0 – 925.0

30 3 φlγ 99.0% 11 -1025.0 – 1025.0

30 3 pγT 90.0% 8 10895525.0 -410.0 – 490.0 -605.0 – 630.0

30 3 pγT 95.0% 8 12601675.0 -445.0 – 525.0 -655.0 – 675.0

30 3 pγT 99.0% 8 15634475.0 -495.0 – 580.0 -730.0 – 750.0

30 3 pj1T 90.0% 9 62855825.0 -490.0 – 525.0 -800.0 – 835.0

30 3 pj1T 95.0% 9 65598575.0 -530.0 – 565.0 -860.0 – 895.0

30 3 pj1T 99.0% 9 69091800.0 -590.0 – 625.0 -960.0 – 995.0

30 3 pj2T 90.0% 8 13202425.0 -595.0 – 680.0 -745.0 – 765.0

30 3 pj2T 95.0% 8 15269475.0 -640.0 – 725.0 -800.0 – 820.0

30 3 pj2T 99.0% 8 18943550.0 -720.0 – 805.0 -890.0 – 910.0

30 3 plT 90.0% 8 51713975.0 -545.0 – 625.0 -965.0 – 1005.0

30 3 plT 95.0% 8 54556925.0 -590.0 – 670.0 -1040.0 – 1080.0

30 3 plT 99.0% 8 58441250.0 -660.0 – 740.0 -1160.0 – 1200.0

30 3 pmissT 90.0% 8 44822125.0 -610.0 – 690.0 -1110.0 – 1145.0

30 3 pmissT 95.0% 8 49018500.0 -660.0 – 740.0 -1195.0 – 1230.0

30 3 pmissT 99.0% 8 54967575.0 -735.0 – 820.0 -1330.0 – 1370.0
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C. Sensitivity analysis 97

C.3. LT,0 − LT,6

Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,0 [TeV−4] fT,6[TeV−4]

20 4 ηγ 90.0% 13 54113200.0 -770.0 – 925.0 -1190.0 – 1360.0

20 4 ηγ 95.0% 13 61332725.0 -830.0 – 985.0 -1280.0 – 1450.0

20 4 ηγ 99.0% 13 -930.0 – 1085.0

20 4 ηl 90.0% 13 55506100.0 -775.0 – 925.0 -1205.0 – 1375.0

20 4 ηl 95.0% 13 62726850.0 -835.0 – 990.0 -1300.0 – 1470.0

20 4 ηl 99.0% 13 -935.0 – 1085.0

20 4 ηmiss 90.0% 13 55506100.0 -775.0 – 925.0 -1205.0 – 1375.0

20 4 ηmiss 95.0% 13 62726850.0 -835.0 – 990.0 -1300.0 – 1470.0

20 4 ηmiss 99.0% 13 -935.0 – 1085.0

20 4 min(plT , p
γ
T ) 90.0% 8 16597300.0 -410.0 – 485.0 -555.0 – 595.0

20 4 min(plT , p
γ
T ) 95.0% 8 17781950.0 -445.0 – 520.0 -595.0 – 635.0

20 4 min(plT , p
γ
T ) 99.0% 8 19887650.0 -500.0 – 570.0 -665.0 – 705.0

20 4 min(pWT , pγT ) 90.0% 11 31352275.0 -450.0 – 550.0 -640.0 – 695.0

20 4 min(pWT , pγT ) 95.0% 11 33390050.0 -490.0 – 585.0 -690.0 – 745.0

20 4 min(pWT , pγT ) 99.0% 11 36976525.0 -545.0 – 645.0 -765.0 – 820.0

20 4 mj1j2 90.0% 11 61649925.0 -685.0 – 775.0 -1155.0 – 1310.0

20 4 mj1j2 95.0% 11 66245325.0 -740.0 – 830.0 -1245.0 – 1400.0

20 4 mj1j2 99.0% 11 -825.0 – 915.0

20 4 mlγ 90.0% 7 14494050.0 -440.0 – 500.0 -520.0 – 545.0

20 4 mlγ 95.0% 7 15358875.0 -480.0 – 535.0 -560.0 – 585.0

20 4 mlγ 99.0% 7 16903475.0 -540.0 – 595.0 -625.0 – 655.0

20 4 mT (Wγ) 90.0% 6 13565450.0 -440.0 – 515.0 -525.0 – 555.0

20 4 mT (Wγ) 95.0% 6 14293200.0 -480.0 – 550.0 -565.0 – 600.0

20 4 mT (Wγ) 99.0% 6 15599050.0 -540.0 – 615.0 -635.0 – 665.0

20 4 φlγ 90.0% 13 -865.0 – 860.0

20 4 φlγ 95.0% 13 -930.0 – 925.0

20 4 φlγ 99.0% 13 -1030.0 – 1030.0

20 4 pγT 90.0% 8 9168500.0 -400.0 – 475.0 -540.0 – 590.0

20 4 pγT 95.0% 8 10605050.0 -430.0 – 505.0 -580.0 – 630.0

20 4 pγT 99.0% 8 13159000.0 -485.0 – 560.0 -650.0 – 700.0

20 4 pj1T 90.0% 9 58208525.0 -475.0 – 515.0 -685.0 – 730.0

20 4 pj1T 95.0% 9 61544325.0 -510.0 – 550.0 -735.0 – 785.0

20 4 pj1T 99.0% 9 65944300.0 -570.0 – 610.0 -820.0 – 870.0

20 4 pj2T 90.0% 8 12849975.0 -595.0 – 680.0 -720.0 – 750.0

20 4 pj2T 95.0% 8 14862975.0 -640.0 – 725.0 -775.0 – 805.0

20 4 pj2T 99.0% 8 18439675.0 -720.0 – 805.0 -865.0 – 895.0

20 4 plT 90.0% 7 38670275.0 -535.0 – 610.0 -820.0 – 920.0

20 4 plT 95.0% 7 41622850.0 -580.0 – 655.0 -885.0 – 985.0

20 4 plT 99.0% 7 45865000.0 -650.0 – 725.0 -990.0 – 1090.0

20 4 pmissT 90.0% 8 40252875.0 -620.0 – 680.0 -815.0 – 855.0

20 4 pmissT 95.0% 8 44228525.0 -670.0 – 730.0 -880.0 – 915.0

20 4 pmissT 99.0% 8 50130450.0 -750.0 – 810.0 -985.0 – 1020.0
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Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,0 [TeV−4] fT,6 [TeV−4]

30 3 ηγ 90.0% 16 71866150.0 -785.0 – 940.0 -1215.0 – 1385.0

30 3 ηγ 95.0% 16 80600450.0 -850.0 – 1005.0 -1310.0 – 1480.0

30 3 ηγ 99.0% 16 -950.0 – 1105.0

30 3 ηl 90.0% 15 65207350.0 -785.0 – 940.0 -1225.0 – 1395.0

30 3 ηl 95.0% 15 73615525.0 -850.0 – 1000.0 -1320.0 – 1490.0

30 3 ηl 99.0% 15 -950.0 – 1100.0

30 3 ηmiss 90.0% 15 65207350.0 -785.0 – 940.0 -1225.0 – 1395.0

30 3 ηmiss 95.0% 15 73615525.0 -850.0 – 1000.0 -1320.0 – 1490.0

30 3 ηmiss 99.0% 15 -950.0 – 1100.0

30 3 min(plT , p
γ
T ) 90.0% 8 17600100.0 -430.0 – 510.0 -585.0 – 630.0

30 3 min(plT , p
γ
T ) 95.0% 8 18942150.0 -465.0 – 545.0 -630.0 – 675.0

30 3 min(plT , p
γ
T ) 99.0% 8 21325025.0 -525.0 – 605.0 -705.0 – 750.0

30 3 min(pWT , pγT ) 90.0% 11 33876250.0 -470.0 – 580.0 -685.0 – 750.0

30 3 min(pWT , pγT ) 95.0% 11 36299050.0 -505.0 – 615.0 -740.0 – 805.0

30 3 min(pWT , pγT ) 99.0% 11 40562975.0 -570.0 – 680.0 -825.0 – 890.0

30 3 mj1j2 90.0% 11 64451450.0 -685.0 – 775.0 -1155.0 – 1310.0

30 3 mj1j2 95.0% 11 69244250.0 -740.0 – 830.0 -1245.0 – 1400.0

30 3 mj1j2 99.0% 11 -825.0 – 915.0

30 3 mlγ 90.0% 7 14928125.0 -455.0 – 520.0 -540.0 – 570.0

30 3 mlγ 95.0% 7 15860950.0 -490.0 – 555.0 -580.0 – 610.0

30 3 mlγ 99.0% 7 17529925.0 -555.0 – 620.0 -650.0 – 680.0

30 3 mT (Wγ) 90.0% 6 14094650.0 -455.0 – 540.0 -545.0 – 585.0

30 3 mT (Wγ) 95.0% 6 14907175.0 -495.0 – 580.0 -590.0 – 625.0

30 3 mT (Wγ) 99.0% 6 16364600.0 -560.0 – 645.0 -660.0 – 700.0

30 3 φlγ 90.0% 11 -850.0 – 850.0

30 3 φlγ 95.0% 11 -915.0 – 915.0

30 3 φlγ 99.0% 11 -1020.0 – 1015.0

30 3 pγT 90.0% 8 10873575.0 -415.0 – 495.0 -570.0 – 630.0

30 3 pγT 95.0% 8 12576575.0 -445.0 – 530.0 -615.0 – 675.0

30 3 pγT 99.0% 8 15604250.0 -500.0 – 585.0 -690.0 – 750.0

30 3 pj1T 90.0% 9 61509100.0 -500.0 – 535.0 -720.0 – 775.0

30 3 pj1T 95.0% 9 64620425.0 -535.0 – 570.0 -775.0 – 830.0

30 3 pj1T 99.0% 9 68519550.0 -600.0 – 635.0 -865.0 – 920.0

30 3 pj2T 90.0% 8 12992650.0 -595.0 – 685.0 -720.0 – 750.0

30 3 pj2T 95.0% 8 15027850.0 -645.0 – 730.0 -775.0 – 805.0

30 3 pj2T 99.0% 8 18647000.0 -725.0 – 810.0 -865.0 – 895.0

30 3 plT 90.0% 8 51109850.0 -550.0 – 635.0 -855.0 – 965.0

30 3 plT 95.0% 8 54111775.0 -595.0 – 680.0 -925.0 – 1035.0

30 3 plT 99.0% 8 58119525.0 -670.0 – 750.0 -1035.0 – 1145.0

30 3 pmissT 90.0% 8 44298550.0 -620.0 – 710.0 -920.0 – 1085.0

30 3 pmissT 95.0% 8 48477950.0 -670.0 – 760.0 -995.0 – 1160.0

30 3 pmissT 99.0% 8 54479725.0 -750.0 – 840.0 -1115.0 – 1280.0
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C. Sensitivity analysis 99

C.4. LT,1 − LT,5

Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,1 [TeV−4] fT,5 [TeV−4]

20 4 ηγ 90.0% 13 51299000.0 -490.0 – 1060.0 -1230.0 – 1275.0

20 4 ηγ 95.0% 13 57155350.0 -535.0 – 1110.0 -1320.0 – 1365.0

20 4 ηγ 99.0% 13 -615.0 – 1190.0

20 4 ηl 90.0% 13 53587825.0 -500.0 – 1080.0 -1230.0 – 1280.0

20 4 ηl 95.0% 13 59554650.0 -550.0 – 1130.0 -1325.0 – 1370.0

20 4 ηl 99.0% 13 -630.0 – 1210.0

20 4 ηmiss 90.0% 13 53587825.0 -500.0 – 1080.0 -1230.0 – 1280.0

20 4 ηmiss 95.0% 13 59554650.0 -550.0 – 1130.0 -1325.0 – 1370.0

20 4 ηmiss 99.0% 13 -630.0 – 1210.0

20 4 min(plT , p
γ
T ) 90.0% 8 48358375.0 -295.0 – 605.0 -755.0 – 800.0

20 4 min(plT , p
γ
T ) 95.0% 8 50568825.0 -325.0 – 640.0 -815.0 – 860.0

20 4 min(plT , p
γ
T ) 99.0% 8 54028500.0 -375.0 – 690.0 -910.0 – 955.0

20 4 min(pWT , pγT ) 90.0% 11 79338625.0 -290.0 – 690.0 -905.0 – 965.0

20 4 min(pWT , pγT ) 95.0% 11 81225375.0 -320.0 – 725.0 -970.0 – 1035.0

20 4 min(pWT , pγT ) 99.0% 11 84038550.0 -370.0 – 775.0 -1080.0 – 1145.0

20 4 mj1j2 90.0% 11 54401875.0 -475.0 – 1000.0 -1165.0 – 1205.0

20 4 mj1j2 95.0% 11 58761275.0 -525.0 – 1045.0 -1255.0 – 1290.0

20 4 mj1j2 99.0% 11 65402650.0 -600.0 – 1125.0 -1395.0 – 1435.0

20 4 mlγ 90.0% 7 38300050.0 -320.0 – 660.0 -645.0 – 690.0

20 4 mlγ 95.0% 7 39814825.0 -355.0 – 695.0 -695.0 – 740.0

20 4 mlγ 99.0% 7 42228075.0 -410.0 – 755.0 -780.0 – 820.0

20 4 mT (Wγ) 90.0% 6 31902075.0 -270.0 – 665.0 -590.0 – 630.0

20 4 mT (Wγ) 95.0% 6 33408625.0 -300.0 – 695.0 -640.0 – 675.0

20 4 mT (Wγ) 99.0% 6 35086950.0 -350.0 – 745.0 -715.0 – 750.0

20 4 φlγ 90.0% 13 89658925.0 -595.0 – 1200.0 -1370.0 – 1450.0

20 4 φlγ 95.0% 13 -655.0 – 1265.0

20 4 φlγ 99.0% 13 -750.0 – 1365.0

20 4 pγT 90.0% 8 10898900.0 -255.0 – 560.0 -575.0 – 600.0

20 4 pγT 95.0% 8 12642950.0 -280.0 – 590.0 -620.0 – 645.0

20 4 pγT 99.0% 8 15737025.0 -325.0 – 640.0 -690.0 – 715.0

20 4 pj1T 90.0% 9 47879575.0 -310.0 – 475.0 -625.0 – 650.0

20 4 pj1T 95.0% 9 50870575.0 -340.0 – 505.0 -675.0 – 700.0

20 4 pj1T 99.0% 9 55117625.0 -385.0 – 555.0 -750.0 – 775.0

20 4 pj2T 90.0% 8 31868325.0 -455.0 – 1005.0 -1175.0 – 1225.0

20 4 pj2T 95.0% 8 35652150.0 -505.0 – 1055.0 -1265.0 – 1315.0

20 4 pj2T 99.0% 8 41532575.0 -580.0 – 1130.0 -1415.0 – 1460.0

20 4 plT 90.0% 7 34333900.0 -350.0 – 630.0 -745.0 – 775.0

20 4 plT 95.0% 7 36704000.0 -385.0 – 665.0 -805.0 – 830.0

20 4 plT 99.0% 7 40337850.0 -440.0 – 725.0 -895.0 – 925.0

20 4 pmissT 90.0% 8 36271200.0 -360.0 – 905.0 -930.0 – 955.0

20 4 pmissT 95.0% 8 39854450.0 -395.0 – 940.0 -1000.0 – 1025.0

20 4 pmissT 99.0% 8 45243675.0 -460.0 – 1005.0 -1115.0 – 1140.0
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Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,1 [TeV−4] fT,5 [TeV−4]

30 3 ηγ 90.0% 16 67645950.0 -505.0 – 1075.0 -1255.0 – 1305.0

30 3 ηγ 95.0% 16 74755300.0 -550.0 – 1125.0 -1350.0 – 1395.0

30 3 ηγ 99.0% 16 -630.0 – 1205.0

30 3 ηl 90.0% 15 62617375.0 -510.0 – 1090.0 -1250.0 – 1300.0

30 3 ηl 95.0% 15 69602575.0 -560.0 – 1140.0 -1345.0 – 1390.0

30 3 ηl 99.0% 15 -645.0 – 1220.0

30 3 ηmiss 90.0% 15 62617375.0 -510.0 – 1090.0 -1250.0 – 1300.0

30 3 ηmiss 95.0% 15 69602575.0 -560.0 – 1140.0 -1345.0 – 1390.0

30 3 ηmiss 99.0% 15 -645.0 – 1220.0

30 3 min(plT , p
γ
T ) 90.0% 8 51244375.0 -305.0 – 640.0 -805.0 – 855.0

30 3 min(plT , p
γ
T ) 95.0% 8 53398625.0 -335.0 – 675.0 -865.0 – 915.0

30 3 min(plT , p
γ
T ) 99.0% 8 56649025.0 -385.0 – 730.0 -970.0 – 1015.0

30 3 min(pWT , pγT ) 90.0% 11 83611800.0 -300.0 – 720.0 -950.0 – 1020.0

30 3 min(pWT , pγT ) 95.0% 11 85147500.0 -330.0 – 755.0 -1025.0 – 1090.0

30 3 min(pWT , pγT ) 99.0% 11 87507400.0 -380.0 – 805.0 -1140.0 – 1205.0

30 3 mj1j2 90.0% 11 55821875.0 -475.0 – 1000.0 -1165.0 – 1205.0

30 3 mj1j2 95.0% 11 60218950.0 -525.0 – 1050.0 -1255.0 – 1290.0

30 3 mj1j2 99.0% 11 66808075.0 -600.0 – 1130.0 -1395.0 – 1430.0

30 3 mlγ 90.0% 7 40582250.0 -325.0 – 670.0 -670.0 – 710.0

30 3 mlγ 95.0% 7 42143100.0 -355.0 – 705.0 -720.0 – 765.0

30 3 mlγ 99.0% 7 44559575.0 -410.0 – 765.0 -805.0 – 850.0

30 3 mT (Wγ) 90.0% 6 34695025.0 -275.0 – 675.0 -620.0 – 660.0

30 3 mT (Wγ) 95.0% 6 35767750.0 -305.0 – 710.0 -670.0 – 710.0

30 3 mT (Wγ) 99.0% 6 37542550.0 -355.0 – 760.0 -750.0 – 790.0

30 3 φlγ 90.0% 11 72547300.0 -580.0 – 1190.0 -1350.0 – 1425.0

30 3 φlγ 95.0% 11 -640.0 – 1250.0

30 3 φlγ 99.0% 11 -735.0 – 1350.0

30 3 pγT 90.0% 8 14537900.0 -260.0 – 600.0 -630.0 – 660.0

30 3 pγT 95.0% 8 16849200.0 -290.0 – 630.0 -680.0 – 710.0

30 3 pγT 99.0% 8 20954975.0 -335.0 – 675.0 -755.0 – 785.0

30 3 pj1T 90.0% 9 50169300.0 -320.0 – 505.0 -665.0 – 685.0

30 3 pj1T 95.0% 9 53172950.0 -350.0 – 535.0 -715.0 – 735.0

30 3 pj1T 99.0% 9 57318300.0 -400.0 – 590.0 -795.0 – 820.0

30 3 pj2T 90.0% 8 33001500.0 -460.0 – 1015.0 -1185.0 – 1230.0

30 3 pj2T 95.0% 8 36897725.0 -505.0 – 1060.0 -1275.0 – 1325.0

30 3 pj2T 99.0% 8 42814900.0 -585.0 – 1140.0 -1420.0 – 1470.0

30 3 plT 90.0% 8 46210575.0 -360.0 – 660.0 -795.0 – 825.0

30 3 plT 95.0% 8 48523325.0 -400.0 – 700.0 -855.0 – 885.0

30 3 plT 99.0% 8 52042575.0 -455.0 – 760.0 -950.0 – 985.0

30 3 pmissT 90.0% 8 38316675.0 -365.0 – 915.0 -945.0 – 975.0

30 3 pmissT 95.0% 8 41983750.0 -405.0 – 950.0 -1020.0 – 1045.0

30 3 pmissT 99.0% 8 47468675.0 -465.0 – 1015.0 -1135.0 – 1160.0
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C. Sensitivity analysis 101

C.5. LT,1 − LT,6

Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,1 [TeV−4] fT,6 [TeV−4]

20 4 ηγ 90.0% 13 47899375.0 -495.0 – 1090.0 -1065.0 – 1200.0

20 4 ηγ 95.0% 13 53747650.0 -545.0 – 1140.0 -1150.0 – 1280.0

20 4 ηγ 99.0% 13 63288100.0 -625.0 – 1220.0 -1280.0 – 1415.0

20 4 ηl 90.0% 13 51040500.0 -505.0 – 1100.0 -1085.0 – 1220.0

20 4 ηl 95.0% 13 57029050.0 -555.0 – 1155.0 -1170.0 – 1305.0

20 4 ηl 99.0% 13 66722250.0 -640.0 – 1235.0 -1305.0 – 1440.0

20 4 ηmiss 90.0% 13 51040500.0 -505.0 – 1100.0 -1085.0 – 1220.0

20 4 ηmiss 95.0% 13 57029050.0 -555.0 – 1155.0 -1170.0 – 1305.0

20 4 ηmiss 99.0% 13 66722250.0 -640.0 – 1235.0 -1305.0 – 1440.0

20 4 min(plT , p
γ
T ) 90.0% 8 47874650.0 -295.0 – 610.0 -705.0 – 780.0

20 4 min(plT , p
γ
T ) 95.0% 8 50231950.0 -325.0 – 645.0 -765.0 – 835.0

20 4 min(plT , p
γ
T ) 99.0% 8 53727900.0 -375.0 – 695.0 -855.0 – 925.0

20 4 min(pWT , pγT ) 90.0% 11 79364950.0 -290.0 – 695.0 -835.0 – 970.0

20 4 min(pWT , pγT ) 95.0% 11 81244100.0 -320.0 – 725.0 -905.0 – 1040.0

20 4 min(pWT , pγT ) 99.0% 11 83978550.0 -370.0 – 775.0 -1010.0 – 1145.0

20 4 mj1j2 90.0% 11 52856750.0 -480.0 – 1015.0 -1045.0 – 1170.0

20 4 mj1j2 95.0% 11 57232650.0 -530.0 – 1065.0 -1125.0 – 1250.0

20 4 mj1j2 99.0% 11 64182575.0 -605.0 – 1145.0 -1255.0 – 1380.0

20 4 mlγ 90.0% 7 37769575.0 -325.0 – 675.0 -615.0 – 645.0

20 4 mlγ 95.0% 7 39298275.0 -360.0 – 710.0 -660.0 – 695.0

20 4 mlγ 99.0% 7 41852950.0 -415.0 – 770.0 -740.0 – 770.0

20 4 mT (Wγ) 90.0% 6 31866800.0 -275.0 – 685.0 -550.0 – 575.0

20 4 mT (Wγ) 95.0% 6 33321025.0 -305.0 – 715.0 -595.0 – 620.0

20 4 mT (Wγ) 99.0% 6 35036450.0 -355.0 – 765.0 -665.0 – 690.0

20 4 φlγ 90.0% 13 89656675.0 -600.0 – 1210.0 -1185.0 – 1320.0

20 4 φlγ 95.0% 13 95312800.0 -660.0 – 1275.0 -1275.0 – 1415.0

20 4 φlγ 99.0% 13 -760.0 – 1375.0

20 4 pγT 90.0% 8 10880900.0 -255.0 – 565.0 -550.0 – 585.0

20 4 pγT 95.0% 8 12621550.0 -280.0 – 600.0 -590.0 – 630.0

20 4 pγT 99.0% 8 15709750.0 -325.0 – 645.0 -660.0 – 695.0

20 4 pj1T 90.0% 9 46379950.0 -315.0 – 480.0 -580.0 – 605.0

20 4 pj1T 95.0% 9 49593225.0 -340.0 – 510.0 -625.0 – 650.0

20 4 pj1T 99.0% 9 54062200.0 -390.0 – 560.0 -695.0 – 720.0

20 4 pj2T 90.0% 8 30330850.0 -460.0 – 1020.0 -1040.0 – 1180.0

20 4 pj2T 95.0% 8 34037625.0 -505.0 – 1065.0 -1125.0 – 1265.0

20 4 pj2T 99.0% 8 40119175.0 -585.0 – 1145.0 -1260.0 – 1400.0

20 4 plT 90.0% 7 33656175.0 -350.0 – 635.0 -705.0 – 750.0

20 4 plT 95.0% 7 36105300.0 -385.0 – 675.0 -760.0 – 805.0

20 4 plT 99.0% 7 39966500.0 -445.0 – 735.0 -850.0 – 895.0

20 4 pmissT 90.0% 8 36107700.0 -360.0 – 930.0 -805.0 – 885.0

20 4 pmissT 95.0% 8 39618850.0 -400.0 – 970.0 -865.0 – 945.0

20 4 pmissT 99.0% 8 44950150.0 -465.0 – 1035.0 -970.0 – 1050.0
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Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,1 [TeV−4] fT,6 [TeV−4]

30 3 ηγ 90.0% 16 63433475.0 -510.0 – 1105.0 -1090.0 – 1225.0

30 3 ηγ 95.0% 16 70718725.0 -560.0 – 1155.0 -1175.0 – 1310.0

30 3 ηγ 99.0% 16 82464075.0 -640.0 – 1235.0 -1305.0 – 1440.0

30 3 ηl 90.0% 15 59602075.0 -515.0 – 1110.0 -1100.0 – 1240.0

30 3 ηl 95.0% 15 66666550.0 -565.0 – 1165.0 -1185.0 – 1325.0

30 3 ηl 99.0% 15 77945700.0 -650.0 – 1245.0 -1320.0 – 1460.0

30 3 ηmiss 90.0% 15 59602075.0 -515.0 – 1110.0 -1100.0 – 1240.0

30 3 ηmiss 95.0% 15 66666550.0 -565.0 – 1165.0 -1185.0 – 1325.0

30 3 ηmiss 99.0% 15 77945700.0 -650.0 – 1245.0 -1320.0 – 1460.0

30 3 min(plT , p
γ
T ) 90.0% 8 50817625.0 -305.0 – 650.0 -745.0 – 830.0

30 3 min(plT , p
γ
T ) 95.0% 8 53113725.0 -335.0 – 680.0 -805.0 – 890.0

30 3 min(plT , p
γ
T ) 99.0% 8 56430775.0 -390.0 – 735.0 -900.0 – 985.0

30 3 min(pWT , pγT ) 90.0% 11 83571225.0 -300.0 – 720.0 -880.0 – 1035.0

30 3 min(pWT , pγT ) 95.0% 11 85150300.0 -330.0 – 755.0 -950.0 – 1105.0

30 3 min(pWT , pγT ) 99.0% 11 87466375.0 -380.0 – 805.0 -1065.0 – 1215.0

30 3 mj1j2 90.0% 11 54104350.0 -480.0 – 1015.0 -1045.0 – 1170.0

30 3 mj1j2 95.0% 11 58664850.0 -530.0 – 1065.0 -1125.0 – 1250.0

30 3 mj1j2 99.0% 11 65639850.0 -605.0 – 1145.0 -1255.0 – 1380.0

30 3 mlγ 90.0% 7 40201225.0 -325.0 – 685.0 -630.0 – 665.0

30 3 mlγ 95.0% 7 41854050.0 -360.0 – 720.0 -675.0 – 715.0

30 3 mlγ 99.0% 7 44296525.0 -415.0 – 780.0 -755.0 – 795.0

30 3 mT (Wγ) 90.0% 6 34708375.0 -275.0 – 695.0 -575.0 – 605.0

30 3 mT (Wγ) 95.0% 6 35768525.0 -305.0 – 725.0 -620.0 – 655.0

30 3 mT (Wγ) 99.0% 6 37524325.0 -355.0 – 775.0 -695.0 – 725.0

30 3 φlγ 90.0% 11 72588000.0 -585.0 – 1195.0 -1165.0 – 1300.0

30 3 φlγ 95.0% 11 77727675.0 -645.0 – 1260.0 -1255.0 – 1390.0

30 3 φlγ 99.0% 11 -745.0 – 1365.0

30 3 pγT 90.0% 8 14514800.0 -260.0 – 605.0 -590.0 – 645.0

30 3 pγT 95.0% 8 16822750.0 -290.0 – 635.0 -640.0 – 690.0

30 3 pγT 99.0% 8 20921825.0 -335.0 – 685.0 -715.0 – 765.0

30 3 pj1T 90.0% 9 48764625.0 -325.0 – 510.0 -615.0 – 640.0

30 3 pj1T 95.0% 9 51958450.0 -355.0 – 545.0 -660.0 – 690.0

30 3 pj1T 99.0% 9 56376950.0 -405.0 – 595.0 -735.0 – 765.0

30 3 pj2T 90.0% 8 31416125.0 -460.0 – 1025.0 -1045.0 – 1185.0

30 3 pj2T 95.0% 8 35256075.0 -510.0 – 1075.0 -1130.0 – 1270.0

30 3 pj2T 99.0% 8 41456675.0 -590.0 – 1155.0 -1265.0 – 1405.0

30 3 plT 90.0% 8 45643700.0 -365.0 – 665.0 -745.0 – 800.0

30 3 plT 95.0% 8 48048350.0 -400.0 – 705.0 -800.0 – 860.0

30 3 plT 99.0% 8 51721925.0 -460.0 – 765.0 -895.0 – 950.0

30 3 pmissT 90.0% 8 38220800.0 -365.0 – 940.0 -820.0 – 905.0

30 3 pmissT 95.0% 8 41821475.0 -405.0 – 980.0 -885.0 – 970.0

30 3 pmissT 99.0% 8 47217075.0 -470.0 – 1045.0 -990.0 – 1075.0
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C.6. LT,5 − LT,6

Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,5 [TeV−4] fT,6 [TeV−4]

20 4 ηγ 90.0% 13 18980325.0 -535.0 – 565.0 -570.0 – 655.0

20 4 ηγ 95.0% 13 21849800.0 -575.0 – 605.0 -615.0 – 700.0

20 4 ηγ 99.0% 13 26871625.0 -640.0 – 665.0 -690.0 – 770.0

20 4 ηl 90.0% 13 20249000.0 -535.0 – 565.0 -590.0 – 675.0

20 4 ηl 95.0% 13 23309050.0 -575.0 – 605.0 -635.0 – 720.0

20 4 ηl 99.0% 13 28667150.0 -640.0 – 670.0 -710.0 – 795.0

20 4 ηmiss 90.0% 13 20249000.0 -535.0 – 565.0 -590.0 – 675.0

20 4 ηmiss 95.0% 13 23309050.0 -575.0 – 605.0 -635.0 – 720.0

20 4 ηmiss 99.0% 13 28667150.0 -640.0 – 670.0 -710.0 – 795.0

20 4 min(plT , p
γ
T ) 90.0% 8 15870400.0 -340.0 – 375.0 -360.0 – 420.0

20 4 min(plT , p
γ
T ) 95.0% 8 16995250.0 -365.0 – 400.0 -385.0 – 450.0

20 4 min(plT , p
γ
T ) 99.0% 8 18915525.0 -410.0 – 445.0 -435.0 – 495.0

20 4 min(pWT , pγT ) 90.0% 11 31314850.0 -445.0 – 490.0 -470.0 – 580.0

20 4 min(pWT , pγT ) 95.0% 11 33343450.0 -480.0 – 525.0 -510.0 – 615.0

20 4 min(pWT , pγT ) 99.0% 11 36914400.0 -535.0 – 580.0 -570.0 – 680.0

20 4 mj1j2 90.0% 11 27707750.0 -505.0 – 530.0 -570.0 – 650.0

20 4 mj1j2 95.0% 11 30559950.0 -540.0 – 565.0 -610.0 – 690.0

20 4 mj1j2 99.0% 11 35446150.0 -605.0 – 630.0 -685.0 – 765.0

20 4 mlγ 90.0% 7 14336050.0 -230.0 – 255.0 -255.0 – 295.0

20 4 mlγ 95.0% 7 15174400.0 -245.0 – 270.0 -275.0 – 315.0

20 4 mlγ 99.0% 7 16671350.0 -275.0 – 300.0 -310.0 – 350.0

20 4 mT (Wγ) 90.0% 6 13429725.0 -210.0 – 235.0 -225.0 – 270.0

20 4 mT (Wγ) 95.0% 6 14134600.0 -225.0 – 250.0 -245.0 – 290.0

20 4 mT (Wγ) 99.0% 6 15397600.0 -255.0 – 280.0 -275.0 – 320.0

20 4 φlγ 90.0% 13 82747525.0 -525.0 – 565.0 -575.0 – 665.0

20 4 φlγ 95.0% 13 87278125.0 -565.0 – 605.0 -620.0 – 710.0

20 4 φlγ 99.0% 13 92889050.0 -630.0 – 665.0 -695.0 – 780.0

20 4 pγT 90.0% 8 8826675.0 -290.0 – 320.0 -305.0 – 375.0

20 4 pγT 95.0% 8 10206375.0 -310.0 – 345.0 -330.0 – 400.0

20 4 pγT 99.0% 8 12661775.0 -350.0 – 380.0 -370.0 – 440.0

20 4 pj1T 90.0% 9 24009100.0 -215.0 – 250.0 -290.0 – 305.0

20 4 pj1T 95.0% 9 26549975.0 -235.0 – 265.0 -315.0 – 325.0

20 4 pj1T 99.0% 9 30832900.0 -260.0 – 295.0 -350.0 – 365.0

20 4 pj2T 90.0% 8 10129950.0 -515.0 – 540.0 -570.0 – 660.0

20 4 pj2T 95.0% 8 11706050.0 -550.0 – 580.0 -615.0 – 705.0

20 4 pj2T 99.0% 8 14507150.0 -615.0 – 645.0 -690.0 – 780.0

20 4 plT 90.0% 7 5618875.0 -285.0 – 305.0 -325.0 – 360.0

20 4 plT 95.0% 7 6507500.0 -305.0 – 325.0 -355.0 – 390.0

20 4 plT 99.0% 7 8092650.0 -340.0 – 365.0 -395.0 – 430.0

20 4 pmissT 90.0% 8 6857325.0 -345.0 – 365.0 -340.0 – 400.0

20 4 pmissT 95.0% 8 7929100.0 -375.0 – 390.0 -370.0 – 430.0

20 4 pmissT 99.0% 8 9835625.0 -415.0 – 435.0 -415.0 – 475.0
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Nmin Nbin
min Observable CL Bins Area [TeV−8] fT,5 [TeV−4] fT,6 [TeV−4]

30 3 ηγ 90.0% 16 26554775.0 -545.0 – 575.0 -585.0 – 670.0

30 3 ηγ 95.0% 16 30527325.0 -585.0 – 615.0 -630.0 – 715.0

30 3 ηγ 99.0% 16 37420450.0 -650.0 – 680.0 -705.0 – 785.0

30 3 ηl 90.0% 15 23305975.0 -545.0 – 570.0 -600.0 – 685.0

30 3 ηl 95.0% 15 26802700.0 -585.0 – 615.0 -645.0 – 730.0

30 3 ηl 99.0% 15 32891725.0 -650.0 – 675.0 -720.0 – 805.0

30 3 ηmiss 90.0% 15 23305975.0 -545.0 – 570.0 -600.0 – 685.0

30 3 ηmiss 95.0% 15 26802700.0 -585.0 – 615.0 -645.0 – 730.0

30 3 ηmiss 99.0% 15 32891725.0 -650.0 – 675.0 -720.0 – 805.0

30 3 min(plT , p
γ
T ) 90.0% 8 16847150.0 -365.0 – 400.0 -380.0 – 445.0

30 3 min(plT , p
γ
T ) 95.0% 8 18123225.0 -390.0 – 425.0 -410.0 – 480.0

30 3 min(plT , p
γ
T ) 99.0% 8 20314500.0 -435.0 – 475.0 -460.0 – 530.0

30 3 min(pWT , pγT ) 90.0% 11 37634075.0 -480.0 – 535.0 -515.0 – 645.0

30 3 min(pWT , pγT ) 95.0% 11 40631225.0 -515.0 – 570.0 -555.0 – 690.0

30 3 min(pWT , pγT ) 99.0% 11 45905825.0 -575.0 – 630.0 -625.0 – 755.0

30 3 mj1j2 90.0% 11 26883000.0 -505.0 – 530.0 -565.0 – 650.0

30 3 mj1j2 95.0% 11 30102625.0 -545.0 – 570.0 -610.0 – 690.0

30 3 mj1j2 99.0% 11 35535875.0 -605.0 – 630.0 -685.0 – 765.0

30 3 mlγ 90.0% 7 14863325.0 -245.0 – 270.0 -270.0 – 315.0

30 3 mlγ 95.0% 7 15784600.0 -265.0 – 290.0 -295.0 – 335.0

30 3 mlγ 99.0% 7 17429075.0 -295.0 – 320.0 -330.0 – 370.0

30 3 mT (Wγ) 90.0% 6 13597150.0 -230.0 – 255.0 -245.0 – 295.0

30 3 mT (Wγ) 95.0% 6 14327175.0 -250.0 – 275.0 -265.0 – 315.0

30 3 mT (Wγ) 99.0% 6 15637725.0 -280.0 – 305.0 -300.0 – 350.0

30 3 φlγ 90.0% 11 65621625.0 -520.0 – 555.0 -565.0 – 655.0

30 3 φlγ 95.0% 11 69990025.0 -560.0 – 595.0 -610.0 – 700.0

30 3 φlγ 99.0% 11 75543325.0 -620.0 – 660.0 -685.0 – 770.0

30 3 pγT 90.0% 8 10547050.0 -310.0 – 345.0 -325.0 – 405.0

30 3 pγT 95.0% 8 12196825.0 -335.0 – 370.0 -355.0 – 435.0

30 3 pγT 99.0% 8 15127775.0 -375.0 – 410.0 -400.0 – 480.0

30 3 pj1T 90.0% 9 23461300.0 -235.0 – 265.0 -310.0 – 325.0

30 3 pj1T 95.0% 9 26490975.0 -250.0 – 280.0 -335.0 – 350.0

30 3 pj1T 99.0% 9 31439425.0 -280.0 – 310.0 -375.0 – 390.0

30 3 pj2T 90.0% 8 10343000.0 -515.0 – 545.0 -570.0 – 660.0

30 3 pj2T 95.0% 8 11952775.0 -555.0 – 585.0 -615.0 – 705.0

30 3 pj2T 99.0% 8 14812275.0 -620.0 – 650.0 -690.0 – 780.0

30 3 plT 90.0% 8 15667000.0 -310.0 – 335.0 -350.0 – 395.0

30 3 plT 95.0% 8 16704150.0 -335.0 – 355.0 -380.0 – 420.0

30 3 plT 99.0% 8 18550600.0 -375.0 – 395.0 -425.0 – 465.0

30 3 pmissT 90.0% 8 11181125.0 -360.0 – 380.0 -360.0 – 425.0

30 3 pmissT 95.0% 8 12768775.0 -390.0 – 410.0 -390.0 – 450.0

30 3 pmissT 99.0% 8 15409825.0 -435.0 – 455.0 -435.0 – 500.0
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