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Abstract

We consider spatial coarse-graining in statistical ensembles of non-selfintersecting and one-
fold selfintersecting center-vortex loops as they emerge in the confining phase of SU(2)
Yang-Mills thermodynamics. This coarse-graining is due to a noisy environment and
described by a curve shrinking flow of center-vortex loops locally embedded in a two-
dimensional flat plane. The renormalization-group flow of an effective ‘action’, which is
defined in purely geometric terms, is driven by the curve shrinking evolution.

In the case of non-selfintersecting center-vortex loops, we observe critical behavior of
the effective ‘action’ as soon as the center-vortex loops vanish from the spectrum of the
confining phase due to curve shrinking. This suggest the existence of an asymptotic mass
gap.

An entirely unexpected behavior in the ensemble of one-fold selfintersecting center-
vortex loops is connected with the spontaneous emergence of order. We speculate that
the physics of planar, one-fold selfintersecting center-vortex loops to be relevant for two-
dimensional systems exhibiting high-temperature superconductivity.

Zusammenfassung

Die Anregungen der konfinierten Phase in der thermodynamischen Behandlung der SU(2)
Yang-Mills Theorie sind Zentrumsvortexschlaufen welche aufgrund der Wechselwirkung mit
einer rauschenden Umgebung Schrumpfungsprozess unterliegen. Wir betrachten statisti-
sche Ensemble von Zentrumsvortexschlaufen ohne und mit einfachen Schnittpunkt welche
in einer flachen zweidimensionalen Ebene lokal eingebettet sind. Der Schrumpfungspro-
zess von eingebetteten Zentrumsvortexschlaufen wird durch eine Diffusionsgleichung be-
schrieben. Der Renormierungsgruppenfluss einer in rein geometrischen Gréfsen definierten
effektiven \Wirkung“ wird durch die Evolution schrumpfender Kurven bestimmt.

Im Falle von Zentrumsvortexschlaufen ohne Schnittpunkt beobachten wir ein kritisches
Verhalten der effektiven \Wirkung®“ sowie die Vortexschlaufen aufgrund des Schrumpfungs-
prozesses aus dem Spektrum der konfinierten Phase verschwinden. Dies legt die Existenz
eines asymptotischen Massen-Gaps nahe.

Ein vollkommen unerwartetes Verhalten im Ensemble von Zentrumsvortexschlaufen
mit einfachem Schnittpunkt steht in engem Zusammenhang mit dem spontanen Auftreten
von Ordnung. Wir vermuten, dass die Physik ebener Zentrumsvortexschlaufen relevant ist
fiir die Beschreibung zweidimensionaler Systeme, welche die Eigenschaft der Hochtempe-
ratursupraleitung aufweisen.
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Chapter 1

Introduction

The importance of Yang-Mills theories in mathematical and theoretical physics is generally
acknowledged. Yang-Mills gauge theories are the cornerstone of quantum field theories in
the Standard Model of Particle Physics: Besides gravity, all fundamental interactions are
incorporated as gauge symmetries in the Standard Model. Although it has been examined
in the framework of perturbation theory due to the enormous complexity implied in the
full story of (especially non-Abelian) gauge theories, the Standard Model has produced a
lot of striking results and predictions. There are many examples, such as the explanation
of the anomalous magnetic moment of the electron, the feature of asymptotic freedom of
Quantum Chromodynamics in the high energy limit, or the prediction of flavor-changing
neutral currents in electroweak processes [I]. However, there are still a number of unsolved
mathematical problems and unexplained experimental observations. Among those are:
The necessity of an asymptotic mass gap and a rigorous proof of color confinement in
pure Yang-Mills theory [2]. In the Standard Model, the assumption of a zero rest mass
of the neutrino is refuted by the observation of neutrino oscillations [3] and the double
B decay [4]. These observations indicate a small, finite rest mass that also cannot be
excluded by recent experiments measuring the spectrum of the single 3 decay of tritium
nuclei near the endpoint [5, 6]. Furthermore, the Standard Model does not provide for an
explanation of Dark Matter and Dark Energy that account for about 96% of the energy
density in the present universe, and the predicted Higgs particle has evaded experimental
detection so far. Moreover, the perturbation series of four-dimensional quantum field
theories is most likely an asymptotic series; the fact that a perturbative calculation of the
thermodynamical pressure cannot be driven beyond order ¢° in the coupling constant due
to the weak screening of the magnetic sector causing infrared instabilities [7], could be
shown for Quantum Chromodynamics at finite temperature.

Since perturbation theory is an expansion in powers of a necessarily small coupling
constant about a trivial a priori estimate for the vacuum of the theory, it fails to describe
strongly coupled physics as well as the according nontrivial vacuum state. This vacuum
is certainly composed of finite-action solitonic solutions of the classical Yang-Mills action.
The so called instantons are topologically nontrivial objects in pure Yang-Mills theory
that describe tunneling processes between topological distinct vacua, e.g. [8]. Their weight
possesses an essential zero at vanishing coupling, and thus instanton contributions to the
partition function of the theory are completely ignored by perturbation theory. Instantons
at finite temperature are called calorons.

Therefore, we are advised to consider a nonperturbative approach to gauge theories.
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Such a treatment has already been proven successful in terms of an effective theory for
superconductivity [9]. An analytical and nonperturbative approach to SU(2) Yang-Mills
thermodynamics was developed in [10]. In this approach the basic idea is to subject the
highly complex dynamics of the topologically nontrivial field configurations to a spatial
coarse graining that leads to the emergence of macroscopic scalar fields, and pure gauges.
Due to nontrivial (thermal) ground states, the fundamental gauge symmetry is broken
successively as temperature decreases. As a consequence, Yang-Mills thermodynamics
occurs in three phases: the deconfining, the preconfining and the confining phase. The
latter, in which we are primarily interested in this thesis, exhibits three unexpected results.
These are the exact vanishing of the energy density and the pressure of the ground state
at zero temperature, the Hagedorn character of the preconfining-confining phase transition
and the spin-1/2 nature of the massless and massive excitations in the confining phase.

The ground state of the deconfining phase is composed of interacting calorons and an-
ticalorons and exhibits negative pressure. The propagating excitations within that phase
are two massive gauge modes - due to the dynamically broken SU(2) - and one massless
gauge mode. As temperature decreases, the likeliness for calorons and anticalorons to dis-
sociate into (BPS saturated) magnetic monopoles and antimonopoles increases strongly in
the vicinity of a critical temperature. The ground state of the preconfining (or magnetic)
phase starts to form by the pairwise condensation of monopoles and antimonopoles. Exci-
tations in that phase are propagating dual gauge modes of mass mp (dynamically broken
U(1l)p). Unstable defects of the magnetic ground state are closed magnetic flux lines of
finite core size d that collapse as soon as they are created. This is because, as long as
d > 0, the pressure inside the vortex loop is more negative than outside, thus leading to
the contraction of the vortex loop. The magnetic phase exhibits negative pressure. At
the Hagedorn transition towards the confining (also called center) phase, a complete de-
coupling of the gauge fields takes place. To put it more precisely, by the decay of the
magnetic ground state into selfintersecting and non-selfintersecting center-vortex loops the
mass of the dual gauge field diverges and the core size of center-vortex loops vanishes, see
also [11), 12]. As a result of d — 0, the negative pressure P is confined to the vanishing
vortex core. This implies that center-vortex loops become stable particle-like excitations
with P = 0. These solitons are classified according to their center charge and the number
of selfintersections N, see Fig. [Tl The mass of an N-fold selfintersecting soliton is NA¢,
where A¢ is the Yang-Mills scale. Topologically, solitons with non-vanishing N are stable
in the absence of external gauge modes coupling to the charges at the intersection points.
On the other hand, for N = 0, there is no topological reason for stability.

Now consider a situation where a planar center-vortex loop, which is a (local) em-
bedding of a center-vortex loop into a two-dimensional flat and spatial plane, still has
non-vanishing core size d > 0 and the mass of the dual gauge field m is still finite due
to a noisy environment which locally resolves the otherwise infinitely thin vortex. In this
case, the pressure P is locally nonzero and the soliton starts shrinking. Such a situation
is described by a curve shortening flow in the (dimensionless) parameter 7. Here, 7 is a
variable measuring the decrease of externally provided resolving power applied to the sys-
tem. There is a functional dependence of 7 on the corresponding resolution ) (momentum
transfer). For an isolated SU(2) theory the role of the environment is played by the sectors
with N > 0. If the confining SU(2) is part of a world with additional gauge symmetries,
then a portion of such an environment arises from the mixing between the corresponding
gauge groups. Either way, a center-vortex loop acquires a finite core size and as a conse-
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Figure 1.1: The topologies of solitonic excitations with up to N = 3 selfintersections for
an SU(2) Yang-Mills theory in the confining phase. A magnetic monopole of charge +1
or —1 is located at each point where center-flux lines intersect. Solitons with N = 0
are unstable in presence of a noisy environment, whereas solitons with N = 1 are always
stable. Excitations with NV > 1 are unstable if subjected to mixing with theories possessing
propagating gauge fields.

quence, a finite mass for the NV = 0 soliton by frequent interaction with the environment
after it was generated by a process that was subject to an inherent, finite resolution Q.

Knot-like structures are relevant in a number of chemical, biological and physical sys-
tems [I3], e.g. in polymer physics, particularly in molecular biology, in type-II supercon-
ductor, where string-like vortices confine magnetic fields to the cores of the vortex-like
structures, in superfluid helium (*He), as well as in liquid crystals. As early as 1897 Lord
Kelvin proposed that elementary particles - at that time atoms were considered to be el-
ementary by Kelvin and others - should be described as knotted lines of vortex tubes in
a medium (the aether) [14]. As we know now, the point particle interpretation of Quan-
tum Mechanics appears to be a much more elegant and efficient framework to describe
the physics of atoms and molecules. But at the same time, the notion of an electron as a
spinning point particle, albeit an excellent description in a bulk of physical situations in
atoms, colliders and condensed matter systems, causes theoretical and experimental incon-
sistencies. On the one hand, there is the problem of diverging classical self-energy of the
electron. On the other hand, the unexpected explosive behavior in recent high-temperature
plasma experiments [I5],[16] and the strong correlations of electrons in two-dimensional pla-
nar systems [9] are indications of non-local effects possibly related to the extended spatial
structure of the electron. Also, recent theoretical developments revive Kelvin’s description
of elementary particles as non-local knot-like entities. In [I3] [I7], the argument is that
confining strings, tied into stable knotted solitons, exist when decomposing the gauge field
in the low-energy domain of four-dimensional SU(2) Yang-Mills theory.

According to the approach in [I0], we tend to interpret one-fold selfintersecting center-
vortex loops as electrons and accordingly non-selfintersecting center-vortex loops as neu-
trinos. This implies that the Yang-Mills scale A¢c must be set equal to the electron mass
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Figure 1.2: Points on the center flux lines moving oppositely on a line perpendicular to the
bisecting line of the angle a with velocity modulus v;. For sufficiently small « the velocity
modulus vy of the intersection point is superluminal: v9 = v cot %

me = 511 keV. The spin-1/2 nature of a center-vortex loop is a consequence of its two-fold
degeneracy with respect to the direction of flux which is lifted in the presence of an electric
or magnetic background field. It should be noticed for a selfintersecting center-vortex loop
that, as long as both wings of center flux are of finite size, a spatial shift of the intersection
point requires a negligible amount of energy only. In particular, if the inner angle o be-
tween in- and out-going center-flux at the intersection is sufficiently small, then a motion of
points on the vortex line that is directed perpendicularly to the bisecting line of the angle
« easily generates a velocity of the intersection point which exceeds the speed of light,
e.g. Fig.[L2l Here, it should be considered that the path-integral formulation of Quantum
Mechanics admits such superluminal motion in the sense that the according trajectories
contribute to transition amplitudes [I§].

The purpose of this thesis is to treat the behavior of N = 0 and N = 1 center-vortex
loops under curve shrinking as a Wilsonian renormalization-group flow governed by an
effective ‘action’. The term ‘action’ is slightly misleading since we do not aim at a time
evolution of the system by demanding stationarity of the ‘action’ under curve variation.
We consider resolution dependent statistical ensembles in the presence of an environment
represented by a parameter . The corresponding weight-functional for the members of the
ensemble, written as the exponential of an ‘action’, is defined in purely geometric terms.
In turn the resolution dependence of the ‘action’ is determined by the curve shrinking
flow. The ‘action’ possesses a natural decomposition into a conformal and a non-conformal
factor. We consider the partition function of a given ensemble of planar curves to be
invariant under the condition of changing the resolution. Once the evolution of the weight-
functional is determined, we are able to compute the resolution dependence of ‘observables’
as ensemble averages of (local or non-local) operators.

What we observe is that the N = 0 sector becomes unresolvable from a finite resolution
Q@+« downward. That is, as a consequence of a noisy environment planar N = 0 center-vortex
loops shrink to points with circular limiting shape within a finite decrease of resolving power
and thus disappear from the spectrum of the confining phase of SU(2) Yang-Mills theory
for a resolution smaller than the critical (.. Since center-vortex loops with N > 0 have
finite mass this generates an asymptotic mass gap. We show that the observed transition



to the conformal limit of vanishing curve length is a critical phenomenon with a mean-field
exponent of the coefficient associated with the non-conformal factor. For the N = 1 sector
we observe the unexpected behavior that, starting from a finite value, the entropy of the
system decreases to an almost zero value as the resolving power is lowered: the ensemble
evolves into a highly ordered state in a sense that only a single curve survives the process
of coarse-graining.

The thesis is organized as follows: Chapter [2 gives a brief outline of the effective theory
of thermalized SU(2) Yang-Mills dynamics in all of its phases as it is developed in [10].
Chapter B] provides prerequisites for the mathematics of curve shrinking flows in two and
three space dimensions. Chapters [ and [l investigate the N = 0 sector and respectively,
the N = 1 sector. In Sections .1l and 0.1, we explain our philosophy underlying the
statistics of geometric fluctuations and how the renormalization-group flow of the effective
‘action’ is driven by the curve-shrinking evolution of the members of a given ensemble of
N = 0 and respectively, N = 1 center-vortex loops. In Sec. €2l we explain our numerical
analysis concerning the computation of the effective action and the variance of the ‘center
of mass’ which is compared to Heisenberg’s uncertainty relation. In Sec. 5.2, we elucidate
our numerical analysis concerning the computation of the effective ‘action’, the variance of
the location of the selfintersection, and the resolution-dependent entropy associated with
a given ensemble. Chapter [l deals with electrons which are interpreted as center-vortex
loops with one selfintersection. In Sec. [6.I, we give reasons for this interpretation, and
in Sec. [6.2] we consider strongly correlated systems of electrons in cuprates exhibiting
high-temperature superconductivity and the new class of recently discovered iron-based
high-temperature superconductors. Chapter [7 gives a short summary of our findings.






Chapter 2

Brief review of SU(2) Yang-Mills
thermodynamics

In this section, we give a short outline of the analytical and nonperturbative approach
to SU(2) Yang-Mills thermodynamics as it is developed in [I0]. The basic idea is to
subject the highly complex dynamics of topologically nontrivial field configurations to a
spatial coarse-graining that is described by emergent macroscopic scalar fields, one for each
phase. Conceptually, this approach is similar to the macroscopic Landau-Ginzburg theory
of superconductivity. Although we are only concerned with the confining phase in this
work, we start our outline of [I0] in the deconfining phase at high temperatures which
leads us by consecutive phase transitions to the confining phase.

2.1 Basics of thermal Yang-Mills theory

Yang-Mills theories are non-Abelian gauge theories whose Lagrangian is demanded to be
invariant under local gauge transformations. In this thesis, we restrict ourselves to the case
of SU(2) gauge transformations. In pure Yang-Mills theory, only gauge field terms appear
in the fundamental Lagrangian while matter fields are absent. Wick-rotating to Euclidean
signature by t — —i7 and moving to finite temperature T', which corresponds to imaginary
time compactified on a circle with circumstance § = %, the gauge-invariant action is given
by

1 B
S = 2—92tr/0 dT/d?’xFWFW, (2.1)

where g denotes the dimensionless coupling constant and tr the trace operation. It holds
that (z1,z9,x3,24) € R*. The Yang-Mills field strength tensor is defined ad]

Fu = 0,4, — 0,A, —i[A,, A, (2.2)

with the Lie-algebra valued gauge fields in the adjoint representation

Ay

a O-a
A7 (2.3)

!The gauge coupling g is absorbed in the definition of the gauge fields.
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where the generators ¢ are given by the Pauli matrices. The action density %%tr Foo by
is invariant under local SU(2) gauge transformations

Au(z) & Q2) A, ()0 (2) + iQ(2)0,0(x), (2.4)

where € is an element of SU(2).

Instantons are localized finite-action classical solutions in Euclidean field theory. The
BPST (Belavin-Polyakov-Schwartz-Tyupkin) instanton is an (anti)selfdual, that is BPS
(Bogomol'nyi-Prasad-Sommerfield) saturated, configuration solving the Euler-Lagrange
equations D,F,,, = 0 subject to the action (ZI)) [19]. For the covariant derivative D,
of the field ¢ in the adjoint representation we have

D,¢ = 0,0 —i[A,, ¢]. (2.5)
The (anti)selfduality condition reads
Fu =+F,, (2.6)

where the dual field strength is defined as F/w = %E#VRAFR)\, €wrx being the total anti-
symmetric tensor with €1234 = 1. (Anti)selfdual configurations saturate the BPS bound on
the action which therefore is minimal (in a given topological sector) and of value

872
S = g—g\QL (2.7)

where the Pontryagin index @ is a topological invariant (charge) and defined as

— 1 b 3 a 1a
Q: m\/o dT/d ‘TF/MJF/U/' (28)

BPS saturated field configurations A, have vanishing energy-momentum tensor.

(Anti)calorons are BPS saturated, periodic-in-7 configurations at finite temperature
with finite action and topological charge Q = +1. They are classified according to the
eigenvalues of their Polyakov loop (time-like Wilson loop evaluated in periodic gauge) at
spatial infinity. An (anti)caloron is said to be of trivial holonomy, if its Polyakov loop, eval-
uated at spatial infinity, is an element of the center of the gauge group. Otherwise it is said
to have nontrivial holonomy. The Harrington-Shepard (HS) (anti)caloron is a periodic-in-7
instanton in singular gauge with topological charge Q = £1 and trivial holonomy, whereas
the Lee-Lu-Kraan-van Baal (LLKvB) (anti)caloron is of nontrivial holonomy. Descriptively,
trivial holonomy means that the caloron has no substructure. The LLKvB (anti)caloron
contains BPS magnetic monopoles constituents which, by virtue of quantum corrections
[20], are subject to an attractive interaction in the case of small holonomy and to a repul-
sive interaction for large holonomy. In the case of large holonomy, the repulsion leads to
a dissociation of the caloron into a pair of a screened magnetic monopole and antimono-
pole. On the other hand, for small holonomy, the (anti)caloron collapses back to the stable
configuration of a HS (anti)caloron by annihilation of their BPS monopole constituents.
Thus, single LLKvB calorons are unstable under quantum deformations.
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2.2 The deconfining phase

The complex microscopic dynamics in Yang-Mills theory does not seem to allow for a
direct analytic calculation of macroscopic quantities in terms of the fundamental gauge
fields. A spatial coarse-graining, that is the computation of a spatial average over the
sector of topologically nontrivial, BPS saturated field configurations of trivial holonomy
turns out to be a feasible and thermodynamically exhaustive approach. The coarse-graining
procedure is described in terms of a macroscopic adjoint field ¢. In order to characterize
the macroscopic ground state, ¢ has to satisfy for following conditions:
(i) due to spatial isotropy and homogeneity ¢ must be a Lorentz scalar;
(i) homogeneity of the ground state implies that the modulus of ¢ is independent of space
and time. A dynamically generated Yang-Mills scale A enters this modulus as a parameter;
(iii) ¢ is a composite of local fields and therefore has to transform under the adjoint rep-
resentation, because in pure Yang-Mills theory all local fields transform under the adjoint
representation of the gauge group;
(iv) only the color orientation of ¢ in a given gauge, also referred to ¢’s phase, depends
on 7. Since ¢ is constructed from (anti)calorons, which are periodic in Euclidean time, ¢’s
phase is also periodic in 7, and since the classical caloron action S = 57 is independent of
temperature ¢’s phase is not explicitly time dependent. The computation of the phase of
¢ does not require any information about the Yang-Mills scale.
Consequently, the field can be written as
e ()

¢" = [9l(Ag, B) oI \3) (2.9)
In |10, 21], 22] equations of motion for the phase and modulus of the spatially homogeneous,
composite, emergent adjoint scalar field ¢ obeying the above conditions are derived. The
(non-perturbatively) temperature dependent modulus is given by

A3 ﬁ A3
A = \/ Y e 2.1
Bl(Ap, B) = || 222 =\ 5 (210)
The corresponding action is found to be
8
S :tr/ dT/d3ac ((0-¢)* + AGp™2), (2.11)
0

where ¢~ ! = # The field ¢ turns out to be quantum mechanically and statistically

iner. It serves as a spatially homogeneous background for the topologically trivial (Q = 0)
sector of the coarse-grained, propagating gauge fields a,,. In Eq. (2.IT)) interactions between
calorons are not yet included. This is done via minimal coupling by substituting

O — Dy = 0,0 + e, a,). (2.12)

The interactions are mediated by the topologically trivial fields that change the holonomy
of the (anti)calorons and subsequently induce interactions between the magnetic monopole

2This can be checked by direct computation but also is implied by the fact that a spatial average over
non-propagating gauge fields must generate a composite that itself is not propagating.
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constituents of nontrivial holonomy (anti)calorons. The action for the minimally coupled
fields is given by

B
S = tr/ dr/d% (%GW G + (Du¢)* + AS¢~2), (2.13)
0

where the field strength is G, = "2—(1(8”@,@ — Oyay, — efabcaZaf/) and e denotes the effective
gauge coupling which determines the strength of interaction between topologically trivial
gauge field fluctuations and the macroscopic field ¢. Due to Lorentz invariance, gauge
invariance, perturbative renormalization, and the inertness of ¢ the action (2.13) is unique.

The topologically trivial sector is written as a decomposition

au = aj’ + day, (2.14)
where af,’ is a pure-gauge solution of the equations of motion for a,, following from action
([213), and day, is a (periodic) finite-curvature propagating fluctuation. The pressure Pj’
and energy density p% of the ground state, following from the energy-momentum tensor,
read

PY = —p% = —ATALT. (2.15)

Microscopically, the negative ground state pressure arises from the creation and annihi-
lation of BPS monopoles and antimonopoles within small-holonomy (anti)calorons. The
emergence of the macroscopic adjoint scalar field ¢ breaks the fundamental gauge group
SU(2) down dynamically to the subgroup U(1). Due to the adjoint Higgs mechanism, two

out of three gauge modes 5af}’2) acquire a temperature dependent mass, while the third
remains massless,

3

A
my = my = 2¢(T)|6| = 2¢(T) %—? and  m3=0. (2.16)

Evaluating the Polyakov loop in a different (unitary) gauge gives rise to the conclusion
that the ground state is two-fold degenerated with respect to the (broken) global elec-
tric Zs symmetry. Thus, the electric phase is deconfining. The temperature evolution
of the effective gauge coupling e is derived from the demand for thermodynamical self-
consistency, it reaches a plateau value rapidly as temperature increases (" > T, g) and
diverges logarithmically for 7'\, T, g,

e(T) o< —log(T — T E). (2.17)
Therefore, the massive gauge 5&5}’2) modes become infinitely heavy and decouple at T, g.
The ground state in the deconfining phase is composed of interacting calorons and
anticalorons of topological charge-modulus one and trivial holonomy. Screened magnetic
BPS saturated monopoles are spatially isolated defects in the electric phase. Screening oc-

curs due to short-lived magnetic dipoles provided by intermediary small-holonomy LLKvB
(anti)calorons and due to all other stable and screened (anti)monopoles.



2.3. THE PRECONFINING PHASE 11

25

20}

15;

10}

electric

i |

= = - -

12

[EEN
N

16 18 20 AE

Figure 2.1: Temperature evolution of the effective gauge couplings e and ¢ as a function

of the dimensionless temperature \g = % The figure is taken from [23].

2.3 The preconfining phase

At T, g = 13.87%—5, the effective gauge coupling e diverges. Thereby, magnetic monopoles
and antimonopoles, which are generated by the dissociation of large-holonomy calorouns,
become massless and condense pairwise, thus terminating the deconfining phase. Note
that for T' < T, g, the average caloron-anticaloron holonomy gradually increases with
decreasing temperature. After a spatial coarse-graining, the thermal ground state of the
Bose condensate of interacting monopoles and antimonopoles is entirely described by a
macroscopic complex scalar field ¢ and a pure gauge a,;**; only gauge fields transforming
under U(1) survive the electric-magnetic phase transition. The macroscopic complex scalar
field ¢ turns out to be quantum mechanically and statistically inert. Interactions between
monopoles mediated by pure gauges generate isolated but unstable defects. These defects
are closed magnetic flux lines that are composed of magnetic monopoles moving oppositely
directed to each other in the vortex core along the flux lines. The closed flux lines collapse
as soon as they are created, thereby inducing a negative pressure. It should be noticed that
the magnetic flux lines need to be closed due to the absence of isolated magnetic charges in
the monopole condensate. The spatially homogeneous and BPS saturated complex scalar
field ¢ breaks the dual gauge symmetry U(1), dynamically: the stable and propagating
excitations in the magnetic phase are massive dual gauge modes.

In [10] equations for phase and modulus of the macroscopic complex scalar field are
derived. The modulus of the field ¢ is found to be

A:])’V[ﬂ A:Z))\/[
lo|(Anr, B) = \/7 =\ 2.7

The effective action for ¢ reads

S /ﬁd /d3 (18—8 +1A§4> (2.19)
= T T \ z0r T == | .
7 o 2 PP S 0

(2.18)
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where interactions between (screened) monopoles are absent and Ay is an externally pro-
vided Yang-Mills scale. Interactions are accounted for in analogy to Sec. 22k the topolog-

ically trivial sector a;; is decomposed into

a, = a, " +da, (2.20)
and is minimally coupled to . The unique effective action including interaction reads

s 1 R 1AS
S= [ dr [ d®x (=FL FL + =DupD M 2.21
/0 7_/ 33<4 v uu+2 wf u90+2¢90 ) ( )

where the Abelian field strength of the dual gauge field is given by

F, = (Ouay, — 0yay)), (2.22)

and the covariant derivative involving the effective magnetic coupling g by
D, = 0, +igay,. (2.23)

_ : D,gs
A pure-gauge solution a;

background of ¢ is found.

The evaluation of the Polyakov loop suggests that the electric Z, degeneracy, as oc-
curred in the electric phase, no longer exists in the magnetic phase: the ground state of
the magnetic phase is unique and confines fundamental, heavy and fermionic test charges.
Nevertheless, massive gauge modes still propagate because the Polyakov loop does not van-
ish entirely. Therefore, the magnetic phase is called preconfining. The dual gauge group
U(1)p is dynamically broken due to the emergence of the macroscopic scalar field p. As a
consequence, the dual gauge excitation da,; becomes Meifner massive via the dual Abelian
Higgs mechanism,

to the equations of motions for the dual gauge-field in the

mp = g(T)ep. (2.24)

The evolution of the temperature dependent effective gauge coupling g is predicted by
thermodynamical self-consistency. The coupling vanishes for T T, g and diverges loga-
rithmically for 7"\, T¢. a:

g o< —log(T —T¢ nr), (2.25)

where T, »; denotes the temperature where the transition to the center phase takes place.
The typical energy of a non-selfintersecting center-vortex loop (CVL) is oc g~ 1.

During the electric-magnetic phase transition, the number of polarizations of the ‘pho-
ton’ jumps from two to three, thereby inducing a discontinuity in the energy density. The
negative pressure of the ground state arises due to an equilibrium between vortex-loop
creation by dissociation of large-holonomy calorons and the annihilation of vortex loops by
contraction. The non-vanishing pressure P]\gj and energy density p?\fl of the ground state
evaluate as

Py} = —pl) = —mA3T. (2.26)

Across the electric-magnetic phase transition at 7, g, where e = co and g = 0, the pressure
is continuous (see Fig. [22) relating the scales Ap and Ajy;:

1\ 1/3
AE:(Z> Anr. (2.27)
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Figure 2.2: Ratio of the energy density p and temperature T* across the electric-magnetic
phase transition as a function of the dimensionless temperature \g = % The dashed
line represents the continuation of the energy pg of the electric phase (solid black line)
for decreasing temperature 7" < T g (supercooled state, mp = 0). The solid grey line
represents the energy density pjs in the magnetic phase for increasing temperature (mp >
0). As long as no additional energy is available, the system remains in a supercooled state
until a temperature A\g = 12.15 is reached. The figure is taken from [23].

The magnetic phase is not detected by finite-size lattice simulations, since the mono-
poles condensate posses infinite correlation length (o< (My,14)~ "), where M,, ., is the sum
of the monopole and antimonopole mass after screening:

&

Muta = o5 (2.28)

2.4 The confining phase

First we provide some facts on the Abrikosov-Nielsen-Olesen (ANO) vortex. When embed-
ded in three space dimensions, a point-like two-dimensional ANO vortex becomes a vortex
line. A mesoscopic description of a static ANO vortex is given by the action of Eq. (2.21))
where the potential is absent. A BPS saturated solution to the equation of motions, fol-
lowing from action ([Z.21]), can be found that carries one unit of magnetic flux (27”) and has
vanishing core size. Outside the vortex core the pressure P,(r), which is isotropic in the
x1-T9 plane, reads

1A2,68 1
Mﬁ_r2’

F(r) = 2 2 2

(r > 0), (2.29)

where 7 is the radial vector in the z1-x9 plane. Notice the minus sign on the right hand side
of Eq. (2.29). For a finite energy, the length of the ANO vortex line must be finite. The
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Figure 2.3: The oppositely directed center fluxes in the core of the intersection of a selfin-
tersecting center-vortex loop generate an eddy where an isolated magnetic Z5 monopole is
located.

configuration is static as long as it possesses cylindric symmetry, but as soon as the vortex
is bend the configuration becomes unstable: the pressure inside the vortex loop is more
negative than outside. Thus, the vortex collapses as soon as it is created at finite coupling
g. Notice that in the limit where g diverges the pressure vanishes. This implies that the
formerly unstable vortex loop becomes a stable and massless particle-like excitation for
temperatures below T, ps. The typical core size d and energy E, of a CVL are given by

1 1 /A3 A3
dox — = 24| =M and EUCXz Mﬁ.
mp g B g 27

(2.30)

By the collective dissociation of large-holonomy calorons and anticalorons in the pre-
confining phase, isolated and closed magnetic flux lines start to form. At T; 57, where the
magnetic coupling g diverges logarithmically, the dual gauge field becomes infinitely heavy.
Thus, a complete decoupling of the dual gauge modes takes place at the magnetic-center
phase transition. As a result, only contact interactions between center-vortex-loops are
possible.

The decay of the monopole-antimonopole condensate and the subsequent formation of
the (Bose)condensate of CVLs is described by a macroscopic complex scalar field ® in a
potential Vo (®). The expectation of @ is proportional to the expectation of the 't Hooft
loop operator which is a dual order parameter for confinement. CVLs in the magnetic
phase are created by phase jumps of ® and an increase in the modulus of ®. This process
continues until ® relaxes to one of the Zs degenerated, energy and pressure free minima of
a potential V. The phase of @ is given by a line integral of the dual gauge field a;; along
a spatial circle of infinite radius SF=°° measuring the (quantized) magnetic flux through
the minimal surface M SR=00 The creation of a CVL now proceeds by an infinitely thin
flux line and its flux reversed partner traveling in from infinity and intersecting with the
Sfi=e° thereby piercing the surface M SR=co- The energy needed to create a single center-
vortex loop is provided by the potentlal V. Selfintersecting and therefore massive CVLs
come into existence when generated single CVLs that move fast enough to convert some
of their kinetic energy into mass collide and merge, thus creating selfintersections. Each
intersection point carries one unit of magnetic charge, see Fig. 23] where each sign is
equally likely. The spectrum of excitations is equidistant since the mass of a soliton with
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N self-interactions is given by NA¢, A¢c being the Yang-Mills scale. Modulo the charge
multiplicities the number of distinct topologies of N-fold selfintersecting solitons is given
by the number of distinct topologies of connected bubble diagrams with N vertices in a
scalar A\¢* quantum field theory. In Fig. [LT the topologies of CVLs with up to N = 3
selfintersections are shown. If subjected to mixing with theories possessing propagating
photons the only stable excitations are non-selfintersecting and one-fold selfintersecting
CVLs. This is due to the repulsive or attractive forces between the charges of CVLs with
more than one selfintersection. CVLs without selfintersection, however, are unstable in the
presence of a noisy environment, see Sec. 2.0l
In [I0] the potential Vi for the macroscopic field @ is found to be

A3 A3

satisfying the following properties (see also [24]):
(i) Ve is invariant under center jumps ® — exp(im)® only;
(ii) it allows for the creation of spin-1/2 fermions by a forward- and backward tunneling
which corresponds to local center jumps of ®’s phase;
(iii) the degenerated minima of Vi have zero energy density and are related by local center
jumps;
(iv) a mass scale A¢ occurs to parameterize the potential Vi
(v) Vo needs to be real.
The process of relaxation of ® to one of the minima of V¢ is described by the action

1— 1
S = /daj4 (58#<I> 0, ® — 5VC> . (2.32)

Once @ has reached V’s minima, quantum fluctuation 6® are absent because every po-
tential fluctuation would be harder than the maximal resolution.

Neglecting contact interactions between and internal degrees of freedom within solitons
as well as long-range interactions between charges mediated by photons, the naive series
for the total pressure Po at temperature T' represents an asymptotic expansion in powers
of a suitably defined coupling coupling constant A = exp(—A¢/T). That is, the sum

Poc = Z Pon (2.33)
N=0

over partial pressures P y of spin-1/2 states arising from solitons with N selfintersections
seems to converge up to a critical, temperature-dependent value N.(T'), but converges
when including higher contributions. This signals that the assumption that solitons with
arbitrary N are stable breaks down to hold for N > N, as a consequence of contact
interactions which increase due to the higher density of intersection points and vortex
lines. Though formally divergent, the sum over partial pressures Py turns out to be
Borel summable for negative (unphysical) values of A. The inverse Borel transformation
is meromorphi in the entire A-plane except for a branch cut along the positive-real axis.
Continuation to the physical region A > 0 leads to a sign-indefinite imaginary part which

3A meromorphic function is holomorphic on an open subset of the complex plane except for a set of
isolated poles.
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is smaller than the real part for sufficiently small temperatures. Complex admixtures to
the pressure become manifest as turbulence-like phenomena in the plasma and thus violate
thermal equilibrium. At zero temperature, the pressure of the ground state is precisely nil.
Because of the over-exponential rise of spin-1/2 fermion states with increasing temperature,
the imaginary part starts to dominate the pressure and the thermodynamical description
of the system begins to fail (violation of spatial homogeneity). That is, at temperature
Ty ~ Ac, the entropy wins over the Boltzmann suppression in energy and the partition
function diverges. This is an indication for the Hagedorn transition to the preconfining
phase. For details see [25]. Similar behavior is observed for the expansion of the energy

density [26]
o0
pc=>_ pen, (2.34)
N=0

where pc n is the energy density of soliton states with NV selfintersections and mass NA¢.
Demanding for continuity of the negative pressure across the magnetic-center phase
transitions yields a relation between Ajs and Ag:

Ay x 213 A ¢ (2.35)

The question may arise whether there are stable selfintersecting vortex-loops in the
magnetic phase. By the decay of the macroscopic ground state in the magnetic phase its
energy density is used to create selfintersecting CVLs. An N-fold twisted CVL possesses
a mass NA¢, where the Yang-Mills scale is about A¢c o Tx. For this reason, the potential
in the magnetic phase cannot provide enough energy density to create a selfintersection in
the magnetic phase.

2.5 The postulate SU(2)_ . = U(1),

We have mentioned in Sec. that the spatial coarse-graining over the topologically non-
trivial sector leads to the emergence of a macroscopic adjoint Higgs field which breaks
the fundamental gauge group SU(2) down dynamically to the subgroup U(1). Thereby,
two out of three gauge bosons become massive. At T, p = 13.87%—5, where the electric-
magnetic phase transition takes place, the mass of these two gauge field diverges and the
massless mode remains exactly massless because radiative corrections are absent due to
the decoupling from its heavy partners.

Now consider the U(1)y factor of the electroweak gauge group SU(2)y, x U(1)y of the
present Standard Model of Particle Physics (SM). In Quantum Electrodynamics (QED),
the photon is observed to be unscreened and practically massless (m, < 10714 V) [27].
It is described by the gauge group U(1) the progenitor of which is the U(1)y factor. As
stated above, there is only a single point in the phase diagram of SU(2) Yang-Mills ther-
modynamics that exhibits a precisely massless gauge mode: the deconfining-preconfining
phase transition at T g. Therefore, in [10], 23] 28, 29], the postulate was pushed forward
that the U(1)y factor of the electroweak gauge group is the unbroken subgroup of an SU(2)
Yang-Mills theory with a scale comparable to the temperature of the cosmic microwave
background (CMB) Tz = 2.728 eV. This group is denoted SU(2) The photon « in
the SM has to be identified with the massless gauge mode of SU(2) In analogy to the

CMB*

CMB*
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W¥ gauge bosons of the SM, the remaining two infinitely massive and thus undetectable
gauge modes of SU(2).,,,, are denoted V*E (my+ = 2e¢ with e = oo at T, ). Furthermore,
the average temperature of the universe Tgyg is identified with the critical temperature
Te g of SU(2) - This fixes the only free parameter of the theory, the Yang-Mills scale Ag,
to Ag = %TGMB = 1.065 x 10~* eV. For temperatures much above 1.k, the effects of
VE are completely negligible, whereas for temperatures a few times of Tiyy, these lead to
a visible modification of the black-body spectrum at low frequencies (spectral gap) |29} [30].
The spectral gap could also provide for an explanation why old (estimated age ~ 50 million
years), cold (mean brightness temperature ~ 20 K) and dilute (number density ~ 1.5 cm?)
clouds in between the spiral arms of the outer galaxy are composed of atomic instead of

molecular hydrogen, and why these clouds are stable [31].
Regarding the transition towards the preconfining phase, the postulate SU(2) =

CMB

U(1)y implies that the photon will acquire a Meifiner mass because of the coupling to
the newly emerging superconducting ground state (condensate of magnetic monopoles).
The system, however, remains in a supercooled state down to T" = 12.15%—7‘? due to the
shift in energy density at T g (additional degree of freedom), see also Fig. In [23]
an upper bound for the time the photon remains massless was estimated to be ~ 2.2
billion years. The observed intergalactic magnetic fields can possibly be explained by
the electric-magnetic phase transition. Conventional superconductors consist of a Cooper-
pair condensate of electric charges and expel magnetic fields from their interior (Meifiner
effect). If the occurrence of intergalactic magnetic fields is addressed to the emergence of
a superconducting ground state, this leads to the conclusion that a magnetically charged
object in the gauge group SU(2),,, is interpreted as an electrically charged object with
respect to U(l)y. Therefore, the ground state of the magnetic phase is a condensate
of electrically charged monopoles and antimonopoles with respect to U(1)y, and thus
generates intergalactic magnetic fields.

2.6 Motion by curvature

Here, we would like to illustrate how the curve shrinking process is induced by the curvature
of a CVL. Recall that the vortex loop is generated by the bending of a straight ANO vortex
line which exhibits isotropic pressure perpendicular to its symmetry axis. Now consider
a situation where a CVL of an isolated SU(2) Yang-Mills theory is (locally) embedded
into a flat two-dimensional surface at mp < co and d > 0. Then, a hypothetical observer
measuring a positive (negative) curvature of a segment of the vortex line experiences more
(less) negative pressure in the intermediate vicinity of this curve segment (see Sec. [2.4))
leading to its motion towards (away from) the observer, see Fig.[2Z4l The (inward directed)
velocity of a point in the vortex core will be a monotonic function of the curvature at
this point. On average, this shrinks the CVL. Alternatively, one may globally consider
the limit mp, — oo, d — 0, that is the confining phase, but now taking into account the
effects of an environment that locally relaxes this limit (by collisions) and thus also induces
curve shrinking. This situation is described by a curve shrinking flow in the dimensionless
parameter T

0, 2(€,7) = %8523?(5, ), (2.36)
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Figure 2.4: Highly space-resolved snapshot of a segment of a center-vortex loop. The
pressure P; in the region pointed to by the normal vector n is more negative than the
pressure P, thus leading to a motion of the segment along n.

where ¥ is a point on the planar CVL, £ is arc length, and ¢ a string tension effectively
expressing the distortions induced by the (noisy) environment. After a rescaling to dimen-
sionless variables,

x=+/of  and s = /o€, (2.37)
flow equation (2.36]) assumes the form:
d-x(s,7) = 02x(s, 7). (2.38)

In the following sections, we will resort to the dimensionless flow equation.



Chapter 3

Mathematical Prerequisites: Curve
shrinking flow

In the 1970s, William Thurston developed a program for the classification of three-dimen-
sional manifolds. It had a great impact in the field of three-dimensional topology and
revealed a very strong connection between low-dimensional topology and differential ge-
ometry, especially between hyperbolic geometry and Kleinian groups [32, [33].

Now consider a smooth closed (that is, compact and without boundary) manifold M
equipped with a smooth time-dependent Riemannian metric g(7). A (topological) manifold
is a topological space which is locally homeomorphic to a Euclidean space, but with an
generally more complicated global structure. A manifold equipped with a Riemannian
metric g is a real differentiable manifold M, in which each tangent space is endowed with
an inner product g in a manner that varies smoothly from point to point. It should be
noted that not every manifold admits a geometry. The Ricci flow is a means of processing
the metric g by the evolution of g under the following partial differential equation (PDE)

%9(7) = —2Ric(g), (3.1)
where Ric is the Ricci curvature. In local coordinates the coefficients R;; of the Ricci
curvature tensor are given by a contraction of the Riemannian curvature tensor Rijkl,
R;; = Rkikj. Roughly speaking, the Ricci-flow contracts regions of positive curvature and
expands those of negative curvature, thereby smoothing out irregularities in the metric.
In this spirit, it is formally analogous to the diffusion of heat that describes how an irreg-
ular temperature distribution in a given region tends to become more homogeneous over
time. An example of its application is the proof of the two-dimensional uniformization
theorem, which states that any surface admits a Riemannian metric of constant Gaussian
curvature. Here, the (suitably renormalized) Ricci flow is used to conformally deform a
two-dimensional metric on M into one of constant curvature [34]. Richard Hamilton intro-
duced the Ricci flow with the intention to gain insight into the geometrization conjecture
proposed by William Thurston in 1980 [35]. The geometrization conjecture is the analogue
for three-manifolds of the uniformization theorem for surfaces and implies several other
conjectures, such as Thurston’s elliptization conjecture or the Poincaré conjecture. Let us
first consider the Poincaré conjecture, which was originally posed as a question at the end of
an article by Henri Poincaré in 1904. In its standard form, it states that every simply con-
nected, compact three-manifold without boundary is homeomorphic to the three-sphere.

19
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A more precise phrasing is that the fundamental group of a closed three-manifold M is
trivial, if and only if M is homeomorphic to the three-sphere. Now, the geometrization
conjecture concerns the topological classification of three-dimensional smooth manifolds.
The original phrasing of Thurston goes as follows [35]: “The interior of every compact
3-manifold has a canonical decomposition into pieces which have geometric structures”.
In three dimension there are precisely eight geometric structures called the eight Thurston
(model) geometries (involving the spherical geometry S®, the Euclidean geometry R3, the
hyperbolic geometry H3, the geometry of S? x R, the geometry of H? x R, the geometry
of the universal cover of SLy(R), the nil geometry and finally the sol geometry). The
canonical decomposition is carried out in two steps. In the first stage, also referred to as
the prime decomposition, one cuts a three-manifold M along two-spheres embedded in
M such that neither of the obtained manifolds is a three-ball, then one glues three-balls
to the resulting boundary components. This decomposition is unique up to the sequence
and additional three-balls. The second stage involves cutting along certain tori that are
nontrivially embedded in M obtaining a three-manifold the boundary of which consists of
tori. Hamilton’s basic idea was to place an arbitrary metric g on a given smooth manifold
M and to dynamically deform M by the Ricci flow to yield one of Thurston’s geomet-
ric structures. Hamilton succeeded in proving that a closed three-dimensional manifold,
which carries a metric of positive Ricci curvature, is a spherical space form that acts like
an attractor under the Ricci flow [36]. This is known as the Hamilton theorem. How-
ever, in general, the Ricci flow can be expected to develop a singularity in finite time.
Then, in a series of eprints starting in 2002, Grigori Perelman sketched a proof for the
geometrization conjecture [37]. Thereby, Perelman modified Hamilton’s program to prove
Thurston’s geometrization conjecture by stopping the Ricci flow once a singularity has
been formed, then carefully performing ‘surgery’ on the evolved manifold, systematically
excising singular regions before continuing the flow. This is called Ricci flow with surgery.

The results obtained in this thesis heavily depend on the important work on the curve
shortening flow done by Gage and Hamilton [38], and Grayson [39, [40]. The curve shorten-
ing flow, also known as heat equation on immersion, is the one-dimensional analogue to
the Ricci flow and originally inspired Hamilton in the development of the Ricci flow. Let
us now consider the properties of curve shrinking flows in two and three space dimensions.

3.1 Embedded curves without selfintersection

3.1.1 Planar curves

Consider a family of smooth, closed curves x(s,7) of length L embedded? in a two-dimen-
sional flat plane R? | where x is a point along the curve, s € [0, L] is the arc length that
is unique only up to a constant and 7 € [0, 7] the flow parameter which parametrizes the
family. The initial curve x(s,0) evolves as a function of ‘time’ 7 to x(s, 7). The Euclidean

! A geometric structure is defined to be a space modeled on a homogeneous space (X, ), where X is
a manifold and G is a group of diffeomorphisms of X such that the stabilizer of any point z € X is a
compact subgroup of G [35]. For every z in X, the stabilizer subgroup of z (also called the isotropy group
or little group) is defined as the set of all elements in G that fix z: G, = {g € Glg - = = z}

2An immersion is a local embedding.

3An embedding is a map f : X — Y between differentiable manifolds X and Y where the map f is a
homeomorphism between X and its image f(X).



3.1. EMBEDDED CURVES WITHOUT SELFINTERSECTION 21

Figure 3.1: The Euclidean curve shortening flow. The arrows point towards the unit normal
n and the length of the arrows is proportional to the curvature k.

curve shortening flow is defined as
d-x(s,7) = 8?x(s,7) = k(s,7)n(s, 1), (3.2)

where the derivative 9, := 8% is taken along a fixed value of s. This is a parabolic, nonlinear
second-order partial differential equation, where n is the inward-pointing Euclidean unit
normal and k the scalar curvature, defined as

k(s, )= \852:)((3,7')\ = det(@sx(s,T),ﬁfx(s,T)), (3.3)

with |v| = /v -v, v-w denoting the Euclidean scalar product, and det(-,-) denotes the
determinant of the 2 x 2 matrix created by two 2 x 1 vectors. It is a standard result
for parabolic equations that solutions exist for a short time and are unique. In the curve
shortening flow, the curve x(s,7) is deformed along its unit normal n(s,7) at a rate that
is proportional to its curvature k(s,7). This flow deserves the attribute curve shortening,
because its flow lines in the space of closed curves are tangent to the gradient for the curve
length functional, see Eq. (8I7). For the remainder of this section, we assume that a
solution to Eq. (B:2) exists on the maximal time interval [0,7). A more visual description
of this flow is the evolution of an elastic band in a viscous medium. If the tension in
the elastic is kept constant then its behavior is approximately determined by Eq. (B.2]),
see also Fig. Bl Since motion normal to the curve affects arc length, s is not preserved
under curve shrinking. Thus, s and 7 are not independent and commute according to the
following rule

0,05 = 0,0; + k*0s. (3.4)
Therefore, we introduce the curve parameter u (modulo 27) related to s by

ds = |0,x| du. (3.5)
The quantity |0,x| can also be thought of as an arc length density. Actually, Eq. (8.3])

defines s. The operator 0 then writes as

1

0y = ——0,.
|0ux|

(3.6)
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In the following, we resort to a slight abuse of notation by using the same symbol x for
the functional dependence on u or s. Let us now introduce coordinates in R?, x(u,7) =
(x(u,7),y(u,7))T (where T denotes the transpose). The tangent vector to the curve is
given by 0,x, and thus we define the unit tangent ¢ vector as

OuX 1 Oux
T o Taux] ( Ouy > | 7

The unit normal is then given by

n(u7) = 8;(' ( _8(31;1, ) (3.8)

The unit tangent and normal vectors are written in terms of arc length s as

t(s,7) = ( gzm > and  n(s,7) = < ‘(f;y > (3.9)

So we can write the Frenet-Serret formulas, which describe the kinematic properties of a
point (particle) that moves along the planar curve x as

sn)=(%0)n) 3.10)

where the curvature, when expressed in coordinates, is

(s, T) = Qs 0%y — 022 Dsy. (3.11)

The circumference of the curve L at time 7 is defined as

L(7) 2r
L(r) = / ds = / du |0yx(u, )| . (3.12)
0 0
The evolution of L under the flow is given by

. L L(T) 27
L(r) := ddg_T) = —/0 dsk? = —/0 du |0,x| k2. (3.13)

For the area A enclosed by the curve we have

L(7)
/0 ds x(s,7) -n(s,7)|. (3.14)

Surprisingly, the time derivative of the enclosed area remains constant under curve shrink-
ing,
dA(T)

A(r) = 1 =2 (3.15)

For planar curves, the decreasing integral fOL ds |k| measures the total change in angle. In

the special case of convex planar curves, fOL ds k| = fOL ds k measures the winding number
of the curve and is an invariant of the flow (until a singularity develops).
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In [41], Grayson stated that under the flow Eq. (B:2]) ‘the curve is shrinking as fast as
it can using only local information’. Let us see how this statement can be understood.
Consider the curve length L(7) = 027r du |0yx|. To take the time derivative of L we
differentiate |9,x|? with respect to 7 and obtain

0-|0ux| = OuX - 070y X. (3.16)

1
|Oux|
Substituting this into L(7) and integrating by parts, we obtain the following expression
for the rate of decrease of curve length

, L()
L(7) = —/ dskn-0-x. (3.17)
0

Therefore, Eq. (32) expresses the local condition that the rate of decrease of L(T) is
maximal with respect to a variation of the direction of the velocity 0,x of a given point
on the curve at fixed magnitude |0,x| [42]. However, the magnitude |0;x| is not in general

the speed which maximizes L(t).
Setting A(7 = 0) = Ay, the solution to Eq. (3.13) is

A(r) = Ao — 27T, (3.18)
By virtue of Eq. (BI8]) the critical value T', where A and with it the curve vanishes, is

related to Ag as

T=—. 1
o (3.19)

The isoperimetric ratio is defined as %, and the isoperimetric inequality states that

> 4. (3.20)

Equality is achieved if and only if the curve is a circle. Therefore, one can consider it a
measure of ‘how circular’ the curve is.

In 1983, Gage showed that when a smooth convex curve evolves according to Eq. (3.2),
the isoperimetric ratio L; decreases, so that if A — 0, then L — 0 and the curve shrinks

to a point [43]. In 1984, Gage showed that a convex curve is becoming circular and %
approaches 47, as the enclosed area approaches zero, provided that the curvature does not
blow up prematurely, that is the curve does not form a cusp [44]. As a consequence, the
ratio %‘: of the circumscribed ratio to the inscribed ratio converges to unity. This can be
considered a C?-convergence to the circle. Hence, in the absence of singularities, a strictly
convex and embedded curve remains convex and embedded under the evolution.

In 1986, Gage and Hamilton showed that for convex curves the curvature does not blow
up prematurely for lim, .7 A(7) = 0 [38]. Thus, the curve remains convex and becomes
circular, as it shrinks to a point for 7 /T, where 0 < T' < oo. The curve shrinks to a
circle in the sense that:

(i) the ratio RRL;: approaches unity;

(ii) the ratio of the maximum curvature to the minimum curvature ’Z"‘ax approaches unity

min

(C?-convergence);
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(iii) the higher order derivatives of the curvature k converge to zero uniformly (C°-
convergence).
In 1987, Grayson showed that embedded (non-selfintersecting) planar curves become con-
vex before T" without developing singularities [41]. Thus, this completes the proof of the
well known Gage-Hamilton-Grayson theorem that curve shortening determined by Eq. (B:2))
shrinks embedded plane curves smoothly to points, with round limiting shape. It is impor-
tant to note that some planar curves, which are immersed but not embedded will surely
develop singularities, e.g. the figure-eight of Sec. or the Limacon of Pascal.

Consider the set of all Euclidean transformations in R?, that is the set of all rotations,
translations and reflections of a figure in R%. Such a transformation ET : R? — R? is a
function of the form

ET(x) =Ux + a, (3.21)

where U is an orthogonal 2 x 2 matrix and a € R%2. The Euclidean curve shortening flow
is defined in terms of the Euclidean curvature k& and the Euclidean unit normal n that are
invariant under Euclidean transformations ET'.

3.1.2 Space curves

There are several possibilities of generalizing the curve shortening flow. One is the mean
curvature flow, which is the generalization of Eq. (8:2) for hypersurfaces. In this case, the
results of Sec. B.IT] continue to hold for convex curves, but for non-convex curves they do
not [45].

For our purposes, it is more interesting to look at the extension of the curve shortening
flow for curves embedded in the three-dimensional Euclidean space R3. Consider a contin-
uous, differentiable (and not necessarily closed) space curve x(s,7) embedded in R3. The
tangent, normal and binormal unit vectors are denoted t, n and b, respectively, also called
Frenet-Serret frame, and defined as follows:

t is the unit vector tangent to the curve, pointing in the direction of motion: t = 0,x;

n is the normalized derivative of t with respect to the arc length s of the curve: n = %T:I;
b is the cross product of t and n: b=+t x n.

The Frenet-Serret formulas for a point on the space curve are given by

A 0 k 0 t
7 —| -k 0 ¢t n |, (3.22)
S\ b 0 —t 0 b

where k is the curvature and ¢ the torsion. The Frenet-Serret formulas effectively define
the curvature and torsion of a space curve. It should be noted that the existence of a
Frenet-Serret frame requires |kn|? > 0. That is, a particle traveling along the curve must
experience acceleration. The evolution equation for space curve assumes the same form as

Eq. 3.2),
0-x(s,7) = k(s,7)n(s, 7). (3.23)

The unit normal n is not always defined, though kn always makes sense. It was shown
by Altschuler and Grayson that solutions to the space curve flow exist until the curvature
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becomes unbounded. However, space curves may not remain embedded in general, and sin-
gularities will develop in the case of closed curves. A phenomenon of space curve evolution
is that inflection points (k = 0) may develop during a time interval on which the curvature
is bounded. When this happens the curvature becomes zero and the torsion infinite at
a point. Nevertheless the curve remains embedded since the flow ignores these types of
singularities in the torsion [46 47]. A rather surprising property of space curve evolution
is, that the formation of a singularity is a planar phenomenon. A space curve is said to
be planar at a point (s',7') if the ratio of torsion and curvature vanishes, £(s',7') = 0.
In [46], Altschuler showed that if a space curve develops a singularity at (s',7’), then
lim s ) (57,7 %(5,7) = 0. Furthermore, Altschuler showed that the space curve is either
asymptotic (7 — o00) to a planar solution which moves by homothety (self-similarity), or
a rescaling of the solution along the singularity converges in C'*° to a limiting solution
x(s, 7 = 00) [46], where x(s,7 = o0) is the family of planar, convex curves. The most
trivial case of a curve moving by homothety is the circle shrinking down to a point. It
should be noted that the conjecture due to Grayson, that singularity formation is a planar

phenomenon, can be proven without using the language of rescalings.

3.2 Immersed curves with one selfintersection

When a closed curve immersed in a plane evolves by its curvature according to Eq. (82]), it
remains smooth until its curvature blows up. From Sec. B.1.1], we know that an embedded
closed curve cannot develop a singularity until it shrinks to a point, where the limiting
shape of the curve converges in C'*° to circle. In marked contrast to this behavior, it was
shown by Grayson that an immersed curve can evolve by the curvature flow such that its
area vanishes, but its isoperimetric ratio converges to co. Such a curve, namely a figure-
eight, was investigated in [40]. A figure-eight is the simplest non-embedded curve and is
defined to be a smooth immersion into the plane with exactly one double point, and a total
rotation number zero,

L
/ dsk =0. (3.24)
0

Here, s is arc length, L the curve length and k the scalar curvature. Such a curve divides
the plane into three disjoint areas two of which are finite and denoted (the unsigned areas)
A and As. Let x(s,7 = 0) be figure-eight which evolves to x(s,7) according Eq. (8.2))
for 0 < 7 < T. The curvature is unbounded as 7 — 7. The main result of [40] is that

the isoperimetric ratio L; converges to co as 7 — T if and only if the loops bound regions

of equal area, A;(0) = A2(0). This in turn implies that % for a curve with unequal-area
loops is bounded as 7 — T.

Since for immersed curves the number of double points is a non-increasing function of
time [48], a figure-eight remains a figure-eight until one of its loops collapses or the flow
encounters a singularity. The curve stays smooth and the flow continues until A; or A,
converge to zero. For the total area A of a figure-eight we have

A(r) = A1 (7) + As(7). (3.25)

The time derivative of the area enclosed by one of loop of the curve is equal to —| [ ds k|
over the loop. Unlike the case of a non-selfintersecting curve, the rate of change of the
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total area is not longer constant, but constrained as

dA(T)
dr

—4r < < —2m. (3.26)
However, we have the nice property of figure-eights that the difference of areas bounded
by the two loops of x(s,7) remains constant under the flow evolution:

Ay (1) — Ay(T) = const. (3.27)

Aside from a number of applications in differential geometry, curve shortening flows
are also used in multi-agent systems, such as mobile autonomous robots [42], in image
processing where the flow provides an efficient way to smooth curves representing the
contours of objects, or in computer vision. For a complete account of many of the results
of curve shrinking see [45] [49).

In the following, we suppress the functional dependence on u in the argument of x and
n and write x(7) := x(u, 7) and u(u, 7) := n(7)



Chapter 4

Non-selfintersecting center-vortex
loops

We apply curve shrinking to the N = 0 sector in the sense of Sec. 26l It should be
noticed that the restriction of the motion of a CVL to a two-dimensional flat plane is a
major assumption which needs to be supplemented by additional physical arguments for
its validity.

4.1 Wilsonian renormalization-group flow

In this section, we exploit the concept of renormalization-group transformations to yield
an effective ‘action’ that enables us to compute statistical quantities. The renormalization
group allows one to investigate the change in the physical parameters of a system which is
associated with the change in scale (energy or resolution) and necessary to keep the physics
constant. In our case, the change of scale corresponds to a change of the resolution @ used
to probe the system. Here, the resolution @ is a strictly monotonic decreasing function
of the flow parameter 7. The change in parameters of the effective ‘action’ is implicitly
determined by a renormalization-group flow in 7.

4.1.1 Geometric partition function

Let us now interpret the process of curve shrinking determined by Eq. ([B.2]) as a renorm-
alization-group transformation of a statistical ensemble made up of planar N = 0 CVLs.
A partition function, which is the sum over suitable defined weights of the members in the
ensemble, is considered to be invariant under a decrease of resolution ) determined by the
flow parameter 7. Physically, 7 is a monotonically decreasing function of Q/Qo, where Q
(Qop) are mass scales associated with the actual (initial) resolution applied to the system.
The role of @ can also be played by the finite temperature of a reservoir that is coupled
to the system.

To define a suitable weight, we devise an ansatz for the effective ‘action’ S = S[x(7)]
in geometric terms of the curves in the ensemble, since these are the only accessible quan-
tities in the system of isolated non-interacting CVLs. The ‘action’ as a functional of x is
expressible in terms of integrals over local densities in s. Furthermore, we take advantage
of the following symmetries the action should possess:

27
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(i) scaling symmetry x — Ax, A € Ry: for both conformal limits, A — oo and A — 0, where
the curves at fixed L gets unobservable since AL — co and AL — 0, the ‘action’ .S should
be invariant under further finite rescalings (decoupling of the fixed length scale o~1/2);
(ii) Euclidean point symmetry in R?, that is the group of all rotations, translations and
reflections of a figure (curve) in the plane: sufficient but not necessary for this is a repre-
sentation of S in terms of integrals over scalar densities with respect to these symmetries.
That is, the ‘action’ density should be expressible as a expansion in series involving prod-
ucts of Euclidean scalar products of %X, n € NT, or constancy. However, scalar integrals
can be constructed which involve non-scalar densities. For instance, consider the area A
enclosed by curve and given by

L(7)
/ ds x(7) - n(7)|.
0

The density x - n in this expression is not a scalar under translations.
We now decompose the effective ‘action’ into a conformal and a non-conformal factor

A(r) = -

5 (4.1)

S =F.x Fy, (4.2)

where in addition to Euclidean point symmetry F. is invariant under x — Ax, whereas Fj,.
is not. In principle, infinitely many operators can be defined to contribute to F.. Since
the evolution generates circles for 7 T and thus homogenizes the curvature, higher
derivatives of k with respect to s rapidly converge to zero [38]. We expect this to be true
also for Euclidean scalar products involving higher derivatives %x. To yield conformally
invariant expressions such integrals need to be multiplied by powers of v/A and/or L or the
inverse of integrals involving lower derivatives. At this stage, we are not able to constrain
the expansion in derivatives by additional physical or mathematical arguments. To be

pragmatic, we simply set F. equal to the isoperimetric ratio:

(4.3)

We consider the non-conformal factor F,,. in S as a formal Taylor expansion in inverse
powers of L or A due to the conformal invariance of the curve for L, A — oo and L, A — 0.
Since the renormalization-group evolution of the effective ‘action’ is driven by the curve
shortening flow of each member in the ensemble, we allow for an explicit 7 dependence of
the coefficient ¢ of the lowest nontrivial power % The idea is to include the contribution
of higher-order operators, that do not exhibit an explicit 7 dependence, into a resolu-
tion dependence of the coefficient of the lower-dimensional operators. Thus, we make the
following ansatz

Fre(r) =1+ Z((TT)) . (4.4)

The initial value c(t = 0) is determined from a physical boundary condition such as the
mean length L at 7 = 0 which determines the mean mass m of a N =0 CVL as m = oL.
We have also considered a modified factor

Foe(t) =1+ Z((TT)) (4.5)
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in the ansatz for the ‘action’ in Eq. ([.2]).

For later use, we investigate the behavior of F,,.(7) for 7 / T for an ensemble consisting
of a single curve only and require the independence of the ‘partition function’ under changes
in 7. Using Eq. (31I8)) in the vicinity of 7 = T, where the limiting of curve is a circle with
radius R, we have

L(r) =2nR =8n VT — 1. (4.6)

Since F.(t /' T) = 4, independence of the ‘partition function’ under the flow in 7 implies
that

ot) VT — . (4.7

That is, F},. approaches a constant value for 7 T which brings us back to the conformal
limit by a finite renormalization of the conformal part F; of the effective ‘action’. In this
parametrization of S, the coefficient ¢(7) can thus be regarded as an order parameter for
conformal symmetry with a mean-field critical exponent.

4.1.2 Effective ‘action’

We now want to derive an effective ‘action’ S[x(7)] resulting from a partition function Z
for a nontrivial ensemble E. The partition function Zjs is defined as the average

M
Zy = exp (—S[xi()]) (4.8)
i=1
over the ensemble E = {x1,... xps}. FEjs denotes an ensemble consisting of M curves

where Ej; is obtained from Ej;_1 by adding a new curve xps(u, 7). We are interested in
a situation where all curves in E; shrink to a point at the same value 7 = T'. Because of
T = Ap/(27), we demand that at 7 = 0 all curves in E)j; have the same initial area Ag. The
effective ‘action’ S in Eq. (£2) (when associated with the ensemble Ejs; we will denote it as
Sar, and the corresponding coefficient ¢jy) is determined by the function ¢ps(7), compare
with Eq. ([@4), the flow of which follows from the requirement of 7-independence of Z;:

d

—Zy =0. 4.9

4 (19
This is an implicit, first-order ordinary differential equation for ¢ps(7), which is in need for
an initial condition cp s = cp(7 = 0). An obvious choice of initial condition is to demand
that the statistic mean length L(7), defined as

Lg(r) = —

M
Lix;(7)] exp (=Sm[xi(7)]), (4.10)
Zai(7) ; p M

coincides with the geometric mean length Ly (1) defined as

Las(r) = % S Lixi(7) (4.11)



30 CHAPTER 4. NON-SELFINTERSECTING CENTER-VORTEX LOOPS

at 7 =0:
L (0) = Ly (0). (4.12)

From this initial condition a value for cg ps follows. In the case of the modified ‘action’ in
Eq. ([&3)), the choice of initial condition Ly (7 = 0) = L(7 = 0) leads to Fy,.(7) = 0 which
is equivalent to a uniform distribution. This is because initial condition ([I2]) is identically
fulfilled for the modified ‘action’ if ¢(0) = — Ay is chosen, then setting ¢(7) = —A(7) solves
dZys/dt = 0 trivially. While the geometric effective ‘action’ is thus profoundly different for
such a modification of F,,.(7), physical results such as the evolution of the variance of the
position of the ‘center of mass’ agree remarkably well, see Sec. £2.4l We conclude, that
the geometric effective ‘action’ itself has no physical interpretation in contrast to quantum
field theory and conventional statistical mechanics where the action in principle is related
to the physical properties of a given member of the ensemble. Rather, going from one
ansatz for Sjs to another describes a particular way of redistributing the weight in the
ensemble which seems to have no significant impact on the physics.

4.2 Results of simulation

4.2.1 Preparation of ensemble

For the curves depicted in Fig. 1] we make the convention that Ag = 27 x 100. It
then follows that 7" = 100 by virtue of Eq. (8I9]). Furthermore, we have prepared the
ensembles such that the position of ‘center of mass’ (COM) coincides with the origin. It
should be recalled that such a translation does not alter the effective ‘action’ (Euclidean
point symmetry). Also note that we use the same notation Fj; for the primed and the
unprimed ensemble. In Fig. E2] the evolution of two different initial curves under curve
shrinking is shown.

4.2.2 Numerical procedure

The initial curves depicted in are generated as follows. First, we chose a list of points
in the z-y plane such that the initial curve x(u,7 = 0) consecutively passes the points,
where initial and final point coincide. A spline, which is made of piecewise third-order
polynomials with C! continuity, interpolates each point in the list. Since Mathematica’s
SplineFit sets the second derivatives of the spline at the endpoints to zero, the first two
points are appended to the end of the list. The analogue holds for the last two points of
the original list. To yield a smooth curve with more than C! continuity each coordinate
of the curve is fitted by trigonometric functions up to order eight in its Fourier-expansion.
Area, length and centroid of the initial curve are computed numerically with NIntegrate,
where the latter is given by

1 2
Xoom = —/ du |0,x| x. (4.13)
L Jo

Now we can prepare the ensembles as described in Sec. 211
To simulate the flow evolution of the initial curves one searches for solutions to the
second-order partial differential equation

1 1
O-x(u, 1) = Do T)|8u B ) Oux(u, T) (4.14)




4.2. RESULTS OF SIMULATION 31

N

f)(\/?

S
| > Go
ﬂb) ) N
5 / ~
=2
7

S

Figure 4.1: Initial curves contributing to the ensembles Ej;. The positions of the ‘center
of mass’ coincide with the origin, and all curves have the same area 200 7.

subject to periodic boundary conditions in the curve parameter, x(u = 0,7) = x(u =
27, 7), and for the initial conditions x(u,7 = 0) depicted in Fig. @1l This is done using
the Numerical Method of Lines. This is a technique for solving PDEs by discretizing
in all but one dimension, and then integrating the semi-discrete problem as a system of
coupled ordinary differential equations (ODEs) or differential-algebraic equations. Here,
we partially discretize the flow equation Eq. (AI4) on a uniform grid in the parameter
u yielding an ODE initial value problem in 7 that was solved by the ODE integrators in
Mathematica’s NDSolve. Fig. [ 2indicates why this technique is called the method of lines.
As one can also see from Fig. 2] a set of discrete points on the curve, although remaining
equidistant in u, may evolve under the flow such that the spatial distances between adjacent
points falls below the numerical precision. The flow then encounters a purely numerically
and thus virtual singularity (not to be confused with the earlier mentioned non-virtual
singularities at 7 = T'). Therefore, the execution of NDSolve is broken up into several
basic steps which are carried out separately. These steps are:

(i) equation processing and method selection,

(ii) method initialization,

(iii) numerical solution,

(iv) solution processing.

The low-level functions that are used in Mathematica to break up these steps are ND-
Solve® ProcessEquations (i,ii), NDSolve" Iterate (iii) and NDSolve' ProcessSolutions (iv).
NDSolve® ProcessEquations classifies the differential system into an initial-value prob-
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Figure 4.2: Plots of the evolution of planar N=0 CVLs (curve 2 and 6 of Fig. {.1]) under
the curve shortening flow. The thick central lines depict the trajectories of the ‘center of
mass’ (see Sec. £.2.4)) which coincides with the origin at 7 = 0. The flow is started at 7 = 0
and stopped at 7 = 100.

lem, boundary-value problem, differential-algebraic problem, partial-differential problem,
etc. It also chooses appropriate default integration methods and constructs the main
NDSolve" StateData data structure. NDSolve"Iterate advances the numerical solution.
The first invocation initializes the numerical integration methods. NDSolve® ProcessSo-
lutions converts numerical data into an InterpolatingFunction to represent each solution.
More precisely, the curve parameter range is divided into n equidistant intervals yielding
n points on the curve which are generally not equidistant in space. For our simulation the
number of points n is chosen between 130 and 300. The discretization of flow equation
(@14]) with respect to the variable u needs to convert the derivatives into finite differences.
The second-order centered (with respect to to the set of sample points around x(u;)) for-
mula for the first derivative is given by

ooy wuigr) — x(ui-1)
o (u;) = =1 o + O(h?), (4.15)

where h is the grid spacing. Here, finite differences of sixth order are used which are com-
puted with Mathematica’s NDSolve' FiniteDifferenceDerivative. In the following, every
quantity involving derivatives evaluated on a discrete set of data points is computed using
Mathematica’s NDSolve’ FiniteDifferenceDerivative. After NDSolve® ProcessEquations is
invoked the first time at 7 = 7 = 0, the numerical solution is advanced using ND-
Solve’ Iterate by a unit ‘time’ step A7 =1 up to 7. Then the computation is interrupted
to compute an error estimate that indicates whether a virtual singularity is starting to
evolve. The error estimate exploits that A(1) = Ay — 27 7 and is computed as

10* x (A(m) — A(1y) + 27(m0 — 11)), (4.16)
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where A(7) is given by the discrete version of Eq. (3.14) evaluated on the point grid given
by NDSolve.

Until 75 reaches T, the solution is advanced step by step as long as the error estimate
does not exceed the empirically found value of 2. But if it does, the by then obtained
solution is fitted at 75 — 1 in such a way that a new discretization yields (spatially) well
separated points to restart the procedure. In Fig. E2lb) such a situation is shown. The
fitted curve is obtained as follows. At 71, one determines the minimal arc length sy, which
is the least of all arc length between adjacent points on the curve. Then, at 79 — 1, all
those points on the curve are dropped the arc length of which to their next neighbors is
less than the minimal arc length spyi,. The remaining points are fitted by trigonometric
functions, where the order of the fit is chosen to depend on 7 (since the curve is getting
smoother with increasing 7). In the case of the error estimate of the fitted curve exceeding
the tolerance, the number of grid points has to be increased or the initial curve needs to be
smoothed slightly. In order to avoid discontinuities in the 7-evolution of L, A and Z¢ow,
and singularities in their derivatives that occur since the fit procedure generates piecewise
defined functions, and since after the fit the values of A and L slightly deviate from their
former values, these quantities are interpolated by polynomials for 0 < 7 < T using Find-

Fit. To improve the accuracy of L near the critical value T, the isoperimetric ratio L; is

fitted instead of L, and L is calculated from (%) - A.
fitted

The analytical results of Sec. Bl such as the convergence of % to 47, the constancy
of A or the vanishing of L and A for 7 / T are numerically well reproduced, thereby
confirming the validity of the simulation.

The implicit first-order differential equation % = 0 for the coefficient is solved using
NDSolve. If not set at will, the initial condition ¢y for ¢(7) was derived from Eq. (EI2])
using Mathematica’s FindRoot. The variance of the position of COM was computed. The
square of the coefficient ¢(7) associated to the non-conformal factor was fitted with function

c(1)? = k(Ty — 7)°, (4.17)

where k£ and « are fit parameters. We have determined the critical exponent of the coeffi-
cient to § = 0.5 as 7 — T, in accordance with the theoretical value of Eq. A1l For checking
purpose, we have also used Tg as fit parameter, yielding excellent agreement within the
numerical precision.

A CD-ROM containing the used Mathematica notebooks is attached to the thesidl.

4.2.3 Renormalization-group invariance of partition function

The function ¢3,(7) is plotted in Fig. @3l According to Fig. E3]it seems that the larger the

ensemble the closer c?\/[ (1) is to the evolution of a single circle of initial radius R = %.
For growing M the function ¢3,(7) approaches the form
Zo(T) = k(T —7), (4.18)

!The results for non-selfintersecting curves were obtained using Mathematica version 6.0.2 or below.
Here, a remark concerning the used Mathematica version is in order. Due to incomprehensible reasons
version 6.0.3 is not capable to solve the implicit ODE for the coefficient ¢(7), not even in the trivial case
of an ensemble consisting of a single curve. In the case of one-fold selfintersecting curves, version 6.0.3 still
works and was used.
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Figure 4.3: The square of the coefficient cps(7) entering the effective ‘action’ Sy, =

%TT); (1 + CLM(—Y))) for various ensemble sizes M = 1,...,12. Notice the early onset of the

linear drop of ¢3,(7). The slope of c3, (77') near 7 = T does not depend on caM =c2,(r=0)
and thus not on the initial choice of L, but only on the specific choice of curves included
in the ensemble.

where the slope kj; depends on the strength of deviation from circles of the representa-
tives in the ensemble Fj; at 7 = 0, that is, on the variance ALy at a given value Ag.
Physically speaking, the value 7 = 0 is associated with a certain initial resolution of the
measuring device (the strictly monotonic function 7(Q), @ being a physical scale such as
energy or momentum transfer, expresses the characteristics of the measuring device and
the measuring process), the value of Ay describes the strength of noise associated with the
environment (A determines how fast the conformal limit of circular points is reached),
and the values of cp ps and ks, see Eq. (18], are associated with the conditions at which
the to-be-coarse-grained system is prepared. Notice that this interpretation is valid for the
‘action’

only.

If we relax initial condition Ly;(0) = EM(O) for ¢opr and set the initial value for cp ps
at will, the coefficient starts at the given value and rapidly adapts to the evolution depicted
in Fig. @3] and respectively, Fig. @4l In Sec. A1.2] we have argued that for the modified
‘action’ and the initial condition Lz;(0) = Lps(0) the curves are uniformly distributed.
Relaxing this initial condition in the case of the modified ‘action’, means that the curves
are no longer uniformly distributed for 7 = 0. However, the uniform distribution is restored
rapidly as the curves evolve under the flow.
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Figure 4.4: The coefficient cps(7) entering the effective ‘action’ Sy; = %(T); (1 + cﬁ{'((:)))
for ensemble sizes M =1,...,12.

4.2.4 Variance of mean ‘center of mass’

Having obtained the coefficient in the non-conformal factor of the effective ‘action’, we
are now able to compute the flow of an ‘observable’; such as the COM position in a given
ensemble and its statistical variance. The COM position x¢oy of a given curve x(s,7) is
defined as

L(r)
Xoom(T) = (Zoom (T), Yoou (7))L = L/ dsx(s, 7). (4.19)
L(7) Jo

We will present below results on the statistical variance of the COM position.

At 7 = 0, the statistical variance in the position of the COM is prepared to be nil,
physically corresponding to an infinite resolution applied to the system by the measuring
device. In Fig. 5l the flow of the COM position corresponding to the initial curves
depicted in Fig. A1l is shown.

The mean COM position Xcoy Over the ensemble Ejy is defined as

M
Zeom(T) = (oo (7): oom ()T = % 3 xconalr) exp (~Sulxi(7)]) (4.20)

The scalar statistical deviation Apscom 0f Xcom over the ensemble Ejy is defined as

AM,COM(T) = \/VarM,COM;x(T) + VarM,COM;y(T) s (4'21)
where
1 M
varmcoms = 7 D (@eomi(T) = Teou(T))? exp (—Sar[x;(7)])
i=1
1 M
= —alou(r) + 5= 3 atoualr) exp (~Sub()) (4.22)
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Figure 4.5: Flow of the positions of the ‘centers of masses’ for the initial curves depicted

in Fig. A1

and similarly for the coordinate y. In Fig. B6] plots of Apscom(T) are shown when

A com(T) is evaluated over the ensembles Ey, ..., Eyo with the ‘action’
L(r)? em(7)
Sy = 1
YA\

and subject to the initial condition Lys(7 = 0) = Lp(r = 0). In Fig. BT the according
plots of Apscom(T) are depicted as obtained with the modified ‘action’

- 58

and subject to the initial condition Ly/(7 = 0) = Ly/(7 = 0). In this case, one has
ey (1) = —A(7) leading to equal weights for each curve in Ep;.  Note that the slight
qualitative deviation of the last graph Fjs for small values of 7 regarding to the previous
graphs in Fig. is due to the fact that the curves which were added to the ensemble at
last are the most twisted ones. Graph FE9 still saturates at a finite value of 7, nevertheless.
The fluctuations in graph E; of Fig. are within the range of the numerical precision.

4.2.5 Quantum mechanical versus statistical uncertainty

In view of the results obtained in the last section, we would say that an ensemble of evolving
planar CVLs in the N = 0 sector qualitatively resembles the Quantum Mechanics of a free
point particleﬁ of mass m in one space dimension x. Namely, an initially localized square

of the wave function ¢ with [1)(T = 0,2)|? o exp [—z—j], where Ax(7 = 0) = ag, according
0

2Tt is no relevance at this point whether this particle carries spin or not.
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to unitary time evolution in quantum mechanics evolves as

H xr — 271)2
B = lexp | 157 wir =00 xexp |- ml ], (4.23)
where H = % is the free-particle Hamiltonian, p the spatial momentum, and a(r) =

2
apy/ 1+ (%) . In agreement with Heisenberg’s uncertainty relation, one has during the
0

evolution that

h rh \?

v

h
3 (4.24)
The time evolution in a quantum mechanical system and the process of lowering the reso-
lution in a statistical system describing planar CVLs share the same property: the ‘time’
(resolution) evolution generates out of a small initial position uncertainty (corresponding
to a large initial resolution Ap) a larger position uncertainty as ‘time’ increases (resolution
decreases). Possibly, future development will show that interference effects in Quantum
Mechanics can be traced back to the non-local nature of the degrees of freedom (CVLs)
entering a statistical partition function.



Chapter 5

Selfintersecting center-vortex loops

Let us now turn to the case of N =1 CVLs. We proceed as far as possible in close analogy
to the N = 0 sector.

5.1 Wilsonian renormalization-group flow

5.1.1 Geometric partition function

Asin the N = 0 sector, we interpret curve-shrinking as a Wilsonian renormalization-group
flow. The partition function is now defined over an ensemble of N = 1 CVLs, and we
consider it to be independent under a change of resolution ) and thus independent of 7.
We express the effective ‘action’ in terms of integrals over local densities in s, and demand
the following symmetries in order to conceive an ansatz for the effective ‘action’:
(i) scaling symmetry x — Ax, A € Ry: for A — oo, implying AL — oo at fixed L, the
‘action’ S should be invariant under further finite rescalings (decoupling of the fixed length
scales 0~1/2 and A™1).
(ii) Euclidean point symmetry of the plane: this is sufficiently satisfied for a representation
of S in terms of integrals over scalar densities with respect to these symmetries. Thus,
we can represent the ‘action’ density as a series involving products of Euclidean scalar
products of %x, n € N4, or constancy.

As in Sec. 111 we resort to a factorization ansatz as

S = F. x F., (5.1)

where in addition to Euclidean point symmetry F. (F,.) is (is not) invariant under x —
Ax. In principle, infinitely many operators can be defined to contribute to F,. Since
the evolution homogenizes the curvature, except for a small vicinity of the intersection
point where one or both loops of the curve vanish, higher derivatives of k with respect
to s should not be of importance. This should also hold for Euclidean scalar products
involving higher derivatives %x. Conformally invariant expressions are obtained from
such integrals if multiplied by powers of v/A and/or L or the inverse of integrals involving
lower derivatives. The conformal factor F, is set equal to the isoperimetric ratio,

(5.2)

39
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The property of conformal invariance for L, A — oo suggests to express the non-conformal
factor Fj,. as a formal expansion in inverse powers of L or A = A; + A;. We allow for
an explicit 7 dependence of the coefficient ¢ of the lowest nontrivial power % or %. In
principle, this sums up the contribution to Fj,. of certain higher-power operators which do
not exhibit an explicit 7 dependence.

We restrict to the following two ansétze for the non-conformal factor in Eq. (B.1),

Fr(r) =1+ 7). (5.3)

and for the modified ‘action’

c(7)
A7)

Fo(r)=1+ (5.4)
The initial value ¢(7 = 0) is determined from the physical boundary condition such as the
mean length L at 7 = 0. Although the modified ansatz (5.4]) in F),. of the geometric ‘action’
is profoundly different physical results such as the evolution of entropy or the variance of
intersection of a given ensemble agree remarkably well, see Sec.

5.1.2 Effective ‘action’

The effective ‘action’ Sps[x(7)] results from a partition function Zj; which is defined as
the average

M
Zu =3 exp (~Sarbi(7) (5.5)

over the nontrivial ensemble Ejp; = {x1,... xps}. The ensemble E);, consisting of M
curves, is obtained from Fj;_; by adding a new curve x;7(7). The effective ‘action’ Sy,
in Eq. () is determined by the function cps(7), the flow of which follows from the
requirement of 7-independence of the partition function:

d

—Zy =0. 5.6

ar M (56)
As in Sec.d.1.2] we obtain the initial condition cp s = cpr (7 = 0) to this implicit first-order
ordinary differential equation by the constraint that the geometric mean coincides with the
statistic mean at 7 =0,

L(0) = Las(0)- (5.7)

5.2 Results of simulation

5.2.1 Preparation of ensembles

Similar to Sec. 2.1] all curves are normalized curves to have the same initial total area
Ap = Ap1 + Ap,2 and since we are now interested in the position of the intersection where
the (anti)monopole is localized (see Sec. 24l or Fig. [6.1]), we have applied a translation
to each curve in the ensemble FEj; such that the location of the intersections initially
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Figure 5.1: Initial curves x;(u,7 = 0) contributing to the ensemble Ej;—16. The intersec-
tion points ;. ;(7 = 0) coincide with the origin, and all curves have the same area 200 7.
By definition Fj;—16 is T-ordered.

coincide with the origin. Again, such a transition does not alter the effective ‘action’ due
to Euclidean point symmetry.

We order the members of the maximal-size ensemble Ej;—1¢4 into sub-ensembles Ejyr<16
such that T;—1 > Tj—o > --- > Ty, because the critical value T' of the flow parameter
7 varies from curve to curve. These ensembles Fj; are referred to as T-ordered. We
have also performed all simulations with ensembles E}, ;s the members of which are
picked randomly from FEj;—16 and have obtained similar results for ensemble averages of
‘observables’ using Ejpr.16 and Ef\/[<16 for the 7 evolution to the left of 7 = min{7T;|x; €
E}\;<16}- The main difference is that the computation of the coefficient, and with it the flow
of ‘observables’, terminates at a smaller 7 since the ensembles E', are no longer T-ordered.

The maximal-size ensemble Ej;—16 at 7 = 0 is depicted in Fig. 5.1l with the universal
choice Ag = 2007w. The curves in Fig. B.] are arranged in a T-ordered way. We have
Tie1 =65 >Ty > --- > Ty = 43. In Fig. 5.2 the evolution of an initial curve (number 12
of Fig. 5.1]) under curve shrinking is shown from two points of view. The flow is started at
7 = 0 and stopped at a value of 7 shortly below T'. In Fig. [5.3] the flow of the intersection
points X, ;(7) corresponding to the initial curves depicted in Fig. 5.1lis shown.
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Figure 5.2: Plots of the evolution of an N = 1 center-vortex loop (curve 12 of Fig. B.1)
under curve shrinking. The thick central line depicts the trajectory of the intersection
point which coincides with the origin at 7 = 0.

Figure 5.3: Flow of the intersection points x;,i(7) for the initial curves depicted in Fig. 5.l
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5.2.2 Numerical investigation

In general, the procedure is in close analogy to Sec. £.2.2] Therefore, we solely mention
the differences compared to Sec. The choice of sample points, used to generate the
initial curves, is now done in such a way that, if interpolated one after another by a cubic
spline with coinciding initial and end point, the curve will cross itself once. The number of
grid points n is set to 300 for all curves, except for curve 9 where 500 points are used. For
the simplicity of the computation of the intersection of the initial curve, the intersection
point is included in the set of sample points as a double point and is chosen to coincide
with the origin.

The search for solutions to the flow equation is proceeded as in Sec. using the
Numerical Method of Lines. Starting from 7 = 71 = 0 the solution is advanced step by
step as long as 7 < T or a virtual singularity evolves. If the latter is the case we start
the same fitting procedure as in Sec. 2.2l The error estimate of Sec. L.2.2] based on the
constant value of A, is no longer applicable in the case of selfintersecting curves, however,
AA(T) = Ay (1) — A2(T) = constant can serve to estimate a value that indicates the validity
of the numerical solution. The error estimate is defined as

108 x <1 - AAj((TTl))> . (5.8)

In the case where both areas of the curve have almost the same value, and the absolute of
A falls below the numerical precision, we have used

105 x (AA(1) — AA(T)). (5.9)

Since Eq. ([B:27) involves the two-dimensional curl the straight forward discretization of
this equation already computes the (signed) difference AA of the areas enclosed by the
curve. Therefore, we do not have to keep track of the selfintersection during the numerical
evolution of the curve. However, the computation of the total area involves knowledge of
A7 and As, and this in turn of the intersection point. Once the error estimate exceeds a
value of 2 the curve is fitted to yield again spatially well separated points. We also used
the error estimate to recognize the final (non-virtual) singularity at 7', where a further
evolution in the sense of the flow equation is impossible and does not make sense.

To compute the position of intersection point one searches, at a first step, for those two
points in the solution set at given 7 which are spatially nearest to each other, but with
the restriction that they are element of different line segments of the curve which generate
the intersection point. Therefore, the spatial distances between the i** and j** point on
the curve are determined for all pairs of points with |i — j| > dunin, Where dpi, depends
on the considered curve and has to be adjusted for each individually. Then it is searched
for the least of all distances to find that pair of points which is closest to the intersection
point. The minimal distance of indices dy, is introduced because, as the flow evolves
the curve, next neighboring points could become (spatially) closer to each other than the
points nearest to the intersection. Once the pair of points which is next to the intersection
is found, the two curve segments around these points are approximated by cubic splines.
Now the intersection of these two splines is computed using Mathematica’s FindRoot

At given 7, length and area of the curves are computed with their discrete formulas
using Mathematica’s FiniteDifferenceDerivative. For the same reasons as in Sec. the
T-evolution of L, A and x;,, are interpolated by polynomials.
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Figure 5.4: The squares of the coefficients cj/(7) entering the ansatz for effective ‘action’
Sy = %Z'T); (1 + C}ff(g)) for T-ordered ensembles up to M = 16.

Finally, the implicit first-order differential equation dZ/dr = 0 for the coefficient is
solved using NDSolve for all ensembles sizes and orderings and for both ‘actions’. If not
set at will, the initial condition ¢ for ¢(7) was derived from Eq. (5.7) using Mathematica’s
FindRoot. Variance of mean intersection and entropy were computed.

A CD-ROM containing the used Mathematica notebooks is attached to the thesid]

5.2.3 Renormalization-group invariance of partition function

We now present the results of the simulation. For all ensembles Ej;, the 7 dependence
of the coefficient cp; in Eq. (53) roughly behaves like a square root o< +/Th; — 7 where
Ty is the weakly ensemble-dependent minimal resolution. For the modified ‘action’ Sy; =

%4(—(?)2 (1 + ij(g)) the coefficient cpz(7) is well approximated by a linear function o< Thy — 7.

Again, Ty is a weakly ensemble-dependent minimal resolution. For T-ordered ensembles
the results for cpr(7) for the ‘actions’ Eq. (B.3) and Eq. (5.4) are shown in Fig. (5.4 and
respectively, in Fig. 5.5l The results for the ensembles E); do not differ sizably from those
presented in Fig. 5.4 and respectively, in Fig. 5.5l

5.2.4 Variance of location of selfintersection

The mean intersection X;,,(7) over the ensemble E); is defined as

(i (), B (7))

1 M
Koo (T) = 7 D X (T) exp (=Su[xi(7)]) (5.10)
=1

! Mathematica version 6.0.3 was used. Pay attention to the footnote in Sec. B2
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Figure 5.5: The coefficient c¢j;(7) entering the ansatz for the effective ‘action’ Sy =
%(TT); (1 + %) for T-ordered ensembles up to M = 16.

where X, i(T) = (Tine(T), ¥ine (7)) is the location of the point of selfintersection of curve
x; at 7. The scalar statistical deviation Az, of X;,, over the ensemble Ej; is defined as

At (7) = \VATM s (T) + VATM sy (7) (5.11)
where
M
VarM,int;CC = E Z (‘Tint,l' (T) - j;int (T))2 exp (_SM [xl (T)])
i=1
;M
= -z, (r)+ 7 ; z3,i(7) exp (—Su[xi(7)]) (5.12)

and similarly for the coordinate y. In Fig.[5.6] plots of Aps ;.. (7) are shown when evaluated

over the ensembles F1, ..., Fhg subject to the ‘action’
L(r)* cm(7)
Sy = 1
M= A ( I

and the initial condition Lys(7 = 0) = Lys(r = 0). In Fig. 57 the according plots of
A ine(T) are depicted as obtained with the ‘action’

s = L (1 )

and subject to the initial condition Ly;(7 = 0) = Lys(7 = 0). Relaxing the constraint of
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T-ordering (Ea — E';) does not entail a qualitative change of the results. The fluctuation
in the first graph of Fig. and in Fig. 67 representing the trivial ensemble Ejp—; is
within the range of the numerical precision. The results presented in Fig. and Fig. (.7
are unexpected since in the N = 0 sector the variance of the ‘center of mass’ saturates
rapidly to finite values. In contrast, for the N = 1 sector, the variance of the location
of selfintersection initially increases, reaches a maximum, and decreases to zero at a finite
value of 7. This is readily confirmed by the evaluation of the entropy, see next section.

5.2.5 Evolution of entropy
Let us now investigate the flow of entropy. The weight-functional Py is defined as
1
Par(r) = Patluns(7)] = 57— exp(=Sua (), (5.13)
and the entropy X,/ as

M

Su(r) = Burlxii()] =Y PulXini(7)]10g (Par X (7)) (5.14)
i=1

M
= log Zy + % Z Sn[xi(7)] exp (=Sam[xi(7)]) (5.15)
i=1

where Sys[x;(7)] is given by Eq. (). In Figures 5.8 and 5.9, plots are shown for Xy, (7)
when evaluated with the ‘action’

-7 25)

and respectively, when evaluated with the modified ‘action’

L(r)? cm(T)
Sy = 1
MEAR) ( A
for T-ordered ensembles of size M = 1,...,16. The continuous approach of entropy to

zero at finite values of 7 implies the spontaneous emergence of order in the system as the
resolution decreases: starting at a finite value of 7, a particular member of Ejs is singled
out by its weight approaching unity. This is validated by Fig. [E.I0] where the weight-
functionals Py; are shown for T-ordered ensembles of size M = 2,...,4. The pattern that
a curve is singled out by its weight-functional as 7 increases continues for all ensemble
sizes M. In view of Chapter M, this behavior is highly unexpected and we conclude that
the nontrivial topology of the IV = 1 sector induces qualitative differences into the coarse-
graining process.
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Chapter 6

Applications

Here, it should be recalled that a magnetic charge emerging as a result of the dynamically
broken gauge-symmetry SU(2) — U(1) in the deconfining phase is interpreted as an electric
charge with respect to the U(1)y subgroup of the electroweak sector. In view of Sec. [6.2]
recall that the magnetic center flux of the confining SU(2). is dually interpreted as electric
flux.

6.1 Solitonic fermions

The notion of a point-like electron has always been plagued by its diverging self-energy.
Even in classical field theory it is present in the shape of the infinite self-energy of a point
charge. If the electron is considered to be a little sphere of radius R and mass m, with
electric charge e attached to the sphere, then the electric field energy U is given by

62

U=—_. 6.1
STR (6.1)

Sending R to zero, as we have to if we think of the electron as a point particle, the self-
energy contribution to the mass of the electron diverges. In Quantum Electrodynamics
(QED), the problem persists: the correction to the electron mass is still infinite, although
it has a much softer logarithmic divergence (¢ = h = 1),

2
S = 3% In(meR). (6.2)
Therefore, one needs to employ renormalization theory to cope with the emerging diver-
gences that are to a large extent a direct consequence of locality: the point-particle like
nature of the electron. “..., and despite the comparative success of renormalisation theory
the feeling remains that there ought to be a more satisfactory way of doing things.” as
Lewis Ryder put in [§].

In the Standard Model, the electron is represented by the famous Dirac equation.
Though it successfully predicts the electron’s antiparticle, the positron, and the magnetic
moment with an g-factor of 2 it has to introduce the concept of the Dirac sea to make sense
of the infinite number of negative-energy eigenstates. The Dirac sea leads to an infinite
contribution to the energy density of the ‘vacuum’ which has to be canceled, somehow.
Furthermore, the Standard Model does not provide for a deeper explanation of the value of

ol
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the magnetic dipole moment other than that following from the Dirac equation and small
radiative corrections. Moreover, the electron mass enters the QED Lagrangian as a free
parameter, and the running of which with resolution needs additional experimental input.

The excitations in the confining phase of SU(2) Yang-Mills thermodynamics are single
and selfintersecting center-vortex loops. The mass of each intersection point in a self-
intersecting center-vortex loop is given by the Yang-Mills scale A.. Since a monopole
(antimonopole) is located at the intersection, it carries one unit of electric charge. Recall
that a magnetically charged object in the defining gauge theory has to be interpreted as an
electrically charged object in the Standard Model - and vice versa. In a given segment of a
flux tube, the monopoles (antimonopoles) can move in both directions: there is a two-fold
degeneracy of direction of the center flux that is analogue to the two-fold degeneracy of
the spin projection. Moreover, for each center-vortex loop it is possible to move along the
entire flux system on a closed curve. Thus, the projection of the dipole moment generated
by the current of monopoles and antimonopoles inside the vortex core onto a given direc-
tion in space is two-fold degenerated as well. Therefore, we identify each soliton with a
spin-1/2 fermion. Setting the Yang-Mills scale A equal to the electron mass me, we are
led to interpret N = 1 center-vortex loops as electrons or positrons [10} 16} 23].

Let us consider the process of twisting and charge localization more closely. The tran-
sition from a non-selfintersecting to selfintersecting center-vortex loop is by twisting of a
non-selfintersecting curve. The emergence of a localized (anti)monopole in the process is
due to its capture by oppositely directed center fluxes in the core of the intersection (eye
of the storm). By a rotation of the left half-plane in Fig. [6I(a) by an angle of , see
Fig. [6II(b), each wing of the center-vortex loop forms a closed flux loop by itself, thereby
introducing equally directed center fluxes at the intersection point. This does not allow
for an isolation of a single spinning (anti)monopole in the core of the intersection and thus
is topologically equivalent to the untwisted case Fig. [6.I(a). However, another rotation of
the left-most half-plane in Fig. [6Il(c) introduces an intermediate loop which by shrinking
is capable of isolating a spinning (anti)monopole due to oppositely directed center fluxes.
Notice that in the last stage of such a shrinking process (short distances between the cores
of the flux lines), where propagating dual gauge modes are availabl, there is repulsion
due to Biot-Savart which needs to be overcome. This necessitates an investment of energy
manifesting itself in terms of the mass of the isolated (anti)monopole (eye of the storm).
Alternatively, the emergence of an isolated (anti)monopole is possible by a simple pinching
of the untwisted curve, again having to overcome local repulsion in the final stage of this
process.

In the analysis performed in Chapter Bl we have solely regarded the situation depicted
in Fig. [6Iid), since the direction of center flux within a given curve segment is irrelevant
for the process of a spatial coarse-graining microscopically described by the same curve-
shrinking flow as applied to N = 0 center-vortex loops in Chapter [l

There are also phenomenological reasons that argue for a non-local nature of the elec-
tron. Recall that the imaginary part of the pressure in the confining phase starts to
dominate when approaching the Hagedorn transition, thereby inducing microturbulences
in the plasma (see Sec.[2Z4]). Such a nonthermal behaviour is likely to be related to the ob-
served but poorly understood microturbulences and internal transport barriers in tokamak
experiments with magnetically confined plasma. This presumes to identify the neutrino

'On large distances these modes are infinitely massive which is characteristic of the confining phase.
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Figure 6.1: (Topological) transition from the N = 0 sector (a), (b), (c) to the N = 1 sector
(d) by twisting and subsequent capture of a magnetic (anti)monopole in the core of the
final intersection. Arrows indicate the direction of center flux.

and the electron with the non-selfintersecting and the one-fold selfintersecting center-vortex
loop of the confining phase of SU(2), with Yang-Mills scale A, = m, = 511 keV. Here, it
should be noticed that due to the absence of an antiparticle in the case of a N = 0 soliton
neutrinos need to be of Majorana type which is in compliance with the successful search
for the neutrinoless double 3 decay [4].

This interpretation is also supported by recent high-temperature Z-Pinch experiments
at Sandia National Laboratories detecting an unexpected powerful contained explosion.
There, an electric current rises in a wire array up to ~ 20 MA within ~ 100 ns, thereby
the wire is transformed into a plasma column. The strong magnetic field induced by the
current results in an inward directed (magnetic) pressure P, which compresses the plasma
until it collapses. In the course of the implosion, the ions and electrons are accelerated
towards the plasma axis. The radiated soft x-ray energy is as much as four times the kinetic
energy that is expected to be released by the intersection of ions and electrons. However,
before the plasma explodes it stabilizes for about 5 ns (stagnation). The measured electron
temperature T, is found to be ~ 3 keV at stagnation. Preceding the explosion, an ion
temperature T; about 300 keV is sustained shortly after the plasma has stagnated [I5].
The outward directed plasma pressure P, needs to be equal in magnitude to P, = —1.8 x
10~'2 MeV in order that the implosion stagnates. The measured electron temperature is a
factor 1/8.5 too low if it is asserted that the plasma pressure is carried by electrons only; this
would correspond to T, ~ 31.55 keV. In [50], the observed imbalance between the energy in-
and output was addressed to the rapid (~ 1...2 ns) conversion of magnetic field energy to
a very-high-ion-temperature plasma by the unexpected forming of short wavelength m =
0 magnetohydrodynamics (MHD) instabilities at stagnation which subsequently provide
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associated viscous ion heating. At stagnation, the ions reach much more rapidly than the
electrons (~ 1...2 s) a temperature of ~ 300 keV, and subsequently heat the electrons
up to ~ 300 keV, at least locally. By equipartition the ion energy is transferred to the
electrons, leading to the soft x-ray radiation.

According to Sec.24land the discussion in this will involve center-vortex loops with
a higher number of selfintersections. These accelerate the transit of thermal energy from
ions to electrons and generate a larger energy density and pressure than expected from
electron dynamics only. As a consequence, the electron temperature rises rapidly after
stagnation. After the ion-induced heating the Debye screening mass mp of a conventional
electron-photon plasma is comparable to T,. Thus, at about ~ 5 ns after stagnation, the
plasma is absolutely opaque and no radiation is released.

For T, < 0.6m, and Ng = 6, the truncated sums PNG = 2%0:1 Pcn and pn, =
E%C: L po,n of the pressure Po = > N_, Po,n and the energy density pc = > N_gpo.N
in the electronic system are in the regime of asymptotic convergence [16]. The case i = 1
corresponds to a contribution of electrons and positrons only. While for T, < m, center-
vortex loops with higher mass (higher number of intersections) are strongly suppressed,
these do significantly contribute to the pressure and energy density for 7T, = 0.1 MeV.
At T, = 0.25 MeV, the relative partial pressure and the relative partial energy density
is Ps ~ 3 P, and respectively, pg ~ 4.8 p1, and at T, = 0.3 MeV, already Ps ~ 5P, and
respectively, pg ~ 9.4 p1. Notice that at 7, = 0.25 MeV, the ratio of P; to the magnetic
pressure P, at stagnation is: 1% ~ —4.4 x 10®. The existence of center-vortex loops with
higher mass facilitates the rapid increase of T, to T; ~ 0.3 MeV and eventually initiates
the powerful explosion.

When the electron temperature approaches a value of about 0.5 MeV the Hagedorn
transition towards the preconfining phase is expected to take place where all charges con-
dense densely packed into a new ground state. The Z vector boson of the Standard Model
is identified with the decoupled dual gauge mode in the magnetic phase of SU(2),.

The electron appears to be structureless for (nearly) all external momenta that are
used to probe the system because of the existence of a Hagedorn-like density of states:
the invested energy deposited into the vertex is converted into entropy associated with
the excitations of a large number of unstable and heavy resonances (see Fig. [Tl for the
excitations with up to N = 3 selfintersections). Only for momenta comparable to the
Yang-Mills scale A, the BPS monopole located at the intersection becomes excited and
reveals a part of its structure. For momenta sizeably below A., there is nothing to be
excited in BPS monopole.

6.2 High-temperature superconductivity

Let us now sketch an alternative approach to high-temperature (high 7;) superconductivity.
Recall, that the magnetic center flux, dually interpreted as electric center flux, is two-fold
degenerated. Now the electric charges that travel along the flux lines in the vortex core
produce a magnetic dipole moment. The projection of which onto a given direction in
space is either parallel or antiparallel and represents the two-fold degeneracy of the spin
projection. Here, it should be recalled that a shift of the intersection point of an isolated
N =1 center-vortex loop leaves the mass of this soliton invariant.

Coincidentally, there are quantum systems in nature the unconventional behaviour of
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which seems to be closely related to the restriction of electron dynamics to two space
dimensions. In particular, these include high 7. superconductors such as the family of
superconducting materials largely containing (rare-earth) doped cooper-oxide (cuprates)
planes as well as the recently discovered new class of layered oxypnictide superconductors.
Let us consider the former at first. In both cases, superconducting layers of magnetic
moments are interspersed with layers of nonmagnetic material. This nonmagnetic material
also serves as an reservoir that provides, by doping, for the electrons and screens the
Coulomb repulsion in the superconducting layer between them. Now the question arises
how long-range interactions of magnetic moments at given optimal doping and sufficiently
low temperature lead to superconductivity in the cuprate layers.

Since, at small enough temperatures, copper-oxide planes are Mott insulators with long-
range antiferromagnetic order of spins, the conventional Hubbard model must be used. A
canonical transformation involving a Gutzwiller projection leads to the ‘¢ —J’ model, where
t describes the hopping of electrons from site to site and J the superexchange J = 4t? /U
with U describing the Coulomb repulsion. Here, the Gutzwiller projection, which removes
most of the phonon pairing interaction, is mandatory. Variation of the electronic degrees
of freedom results in a set of gap equations for the ground state that give the predicted
d-wave gap and the superconducting order parameter (related to the critical temperature
T¢) as a function of doping [51].

Let us now sketch a somewhat speculative approach to high T, superconductivity being
well aware of our lacking theoretical knowledge on details in this field of research. The key
idea is already encoded in Fig. 6.I(d). According to SU(2) Yang-Mills theory, the electron
represented as a selfintersecting center-vortex loop is a non-local object the magnetic dipole
moment of which is only loosely related to the localization of its charge: the magnetic mo-
ment, carried by the vortex core of the flux lines, receives contributions from line segments
which are spatially far separated (on the scale of the diameter of the intersection) from the
location of the electric charge. This suggests a system of planar center-vortex loops trapped
in a two-dimensional layer where the interaction between vortex lines becomes important
due to an effective screening of the electron charge leading to an ordering effect. In view
of the reported strong correlations between electrons in two-dimensional superconducting
systems [52], we imagine a situation as it is depicted in Fig. [6.2

Due to Ampére’s law equally directed electric flux lines attract each other, whereas op-
positely directed flux lines experience a repulsive force. So, for a given center-vortex loop,
there is an attractive interaction of four out of six line segments defined by the neighbouring
electrons while the other two repulse each other. The existence of interactions between flux
lines that are mediated by the photon is a consequence of the mixing between the gauge
groups SU(2), and SU(2),,,,, the latter pertinent to the existence of propagating photons,
see [10, 23]. It should be noticed that the spin projection of a given electron is equally
directed for two of its neighbours while the other four have oppositely directed spins. This
supports the observation that high 7, superconductivity is an effect not related to s-wave
pairing [52]. An overlap of flux lines would lead to additional intersection points which
require an extra amount of energy A for each intersection and is therefore energetically
forbidden because the fluctuations in energy density of the system will not allow for the
creation of an intersection of mass m, = 511 keV. This leads to a repulsive force as the
spatial distance between adjacent vortex segments vanishes. In order that an equilibrium
between attraction and repulsion where the intersection point is fixed with respect to its
neighbours occurs, as it is depicted in Fig. [6:2] one needs a sufficiently low temperature
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Figure 6.2: The figure, possibly related to the superconducting state in a cuprate, shows
an array of strongly correlated center-vortex loops tiling the two-dimensional plane. If
optimal screening of the electron charge located at the intersection point is provided by
doping such that an attractive interaction between center-vortex loops due to Ampeére’s
Law becomes important, then the attractive force between equally directed center flux
segments could lead to the indicated equilibrium configuration. For a given electron there
are six neighbouring line segments two of which experience repulsion while the other four
experience attraction. An overlap of flux lines would create new intersection points, each of
mass x m, , which is topologically forbidden, thus leading to a repulsion at short distances.
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(related to resolution) and an optimal screening of the Coulomb repulsion by the surround-
ing reservoir layers. If the temperature (resolution) falls below a critical value then the
fluctuations of the intersection points relative to one another will vanish. Applying an
external electric field parallel to the plane would set the stiff system of locked electrons
in a collective motion with zero electric resistance. Macroscopically, this situation is illus-
trated by a stiff table cloth being pulled over the table in a frictionless way. The measured
pseudo-gap phase in high T, superconductors will be addressed to local distortions in this
highly ordered state. These distortions require an finite amount of energy and are due to
insufficient screening and/or to much of a thermal noise.

Let us now turn to the recently discovered, new class of high T, superconductors that
are based on oxypnictides (a class of materials including oxygen, an element of the nitrogen
group (pnictogen), and one or more other elements). These do not seem to exhibit strong
correlations between the electrons contained in the two-dimensional (FeAs) layers where the
electron dynamics takes place, see [53]. If the behaviour of a two-dimensional system of non-
interacting electrons, which are subjected to an environment represented by a parameter
T, effectively is describable by a coarse-graining process in a statistical ensemble, as it is
investigated in Chapter B then we should likely address the observation that the entropy
vanishes at finite 7 to this particular kind of high 7. superconductivity. Namely, the
observation that no variance of the ensemble average of the position of the electric charge
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is allowed for at a finite resolution is crucial for the statement that the two-dimensional
system of free quasiparticles is void of any electric resistance. Free quasiparticles in the
sense that explicit interactions between the electrons in the superconducting layer are
absent, but the distortions induced by the noise of the environment is fully taken into
account. Again, 7 should be a monotonic function of temperature.






Chapter 7

Summary

In this thesis, we have investigated center-vortex loops with and without selfintersection,
as they emerge in the confining phase of SU(2) Yang-Mills thermodynamics. In a noisy
environment, center-vortex loops are subject to a spatial coarse-graining due to a motion
by curvature that is described by a curve shortening flow. In a statistical description of
ensembles of center-vortex loops which are (locally) embedded into a two-dimensional flat
plane, we have defined an effective ‘action’ in purely geometric terms that is governed by a
renormalization-group flow driven by the curve shrinking. The ‘action’ possesses a natural
decomposition into a conformal and a non-conformal factor. ‘Observables’, such as the
position of ‘center of mass’ (N = 0), or the intersection point (N = 1), are computed as
ensemble averages of local or non-local operators on the curves.

We have made the observation that N = 0 center-vortex loops exhibit a second-order
transition to the conformal limit of vanishing curve length with a critical mean-field ex-
ponent of the coefficient: on average, center-vortex loops disappear from the spectrum of
confining SU(2) Yang-Mills theory, thus generating an asymptotic mass gap. The evolution
of the variance of the initially sharp position of ‘center of mass’ saturates at finite value
within a finite decrease of resolution @, the latter related to the resolving power used to
probe to the system. These findings bear a strong family resemblance with the unitary
time evolution of a free particle in quantum field theory.

Since we believe that N = 0 center-vortex loops play the role of Majorana neutrinos
[4], the concept of a neutrino rest mass is no longer applicable. Its mass is the result of the
distortions induced by the environment it is embedded in and depends on the resolution.
The disappearance of N = 0 center-vortex loops from the excitation spectrum and the
absence of a corresponding antiparticle would be manifestations of lepton-number violation
forbidden in the Standard Model of Particle Physics.

In the case of one-fold intersecting center-vortex loops, we have obtained the unexpected
result that a statistical ensemble of initial curves evolves into a highly ordered state. That
is, only a particular member of the ensemble survives the process of two-dimensional spatial
coarse-graining. As a consequence, the entropy attributed to the ensemble moves to a zero
value for a sufficient decrease of resolution.

We have sketched an alternative approach to high-temperature superconductivity based
on cuprates. The central observation that these depend highly on strong correlations be-
tween electrons trapped in a flat two-dimensional layer is attributed to an array of bow-tie-
like simplices (N = 1 center-vortex loops) tiling the plane. We have also speculated that the
spontaneous emergence of order in an ensemble of planar N = 1 center-vortex loops could
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be relevant for the recently discovered new class of oxypnictide layered high-temperature
superconductors that do not seem to exhibit explicit, strong correlations between electrons
within the superconducting (FeAs) planes.

In a sense, we have reversed the usage of the renormalization group. Instead of starting
with a ‘physical’ action, from which an equation of motion follows, and demanding the
system to be invariant under renormalization-group transformations, we have defined a
geometric effective ‘action’ the coefficient of which is determined by a renormalization-
group flow driven by a coarse-graining process (curve shrinking). Afterwards, physical
‘observables’, such as the center of mass or the localization of electric charge, were computed
as mean values in a statistical ensemble. In a manner of speaking, we have ‘derived’ a
statistically averaged ‘equation of motion’. In this context, we regard resolution over time
(or temperature) as the more fundamental quantity describing a quantum mechanical or
statistical system. However, this requires the introduction of a model that relates resolution
to time (or temperature).

An obvious extension of our statistical approach would be the account of interactions
between center-vortex loops; especially in view of two-dimensional systems exhibiting high-
temperature superconductivity. At a first stage, this would include Coulomb interactions
between the charges of N = 1 center-vortex loops localized at the intersection point, and a
delta-function-like repulsion due the topologically forbidden overlap of center-vortex loops
(contact interaction). This could be done by adding interaction terms to the effective
‘action’ in the partition function that are weighted accordingly. Considering a multitude
of configurations of initial curves of center-vortex loops, those configurations will be singled
out the curves of which are most likely to survive the process of coarse-graining. However,
the nontrivial issue arises how to gain a weight which relates the purely geometric ‘action’
to the one stemming from the electromagnetic interaction between center-vortex loops.



Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]
9]

[10]

F. J. Hasert et al., Search for elastic muon-neutrino electron scattering, Phys. Lett. B
46, 121 (1973).

F. J. Hasert et al., Observation of neutrino-like interactions without muon or electron
in the Gargamelle neutrino experiment, Phys. Lett. B 46, 138 (1973).

A. Jaffe and E. Witten, Quantum Yang-Mills Theory, Clay Mathematics Institute
Millenium Prize problem, http://www.claymath.org/millennium/Yang-Mills  Theory
(2000).

C. Amsler et al. [Particle Data Group|, Review of Particle Physics, Phys. Lett. B 667,
1 (2008).

H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz, and O. Chkvorets, Search
for neutrinoless 8 decay with enriched ®Ge in Gran Sasso 1990-2003, Phys. Lett. B
586, 198 (2004).

H. V. Klapdor-Kleingrothaus, From nuclear physics to physics beyond the Standard
Model: First evidence for lepton number wviolation and the Majorana character of
neutrinos, Int. J. Mod. Phys. D 13, 2107 (2004).

H. V. Klapdor-Kleingrothaus and [. V. Krivosheina, The evidence for the observation
of OuBB decay: The identification of OvB3 events from the full spectra, Mod. Phys.
Lett. A 21, 1547 (2006).

V. M. Lobashev et al., Direct search for mass of neutrino and anomaly in the tritium
beta-spectrum, Phys. Lett. B 460, 227 (1999).

Ch. Kraus et al., Final results from phase II of the Mainz neutrino mass searching
tritium (8 decay, Eur. Phys. C 40, 447 (2005).

A. D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett.
B 96, 289 (1980).

L. H. Ryder, Quantum Field Theory, Cambridge University Press (1996).

J. G. Bednorz and K. A. Miiller, Possible high T, superconductivity in the Ba-La-Cu-O
system, Z. Phys. B 64, 189 (1986).

R. Hofmann, Nonperturbative approach to Yang-Mills thermodynamics, Int. J. Mod.

Phys. A 20, 4123 (2005); Erratum-ibid. A 21, 6515 (2006).
R. Hofmann, Yang-Mills thermodynamics, arXiv:hep-th/0710.0962 (2007).

61



62

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

BIBLIOGRAPHY

H. B. Nielsen and P. Olesen, Vortez-line models for dual strings, Nucl. Phys. B 61, 45
(1973).

G. 't Hooft, On the phase transition towards permanent quark confinement, Nucl.
Phys. B 138, 1 (1978).

L. Faddeev and A. J. Niemi, Stable knot-like structures in classical field theory, Nature
387, 58 (1997).

W. T. Kelvin and P. G. Tait, Treatise on Natural Philosophy, 2 vols., Cambridge
University Press (1867).

http://www.sandia.gov/news-center /news-releases /2006 /physics-astron /hottest-z-
output.html (2006).

F. Giacosa, R. Hofmann, and M. Schwarz, Ezplosive Z Pinch, Mod. Phys. Lett. A 21,
2709 (2006).

L. Faddeev and A. J. Niemi, Partially dual variables in SU(2) Yang-Mills theory, Phys.
Rev. Lett. 82, 1624 (1999).

L. Faddeev and A. J. Niemi, Aspects of electric and magnetic variables in SU(2) Yang-
Mills theory, Phys. Lett. B 525, 195 (2002).

L. Faddeev and A. J. Niemi, Spin-charge separation, conformal covariance and the
SU(2) Yang-Mills theory, Nucl. Phys. B 776, 38 (2007).

R. P. Feynman, The Principle of Least Action in Quantum Mechanics, Princeton
University Ph. D. thesis, University Microfilms Publication No. 2984, Ann Arbor
(1942).

A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Pseudoparticle
solutions of the Yang-Mills equations, Phys. Lett. B 59, 85 (1975).

D. Diakonov, N. Gromov, V. Petrov, and S. Slizovskiy, Quantum weights of dyons and
of instantons with nontrivial holonomy, Phys. Rev. D 70, 036003 (2004).

F. Giacosa and R. Hofmann, Thermal ground state in deconfining Yang-Mills thermo-
dynamics, PTP 118, 759 (2007).

U. Herbst and R. Hofmann, Asymptotic freedom and compositeness, arXiv:hep-
th/0411214 (2004).

F. Giacosa and R. Hofmann, A Planck-scale axion and SU(2) Yang-Mills dynamics:
Present acceleration and the fate of the photon, Eur. Phys. J. C 50, 635 (2007).

S. Scheffler, R. Hofmann, and I.-O. Stamatestu, Scalar field theory with a non-standard
potential, Phys. Rev. D 77, 065015 (2008).

R. Hofmann, Yang-Mills thermodynamics at low temperature, Mod. Phys. Lett. A 22,
2657 (2007).

R. Hofmann, Yang-Mills thermodynamics: The confining phase, arXiv:hep-th /0508212
(2005).



BIBLIOGRAPHY 63

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

E. R. Williams, J. E. Faller, and H. A. Hill, New ezperimental test of Coulomb’s low:
A laboratory upper limit on the photon rest mass, Phys. Rev. Lett. 26, 721 (1971).

R. Hofmann, A strongly interacting SU(2) pure gauge theory and the nature of light,
Talk given at 29th Johns Hopkins workshop in Theoretical Physics: Strong Matter
in the Heavens, Budapest, Hungary, 1-3 Aug 2005. Published in PoS JHW2005, 021
(2006).

M. Schwarz, R. Hofmann, and F. Giacosa, Radiative corrections to the pressure and the
one-loop polarization tensor of massless modes in SU(2) Yang-Mills thermodynamics,
Int. J. Mod. Phys. A 22, 1213 (2007).

M. Schwarz, R. Hofmann, F. Giacosa, Gap in the black-body spectrum at low temper-
atures, JHEP 0702, 091 (2007).

L. B. G. Knee and C. M. Brunt, A massive cloud of cold atomic hydrogen in the outer
Galazy, Nature 412, 308 (2008).

W. P. Thurston, The Geometry and Topology of Three-Manifolds, Lecture notes
(1980), http://www.msri.org/publications/books/gt3m/ (2002).

B. Leep, Geometrisierung 3-dimensionaler Mannigfaltigkeiten und Ricci-Flufl, DMV-
Mitteilungen 14, 213 (2006).

P. W. Topping, Lectures on the Ricci flow, L.M.S. Lecture note series 325 C.U.P.,
http://www.warwick.ac.uk/maseq/RFnotes.html (2006).

W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geom-
etry, Bull. Amer. Math. Soc. (N.S.) 6, no. 3, 357 (1982).

R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geome-
try 17, 255 (1982).

G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
arXiv:math/0211159.

G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math/0303109.

G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain
three-manifolds, arXiv:math/0307245.

M. Gage and R. S. Hamilton, The heat equation shrinking convexr plane curves, J.
Differential Geometry 23, 69 (1986).

M. A. Grayson, The heat-equation shrinks embedded plane curves to round points, J.
Differential Geometry 26, 285 (1987).

M. A. Grayson, The shape of a figure-eight under the curve shortening flow, Invent.
Math. 96, 177 (1989).

M. A. Grayson, Shortening embedded curves, Annals of Mathematics 129, 71 (1989).



64

[42]

[43]

[44]

[45]
[46]

[47]

48]
[49]
[50]

[51]

[52]

[53]

BIBLIOGRAPHY

S. L. Smith, M. E. Broucke, and B. A. Francis, Curve shortening and its application
to multi-agent systems, in proc. 44th IEEE Conference on Decision and Control, and
European Control Conference 2005, Seville, Spain, Dec. 12-15 (2005).

S. L. Smith, M. E. Broucke, and B. A. Francis, Curve shortening and the rendezvous
problem for mobile autonomous robots, arXiv:cs/0605070 (2006).

M. Gage, An isoperimetric inequality with applications to curve shortening, Duke
Mathematical Journal, 50(3), 1225 (1983).

M. Gage, Curve shortening makes convexr curves circular, Invent. Math. 76, 357
(1984).

K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem, Chapman and Hall (2001).

S. J. Altschuler, Singularities of the curve shrinking flow for space curves, J. Differ-
ential Geometry. 34, 491 (1991).

S. J. Altschuler and M. A. Grayson, Shortening space curves and flow through singu-
larities, J. Differential Geometry. 35, 283 (1992).

M. A. Grayson, Shortening embedded curves, Annals of Mathematics, 129, 71 (1989).

F. Cao, Geometric Curve Evolution and Image Processing, Springer (2003).

M. G. Haines, P. D. LePell, C. A. Coverdale, B. Jones, C. Deeney, and J. P. Apruzese,
Ion wviscous heating in a magnetohydrodynamically unstable Z Pinch at over 2 X
10° Kelvin, Phys. Rev. Lett. 96, 075003 (2006).

P. W. Anderson, Present status of the theory of high T. cuprates, arXiv:cond-
mat /0510053 (2005).

P. W. Anderson, Twenty years of talking past each other: The theory of high T,
Physica C 460-462, 3 (2007).

A. Garg, M. Randeria, and N. Trivedi, Strong correlations make high-temperature
superconductors robust against disorder, Nature Physics Advance online publication
10.1038 /nphys1026 (2008).

H.-H. Klauss and B. Biichner, Neuer Goldrausch in der Supraleitung?, Physik Journal
7, 18 (2008).



	Introduction
	Brief review of SU(2) Yang-Mills thermodynamics
	Basics of thermal Yang-Mills theory
	The deconfining phase
	The preconfining phase
	The confining phase
	The postulate SU(2) = U(1)
	Motion by curvature

	Mathematical Prerequisites: Curve shrinking flow
	Embedded curves without selfintersection
	Planar curves
	Space curves

	Immersed curves with one selfintersection

	Non-selfintersecting center-vortex loops
	Wilsonian renormalization-group flow
	Geometric partition function
	Effective `action'

	Results of simulation
	Preparation of ensemble
	Numerical procedure
	Renormalization-group invariance of partition function
	Variance of mean `center of mass'
	Quantum mechanical versus statistical uncertainty


	Selfintersecting center-vortex loops
	Wilsonian renormalization-group flow
	Geometric partition function
	Effective `action'

	Results of simulation
	Preparation of ensembles
	Numerical investigation
	Renormalization-group invariance of partition function
	Variance of location of selfintersection
	Evolution of entropy


	Applications
	Solitonic fermions
	High-temperature superconductivity

	Summary
	Bibliography

