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AbstratWe onsider spatial oarse-graining in statistial ensembles of non-sel�nterseting and one-fold sel�nterseting enter-vortex loops as they emerge in the on�ning phase of SU(2)Yang-Mills thermodynamis. This oarse-graining is due to a noisy environment anddesribed by a urve shrinking �ow of enter-vortex loops loally embedded in a two-dimensional �at plane. The renormalization-group �ow of an e�etive `ation', whih isde�ned in purely geometri terms, is driven by the urve shrinking evolution.In the ase of non-sel�nterseting enter-vortex loops, we observe ritial behavior ofthe e�etive `ation' as soon as the enter-vortex loops vanish from the spetrum of theon�ning phase due to urve shrinking. This suggest the existene of an asymptoti massgap.An entirely unexpeted behavior in the ensemble of one-fold sel�nterseting enter-vortex loops is onneted with the spontaneous emergene of order. We speulate thatthe physis of planar, one-fold sel�nterseting enter-vortex loops to be relevant for two-dimensional systems exhibiting high-temperature superondutivity.ZusammenfassungDie Anregungen der kon�nierten Phase in der thermodynamishen Behandlung der SU(2)Yang-Mills Theorie sind Zentrumsvortexshlaufen welhe aufgrund der Wehselwirkung miteiner raushenden Umgebung Shrumpfungsprozess unterliegen. Wir betrahten statisti-she Ensemble von Zentrumsvortexshlaufen ohne und mit einfahen Shnittpunkt welhein einer �ahen zweidimensionalen Ebene lokal eingebettet sind. Der Shrumpfungspro-zess von eingebetteten Zentrumsvortexshlaufen wird durh eine Di�usionsgleihung be-shrieben. Der Renormierungsgruppen�uss einer in rein geometrishen Gröÿen de�niertene�ektiven �Wirkung� wird durh die Evolution shrumpfender Kurven bestimmt.Im Falle von Zentrumsvortexshlaufen ohne Shnittpunkt beobahten wir ein kritishesVerhalten der e�ektiven �Wirkung� sowie die Vortexshlaufen aufgrund des Shrumpfungs-prozesses aus dem Spektrum der kon�nierten Phase vershwinden. Dies legt die Existenzeines asymptotishen Massen-Gaps nahe.Ein vollkommen unerwartetes Verhalten im Ensemble von Zentrumsvortexshlaufenmit einfahem Shnittpunkt steht in engem Zusammenhang mit dem spontanen Auftretenvon Ordnung. Wir vermuten, dass die Physik ebener Zentrumsvortexshlaufen relevant istfür die Beshreibung zweidimensionaler Systeme, welhe die Eigenshaft der Hohtempe-ratursupraleitung aufweisen.
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Chapter 1IntrodutionThe importane of Yang-Mills theories in mathematial and theoretial physis is generallyaknowledged. Yang-Mills gauge theories are the ornerstone of quantum �eld theories inthe Standard Model of Partile Physis: Besides gravity, all fundamental interations areinorporated as gauge symmetries in the Standard Model. Although it has been examinedin the framework of perturbation theory due to the enormous omplexity implied in thefull story of (espeially non-Abelian) gauge theories, the Standard Model has produed alot of striking results and preditions. There are many examples, suh as the explanationof the anomalous magneti moment of the eletron, the feature of asymptoti freedom ofQuantum Chromodynamis in the high energy limit, or the predition of �avor-hangingneutral urrents in eletroweak proesses [1℄. However, there are still a number of unsolvedmathematial problems and unexplained experimental observations. Among those are:The neessity of an asymptoti mass gap and a rigorous proof of olor on�nement inpure Yang-Mills theory [2℄. In the Standard Model, the assumption of a zero rest massof the neutrino is refuted by the observation of neutrino osillations [3℄ and the double
β deay [4℄. These observations indiate a small, �nite rest mass that also annot beexluded by reent experiments measuring the spetrum of the single β deay of tritiumnulei near the endpoint [5, 6℄. Furthermore, the Standard Model does not provide for anexplanation of Dark Matter and Dark Energy that aount for about 96% of the energydensity in the present universe, and the predited Higgs partile has evaded experimentaldetetion so far. Moreover, the perturbation series of four-dimensional quantum �eldtheories is most likely an asymptoti series; the fat that a perturbative alulation of thethermodynamial pressure annot be driven beyond order g5 in the oupling onstant dueto the weak sreening of the magneti setor ausing infrared instabilities [7℄, ould beshown for Quantum Chromodynamis at �nite temperature.Sine perturbation theory is an expansion in powers of a neessarily small ouplingonstant about a trivial a priori estimate for the vauum of the theory, it fails to desribestrongly oupled physis as well as the aording nontrivial vauum state. This vauumis ertainly omposed of �nite-ation solitoni solutions of the lassial Yang-Mills ation.The so alled instantons are topologially nontrivial objets in pure Yang-Mills theorythat desribe tunneling proesses between topologial distint vaua, e.g. [8℄. Their weightpossesses an essential zero at vanishing oupling, and thus instanton ontributions to thepartition funtion of the theory are ompletely ignored by perturbation theory. Instantonsat �nite temperature are alled alorons.Therefore, we are advised to onsider a nonperturbative approah to gauge theories.1



2 CHAPTER 1. INTRODUCTIONSuh a treatment has already been proven suessful in terms of an e�etive theory forsuperondutivity [9℄. An analytial and nonperturbative approah to SU(2) Yang-Millsthermodynamis was developed in [10℄. In this approah the basi idea is to subjet thehighly omplex dynamis of the topologially nontrivial �eld on�gurations to a spatialoarse graining that leads to the emergene of marosopi salar �elds, and pure gauges.Due to nontrivial (thermal) ground states, the fundamental gauge symmetry is brokensuessively as temperature dereases. As a onsequene, Yang-Mills thermodynamisours in three phases: the deon�ning, the preon�ning and the on�ning phase. Thelatter, in whih we are primarily interested in this thesis, exhibits three unexpeted results.These are the exat vanishing of the energy density and the pressure of the ground stateat zero temperature, the Hagedorn harater of the preon�ning-on�ning phase transitionand the spin-1/2 nature of the massless and massive exitations in the on�ning phase.The ground state of the deon�ning phase is omposed of interating alorons and an-tialorons and exhibits negative pressure. The propagating exitations within that phaseare two massive gauge modes - due to the dynamially broken SU(2) - and one masslessgauge mode. As temperature dereases, the likeliness for alorons and antialorons to dis-soiate into (BPS saturated) magneti monopoles and antimonopoles inreases strongly inthe viinity of a ritial temperature. The ground state of the preon�ning (or magneti)phase starts to form by the pairwise ondensation of monopoles and antimonopoles. Exi-tations in that phase are propagating dual gauge modes of mass mD (dynamially brokenU(1)D). Unstable defets of the magneti ground state are losed magneti �ux lines of�nite ore size d that ollapse as soon as they are reated. This is beause, as long as
d > 0, the pressure inside the vortex loop is more negative than outside, thus leading tothe ontration of the vortex loop. The magneti phase exhibits negative pressure. Atthe Hagedorn transition towards the on�ning (also alled enter) phase, a omplete de-oupling of the gauge �elds takes plae. To put it more preisely, by the deay of themagneti ground state into sel�nterseting and non-sel�nterseting enter-vortex loops themass of the dual gauge �eld diverges and the ore size of enter-vortex loops vanishes, seealso [11, 12℄. As a result of d → 0, the negative pressure P is on�ned to the vanishingvortex ore. This implies that enter-vortex loops beome stable partile-like exitationswith P = 0. These solitons are lassi�ed aording to their enter harge and the numberof sel�ntersetions N , see Fig. 1.1. The mass of an N -fold sel�nterseting soliton is NΛC ,where ΛC is the Yang-Mills sale. Topologially, solitons with non-vanishing N are stablein the absene of external gauge modes oupling to the harges at the intersetion points.On the other hand, for N = 0, there is no topologial reason for stability.Now onsider a situation where a planar enter-vortex loop, whih is a (loal) em-bedding of a enter-vortex loop into a two-dimensional �at and spatial plane, still hasnon-vanishing ore size d > 0 and the mass of the dual gauge �eld mD is still �nite dueto a noisy environment whih loally resolves the otherwise in�nitely thin vortex. In thisase, the pressure P is loally nonzero and the soliton starts shrinking. Suh a situationis desribed by a urve shortening �ow in the (dimensionless) parameter τ . Here, τ is avariable measuring the derease of externally provided resolving power applied to the sys-tem. There is a funtional dependene of τ on the orresponding resolution Q (momentumtransfer). For an isolated SU(2) theory the role of the environment is played by the setorswith N > 0. If the on�ning SU(2) is part of a world with additional gauge symmetries,then a portion of suh an environment arises from the mixing between the orrespondinggauge groups. Either way, a enter-vortex loop aquires a �nite ore size and as a onse-
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Figure 1.1: The topologies of solitoni exitations with up to N = 3 sel�ntersetions foran SU(2) Yang-Mills theory in the on�ning phase. A magneti monopole of harge +1or −1 is loated at eah point where enter-�ux lines interset. Solitons with N = 0are unstable in presene of a noisy environment, whereas solitons with N = 1 are alwaysstable. Exitations with N > 1 are unstable if subjeted to mixing with theories possessingpropagating gauge �elds.quene, a �nite mass for the N = 0 soliton by frequent interation with the environmentafter it was generated by a proess that was subjet to an inherent, �nite resolution Q0.Knot-like strutures are relevant in a number of hemial, biologial and physial sys-tems [13℄, e.g. in polymer physis, partiularly in moleular biology, in type-II superon-dutor, where string-like vorties on�ne magneti �elds to the ores of the vortex-likestrutures, in super�uid helium (4He), as well as in liquid rystals. As early as 1897 LordKelvin proposed that elementary partiles - at that time atoms were onsidered to be el-ementary by Kelvin and others - should be desribed as knotted lines of vortex tubes ina medium (the aether) [14℄. As we know now, the point partile interpretation of Quan-tum Mehanis appears to be a muh more elegant and e�ient framework to desribethe physis of atoms and moleules. But at the same time, the notion of an eletron as aspinning point partile, albeit an exellent desription in a bulk of physial situations inatoms, olliders and ondensed matter systems, auses theoretial and experimental inon-sistenies. On the one hand, there is the problem of diverging lassial self-energy of theeletron. On the other hand, the unexpeted explosive behavior in reent high-temperatureplasma experiments [15, 16℄ and the strong orrelations of eletrons in two-dimensional pla-nar systems [9℄ are indiations of non-loal e�ets possibly related to the extended spatialstruture of the eletron. Also, reent theoretial developments revive Kelvin's desriptionof elementary partiles as non-loal knot-like entities. In [13, 17℄, the argument is thaton�ning strings, tied into stable knotted solitons, exist when deomposing the gauge �eldin the low-energy domain of four-dimensional SU(2) Yang-Mills theory.Aording to the approah in [10℄, we tend to interpret one-fold sel�nterseting enter-vortex loops as eletrons and aordingly non-sel�nterseting enter-vortex loops as neu-trinos. This implies that the Yang-Mills sale ΛC must be set equal to the eletron mass



4 CHAPTER 1. INTRODUCTION
Α
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v1
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Figure 1.2: Points on the enter �ux lines moving oppositely on a line perpendiular to thebiseting line of the angle α with veloity modulus v1. For su�iently small α the veloitymodulus v2 of the intersetion point is superluminal: v2 = v1 cot α
2 .

me = 511 keV. The spin-1/2 nature of a enter-vortex loop is a onsequene of its two-folddegeneray with respet to the diretion of �ux whih is lifted in the presene of an eletrior magneti bakground �eld. It should be notied for a sel�nterseting enter-vortex loopthat, as long as both wings of enter �ux are of �nite size, a spatial shift of the intersetionpoint requires a negligible amount of energy only. In partiular, if the inner angle α be-tween in- and out-going enter-�ux at the intersetion is su�iently small, then a motion ofpoints on the vortex line that is direted perpendiularly to the biseting line of the angle
α easily generates a veloity of the intersetion point whih exeeds the speed of light,e.g. Fig. 1.2. Here, it should be onsidered that the path-integral formulation of QuantumMehanis admits suh superluminal motion in the sense that the aording trajetoriesontribute to transition amplitudes [18℄.The purpose of this thesis is to treat the behavior of N = 0 and N = 1 enter-vortexloops under urve shrinking as a Wilsonian renormalization-group �ow governed by ane�etive `ation'. The term `ation' is slightly misleading sine we do not aim at a timeevolution of the system by demanding stationarity of the `ation' under urve variation.We onsider resolution dependent statistial ensembles in the presene of an environmentrepresented by a parameter σ. The orresponding weight-funtional for the members of theensemble, written as the exponential of an `ation', is de�ned in purely geometri terms.In turn the resolution dependene of the `ation' is determined by the urve shrinking�ow. The `ation' possesses a natural deomposition into a onformal and a non-onformalfator. We onsider the partition funtion of a given ensemble of planar urves to beinvariant under the ondition of hanging the resolution. One the evolution of the weight-funtional is determined, we are able to ompute the resolution dependene of `observables'as ensemble averages of (loal or non-loal) operators.What we observe is that the N = 0 setor beomes unresolvable from a �nite resolution
Q∗ downward. That is, as a onsequene of a noisy environment planar N = 0 enter-vortexloops shrink to points with irular limiting shape within a �nite derease of resolving powerand thus disappear from the spetrum of the on�ning phase of SU(2) Yang-Mills theoryfor a resolution smaller than the ritial Q∗. Sine enter-vortex loops with N > 0 have�nite mass this generates an asymptoti mass gap. We show that the observed transition



5to the onformal limit of vanishing urve length is a ritial phenomenon with a mean-�eldexponent of the oe�ient assoiated with the non-onformal fator. For the N = 1 setorwe observe the unexpeted behavior that, starting from a �nite value, the entropy of thesystem dereases to an almost zero value as the resolving power is lowered: the ensembleevolves into a highly ordered state in a sense that only a single urve survives the proessof oarse-graining.The thesis is organized as follows: Chapter 2 gives a brief outline of the e�etive theoryof thermalized SU(2) Yang-Mills dynamis in all of its phases as it is developed in [10℄.Chapter 3 provides prerequisites for the mathematis of urve shrinking �ows in two andthree spae dimensions. Chapters 4 and 5 investigate the N = 0 setor and respetively,the N = 1 setor. In Setions 4.1 and 5.1, we explain our philosophy underlying thestatistis of geometri �utuations and how the renormalization-group �ow of the e�etive`ation' is driven by the urve-shrinking evolution of the members of a given ensemble of
N = 0 and respetively, N = 1 enter-vortex loops. In Se. 4.2, we explain our numerialanalysis onerning the omputation of the e�etive ation and the variane of the `enterof mass' whih is ompared to Heisenberg's unertainty relation. In Se. 5.2, we eluidateour numerial analysis onerning the omputation of the e�etive `ation', the variane ofthe loation of the sel�ntersetion, and the resolution-dependent entropy assoiated witha given ensemble. Chapter 6 deals with eletrons whih are interpreted as enter-vortexloops with one sel�ntersetion. In Se. 6.1, we give reasons for this interpretation, andin Se. 6.2, we onsider strongly orrelated systems of eletrons in uprates exhibitinghigh-temperature superondutivity and the new lass of reently disovered iron-basedhigh-temperature superondutors. Chapter 7 gives a short summary of our �ndings.





Chapter 2Brief review of SU(2) Yang-MillsthermodynamisIn this setion, we give a short outline of the analytial and nonperturbative approahto SU(2) Yang-Mills thermodynamis as it is developed in [10℄. The basi idea is tosubjet the highly omplex dynamis of topologially nontrivial �eld on�gurations to aspatial oarse-graining that is desribed by emergent marosopi salar �elds, one for eahphase. Coneptually, this approah is similar to the marosopi Landau-Ginzburg theoryof superondutivity. Although we are only onerned with the on�ning phase in thiswork, we start our outline of [10℄ in the deon�ning phase at high temperatures whihleads us by onseutive phase transitions to the on�ning phase.2.1 Basis of thermal Yang-Mills theoryYang-Mills theories are non-Abelian gauge theories whose Lagrangian is demanded to beinvariant under loal gauge transformations. In this thesis, we restrit ourselves to the aseof SU(2) gauge transformations. In pure Yang-Mills theory, only gauge �eld terms appearin the fundamental Lagrangian while matter �elds are absent. Wik-rotating to Eulideansignature by t→ −iτ and moving to �nite temperature T , whih orresponds to imaginarytime ompati�ed on a irle with irumstane β = 1
T , the gauge-invariant ation is givenby

S ≡ 1

2g2
tr

∫ β

0
dτ

∫

d3xFµνFµν , (2.1)where g denotes the dimensionless oupling onstant and tr the trae operation. It holdsthat (x1, x2, x3, x4) ∈ R
4. The Yang-Mills �eld strength tensor is de�ned as1

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], (2.2)with the Lie-algebra valued gauge �elds in the adjoint representation
Aµ ≡ Aa

µ

σa

2
, (2.3)1The gauge oupling g is absorbed in the de�nition of the gauge �elds.7



8 CHAPTER 2. BRIEF REVIEW OF SU(2) YANG-MILLS THERMODYNAMICSwhere the generators σa are given by the Pauli matries. The ation density 1
2g2 trFµνFµνis invariant under loal SU(2) gauge transformations

Aµ(x)
Ω→ Ω(x)Aµ(x)Ω†(x) + iΩ(x)∂µΩ(x), (2.4)where Ω is an element of SU(2).Instantons are loalized �nite-ation lassial solutions in Eulidean �eld theory. TheBPST (Belavin-Polyakov-Shwartz-Tyupkin) instanton is an (anti)selfdual, that is BPS(Bogomol'nyi-Prasad-Sommer�eld) saturated, on�guration solving the Euler-Lagrangeequations DµFµν = 0 subjet to the ation (2.1) [19℄. For the ovariant derivative Dµof the �eld φ in the adjoint representation we have

Dµφ = ∂µφ− i[Aµ, φ]. (2.5)The (anti)selfduality ondition reads
Fµν = ±F̃µν , (2.6)where the dual �eld strength is de�ned as F̃µν ≡ 1

2ǫµνκλFκλ, ǫµνκλ being the total anti-symmetri tensor with ǫ1234 = 1. (Anti)selfdual on�gurations saturate the BPS bound onthe ation whih therefore is minimal (in a given topologial setor) and of value
S =

8π2

g2
|Q|, (2.7)where the Pontryagin index Q is a topologial invariant (harge) and de�ned as

Q ≡ 1

32π2

∫ β

0
dτ

∫

d3xF a
µν F̃

a
µν . (2.8)BPS saturated �eld on�gurations Aµ have vanishing energy-momentum tensor.(Anti)alorons are BPS saturated, periodi-in-τ on�gurations at �nite temperaturewith �nite ation and topologial harge Q = ±1. They are lassi�ed aording to theeigenvalues of their Polyakov loop (time-like Wilson loop evaluated in periodi gauge) atspatial in�nity. An (anti)aloron is said to be of trivial holonomy, if its Polyakov loop, eval-uated at spatial in�nity, is an element of the enter of the gauge group. Otherwise it is saidto have nontrivial holonomy. The Harrington-Shepard (HS) (anti)aloron is a periodi-in-τinstanton in singular gauge with topologial harge Q = ±1 and trivial holonomy, whereasthe Lee-Lu-Kraan-van Baal (LLKvB) (anti)aloron is of nontrivial holonomy. Desriptively,trivial holonomy means that the aloron has no substruture. The LLKvB (anti)aloronontains BPS magneti monopoles onstituents whih, by virtue of quantum orretions[20℄, are subjet to an attrative interation in the ase of small holonomy and to a repul-sive interation for large holonomy. In the ase of large holonomy, the repulsion leads toa dissoiation of the aloron into a pair of a sreened magneti monopole and antimono-pole. On the other hand, for small holonomy, the (anti)aloron ollapses bak to the stableon�guration of a HS (anti)aloron by annihilation of their BPS monopole onstituents.Thus, single LLKvB alorons are unstable under quantum deformations.



2.2. THE DECONFINING PHASE 92.2 The deon�ning phaseThe omplex mirosopi dynamis in Yang-Mills theory does not seem to allow for adiret analyti alulation of marosopi quantities in terms of the fundamental gauge�elds. A spatial oarse-graining, that is the omputation of a spatial average over thesetor of topologially nontrivial, BPS saturated �eld on�gurations of trivial holonomyturns out to be a feasible and thermodynamially exhaustive approah. The oarse-grainingproedure is desribed in terms of a marosopi adjoint �eld φ. In order to haraterizethe marosopi ground state, φ has to satisfy for following onditions:(i) due to spatial isotropy and homogeneity φ must be a Lorentz salar;(ii) homogeneity of the ground state implies that the modulus of φ is independent of spaeand time. A dynamially generated Yang-Mills sale Λ enters this modulus as a parameter;(iii) φ is a omposite of loal �elds and therefore has to transform under the adjoint rep-resentation, beause in pure Yang-Mills theory all loal �elds transform under the adjointrepresentation of the gauge group;(iv) only the olor orientation of φ in a given gauge, also referred to φ's phase, dependson τ . Sine φ is onstruted from (anti)alorons, whih are periodi in Eulidean time, φ'sphase is also periodi in τ , and sine the lassial aloron ation S = 8π
g2 is independent oftemperature φ's phase is not expliitly time dependent. The omputation of the phase of

φ does not require any information about the Yang-Mills sale.Consequently, the �eld an be written as
φa = |φ|(ΛE , β)

φa

|φ|

(

τ

β

)

. (2.9)In [10, 21, 22℄ equations of motion for the phase and modulus of the spatially homogeneous,omposite, emergent adjoint salar �eld φ obeying the above onditions are derived. The(non-perturbatively) temperature dependent modulus is given by
|φ|(ΛE , β) =

√

Λ3
Eβ

2π
=

√

Λ3
E

2πT
. (2.10)The orresponding ation is found to be

Sφ = tr

∫ β

0
dτ

∫

d3x ((∂τφ)2 + Λ6
Eφ

−2), (2.11)where φ−1 ≡ φ
|φ|2

. The �eld φ turns out to be quantum mehanially and statistiallyinert2. It serves as a spatially homogeneous bakground for the topologially trivial (Q = 0)setor of the oarse-grained, propagating gauge �elds aµ. In Eq. (2.11) interations betweenalorons are not yet inluded. This is done via minimal oupling by substituting
∂µφ→ Dµφ = ∂µφ+ ie[φ, aµ]. (2.12)The interations are mediated by the topologially trivial �elds that hange the holonomyof the (anti)alorons and subsequently indue interations between the magneti monopole2This an be heked by diret omputation but also is implied by the fat that a spatial average overnon-propagating gauge �elds must generate a omposite that itself is not propagating.



10 CHAPTER 2. BRIEF REVIEW OF SU(2) YANG-MILLS THERMODYNAMICSonstituents of nontrivial holonomy (anti)alorons. The ation for the minimally oupled�elds is given by
S = tr

∫ β

0
dτ

∫

d3x (
1

2
Gµν Gµν + (Dµφ)2 + Λ6φ−2), (2.13)where the �eld strength is Gµν ≡ σa

2 (∂µa
a
ν − ∂νa

a
µ − efabcab

µa
c
ν) and e denotes the e�etivegauge oupling whih determines the strength of interation between topologially trivialgauge �eld �utuations and the marosopi �eld φ. Due to Lorentz invariane, gaugeinvariane, perturbative renormalization, and the inertness of φ the ation (2.13) is unique.The topologially trivial setor is written as a deomposition

aµ = ags
µ + δaµ, (2.14)where ags

µ is a pure-gauge solution of the equations of motion for aµ following from ation(2.13), and δaµ is a (periodi) �nite-urvature propagating �utuation. The pressure P gs
Eand energy density ρgs

E of the ground state, following from the energy-momentum tensor,read
P gs

E = −ρgs
E = −4πΛ3

ET. (2.15)Mirosopially, the negative ground state pressure arises from the reation and annihi-lation of BPS monopoles and antimonopoles within small-holonomy (anti)alorons. Theemergene of the marosopi adjoint salar �eld φ breaks the fundamental gauge groupSU(2) down dynamially to the subgroup U(1). Due to the adjoint Higgs mehanism, twoout of three gauge modes δa(1,2)
µ aquire a temperature dependent mass, while the thirdremains massless,

m1 = m2 = 2e(T )|φ| = 2e(T )

√

Λ3
E

2πT
and m3 = 0. (2.16)Evaluating the Polyakov loop in a di�erent (unitary) gauge gives rise to the onlusionthat the ground state is two-fold degenerated with respet to the (broken) global ele-tri Z2 symmetry. Thus, the eletri phase is deon�ning. The temperature evolutionof the e�etive gauge oupling e is derived from the demand for thermodynamial self-onsisteny, it reahes a plateau value rapidly as temperature inreases (T ≫ Tc,E) anddiverges logarithmially for T ց Tc,E,

e(T ) ∝ − log(T − Tc,E). (2.17)Therefore, the massive gauge δa(1,2)
µ modes beome in�nitely heavy and deouple at Tc,E.The ground state in the deon�ning phase is omposed of interating alorons andantialorons of topologial harge-modulus one and trivial holonomy. Sreened magnetiBPS saturated monopoles are spatially isolated defets in the eletri phase. Sreening o-urs due to short-lived magneti dipoles provided by intermediary small-holonomy LLKvB(anti)alorons and due to all other stable and sreened (anti)monopoles.
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Figure 2.1: Temperature evolution of the e�etive gauge ouplings e and g as a funtionof the dimensionless temperature λE = 2πT
ΛE

. The �gure is taken from [23℄.2.3 The preon�ning phaseAt Tc,E = 13.87ΛE

2π , the e�etive gauge oupling e diverges. Thereby, magneti monopolesand antimonopoles, whih are generated by the dissoiation of large-holonomy alorons,beome massless and ondense pairwise, thus terminating the deon�ning phase. Notethat for T < Tc,E, the average aloron-antialoron holonomy gradually inreases withdereasing temperature. After a spatial oarse-graining, the thermal ground state of theBose ondensate of interating monopoles and antimonopoles is entirely desribed by amarosopi omplex salar �eld ϕ and a pure gauge aD,gs
µ ; only gauge �elds transformingunder U(1) survive the eletri-magneti phase transition. The marosopi omplex salar�eld ϕ turns out to be quantum mehanially and statistially inert. Interations betweenmonopoles mediated by pure gauges generate isolated but unstable defets. These defetsare losed magneti �ux lines that are omposed of magneti monopoles moving oppositelydireted to eah other in the vortex ore along the �ux lines. The losed �ux lines ollapseas soon as they are reated, thereby induing a negative pressure. It should be notied thatthe magneti �ux lines need to be losed due to the absene of isolated magneti harges inthe monopole ondensate. The spatially homogeneous and BPS saturated omplex salar�eld ϕ breaks the dual gauge symmetry U(1)D dynamially: the stable and propagatingexitations in the magneti phase are massive dual gauge modes.In [10℄ equations for phase and modulus of the marosopi omplex salar �eld arederived. The modulus of the �eld ϕ is found to be

|ϕ|(ΛM , β) =

√

Λ3
Mβ

2π
=

√

Λ3
M

2πT
. (2.18)The e�etive ation for ϕ reads

Sϕ =

∫ β

0
dτ

∫

d3x

(

1

2
∂τϕ∂τϕ+

1

2

Λ6
M

ϕ̄ϕ

)

, (2.19)



12 CHAPTER 2. BRIEF REVIEW OF SU(2) YANG-MILLS THERMODYNAMICSwhere interations between (sreened) monopoles are absent and ΛM is an externally pro-vided Yang-Mills sale. Interations are aounted for in analogy to Se. 2.2: the topolog-ially trivial setor aD
µ is deomposed into

aD

µ = aD,gs

µ + δaD

µ (2.20)and is minimally oupled to ϕ. The unique e�etive ation inluding interation reads
S =

∫ β

0
dτ

∫

d3x

(

1

4
FD

µν F
D

µν +
1

2
DµϕDµϕ+

1

2

Λ6
M

ϕ̄ϕ

)

, (2.21)where the Abelian �eld strength of the dual gauge �eld is given by
FD

µν = (∂µa
D

ν − ∂νa
D

µ ), (2.22)and the ovariant derivative involving the e�etive magneti oupling g by
Dµ = ∂µ + igaD

µ . (2.23)A pure-gauge solution aD,gs
µ to the equations of motions for the dual gauge-�eld in thebakground of ϕ is found.The evaluation of the Polyakov loop suggests that the eletri Z2 degeneray, as o-urred in the eletri phase, no longer exists in the magneti phase: the ground state ofthe magneti phase is unique and on�nes fundamental, heavy and fermioni test harges.Nevertheless, massive gauge modes still propagate beause the Polyakov loop does not van-ish entirely. Therefore, the magneti phase is alled preon�ning. The dual gauge groupU(1)D is dynamially broken due to the emergene of the marosopi salar �eld ϕ. As aonsequene, the dual gauge exitation δaD

µ beomes Meiÿner massive via the dual AbelianHiggs mehanism,
mD = g(T )ϕ. (2.24)The evolution of the temperature dependent e�etive gauge oupling g is predited bythermodynamial self-onsisteny. The oupling vanishes for T ր Tc,E and diverges loga-rithmially for T ց Tc,M :
g ∝ − log(T − Tc,M ), (2.25)where Tc,M denotes the temperature where the transition to the enter phase takes plae.The typial energy of a non-sel�nterseting enter-vortex loop (CVL) is ∝ g−1.During the eletri-magneti phase transition, the number of polarizations of the `pho-ton' jumps from two to three, thereby induing a disontinuity in the energy density. Thenegative pressure of the ground state arises due to an equilibrium between vortex-loopreation by dissoiation of large-holonomy alorons and the annihilation of vortex loops byontration. The non-vanishing pressure P gs

M and energy density ρgs
M of the ground stateevaluate as

P gs
M = −ρgs

M = −πΛ3
MT. (2.26)Aross the eletri-magneti phase transition at Tc,E, where e = ∞ and g = 0, the pressureis ontinuous (see Fig. 2.2) relating the sales ΛE and ΛM :

ΛE =

(

1

4

)1/3

ΛM . (2.27)
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. The dashedline represents the ontinuation of the energy ρE of the eletri phase (solid blak line)for dereasing temperature T < Tc,E (superooled state, mD = 0). The solid grey linerepresents the energy density ρM in the magneti phase for inreasing temperature (mD >
0). As long as no additional energy is available, the system remains in a superooled stateuntil a temperature λE = 12.15 is reahed. The �gure is taken from [23℄.The magneti phase is not deteted by �nite-size lattie simulations, sine the mono-poles ondensate posses in�nite orrelation length (∝ (Mm+a)

−1), where Mm+a is the sumof the monopole and antimonopole mass after sreening:
Mm+a =

8π

eβ
. (2.28)2.4 The on�ning phaseFirst we provide some fats on the Abrikosov-Nielsen-Olesen (ANO) vortex. When embed-ded in three spae dimensions, a point-like two-dimensional ANO vortex beomes a vortexline. A mesosopi desription of a stati ANO vortex is given by the ation of Eq. (2.21)where the potential is absent. A BPS saturated solution to the equation of motions, fol-lowing from ation (2.21), an be found that arries one unit of magneti �ux (2π

g ) and hasvanishing ore size. Outside the vortex ore the pressure Pv(r), whih is isotropi in the
x1-x2 plane, reads

Pv(r) = −1

2

Λ3
Mβ

2π

1

g2
r2, (r > 0), (2.29)where r is the radial vetor in the x1-x2 plane. Notie the minus sign on the right hand sideof Eq. (2.29). For a �nite energy, the length of the ANO vortex line must be �nite. The
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Figure 2.3: The oppositely direted enter �uxes in the ore of the intersetion of a sel�n-terseting enter-vortex loop generate an eddy where an isolated magneti Z2 monopole isloated.on�guration is stati as long as it possesses ylindri symmetry, but as soon as the vortexis bend the on�guration beomes unstable: the pressure inside the vortex loop is morenegative than outside. Thus, the vortex ollapses as soon as it is reated at �nite oupling
g. Notie that in the limit where g diverges the pressure vanishes. This implies that theformerly unstable vortex loop beomes a stable and massless partile-like exitation fortemperatures below Tc,M . The typial ore size d and energy Ev of a CVL are given by

d ∝ 1

mD

=
1

g

√

Λ3
M

β
and Ev ∝ π

g

√

Λ3
Mβ

2π
. (2.30)By the olletive dissoiation of large-holonomy alorons and antialorons in the pre-on�ning phase, isolated and losed magneti �ux lines start to form. At Tc,M , where themagneti oupling g diverges logarithmially, the dual gauge �eld beomes in�nitely heavy.Thus, a omplete deoupling of the dual gauge modes takes plae at the magneti-enterphase transition. As a result, only ontat interations between enter-vortex-loops arepossible.The deay of the monopole-antimonopole ondensate and the subsequent formation ofthe (Bose)ondensate of CVLs is desribed by a marosopi omplex salar �eld Φ in apotential VC(Φ). The expetation of Φ is proportional to the expetation of the 't Hooftloop operator whih is a dual order parameter for on�nement. CVLs in the magnetiphase are reated by phase jumps of Φ and an inrease in the modulus of Φ. This proessontinues until Φ relaxes to one of the Z2 degenerated, energy and pressure free minima ofa potential VC . The phase of Φ is given by a line integral of the dual gauge �eld aD

µ alonga spatial irle of in�nite radius SR=∞
1 measuring the (quantized) magneti �ux throughthe minimal surfae MSR=∞

1

. The reation of a CVL now proeeds by an in�nitely thin�ux line and its �ux reversed partner traveling in from in�nity and interseting with the
SR=∞

1 , thereby piering the surfae MSR=∞
1

. The energy needed to reate a single enter-vortex loop is provided by the potential VC . Sel�nterseting and therefore massive CVLsome into existene when generated single CVLs that move fast enough to onvert someof their kineti energy into mass ollide and merge, thus reating sel�ntersetions. Eahintersetion point arries one unit of magneti harge, see Fig. 2.3, where eah sign isequally likely. The spetrum of exitations is equidistant sine the mass of a soliton with
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N self-interations is given by NΛC , ΛC being the Yang-Mills sale. Modulo the hargemultipliities the number of distint topologies of N -fold sel�nterseting solitons is givenby the number of distint topologies of onneted bubble diagrams with N verties in asalar λφ4 quantum �eld theory. In Fig. 1.1 the topologies of CVLs with up to N = 3sel�ntersetions are shown. If subjeted to mixing with theories possessing propagatingphotons the only stable exitations are non-sel�nterseting and one-fold sel�ntersetingCVLs. This is due to the repulsive or attrative fores between the harges of CVLs withmore than one sel�ntersetion. CVLs without sel�ntersetion, however, are unstable in thepresene of a noisy environment, see Se. 2.6.In [10℄ the potential VC for the marosopi �eld Φ is found to be

VC =

(

Λ3
C

Φ
− ΛCΦ

)(

Λ3
C

Φ
− ΛCΦ

)

, (2.31)satisfying the following properties (see also [24℄):(i) VC is invariant under enter jumps Φ → exp(iπ)Φ only;(ii) it allows for the reation of spin-1/2 fermions by a forward- and bakward tunnelingwhih orresponds to loal enter jumps of Φ's phase;(iii) the degenerated minima of VC have zero energy density and are related by loal enterjumps;(iv) a mass sale ΛC ours to parameterize the potential VC ;(v) VC needs to be real.The proess of relaxation of Φ to one of the minima of VC is desribed by the ation
S =

∫

dx4

(

1

2
∂µΦ ∂µΦ − 1

2
VC

)

. (2.32)One Φ has reahed VC 's minima, quantum �utuation δΦ are absent beause every po-tential �utuation would be harder than the maximal resolution.Negleting ontat interations between and internal degrees of freedom within solitonsas well as long-range interations between harges mediated by photons, the naive seriesfor the total pressure PC at temperature T represents an asymptoti expansion in powersof a suitably de�ned oupling oupling onstant λ ≡ exp(−ΛC/T ). That is, the sum
PC =

∞
∑

N=0

PC,N (2.33)over partial pressures PC,N of spin-1/2 states arising from solitons with N sel�ntersetionsseems to onverge up to a ritial, temperature-dependent value Nc(T ), but onvergeswhen inluding higher ontributions. This signals that the assumption that solitons witharbitrary N are stable breaks down to hold for N > Nc as a onsequene of ontatinterations whih inrease due to the higher density of intersetion points and vortexlines. Though formally divergent, the sum over partial pressures PC,N turns out to beBorel summable for negative (unphysial) values of λ. The inverse Borel transformationis meromorphi3 in the entire λ-plane exept for a branh ut along the positive-real axis.Continuation to the physial region λ > 0 leads to a sign-inde�nite imaginary part whih3A meromorphi funtion is holomorphi on an open subset of the omplex plane exept for a set ofisolated poles.



16 CHAPTER 2. BRIEF REVIEW OF SU(2) YANG-MILLS THERMODYNAMICSis smaller than the real part for su�iently small temperatures. Complex admixtures tothe pressure beome manifest as turbulene-like phenomena in the plasma and thus violatethermal equilibrium. At zero temperature, the pressure of the ground state is preisely nil.Beause of the over-exponential rise of spin-1/2 fermion states with inreasing temperature,the imaginary part starts to dominate the pressure and the thermodynamial desriptionof the system begins to fail (violation of spatial homogeneity). That is, at temperature
TH ∼ ΛC , the entropy wins over the Boltzmann suppression in energy and the partitionfuntion diverges. This is an indiation for the Hagedorn transition to the preon�ningphase. For details see [25℄. Similar behavior is observed for the expansion of the energydensity [26℄

ρC =

∞
∑

N=0

ρC,N , (2.34)where ρC,N is the energy density of soliton states with N sel�ntersetions and mass NΛC .Demanding for ontinuity of the negative pressure aross the magneti-enter phasetransitions yields a relation between ΛM and ΛC :
ΛM ∝ 21/3ΛC . (2.35)The question may arise whether there are stable sel�nterseting vortex-loops in themagneti phase. By the deay of the marosopi ground state in the magneti phase itsenergy density is used to reate sel�nterseting CVLs. An N -fold twisted CVL possessesa mass NΛC , where the Yang-Mills sale is about ΛC ∝ TH . For this reason, the potentialin the magneti phase annot provide enough energy density to reate a sel�ntersetion inthe magneti phase.2.5 The postulate SU(2)CMB = U(1)YWe have mentioned in Se. 2.2 that the spatial oarse-graining over the topologially non-trivial setor leads to the emergene of a marosopi adjoint Higgs �eld whih breaksthe fundamental gauge group SU(2) down dynamially to the subgroup U(1). Thereby,two out of three gauge bosons beome massive. At Tc,E = 13.87ΛC

2π , where the eletri-magneti phase transition takes plae, the mass of these two gauge �eld diverges and themassless mode remains exatly massless beause radiative orretions are absent due tothe deoupling from its heavy partners.Now onsider the U(1)Y fator of the eletroweak gauge group SU(2)W ×U(1)Y of thepresent Standard Model of Partile Physis (SM). In Quantum Eletrodynamis (QED),the photon is observed to be unsreened and pratially massless (mγ < 10−14 eV) [27℄.It is desribed by the gauge group U(1) the progenitor of whih is the U(1)Y fator. Asstated above, there is only a single point in the phase diagram of SU(2) Yang-Mills ther-modynamis that exhibits a preisely massless gauge mode: the deon�ning-preon�ningphase transition at Tc,E. Therefore, in [10, 23, 28, 29℄, the postulate was pushed forwardthat the U(1)Y fator of the eletroweak gauge group is the unbroken subgroup of an SU(2)Yang-Mills theory with a sale omparable to the temperature of the osmi mirowavebakground (CMB) TCMB = 2.728 eV. This group is denoted SU(2)CMB. The photon γ inthe SM has to be identi�ed with the massless gauge mode of SU(2)CMB. In analogy to the
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W± gauge bosons of the SM, the remaining two in�nitely massive and thus undetetablegauge modes of SU(2)CMB are denoted V ± (mV ± = 2eφ with e = ∞ at Tc,E). Furthermore,the average temperature of the universe TCMB is identi�ed with the ritial temperature
Tc,E of SU(2)CMB. This �xes the only free parameter of the theory, the Yang-Mills sale ΛE ,to ΛE = 2π

13.87TCMB = 1.065 × 10−4 eV. For temperatures muh above Tc,E, the e�ets of
V ± are ompletely negligible, whereas for temperatures a few times of TCMB, these lead toa visible modi�ation of the blak-body spetrum at low frequenies (spetral gap) [29, 30℄.The spetral gap ould also provide for an explanation why old (estimated age ∼ 50 millionyears), old (mean brightness temperature ∼ 20 K) and dilute (number density ∼ 1.5 m3)louds in between the spiral arms of the outer galaxy are omposed of atomi instead ofmoleular hydrogen, and why these louds are stable [31℄.Regarding the transition towards the preon�ning phase, the postulate SU(2)CMB =
U(1)Y implies that the photon will aquire a Meiÿner mass beause of the oupling tothe newly emerging superonduting ground state (ondensate of magneti monopoles).The system, however, remains in a superooled state down to T = 12.15ΛE

2π due to theshift in energy density at Tc,E (additional degree of freedom), see also Fig. 2.2. In [23℄an upper bound for the time the photon remains massless was estimated to be ∼ 2.2billion years. The observed intergalati magneti �elds an possibly be explained bythe eletri-magneti phase transition. Conventional superondutors onsist of a Cooper-pair ondensate of eletri harges and expel magneti �elds from their interior (Meiÿnere�et). If the ourrene of intergalati magneti �elds is addressed to the emergene ofa superonduting ground state, this leads to the onlusion that a magnetially hargedobjet in the gauge group SU(2)CMB is interpreted as an eletrially harged objet withrespet to U(1)Y . Therefore, the ground state of the magneti phase is a ondensateof eletrially harged monopoles and antimonopoles with respet to U(1)Y , and thusgenerates intergalati magneti �elds.2.6 Motion by urvatureHere, we would like to illustrate how the urve shrinking proess is indued by the urvatureof a CVL. Reall that the vortex loop is generated by the bending of a straight ANO vortexline whih exhibits isotropi pressure perpendiular to its symmetry axis. Now onsidera situation where a CVL of an isolated SU(2) Yang-Mills theory is (loally) embeddedinto a �at two-dimensional surfae at mD < ∞ and d > 0. Then, a hypothetial observermeasuring a positive (negative) urvature of a segment of the vortex line experienes more(less) negative pressure in the intermediate viinity of this urve segment (see Se. 2.4)leading to its motion towards (away from) the observer, see Fig. 2.4. The (inward direted)veloity of a point in the vortex ore will be a monotoni funtion of the urvature atthis point. On average, this shrinks the CVL. Alternatively, one may globally onsiderthe limit mD → ∞, d → 0, that is the on�ning phase, but now taking into aount thee�ets of an environment that loally relaxes this limit (by ollisions) and thus also induesurve shrinking. This situation is desribed by a urve shrinking �ow in the dimensionlessparameter τ
∂τ~x(ξ, τ) =

1

σ
∂2

ξ~x(ξ, τ), (2.36)
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Figure 2.4: Highly spae-resolved snapshot of a segment of a enter-vortex loop. Thepressure Pi in the region pointed to by the normal vetor n is more negative than thepressure Pe thus leading to a motion of the segment along n.where ~x is a point on the planar CVL, ξ is ar length, and σ a string tension e�etivelyexpressing the distortions indued by the (noisy) environment. After a resaling to dimen-sionless variables,
x ≡

√
σ~x and s =

√
σξ, (2.37)�ow equation (2.36) assumes the form:

∂τx(s, τ) = ∂2
sx(s, τ). (2.38)In the following setions, we will resort to the dimensionless �ow equation.



Chapter 3Mathematial Prerequisites: Curveshrinking �owIn the 1970s, William Thurston developed a program for the lassi�ation of three-dimen-sional manifolds. It had a great impat in the �eld of three-dimensional topology andrevealed a very strong onnetion between low-dimensional topology and di�erential ge-ometry, espeially between hyperboli geometry and Kleinian groups [32, 33℄.Now onsider a smooth losed (that is, ompat and without boundary) manifold Mequipped with a smooth time-dependent Riemannian metri g(τ). A (topologial) manifoldis a topologial spae whih is loally homeomorphi to a Eulidean spae, but with angenerally more ompliated global struture. A manifold equipped with a Riemannianmetri g is a real di�erentiable manifold M, in whih eah tangent spae is endowed withan inner produt g in a manner that varies smoothly from point to point. It should benoted that not every manifold admits a geometry. The Rii �ow is a means of proessingthe metri g by the evolution of g under the following partial di�erential equation (PDE)
∂

∂τ
g(τ) = −2Ric(g), (3.1)where Ri is the Rii urvature. In loal oordinates the oe�ients Rij of the Riiurvature tensor are given by a ontration of the Riemannian urvature tensor Ri

jkl,
Rij = Rk

ikj. Roughly speaking, the Rii-�ow ontrats regions of positive urvature andexpands those of negative urvature, thereby smoothing out irregularities in the metri.In this spirit, it is formally analogous to the di�usion of heat that desribes how an irreg-ular temperature distribution in a given region tends to beome more homogeneous overtime. An example of its appliation is the proof of the two-dimensional uniformizationtheorem, whih states that any surfae admits a Riemannian metri of onstant Gaussianurvature. Here, the (suitably renormalized) Rii �ow is used to onformally deform atwo-dimensional metri on M into one of onstant urvature [34℄. Rihard Hamilton intro-dued the Rii �ow with the intention to gain insight into the geometrization onjetureproposed by William Thurston in 1980 [35℄. The geometrization onjeture is the analoguefor three-manifolds of the uniformization theorem for surfaes and implies several otheronjetures, suh as Thurston's elliptization onjeture or the Poinaré onjeture. Let us�rst onsider the Poinaré onjeture, whih was originally posed as a question at the end ofan artile by Henri Poinaré in 1904. In its standard form, it states that every simply on-neted, ompat three-manifold without boundary is homeomorphi to the three-sphere.19



20 CHAPTER 3. MATHEMATICAL PREREQUISITES: CURVE SHRINKING FLOWA more preise phrasing is that the fundamental group of a losed three-manifold M istrivial, if and only if M is homeomorphi to the three-sphere. Now, the geometrizationonjeture onerns the topologial lassi�ation of three-dimensional smooth manifolds.The original phrasing of Thurston goes as follows [35℄: �The interior of every ompat3-manifold has a anonial deomposition into piees whih have geometri strutures�1.In three dimension there are preisely eight geometri strutures alled the eight Thurston(model) geometries (involving the spherial geometry S3, the Eulidean geometry R
3, thehyperboli geometry H

3, the geometry of S2 × R, the geometry of H
2 × R, the geometryof the universal over of SL2(R), the nil geometry and �nally the sol geometry). Theanonial deomposition is arried out in two steps. In the �rst stage, also referred to asthe prime deomposition, one uts a three-manifold M along two-spheres embedded in

M suh that neither of the obtained manifolds is a three-ball, then one glues three-ballsto the resulting boundary omponents. This deomposition is unique up to the sequeneand additional three-balls. The seond stage involves utting along ertain tori that arenontrivially embedded in M obtaining a three-manifold the boundary of whih onsists oftori. Hamilton's basi idea was to plae an arbitrary metri g on a given smooth manifold
M and to dynamially deform M by the Rii �ow to yield one of Thurston's geomet-ri strutures. Hamilton sueeded in proving that a losed three-dimensional manifold,whih arries a metri of positive Rii urvature, is a spherial spae form that ats likean attrator under the Rii �ow [36℄. This is known as the Hamilton theorem. How-ever, in general, the Rii �ow an be expeted to develop a singularity in �nite time.Then, in a series of eprints starting in 2002, Grigori Perelman skethed a proof for thegeometrization onjeture [37℄. Thereby, Perelman modi�ed Hamilton's program to proveThurston's geometrization onjeture by stopping the Rii �ow one a singularity hasbeen formed, then arefully performing `surgery' on the evolved manifold, systematiallyexising singular regions before ontinuing the �ow. This is alled Rii �ow with surgery.The results obtained in this thesis heavily depend on the important work on the urveshortening �ow done by Gage and Hamilton [38℄, and Grayson [39, 40℄. The urve shorten-ing �ow, also known as heat equation on immersions2, is the one-dimensional analogue tothe Rii �ow and originally inspired Hamilton in the development of the Rii �ow. Letus now onsider the properties of urve shrinking �ows in two and three spae dimensions.3.1 Embedded urves without sel�ntersetion3.1.1 Planar urvesConsider a family of smooth, losed urves x(s, τ) of length L embedded3 in a two-dimen-sional �at plane R

2, where x is a point along the urve, s ∈ [0, L] is the ar length thatis unique only up to a onstant and τ ∈ [0, T ] the �ow parameter whih parametrizes thefamily. The initial urve x(s, 0) evolves as a funtion of `time' τ to x(s, τ). The Eulidean1A geometri struture is de�ned to be a spae modeled on a homogeneous spae (X, G), where X isa manifold and G is a group of di�eomorphisms of X suh that the stabilizer of any point x ∈ X is aompat subgroup of G [35℄. For every x in X, the stabilizer subgroup of x (also alled the isotropy groupor little group) is de�ned as the set of all elements in G that �x x: Gx = {g ∈ G|g · x = x}2An immersion is a loal embedding.3An embedding is a map f : X → Y between di�erentiable manifolds X and Y where the map f is ahomeomorphism between X and its image f(X).
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Figure 3.1: The Eulidean urve shortening �ow. The arrows point towards the unit normal
n and the length of the arrows is proportional to the urvature k.urve shortening �ow is de�ned as

∂τx(s, τ) = ∂2
sx(s, τ) ≡ k(s, τ)n(s, τ), (3.2)where the derivative ∂τ := ∂

∂τ is taken along a �xed value of s. This is a paraboli, nonlinearseond-order partial di�erential equation, where n is the inward-pointing Eulidean unitnormal and k the salar urvature, de�ned as
k(s, τ) = |∂2

sx(s, τ)| = det(∂sx(s, τ), ∂2
s x(s, τ)), (3.3)with |v| ≡ √

v · v, v · w denoting the Eulidean salar produt, and det(·, ·) denotes thedeterminant of the 2 × 2 matrix reated by two 2 × 1 vetors. It is a standard resultfor paraboli equations that solutions exist for a short time and are unique. In the urveshortening �ow, the urve x(s, τ) is deformed along its unit normal n(s, τ) at a rate thatis proportional to its urvature k(s, τ). This �ow deserves the attribute urve shortening,beause its �ow lines in the spae of losed urves are tangent to the gradient for the urvelength funtional, see Eq. (3.17). For the remainder of this setion, we assume that asolution to Eq. (3.2) exists on the maximal time interval [0, T ). A more visual desriptionof this �ow is the evolution of an elasti band in a visous medium. If the tension inthe elasti is kept onstant then its behavior is approximately determined by Eq. (3.2),see also Fig. 3.1. Sine motion normal to the urve a�ets ar length, s is not preservedunder urve shrinking. Thus, s and τ are not independent and ommute aording to thefollowing rule
∂τ∂s = ∂s∂τ + k2∂s. (3.4)Therefore, we introdue the urve parameter u (modulo 2π) related to s by
ds = |∂ux| du. (3.5)The quantity |∂ux| an also be thought of as an ar length density. Atually, Eq. (3.5)de�nes s. The operator ∂s then writes as
∂s =

1

|∂ux|
∂u. (3.6)



22 CHAPTER 3. MATHEMATICAL PREREQUISITES: CURVE SHRINKING FLOWIn the following, we resort to a slight abuse of notation by using the same symbol x forthe funtional dependene on u or s. Let us now introdue oordinates in R
2, x(u, τ) =

(x(u, τ), y(u, τ))T (where T denotes the transpose). The tangent vetor to the urve isgiven by ∂ux, and thus we de�ne the unit tangent t vetor as
t(u, τ) :=

∂ux

|∂ux|
=

1

|∂ux|

(

∂ux
∂uy

)

. (3.7)The unit normal is then given by
n(u, τ) :=

1

|∂ux|

(

−∂uy
∂ux

)

. (3.8)The unit tangent and normal vetors are written in terms of ar length s as
t(s, τ) =

(

∂sx
∂sy

)

, and n(s, τ) =

(

−∂sy
∂sx

)

. (3.9)So we an write the Frenet-Serret formulas, whih desribe the kinemati properties of apoint (partile) that moves along the planar urve x as
∂

∂s

(

t

n

)

=

(

0 k
−k 0

)(

t

n

)

, (3.10)where the urvature, when expressed in oordinates, is
k(s, τ) = ∂sx ∂

2
sy − ∂2

sx ∂sy. (3.11)The irumferene of the urve L at time τ is de�ned as
L(τ) ≡

∫ L(τ)

0
ds =

∫ 2π

0
du |∂ux(u, τ)| . (3.12)The evolution of L under the �ow is given by

L̇(τ) :=
dL(τ)

dτ
≡ −

∫ L(τ)

0
ds k2 = −

∫ 2π

0
du |∂ux| k2. (3.13)For the area A enlosed by the urve we have

A(τ) ≡ 1

2

∣

∣

∣

∣

∣

∫ L(τ)

0
ds x(s, τ) · n(s, τ)

∣

∣

∣

∣

∣

. (3.14)Surprisingly, the time derivative of the enlosed area remains onstant under urve shrink-ing,
Ȧ(τ) :=

dA(τ)

dτ
= −2π. (3.15)For planar urves, the dereasing integral ∫ L

0 ds |k| measures the total hange in angle. Inthe speial ase of onvex planar urves, ∫ L
0 ds |k| =

∫ L
0 ds k measures the winding numberof the urve and is an invariant of the �ow (until a singularity develops).



3.1. EMBEDDED CURVES WITHOUT SELFINTERSECTION 23In [41℄, Grayson stated that under the �ow Eq. (3.2) `the urve is shrinking as fast asit an using only loal information'. Let us see how this statement an be understood.Consider the urve length L(τ) =
∫ 2π
0 du |∂ux|. To take the time derivative of L wedi�erentiate |∂ux|2 with respet to τ and obtain

∂τ |∂ux| =
1

|∂ux|
∂ux · ∂τ∂ux. (3.16)Substituting this into L̇(τ) and integrating by parts, we obtain the following expressionfor the rate of derease of urve length

L̇(τ) = −
∫ L(τ)

0
ds k n · ∂τx. (3.17)Therefore, Eq. (3.2) expresses the loal ondition that the rate of derease of L(τ) ismaximal with respet to a variation of the diretion of the veloity ∂τx of a given pointon the urve at �xed magnitude |∂τx| [42℄. However, the magnitude |∂τx| is not in generalthe speed whih maximizes L̇(t).Setting A(τ = 0) ≡ A0, the solution to Eq. (3.15) is

A(τ) = A0 − 2π τ. (3.18)By virtue of Eq. (3.18) the ritial value T , where A and with it the urve vanishes, isrelated to A0 as
T =

A0

2π
. (3.19)The isoperimetri ratio is de�ned as L2

A , and the isoperimetri inequality states that
L(τ)2

A(τ)
≥ 4π. (3.20)Equality is ahieved if and only if the urve is a irle. Therefore, one an onsider it ameasure of `how irular' the urve is.In 1983, Gage showed that when a smooth onvex urve evolves aording to Eq. (3.2),the isoperimetri ratio L2

A dereases, so that if A → 0, then L → 0 and the urve shrinksto a point [43℄. In 1984, Gage showed that a onvex urve is beoming irular and L2

Aapproahes 4π, as the enlosed area approahes zero, provided that the urvature does notblow up prematurely, that is the urve does not form a usp [44℄. As a onsequene, theratio Rout

Rin
of the irumsribed ratio to the insribed ratio onverges to unity. This an beonsidered a C0-onvergene to the irle. Hene, in the absene of singularities, a stritlyonvex and embedded urve remains onvex and embedded under the evolution.In 1986, Gage and Hamilton showed that for onvex urves the urvature does not blowup prematurely for limτ→T A(τ) = 0 [38℄. Thus, the urve remains onvex and beomesirular, as it shrinks to a point for τ ր T , where 0 < T < ∞. The urve shrinks to airle in the sense that:(i) the ratio Rout

Rin
approahes unity;(ii) the ratio of the maximum urvature to the minimum urvature kmax

kmin
approahes unity(C2-onvergene);



24 CHAPTER 3. MATHEMATICAL PREREQUISITES: CURVE SHRINKING FLOW(iii) the higher order derivatives of the urvature k onverge to zero uniformly (C∞-onvergene).In 1987, Grayson showed that embedded (non-sel�nterseting) planar urves beome on-vex before T without developing singularities [41℄. Thus, this ompletes the proof of thewell known Gage-Hamilton-Grayson theorem that urve shortening determined by Eq. (3.2)shrinks embedded plane urves smoothly to points, with round limiting shape. It is impor-tant to note that some planar urves, whih are immersed but not embedded will surelydevelop singularities, e.g. the �gure-eight of Se. 3.2 or the Limaçon of Pasal.Consider the set of all Eulidean transformations in R
2, that is the set of all rotations,translations and re�etions of a �gure in R

2. Suh a transformation ET : R
2 → R

2 is afuntion of the form
ET (x) = Ux + a, (3.21)where U is an orthogonal 2 × 2 matrix and a ∈ R

2. The Eulidean urve shortening �owis de�ned in terms of the Eulidean urvature k and the Eulidean unit normal n that areinvariant under Eulidean transformations ET .3.1.2 Spae urvesThere are several possibilities of generalizing the urve shortening �ow. One is the meanurvature �ow, whih is the generalization of Eq. (3.2) for hypersurfaes. In this ase, theresults of Se. 3.1.1 ontinue to hold for onvex urves, but for non-onvex urves they donot [45℄.For our purposes, it is more interesting to look at the extension of the urve shortening�ow for urves embedded in the three-dimensional Eulidean spae R
3. Consider a ontin-uous, di�erentiable (and not neessarily losed) spae urve x(s, τ) embedded in R

3. Thetangent, normal and binormal unit vetors are denoted t, n and b, respetively, also alledFrenet-Serret frame, and de�ned as follows:
t is the unit vetor tangent to the urve, pointing in the diretion of motion: t = ∂sx;
n is the normalized derivative of t with respet to the ar length s of the urve: n = ∂st

|∂st|
;

b is the ross produt of t and n: b = t × n.The Frenet-Serret formulas for a point on the spae urve are given by
∂

∂s





t

n

b



 =





0 k 0
−k 0 t
0 −t 0



 ·





t

n

b



 , (3.22)where k is the urvature and t the torsion. The Frenet-Serret formulas e�etively de�nethe urvature and torsion of a spae urve. It should be noted that the existene of aFrenet-Serret frame requires |kn|2 > 0. That is, a partile traveling along the urve mustexperiene aeleration. The evolution equation for spae urve assumes the same form asEq. (3.2),
∂τx(s, τ) = k(s, τ)n(s, τ). (3.23)The unit normal n is not always de�ned, though kn always makes sense. It was shownby Altshuler and Grayson that solutions to the spae urve �ow exist until the urvature



3.2. IMMERSED CURVES WITH ONE SELFINTERSECTION 25beomes unbounded. However, spae urves may not remain embedded in general, and sin-gularities will develop in the ase of losed urves. A phenomenon of spae urve evolutionis that in�etion points (k = 0) may develop during a time interval on whih the urvatureis bounded. When this happens the urvature beomes zero and the torsion in�nite ata point. Nevertheless the urve remains embedded sine the �ow ignores these types ofsingularities in the torsion [46, 47℄. A rather surprising property of spae urve evolutionis, that the formation of a singularity is a planar phenomenon. A spae urve is said tobe planar at a point (s′, τ ′) if the ratio of torsion and urvature vanishes, t
k (s′, τ ′) = 0.In [46℄, Altshuler showed that if a spae urve develops a singularity at (s′, τ ′), then

lim(s,τ)→(s′,τ ′)
t
k (s, τ) = 0. Furthermore, Altshuler showed that the spae urve is eitherasymptoti (τ → ∞) to a planar solution whih moves by homothety (self-similarity), ora resaling of the solution along the singularity onverges in C∞ to a limiting solution

x(s, τ = ∞) [46℄, where x(s, τ = ∞) is the family of planar, onvex urves. The mosttrivial ase of a urve moving by homothety is the irle shrinking down to a point. Itshould be noted that the onjeture due to Grayson, that singularity formation is a planarphenomenon, an be proven without using the language of resalings.3.2 Immersed urves with one sel�ntersetionWhen a losed urve immersed in a plane evolves by its urvature aording to Eq. (3.2), itremains smooth until its urvature blows up. From Se. 3.1.1, we know that an embeddedlosed urve annot develop a singularity until it shrinks to a point, where the limitingshape of the urve onverges in C∞ to irle. In marked ontrast to this behavior, it wasshown by Grayson that an immersed urve an evolve by the urvature �ow suh that itsarea vanishes, but its isoperimetri ratio onverges to ∞. Suh a urve, namely a �gure-eight, was investigated in [40℄. A �gure-eight is the simplest non-embedded urve and isde�ned to be a smooth immersion into the plane with exatly one double point, and a totalrotation number zero,
∫ L

0
ds k = 0. (3.24)Here, s is ar length, L the urve length and k the salar urvature. Suh a urve dividesthe plane into three disjoint areas two of whih are �nite and denoted (the unsigned areas)

A1 and A2. Let x(s, τ = 0) be �gure-eight whih evolves to x(s, τ) aording Eq. (3.2)for 0 ≤ τ < T . The urvature is unbounded as τ → T . The main result of [40℄ is thatthe isoperimetri ratio L2

A onverges to ∞ as τ → T if and only if the loops bound regionsof equal area, A1(0) = A2(0). This in turn implies that L2

A for a urve with unequal-arealoops is bounded as τ → T .Sine for immersed urves the number of double points is a non-inreasing funtion oftime [48℄, a �gure-eight remains a �gure-eight until one of its loops ollapses or the �owenounters a singularity. The urve stays smooth and the �ow ontinues until A1 or A2onverge to zero. For the total area A of a �gure-eight we have
A(τ) = A1(τ) +A2(τ). (3.25)The time derivative of the area enlosed by one of loop of the urve is equal to −|

∫

ds k|over the loop. Unlike the ase of a non-sel�nterseting urve, the rate of hange of the



26 CHAPTER 3. MATHEMATICAL PREREQUISITES: CURVE SHRINKING FLOWtotal area is not longer onstant, but onstrained as
−4π ≤ dA(τ)

dτ
≤ −2π. (3.26)However, we have the nie property of �gure-eights that the di�erene of areas boundedby the two loops of x(s, τ) remains onstant under the �ow evolution:

A1(τ) −A2(τ) = const. (3.27)Aside from a number of appliations in di�erential geometry, urve shortening �owsare also used in multi-agent systems, suh as mobile autonomous robots [42℄, in imageproessing where the �ow provides an e�ient way to smooth urves representing theontours of objets, or in omputer vision. For a omplete aount of many of the resultsof urve shrinking see [45, 49℄.In the following, we suppress the funtional dependene on u in the argument of x and
n and write x(τ) := x(u, τ) and u(u, τ) := n(τ)



Chapter 4Non-sel�nterseting enter-vortexloopsWe apply urve shrinking to the N = 0 setor in the sense of Se. 2.6. It should benotied that the restrition of the motion of a CVL to a two-dimensional �at plane is amajor assumption whih needs to be supplemented by additional physial arguments forits validity.4.1 Wilsonian renormalization-group �owIn this setion, we exploit the onept of renormalization-group transformations to yieldan e�etive `ation' that enables us to ompute statistial quantities. The renormalizationgroup allows one to investigate the hange in the physial parameters of a system whih isassoiated with the hange in sale (energy or resolution) and neessary to keep the physisonstant. In our ase, the hange of sale orresponds to a hange of the resolution Q usedto probe the system. Here, the resolution Q is a stritly monotoni dereasing funtionof the �ow parameter τ . The hange in parameters of the e�etive `ation' is impliitlydetermined by a renormalization-group �ow in τ .4.1.1 Geometri partition funtionLet us now interpret the proess of urve shrinking determined by Eq. (3.2) as a renorm-alization-group transformation of a statistial ensemble made up of planar N = 0 CVLs.A partition funtion, whih is the sum over suitable de�ned weights of the members in theensemble, is onsidered to be invariant under a derease of resolution Q determined by the�ow parameter τ . Physially, τ is a monotonially dereasing funtion of Q/Q0, where Q(Q0) are mass sales assoiated with the atual (initial) resolution applied to the system.The role of Q an also be played by the �nite temperature of a reservoir that is oupledto the system.To de�ne a suitable weight, we devise an ansatz for the e�etive `ation' S = S[x(τ)]in geometri terms of the urves in the ensemble, sine these are the only aessible quan-tities in the system of isolated non-interating CVLs. The `ation' as a funtional of x isexpressible in terms of integrals over loal densities in s. Furthermore, we take advantageof the following symmetries the ation should possess:27



28 CHAPTER 4. NON-SELFINTERSECTING CENTER-VORTEX LOOPS(i) saling symmetry x → λx, λ ∈ R+: for both onformal limits, λ→ ∞ and λ→ 0, wherethe urves at �xed L gets unobservable sine λL→ ∞ and λL→ 0, the `ation' S shouldbe invariant under further �nite resalings (deoupling of the �xed length sale σ−1/2);(ii) Eulidean point symmetry in R
2, that is the group of all rotations, translations andre�etions of a �gure (urve) in the plane: su�ient but not neessary for this is a repre-sentation of S in terms of integrals over salar densities with respet to these symmetries.That is, the `ation' density should be expressible as a expansion in series involving prod-uts of Eulidean salar produts of ∂n

∂sn x, n ∈ N
+, or onstany. However, salar integralsan be onstruted whih involve non-salar densities. For instane, onsider the area Aenlosed by urve and given by

A(τ) =
1

2

∣

∣

∣

∣

∣

∫ L(τ)

0
ds x(τ) · n(τ)

∣

∣

∣

∣

∣

. (4.1)The density x · n in this expression is not a salar under translations.We now deompose the e�etive `ation' into a onformal and a non-onformal fator
S = Fc × Fnc , (4.2)where in addition to Eulidean point symmetry Fc is invariant under x → λx, whereas Fncis not. In priniple, in�nitely many operators an be de�ned to ontribute to Fc. Sinethe evolution generates irles for τ ր T and thus homogenizes the urvature, higherderivatives of k with respet to s rapidly onverge to zero [38℄. We expet this to be truealso for Eulidean salar produts involving higher derivatives ∂n

∂sn x. To yield onformallyinvariant expressions suh integrals need to be multiplied by powers of √A and/or L or theinverse of integrals involving lower derivatives. At this stage, we are not able to onstrainthe expansion in derivatives by additional physial or mathematial arguments. To bepragmati, we simply set Fc equal to the isoperimetri ratio:
Fc(τ) ≡

L(τ)2

A(τ)
. (4.3)We onsider the non-onformal fator Fnc in S as a formal Taylor expansion in inversepowers of L or A due to the onformal invariane of the urve for L,A→ ∞ and L,A→ 0.Sine the renormalization-group evolution of the e�etive `ation' is driven by the urveshortening �ow of eah member in the ensemble, we allow for an expliit τ dependene ofthe oe�ient c of the lowest nontrivial power 1

L . The idea is to inlude the ontributionof higher-order operators, that do not exhibit an expliit τ dependene, into a resolu-tion dependene of the oe�ient of the lower-dimensional operators. Thus, we make thefollowing ansatz
Fnc(τ) = 1 +

c(τ)

L(τ)
. (4.4)The initial value c(τ = 0) is determined from a physial boundary ondition suh as themean length L̄ at τ = 0 whih determines the mean mass m̄ of a N = 0 CVL as m̄ = σL̄.We have also onsidered a modi�ed fator

Fnc(τ) = 1 +
c(τ)

A(τ)
(4.5)



4.1. WILSONIAN RENORMALIZATION-GROUP FLOW 29in the ansatz for the `ation' in Eq. (4.2).For later use, we investigate the behavior of Fnc(τ) for τ ր T for an ensemble onsistingof a single urve only and require the independene of the `partition funtion' under hangesin τ . Using Eq. (3.18) in the viinity of τ = T , where the limiting of urve is a irle withradius R, we have
L(τ) = 2πR =

√
8π

√
T − τ . (4.6)Sine Fc(τ ր T ) = 4π, independene of the `partition funtion' under the �ow in τ impliesthat

c(τ) ∝
√
T − τ . (4.7)That is, Fnc approahes a onstant value for τ ր T whih brings us bak to the onformallimit by a �nite renormalization of the onformal part Fc of the e�etive `ation'. In thisparametrization of S, the oe�ient c(τ) an thus be regarded as an order parameter foronformal symmetry with a mean-�eld ritial exponent.4.1.2 E�etive `ation'We now want to derive an e�etive `ation' S[x(τ)] resulting from a partition funtion Zfor a nontrivial ensemble E. The partition funtion ZM is de�ned as the average

ZM =

M
∑

i=1

exp (−S[xi(τ)]) (4.8)over the ensemble E = {x1, . . . xM}. EM denotes an ensemble onsisting of M urveswhere EM is obtained from EM−1 by adding a new urve xM (u, τ). We are interested ina situation where all urves in EM shrink to a point at the same value τ = T . Beause of
T = A0/(2π), we demand that at τ = 0 all urves in EM have the same initial area A0. Thee�etive `ation' S in Eq. (4.2) (when assoiated with the ensemble EM we will denote it as
SM , and the orresponding oe�ient cM ) is determined by the funtion cM (τ), omparewith Eq. (4.4), the �ow of whih follows from the requirement of τ -independene of ZM :

d

dτ
ZM = 0 . (4.9)This is an impliit, �rst-order ordinary di�erential equation for cM (τ), whih is in need foran initial ondition c0,M = cM (τ = 0). An obvious hoie of initial ondition is to demandthat the statisti mean length L̄(τ), de�ned as

L̄M (τ) ≡ 1

ZM (τ)

M
∑

i=1

L[xi(τ)] exp (−SM [xi(τ)]) , (4.10)oinides with the geometri mean length L̃M (τ) de�ned as
L̃M (τ) ≡ 1

M

M
∑

i=1

L[xi(τ)] (4.11)



30 CHAPTER 4. NON-SELFINTERSECTING CENTER-VORTEX LOOPSat τ = 0:
L̄M (0) = L̃M (0). (4.12)From this initial ondition a value for c0,M follows. In the ase of the modi�ed `ation' inEq. (4.5), the hoie of initial ondition L̄M (τ = 0) = L̃M (τ = 0) leads to Fnc(τ) ≡ 0 whihis equivalent to a uniform distribution. This is beause initial ondition (4.12) is identiallyful�lled for the modi�ed `ation' if c(0) = −A0 is hosen, then setting c(τ) = −A(τ) solves

dZM/dt = 0 trivially. While the geometri e�etive `ation' is thus profoundly di�erent forsuh a modi�ation of Fnc(τ), physial results suh as the evolution of the variane of theposition of the `enter of mass' agree remarkably well, see Se. 4.2.4. We onlude, thatthe geometri e�etive `ation' itself has no physial interpretation in ontrast to quantum�eld theory and onventional statistial mehanis where the ation in priniple is relatedto the physial properties of a given member of the ensemble. Rather, going from oneansatz for SM to another desribes a partiular way of redistributing the weight in theensemble whih seems to have no signi�ant impat on the physis.4.2 Results of simulation4.2.1 Preparation of ensembleFor the urves depited in Fig. 4.1, we make the onvention that A0 ≡ 2π × 100. Itthen follows that T = 100 by virtue of Eq. (3.19). Furthermore, we have prepared theensembles suh that the position of `enter of mass' (COM) oinides with the origin. Itshould be realled that suh a translation does not alter the e�etive `ation' (Eulideanpoint symmetry). Also note that we use the same notation EM for the primed and theunprimed ensemble. In Fig. 4.2, the evolution of two di�erent initial urves under urveshrinking is shown.4.2.2 Numerial proedureThe initial urves depited in 4.1 are generated as follows. First, we hose a list of pointsin the x-y plane suh that the initial urve x(u, τ = 0) onseutively passes the points,where initial and �nal point oinide. A spline, whih is made of pieewise third-orderpolynomials with C1 ontinuity, interpolates eah point in the list. Sine Mathematia'sSplineFit sets the seond derivatives of the spline at the endpoints to zero, the �rst twopoints are appended to the end of the list. The analogue holds for the last two points ofthe original list. To yield a smooth urve with more than C1 ontinuity eah oordinateof the urve is �tted by trigonometri funtions up to order eight in its Fourier-expansion.Area, length and entroid of the initial urve are omputed numerially with NIntegrate,where the latter is given by
xCOM =

1

L

∫ 2π

0
du |∂ux| x. (4.13)Now we an prepare the ensembles as desribed in Se. 4.2.1.To simulate the �ow evolution of the initial urves one searhes for solutions to theseond-order partial di�erential equation

∂τx(u, τ) =
1

|∂ux(u, τ)|∂u
1

|∂ux(u, τ)|∂ux(u, τ) (4.14)
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xFigure 4.1: Initial urves ontributing to the ensembles EM . The positions of the `enterof mass' oinide with the origin, and all urves have the same area 200π.subjet to periodi boundary onditions in the urve parameter, x(u = 0, τ) = x(u =
2π, τ), and for the initial onditions x(u, τ = 0) depited in Fig. 4.1. This is done usingthe Numerial Method of Lines. This is a tehnique for solving PDEs by disretizingin all but one dimension, and then integrating the semi-disrete problem as a system ofoupled ordinary di�erential equations (ODEs) or di�erential-algebrai equations. Here,we partially disretize the �ow equation Eq. (4.14) on a uniform grid in the parameter
u yielding an ODE initial value problem in τ that was solved by the ODE integrators inMathematia's NDSolve. Fig. 4.2 indiates why this tehnique is alled the method of lines.As one an also see from Fig. 4.2, a set of disrete points on the urve, although remainingequidistant in u, may evolve under the �ow suh that the spatial distanes between adjaentpoints falls below the numerial preision. The �ow then enounters a purely numeriallyand thus virtual singularity (not to be onfused with the earlier mentioned non-virtualsingularities at τ = T ). Therefore, the exeution of NDSolve is broken up into severalbasi steps whih are arried out separately. These steps are:(i) equation proessing and method seletion,(ii) method initialization,(iii) numerial solution,(iv) solution proessing.The low-level funtions that are used in Mathematia to break up these steps are ND-Solve�ProessEquations (i,ii), NDSolve�Iterate (iii) and NDSolve�ProessSolutions (iv).NDSolve�ProessEquations lassi�es the di�erential system into an initial-value prob-
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Figure 4.2: Plots of the evolution of planar N=0 CVLs (urve 2 and 6 of Fig. 4.1) underthe urve shortening �ow. The thik entral lines depit the trajetories of the `enter ofmass' (see Se. 4.2.4) whih oinides with the origin at τ = 0. The �ow is started at τ = 0and stopped at τ = 100.lem, boundary-value problem, di�erential-algebrai problem, partial-di�erential problem,et. It also hooses appropriate default integration methods and onstruts the mainNDSolve�StateData data struture. NDSolve�Iterate advanes the numerial solution.The �rst invoation initializes the numerial integration methods. NDSolve�ProessSo-lutions onverts numerial data into an InterpolatingFuntion to represent eah solution.More preisely, the urve parameter range is divided into n equidistant intervals yielding
n points on the urve whih are generally not equidistant in spae. For our simulation thenumber of points n is hosen between 130 and 300. The disretization of �ow equation(4.14) with respet to the variable u needs to onvert the derivatives into �nite di�erenes.The seond-order entered (with respet to to the set of sample points around x(ui)) for-mula for the �rst derivative is given by

x′(ui) =
x(ui+1) − x(ui−1)

2h
+ O(h2), (4.15)where h is the grid spaing. Here, �nite di�erenes of sixth order are used whih are om-puted with Mathematia's NDSolve�FiniteDiffereneDerivative. In the following, everyquantity involving derivatives evaluated on a disrete set of data points is omputed usingMathematia's NDSolve�FiniteDiffereneDerivative. After NDSolve�ProessEquations isinvoked the �rst time at τ = τ1 = 0, the numerial solution is advaned using ND-Solve�Iterate by a unit `time' step ∆τ = 1 up to τ2. Then the omputation is interruptedto ompute an error estimate that indiates whether a virtual singularity is starting toevolve. The error estimate exploits that A(τ) = A0 − 2π τ and is omputed as

104 × (A(τ2) −A(τ1) + 2π(τ2 − τ1)), (4.16)



4.2. RESULTS OF SIMULATION 33where A(τ) is given by the disrete version of Eq. (3.14) evaluated on the point grid givenby NDSolve.Until τ2 reahes T , the solution is advaned step by step as long as the error estimatedoes not exeed the empirially found value of 2. But if it does, the by then obtainedsolution is �tted at τ2 − 1 in suh a way that a new disretization yields (spatially) wellseparated points to restart the proedure. In Fig. 4.2(b) suh a situation is shown. The�tted urve is obtained as follows. At τ1, one determines the minimal ar length smin whihis the least of all ar length between adjaent points on the urve. Then, at τ2 − 1, allthose points on the urve are dropped the ar length of whih to their next neighbors isless than the minimal ar length smin. The remaining points are �tted by trigonometrifuntions, where the order of the �t is hosen to depend on τ (sine the urve is gettingsmoother with inreasing τ). In the ase of the error estimate of the �tted urve exeedingthe tolerane, the number of grid points has to be inreased or the initial urve needs to besmoothed slightly. In order to avoid disontinuities in the τ -evolution of L, A and xCOM,and singularities in their derivatives that our sine the �t proedure generates pieewisede�ned funtions, and sine after the �t the values of A and L slightly deviate from theirformer values, these quantities are interpolated by polynomials for 0 ≤ τ ≤ T using Find-Fit. To improve the auray of L near the ritial value T , the isoperimetri ratio L2

A is�tted instead of L, and L is alulated from √

(

L2

A

)�tted · A.The analytial results of Se. 3.1 suh as the onvergene of L2

A to 4π, the onstanyof Ȧ or the vanishing of L and A for τ ր T are numerially well reprodued, therebyon�rming the validity of the simulation.The impliit �rst-order di�erential equation dZ
dτ = 0 for the oe�ient is solved usingNDSolve. If not set at will, the initial ondition c0 for c(τ) was derived from Eq. (4.12)using Mathematia's FindRoot. The variane of the position of COM was omputed. Thesquare of the oe�ient c(τ) assoiated to the non-onformal fator was �tted with funtion

c(τ)2 = k(T0 − τ)α, (4.17)where k and α are �t parameters. We have determined the ritial exponent of the oe�-ient to α
2 = 0.5 as τ → T , in aordane with the theoretial value of Eq. 4.7. For hekingpurpose, we have also used T0 as �t parameter, yielding exellent agreement within thenumerial preision.A CD-ROM ontaining the used Mathematia notebooks is attahed to the thesis1.4.2.3 Renormalization-group invariane of partition funtionThe funtion c2M (τ) is plotted in Fig. 4.3. Aording to Fig. 4.3 it seems that the larger theensemble the loser c2M (τ) is to the evolution of a single irle of initial radius R =

√

A0

π .For growing M the funtion c2M (τ) approahes the form
c2as,M (τ) = kM (T − τ) , (4.18)1The results for non-sel�nterseting urves were obtained using Mathematia version 6.0.2 or below.Here, a remark onerning the used Mathematia version is in order. Due to inomprehensible reasonsversion 6.0.3 is not apable to solve the impliit ODE for the oe�ient c(τ ), not even in the trivial aseof an ensemble onsisting of a single urve. In the ase of one-fold sel�nterseting urves, version 6.0.3 stillworks and was used.
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ΤFigure 4.3: The square of the oe�ient cM (τ) entering the e�etive `ation' SM =
L(τ)2

A(τ)

(

1 + cM (τ)
L(τ)

) for various ensemble sizes M = 1, . . . , 12. Notie the early onset of thelinear drop of c2M (τ). The slope of c2M (τ) near τ = T does not depend on c20,M ≡ c2M (τ = 0)and thus not on the initial hoie of L̄, but only on the spei� hoie of urves inludedin the ensemble.where the slope kM depends on the strength of deviation from irles of the representa-tives in the ensemble EM at τ = 0, that is, on the variane ∆LM at a given value A0.Physially speaking, the value τ = 0 is assoiated with a ertain initial resolution of themeasuring devie (the stritly monotoni funtion τ(Q), Q being a physial sale suh asenergy or momentum transfer, expresses the harateristis of the measuring devie andthe measuring proess), the value of A0 desribes the strength of noise assoiated with theenvironment (A0 determines how fast the onformal limit of irular points is reahed),and the values of c0,M and kM , see Eq. (4.18), are assoiated with the onditions at whihthe to-be-oarse-grained system is prepared. Notie that this interpretation is valid for the`ation'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

L(τ)

)only.If we relax initial ondition L̄M (0) = L̃M (0) for c0,M and set the initial value for c0,Mat will, the oe�ient starts at the given value and rapidly adapts to the evolution depitedin Fig. 4.3 and respetively, Fig. 4.4. In Se. 4.1.2, we have argued that for the modi�ed`ation' and the initial ondition L̄M(0) = L̃M(0) the urves are uniformly distributed.Relaxing this initial ondition in the ase of the modi�ed `ation', means that the urvesare no longer uniformly distributed for τ = 0. However, the uniform distribution is restoredrapidly as the urves evolve under the �ow.
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ΤFigure 4.4: The oe�ient cM (τ) entering the e�etive `ation' SM = L(τ)2

A(τ)

(

1 + cM (τ)
A(τ)

)for ensemble sizes M = 1, . . . , 12.4.2.4 Variane of mean `enter of mass'Having obtained the oe�ient in the non-onformal fator of the e�etive `ation', weare now able to ompute the �ow of an `observable', suh as the COM position in a givenensemble and its statistial variane. The COM position xCOM of a given urve x(s, τ) isde�ned as
xCOM(τ) = (xCOM(τ), yCOM(τ))T =

1

L(τ)

∫ L(τ)

0
dsx(s, τ) . (4.19)We will present below results on the statistial variane of the COM position.At τ = 0, the statistial variane in the position of the COM is prepared to be nil,physially orresponding to an in�nite resolution applied to the system by the measuringdevie. In Fig. 4.5, the �ow of the COM position orresponding to the initial urvesdepited in Fig. 4.1 is shown.The mean COM position x̄COM over the ensemble EM is de�ned as

x̄COM(τ) = (x̄COM(τ), ȳCOM(τ))T ≡ 1

ZM

M
∑

i=1

xCOM,i(τ) exp (−SM [xi(τ)]) . (4.20)The salar statistial deviation ∆M,COM of x̄COM over the ensemble EM is de�ned as
∆M,COM(τ) ≡

√varM,COM;x(τ) + varM,COM;y(τ) , (4.21)wherevarM,COM;x ≡ 1

ZM

M
∑

i=1

(xCOM,i(τ) − x̄COM(τ))2 exp (−SM [xi(τ)])

= −x̄2COM(τ) +
1

ZM

M
∑

i=1

x2COM,i(τ) exp (−SM [xi(τ)]) , (4.22)
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Figure 4.5: Flow of the positions of the `enters of masses' for the initial urves depitedin Fig. 4.1.and similarly for the oordinate y. In Fig. 4.6, plots of ∆M,COM(τ) are shown when
∆M,COM(τ) is evaluated over the ensembles E1, . . . , E12 with the `ation'

SM =
L(τ)2

A(τ)

(

1 +
cM (τ)

L(τ)

)and subjet to the initial ondition L̄M (τ = 0) = L̃M (τ = 0). In Fig. 4.7, the aordingplots of ∆M,COM(τ) are depited as obtained with the modi�ed `ation'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

A(τ)

)and subjet to the initial ondition L̄M (τ = 0) = L̃M (τ = 0). In this ase, one has
cM (τ) = −A(τ) leading to equal weights for eah urve in EM . Note that the slightqualitative deviation of the last graph E12 for small values of τ regarding to the previousgraphs in Fig. 4.6 is due to the fat that the urves whih were added to the ensemble atlast are the most twisted ones. Graph E12 still saturates at a �nite value of τ , nevertheless.The �utuations in graph E1 of Fig. 4.6 are within the range of the numerial preision.4.2.5 Quantum mehanial versus statistial unertaintyIn view of the results obtained in the last setion, we would say that an ensemble of evolvingplanar CVLs in the N = 0 setor qualitatively resembles the Quantum Mehanis of a freepoint partile2 of mass m in one spae dimension x. Namely, an initially loalized squareof the wave funtion ψ with |ψ(τ = 0, x)|2 ∝ exp

[

−x2

a2

0

], where ∆x(τ = 0) = a0, aording2It is no relevane at this point whether this partile arries spin or not.
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ΤFigure 4.6: Plots of ∆M,COM(τ) for M = 1, . . . , 12 when evaluated with the `ation' SM =
L(τ)2

A(τ)

(

1 + cM (τ)
L(τ)

). Notie the rapid generation of an unertainty in the COM positionunder the �ow and its saturation when approahing the onformal limit τ ր T . Therealso is a saturation of this limiting value with a growing ensemble size.
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ΤFigure 4.7: Plots of ∆M,COM(τ) forM = 1, . . . , 12 when evaluated with the modi�ed `ation'
SM = L(τ)2

A(τ)

(

1 + cM (τ)
A(τ)

). This orresponds to a uniform distribution when evaluated withinitial ondition (4.12). Notie the qualitative agreement with the results displayed inFig. 4.6.



38 CHAPTER 4. NON-SELFINTERSECTING CENTER-VORTEX LOOPSto unitary time evolution in quantum mehanis evolves as
|ψ(τ, x)|2 = | exp

[

−i
Hτ

~

]

ψ(τ = 0, x)|2 ∝ exp

[

−(x− p
mτ)

2

a2(τ)

]

, (4.23)where H = p2

2m is the free-partile Hamiltonian, p the spatial momentum, and a(τ) ≡

a0

√

1 +
(

~τ
ma2

0

)2. In agreement with Heisenberg's unertainty relation, one has during theevolution that
∆x∆p =

~

2

√

1 +

(

τ~

ma2
0

)2

≥ ~

2
. (4.24)The time evolution in a quantum mehanial system and the proess of lowering the reso-lution in a statistial system desribing planar CVLs share the same property: the `time'(resolution) evolution generates out of a small initial position unertainty (orrespondingto a large initial resolution ∆p) a larger position unertainty as `time' inreases (resolutiondereases). Possibly, future development will show that interferene e�ets in QuantumMehanis an be traed bak to the non-loal nature of the degrees of freedom (CVLs)entering a statistial partition funtion.



Chapter 5Sel�nterseting enter-vortex loopsLet us now turn to the ase of N = 1 CVLs. We proeed as far as possible in lose analogyto the N = 0 setor.5.1 Wilsonian renormalization-group �ow5.1.1 Geometri partition funtionAs in the N = 0 setor, we interpret urve-shrinking as a Wilsonian renormalization-group�ow. The partition funtion is now de�ned over an ensemble of N = 1 CVLs, and weonsider it to be independent under a hange of resolution Q and thus independent of τ .We express the e�etive `ation' in terms of integrals over loal densities in s, and demandthe following symmetries in order to oneive an ansatz for the e�etive `ation':(i) saling symmetry x → λx , λ ∈ R+: for λ → ∞, implying λL → ∞ at �xed L, the`ation' S should be invariant under further �nite resalings (deoupling of the �xed lengthsales σ−1/2 and Λ−1).(ii) Eulidean point symmetry of the plane: this is su�iently satis�ed for a representationof S in terms of integrals over salar densities with respet to these symmetries. Thus,we an represent the `ation' density as a series involving produts of Eulidean salarproduts of ∂n

∂sn x , n ∈ N+ , or onstany.As in Se. 4.1.1, we resort to a fatorization ansatz as
S = Fc × Fnc, (5.1)where in addition to Eulidean point symmetry Fc (Fnc) is (is not) invariant under x →

λx. In priniple, in�nitely many operators an be de�ned to ontribute to Fc. Sinethe evolution homogenizes the urvature, exept for a small viinity of the intersetionpoint where one or both loops of the urve vanish, higher derivatives of k with respetto s should not be of importane. This should also hold for Eulidean salar produtsinvolving higher derivatives ∂n

∂sn x. Conformally invariant expressions are obtained fromsuh integrals if multiplied by powers of √A and/or L or the inverse of integrals involvinglower derivatives. The onformal fator Fc is set equal to the isoperimetri ratio,
Fc(τ) ≡

L(τ)2

A(τ)
. (5.2)39



40 CHAPTER 5. SELFINTERSECTING CENTER-VORTEX LOOPSThe property of onformal invariane for L,A→ ∞ suggests to express the non-onformalfator Fnc as a formal expansion in inverse powers of L or A ≡ A1 + A2. We allow foran expliit τ dependene of the oe�ient c of the lowest nontrivial power 1
L or 1

A . Inpriniple, this sums up the ontribution to Fnc of ertain higher-power operators whih donot exhibit an expliit τ dependene.We restrit to the following two ansätze for the non-onformal fator in Eq. (5.1),
Fnc(τ) = 1 +

c(τ)

L(τ)
. (5.3)and for the modi�ed `ation'

Fnc(τ) = 1 +
c(τ)

A(τ)
. (5.4)The initial value c(τ = 0) is determined from the physial boundary ondition suh as themean length L̄ at τ = 0. Although the modi�ed ansatz (5.4) in Fnc of the geometri `ation'is profoundly di�erent physial results suh as the evolution of entropy or the variane ofintersetion of a given ensemble agree remarkably well, see Se. 5.25.1.2 E�etive `ation'The e�etive `ation' SM [x(τ)] results from a partition funtion ZM whih is de�ned asthe average

ZM =

M
∑

i

exp (−SM [xi(τ)]) (5.5)over the nontrivial ensemble EM = {x1, . . . xM}. The ensemble EM , onsisting of Murves, is obtained from EM−1 by adding a new urve xM (τ). The e�etive `ation' SMin Eq. (5.1) is determined by the funtion cM (τ), the �ow of whih follows from therequirement of τ -independene of the partition funtion:
d

dτ
ZM = 0. (5.6)As in Se. 4.1.2, we obtain the initial ondition c0,M = cM (τ = 0) to this impliit �rst-orderordinary di�erential equation by the onstraint that the geometri mean oinides with thestatisti mean at τ = 0,

L̄M (0) = L̃M (0). (5.7)5.2 Results of simulation5.2.1 Preparation of ensemblesSimilar to Se. 4.2.1, all urves are normalized urves to have the same initial total area
A0 = A0,1 +A0,2 and sine we are now interested in the position of the intersetion wherethe (anti)monopole is loalized (see Se. 2.4 or Fig. 6.1), we have applied a translationto eah urve in the ensemble EM suh that the loation of the intersetions initially
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xFigure 5.1: Initial urves xi(u, τ = 0) ontributing to the ensemble EM=16. The interse-tion points xint,i(τ = 0) oinide with the origin, and all urves have the same area 200π.By de�nition EM=16 is T -ordered.oinide with the origin. Again, suh a transition does not alter the e�etive `ation' dueto Eulidean point symmetry.We order the members of the maximal-size ensemble EM=16 into sub-ensembles EM<16suh that Ti=1 ≥ Ti=2 ≥ · · · ≥ TM , beause the ritial value T of the �ow parameter
τ varies from urve to urve. These ensembles EM are referred to as T -ordered. Wehave also performed all simulations with ensembles E′

M<16 the members of whih arepiked randomly from EM=16 and have obtained similar results for ensemble averages of`observables' using EM<16 and E′
M<16 for the τ evolution to the left of τ = min{Ti|xi ∈

E′
M<16}. The main di�erene is that the omputation of the oe�ient, and with it the �owof `observables', terminates at a smaller τ sine the ensembles E′

M are no longer T -ordered.The maximal-size ensemble EM=16 at τ = 0 is depited in Fig. 5.1 with the universalhoie A0 = 200π. The urves in Fig. 5.1 are arranged in a T -ordered way. We have
Ti=1 = 65 ≥ T2 ≥ · · · ≥ TM = 43. In Fig. 5.2, the evolution of an initial urve (number 12of Fig. 5.1) under urve shrinking is shown from two points of view. The �ow is started at
τ = 0 and stopped at a value of τ shortly below T . In Fig. 5.3, the �ow of the intersetionpoints xint,i(τ) orresponding to the initial urves depited in Fig. 5.1 is shown.
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Figure 5.2: Plots of the evolution of an N = 1 enter-vortex loop (urve 12 of Fig. 5.1)under urve shrinking. The thik entral line depits the trajetory of the intersetionpoint whih oinides with the origin at τ = 0.
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Figure 5.3: Flow of the intersetion points xint,i(τ) for the initial urves depited in Fig. 5.1.



5.2. RESULTS OF SIMULATION 435.2.2 Numerial investigationIn general, the proedure is in lose analogy to Se. 4.2.2. Therefore, we solely mentionthe di�erenes ompared to Se. 4.2.2. The hoie of sample points, used to generate theinitial urves, is now done in suh a way that, if interpolated one after another by a ubispline with oiniding initial and end point, the urve will ross itself one. The number ofgrid points n is set to 300 for all urves, exept for urve 9 where 500 points are used. Forthe simpliity of the omputation of the intersetion of the initial urve, the intersetionpoint is inluded in the set of sample points as a double point and is hosen to oinidewith the origin.The searh for solutions to the �ow equation is proeeded as in Se. 4.2.2 using theNumerial Method of Lines. Starting from τ = τ1 = 0 the solution is advaned step bystep as long as τ < T or a virtual singularity evolves. If the latter is the ase we startthe same �tting proedure as in Se. 4.2.2. The error estimate of Se. 4.2.2, based on theonstant value of Ȧ, is no longer appliable in the ase of sel�nterseting urves, however,
∆A(τ) = A1(τ)−A2(τ) = constant an serve to estimate a value that indiates the validityof the numerial solution. The error estimate is de�ned as

106 ×
(

1 − ∆A(τ)

∆A(τ1)

)

. (5.8)In the ase where both areas of the urve have almost the same value, and the absolute of
A falls below the numerial preision, we have used

106 × (∆A(τ1) − ∆A(τ)). (5.9)Sine Eq. (3.27) involves the two-dimensional url the straight forward disretization ofthis equation already omputes the (signed) di�erene ∆A of the areas enlosed by theurve. Therefore, we do not have to keep trak of the sel�ntersetion during the numerialevolution of the urve. However, the omputation of the total area involves knowledge of
A1 and A2, and this in turn of the intersetion point. One the error estimate exeeds avalue of 2 the urve is �tted to yield again spatially well separated points. We also usedthe error estimate to reognize the �nal (non-virtual) singularity at T , where a furtherevolution in the sense of the �ow equation is impossible and does not make sense.To ompute the position of intersetion point one searhes, at a �rst step, for those twopoints in the solution set at given τ whih are spatially nearest to eah other, but withthe restrition that they are element of di�erent line segments of the urve whih generatethe intersetion point. Therefore, the spatial distanes between the ith and jth point onthe urve are determined for all pairs of points with |i − j| > dmin, where dmin dependson the onsidered urve and has to be adjusted for eah individually. Then it is searhedfor the least of all distanes to �nd that pair of points whih is losest to the intersetionpoint. The minimal distane of indies dmin is introdued beause, as the �ow evolvesthe urve, next neighboring points ould beome (spatially) loser to eah other than thepoints nearest to the intersetion. One the pair of points whih is next to the intersetionis found, the two urve segments around these points are approximated by ubi splines.Now the intersetion of these two splines is omputed using Mathematia's FindRootAt given τ , length and area of the urves are omputed with their disrete formulasusing Mathematia's FiniteDi�ereneDerivative. For the same reasons as in Se. 4.2.2 the
τ -evolution of L, A and xint are interpolated by polynomials.
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ΤFigure 5.4: The squares of the oe�ients cM (τ) entering the ansatz for e�etive `ation'
SM = L(τ)2

A(τ)

(

1 + cM (τ)
L(τ)

) for T -ordered ensembles up to M = 16.Finally, the impliit �rst-order di�erential equation dZ/dτ = 0 for the oe�ient issolved using NDSolve for all ensembles sizes and orderings and for both `ations'. If notset at will, the initial ondition c0 for c(τ) was derived from Eq. (5.7) using Mathematia'sFindRoot. Variane of mean intersetion and entropy were omputed.A CD-ROM ontaining the used Mathematia notebooks is attahed to the thesis1.5.2.3 Renormalization-group invariane of partition funtionWe now present the results of the simulation. For all ensembles EM , the τ dependeneof the oe�ient cM in Eq. (5.3) roughly behaves like a square root ∝
√
TM − τ where

TM is the weakly ensemble-dependent minimal resolution. For the modi�ed `ation' SM =
L(t)2

A(t)

(

1 + cM (t)
A(t)

) the oe�ient cM (τ) is well approximated by a linear funtion ∝ TM − τ .Again, TM is a weakly ensemble-dependent minimal resolution. For T -ordered ensemblesthe results for cM (τ) for the `ations' Eq. (5.3) and Eq. (5.4) are shown in Fig. 5.4 andrespetively, in Fig. 5.5. The results for the ensembles E′
M do not di�er sizably from thosepresented in Fig. 5.4 and respetively, in Fig. 5.5.5.2.4 Variane of loation of sel�ntersetionThe mean intersetion x̄int(τ) over the ensemble EM is de�ned as

x̄int(τ) = (x̄int(τ), ȳint(τ))T ≡ 1

ZM

M
∑

i=1

xint,i(τ) exp (−SM [xi(τ)]) , (5.10)1Mathematia version 6.0.3 was used. Pay attention to the footnote in Se. 4.2.2.
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ΤFigure 5.5: The oe�ient cM (τ) entering the ansatz for the e�etive `ation' SM =
L(τ)2

A(τ)

(

1 + cM (τ)
A(τ)

) for T -ordered ensembles up to M = 16.where xint,i(τ) = (xint(τ), yint(τ))T is the loation of the point of sel�ntersetion of urve
xi at τ . The salar statistial deviation ∆M,int of x̄int over the ensemble EM is de�ned as

∆M,int(τ) ≡ √varM,int;x(τ) + varM,int;y(τ) , (5.11)wherevarM,int;x ≡ 1

ZM

M
∑

i=1

(xint,i(τ) − x̄int(τ))2 exp (−SM [xi(τ)])

= −x̄2int(τ) +
1

ZM

M
∑

i=1

x2int,i(τ) exp (−SM [xi(τ)]) (5.12)and similarly for the oordinate y. In Fig. 5.6, plots of ∆M,int(τ) are shown when evaluatedover the ensembles E1, . . . , E16 subjet to the `ation'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

L(τ)

)and the initial ondition L̄M (τ = 0) = L̃M (τ = 0). In Fig. 5.7, the aording plots of
∆M,int(τ) are depited as obtained with the `ation'

SM =
L(τ)2

A(τ)

(

1 +
cM (τ)

A(τ)

)and subjet to the initial ondition L̄M (τ = 0) = L̃M (τ = 0). Relaxing the onstraint of
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ΤFigure 5.6: Plots of ∆M,int(τ) for the T -ordered ensembles EM with M = 1, . . . , 16. Wehave employed the ansatz for the `ation' SM = L(τ)2
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(

1 + cM (τ)
L(τ)

).
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T -ordering (EM → E′

M ) does not entail a qualitative hange of the results. The �utuationin the �rst graph of Fig. 5.6 and in Fig. 5.7, representing the trivial ensemble EM=1 iswithin the range of the numerial preision. The results presented in Fig. 5.6 and Fig. 5.7are unexpeted sine in the N = 0 setor the variane of the `enter of mass' saturatesrapidly to �nite values. In ontrast, for the N = 1 setor, the variane of the loationof sel�ntersetion initially inreases, reahes a maximum, and dereases to zero at a �nitevalue of τ . This is readily on�rmed by the evaluation of the entropy, see next setion.5.2.5 Evolution of entropyLet us now investigate the �ow of entropy. The weight-funtional PM is de�ned as
PM (τ) = PM [xint,i(τ)] ≡ 1

ZM
exp(−SM [xi(τ)]), (5.13)and the entropy ΣM as

ΣM (τ) = ΣM [xint,i(τ)] ≡
M
∑

i=1

PM [xint,i(τ)] log (PM [xint,i(τ)]) (5.14)
= logZM +

1

ZM

M
∑

i=1

SM [xi(τ)] exp (−SM [xi(τ)]) (5.15)where SM [xi(τ)] is given by Eq. (5.1). In Figures 5.8 and 5.9, plots are shown for ΣM (τ)when evaluated with the `ation'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

L(τ)

)and respetively, when evaluated with the modi�ed `ation'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

A(τ)

)for T -ordered ensembles of size M = 1, . . . , 16. The ontinuous approah of entropy tozero at �nite values of τ implies the spontaneous emergene of order in the system as theresolution dereases: starting at a �nite value of τ , a partiular member of EM is singledout by its weight approahing unity. This is validated by Fig. 5.10 where the weight-funtionals PM are shown for T -ordered ensembles of size M = 2, . . . , 4. The pattern thata urve is singled out by its weight-funtional as τ inreases ontinues for all ensemblesizes M . In view of Chapter 4, this behavior is highly unexpeted and we onlude thatthe nontrivial topology of the N = 1 setor indues qualitative di�erenes into the oarse-graining proess.
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Chapter 6AppliationsHere, it should be realled that a magneti harge emerging as a result of the dynamiallybroken gauge-symmetry SU(2) → U(1) in the deon�ning phase is interpreted as an eletriharge with respet to the U(1)Y subgroup of the eletroweak setor. In view of Se. 6.2,reall that the magneti enter �ux of the on�ning SU(2)e is dually interpreted as eletri�ux.6.1 Solitoni fermionsThe notion of a point-like eletron has always been plagued by its diverging self-energy.Even in lassial �eld theory it is present in the shape of the in�nite self-energy of a pointharge. If the eletron is onsidered to be a little sphere of radius R and mass me witheletri harge e attahed to the sphere, then the eletri �eld energy U is given by
U =

e2

8πR
. (6.1)Sending R to zero, as we have to if we think of the eletron as a point partile, the self-energy ontribution to the mass of the eletron diverges. In Quantum Eletrodynamis(QED), the problem persists: the orretion to the eletron mass is still in�nite, althoughit has a muh softer logarithmi divergene (c = ~ = 1),

δmQED = 3
e2

8π2
ln(meR). (6.2)Therefore, one needs to employ renormalization theory to ope with the emerging diver-genes that are to a large extent a diret onsequene of loality: the point-partile likenature of the eletron. �..., and despite the omparative suess of renormalisation theorythe feeling remains that there ought to be a more satisfatory way of doing things.� asLewis Ryder put in [8℄.In the Standard Model, the eletron is represented by the famous Dira equation.Though it suessfully predits the eletron's antipartile, the positron, and the magnetimoment with an g-fator of 2 it has to introdue the onept of the Dira sea to make senseof the in�nite number of negative-energy eigenstates. The Dira sea leads to an in�niteontribution to the energy density of the `vauum' whih has to be aneled, somehow.Furthermore, the Standard Model does not provide for a deeper explanation of the value of51



52 CHAPTER 6. APPLICATIONSthe magneti dipole moment other than that following from the Dira equation and smallradiative orretions. Moreover, the eletron mass enters the QED Lagrangian as a freeparameter, and the running of whih with resolution needs additional experimental input.The exitations in the on�ning phase of SU(2) Yang-Mills thermodynamis are singleand sel�nterseting enter-vortex loops. The mass of eah intersetion point in a self-interseting enter-vortex loop is given by the Yang-Mills sale Λc. Sine a monopole(antimonopole) is loated at the intersetion, it arries one unit of eletri harge. Reallthat a magnetially harged objet in the de�ning gauge theory has to be interpreted as aneletrially harged objet in the Standard Model - and vie versa. In a given segment of a�ux tube, the monopoles (antimonopoles) an move in both diretions: there is a two-folddegeneray of diretion of the enter �ux that is analogue to the two-fold degeneray ofthe spin projetion. Moreover, for eah enter-vortex loop it is possible to move along theentire �ux system on a losed urve. Thus, the projetion of the dipole moment generatedby the urrent of monopoles and antimonopoles inside the vortex ore onto a given dire-tion in spae is two-fold degenerated as well. Therefore, we identify eah soliton with aspin-1/2 fermion. Setting the Yang-Mills sale ΛC equal to the eletron mass me, we areled to interpret N = 1 enter-vortex loops as eletrons or positrons [10, 16, 23℄.Let us onsider the proess of twisting and harge loalization more losely. The tran-sition from a non-sel�nterseting to sel�nterseting enter-vortex loop is by twisting of anon-sel�nterseting urve. The emergene of a loalized (anti)monopole in the proess isdue to its apture by oppositely direted enter �uxes in the ore of the intersetion (eyeof the storm). By a rotation of the left half-plane in Fig. 6.1(a) by an angle of π, seeFig. 6.1(b), eah wing of the enter-vortex loop forms a losed �ux loop by itself, therebyintroduing equally direted enter �uxes at the intersetion point. This does not allowfor an isolation of a single spinning (anti)monopole in the ore of the intersetion and thusis topologially equivalent to the untwisted ase Fig. 6.1(a). However, another rotation ofthe left-most half-plane in Fig. 6.1() introdues an intermediate loop whih by shrinkingis apable of isolating a spinning (anti)monopole due to oppositely direted enter �uxes.Notie that in the last stage of suh a shrinking proess (short distanes between the oresof the �ux lines), where propagating dual gauge modes are available1, there is repulsiondue to Biot-Savart whih needs to be overome. This neessitates an investment of energymanifesting itself in terms of the mass of the isolated (anti)monopole (eye of the storm).Alternatively, the emergene of an isolated (anti)monopole is possible by a simple pinhingof the untwisted urve, again having to overome loal repulsion in the �nal stage of thisproess.In the analysis performed in Chapter 5, we have solely regarded the situation depitedin Fig. 6.1(d), sine the diretion of enter �ux within a given urve segment is irrelevantfor the proess of a spatial oarse-graining mirosopially desribed by the same urve-shrinking �ow as applied to N = 0 enter-vortex loops in Chapter 4.There are also phenomenologial reasons that argue for a non-loal nature of the ele-tron. Reall that the imaginary part of the pressure in the on�ning phase starts todominate when approahing the Hagedorn transition, thereby induing miroturbulenesin the plasma (see Se. 2.4). Suh a nonthermal behaviour is likely to be related to the ob-served but poorly understood miroturbulenes and internal transport barriers in tokamakexperiments with magnetially on�ned plasma. This presumes to identify the neutrino1On large distanes these modes are in�nitely massive whih is harateristi of the on�ning phase.
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HdLFigure 6.1: (Topologial) transition from the N = 0 setor (a), (b), () to the N = 1 setor(d) by twisting and subsequent apture of a magneti (anti)monopole in the ore of the�nal intersetion. Arrows indiate the diretion of enter �ux.and the eletron with the non-sel�nterseting and the one-fold sel�nterseting enter-vortexloop of the on�ning phase of SU(2)e with Yang-Mills sale Λc = me = 511 keV. Here, itshould be notied that due to the absene of an antipartile in the ase of a N = 0 solitonneutrinos need to be of Majorana type whih is in ompliane with the suessful searhfor the neutrinoless double β deay [4℄.This interpretation is also supported by reent high-temperature Z-Pinh experimentsat Sandia National Laboratories deteting an unexpeted powerful ontained explosion.There, an eletri urrent rises in a wire array up to ∼ 20 MA within ∼ 100 ns, therebythe wire is transformed into a plasma olumn. The strong magneti �eld indued by theurrent results in an inward direted (magneti) pressure Pm whih ompresses the plasmauntil it ollapses. In the ourse of the implosion, the ions and eletrons are aeleratedtowards the plasma axis. The radiated soft x-ray energy is as muh as four times the kinetienergy that is expeted to be released by the intersetion of ions and eletrons. However,before the plasma explodes it stabilizes for about 5 ns (stagnation). The measured eletrontemperature Te is found to be ∼ 3 keV at stagnation. Preeding the explosion, an iontemperature Ti about 300 keV is sustained shortly after the plasma has stagnated [15℄.The outward direted plasma pressure Pp needs to be equal in magnitude to Pm = −1.8×
10−12 MeV in order that the implosion stagnates. The measured eletron temperature is afator 1/8.5 too low if it is asserted that the plasma pressure is arried by eletrons only; thiswould orrespond to Te ∼ 31.55 keV. In [50℄, the observed imbalane between the energy in-and output was addressed to the rapid (∼ 1 . . . 2 ns) onversion of magneti �eld energy toa very-high-ion-temperature plasma by the unexpeted forming of short wavelength m =
0 magnetohydrodynamis (MHD) instabilities at stagnation whih subsequently provide



54 CHAPTER 6. APPLICATIONSassoiated visous ion heating. At stagnation, the ions reah muh more rapidly than theeletrons (∼ 1 . . . 2 s) a temperature of ∼ 300 keV, and subsequently heat the eletronsup to ∼ 300 keV, at least loally. By equipartition the ion energy is transferred to theeletrons, leading to the soft x-ray radiation.Aording to Se. 2.4 and the disussion in [16℄ this will involve enter-vortex loops witha higher number of sel�ntersetions. These aelerate the transit of thermal energy fromions to eletrons and generate a larger energy density and pressure than expeted fromeletron dynamis only. As a onsequene, the eletron temperature rises rapidly afterstagnation. After the ion-indued heating the Debye sreening mass mD of a onventionaleletron-photon plasma is omparable to Te. Thus, at about ∼ 5 ns after stagnation, theplasma is absolutely opaque and no radiation is released.For Te < 0.6me and NC = 6, the trunated sums P̄Nc =
∑Nc

N=1 PC,N and ρ̄Nc =
∑Nc

N=1 ρC,N of the pressure PC =
∑∞

N=0 PC,N and the energy density ρC =
∑∞

N=0 ρC,Nin the eletroni system are in the regime of asymptoti onvergene [16℄. The ase i = 1orresponds to a ontribution of eletrons and positrons only. While for Te ≪ me enter-vortex loops with higher mass (higher number of intersetions) are strongly suppressed,these do signi�antly ontribute to the pressure and energy density for Te & 0.1 MeV.At Te = 0.25 MeV, the relative partial pressure and the relative partial energy densityis P̄6 ∼ 3 P̄1 and respetively, ρ̄6 ∼ 4.8 ρ̄1, and at Te = 0.3 MeV, already P̄6 ∼ 5 P̄1 andrespetively, ρ̄6 ∼ 9.4 ρ̄1. Notie that at Te = 0.25 MeV, the ratio of P̄1 to the magnetipressure Pm at stagnation is: P̄1

Pm
∼ −4.4× 108. The existene of enter-vortex loops withhigher mass failitates the rapid inrease of Te to Ti ∼ 0.3 MeV and eventually initiatesthe powerful explosion.When the eletron temperature approahes a value of about 0.5 MeV the Hagedorntransition towards the preon�ning phase is expeted to take plae where all harges on-dense densely paked into a new ground state. The Z vetor boson of the Standard Modelis identi�ed with the deoupled dual gauge mode in the magneti phase of SU(2)e.The eletron appears to be strutureless for (nearly) all external momenta that areused to probe the system beause of the existene of a Hagedorn-like density of states:the invested energy deposited into the vertex is onverted into entropy assoiated withthe exitations of a large number of unstable and heavy resonanes (see Fig. 1.1 for theexitations with up to N = 3 sel�ntersetions). Only for momenta omparable to theYang-Mills sale Λc, the BPS monopole loated at the intersetion beomes exited andreveals a part of its struture. For momenta sizeably below Λc, there is nothing to beexited in BPS monopole.6.2 High-temperature superondutivityLet us now sketh an alternative approah to high-temperature (high Tc) superondutivity.Reall, that the magneti enter �ux, dually interpreted as eletri enter �ux, is two-folddegenerated. Now the eletri harges that travel along the �ux lines in the vortex oreprodue a magneti dipole moment. The projetion of whih onto a given diretion inspae is either parallel or antiparallel and represents the two-fold degeneray of the spinprojetion. Here, it should be realled that a shift of the intersetion point of an isolated

N = 1 enter-vortex loop leaves the mass of this soliton invariant.Coinidentally, there are quantum systems in nature the unonventional behaviour of



6.2. HIGH-TEMPERATURE SUPERCONDUCTIVITY 55whih seems to be losely related to the restrition of eletron dynamis to two spaedimensions. In partiular, these inlude high Tc superondutors suh as the family ofsuperonduting materials largely ontaining (rare-earth) doped ooper-oxide (uprates)planes as well as the reently disovered new lass of layered oxypnitide superondutors.Let us onsider the former at �rst. In both ases, superonduting layers of magnetimoments are interspersed with layers of nonmagneti material. This nonmagneti materialalso serves as an reservoir that provides, by doping, for the eletrons and sreens theCoulomb repulsion in the superonduting layer between them. Now the question ariseshow long-range interations of magneti moments at given optimal doping and su�ientlylow temperature lead to superondutivity in the uprate layers.Sine, at small enough temperatures, opper-oxide planes are Mott insulators with long-range antiferromagneti order of spins, the onventional Hubbard model must be used. Aanonial transformation involving a Gutzwiller projetion leads to the `t−J ' model, where
t desribes the hopping of eletrons from site to site and J the superexhange J = 4t2/Uwith U desribing the Coulomb repulsion. Here, the Gutzwiller projetion, whih removesmost of the phonon pairing interation, is mandatory. Variation of the eletroni degreesof freedom results in a set of gap equations for the ground state that give the predited
d-wave gap and the superonduting order parameter (related to the ritial temperature
Tc) as a funtion of doping [51℄.Let us now sketh a somewhat speulative approah to high Tc superondutivity beingwell aware of our laking theoretial knowledge on details in this �eld of researh. The keyidea is already enoded in Fig. 6.1(d). Aording to SU(2) Yang-Mills theory, the eletronrepresented as a sel�nterseting enter-vortex loop is a non-loal objet the magneti dipolemoment of whih is only loosely related to the loalization of its harge: the magneti mo-ment, arried by the vortex ore of the �ux lines, reeives ontributions from line segmentswhih are spatially far separated (on the sale of the diameter of the intersetion) from theloation of the eletri harge. This suggests a system of planar enter-vortex loops trappedin a two-dimensional layer where the interation between vortex lines beomes importantdue to an e�etive sreening of the eletron harge leading to an ordering e�et. In viewof the reported strong orrelations between eletrons in two-dimensional superondutingsystems [52℄, we imagine a situation as it is depited in Fig. 6.2.Due to Ampère's law equally direted eletri �ux lines attrat eah other, whereas op-positely direted �ux lines experiene a repulsive fore. So, for a given enter-vortex loop,there is an attrative interation of four out of six line segments de�ned by the neighbouringeletrons while the other two repulse eah other. The existene of interations between �uxlines that are mediated by the photon is a onsequene of the mixing between the gaugegroups SU(2)e and SU(2)CMB, the latter pertinent to the existene of propagating photons,see [10, 23℄. It should be notied that the spin projetion of a given eletron is equallydireted for two of its neighbours while the other four have oppositely direted spins. Thissupports the observation that high Tc superondutivity is an e�et not related to s-wavepairing [52℄. An overlap of �ux lines would lead to additional intersetion points whihrequire an extra amount of energy ΛC for eah intersetion and is therefore energetiallyforbidden beause the �utuations in energy density of the system will not allow for thereation of an intersetion of mass me = 511 keV. This leads to a repulsive fore as thespatial distane between adjaent vortex segments vanishes. In order that an equilibriumbetween attration and repulsion where the intersetion point is �xed with respet to itsneighbours ours, as it is depited in Fig. 6.2, one needs a su�iently low temperature
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Figure 6.2: The �gure, possibly related to the superonduting state in a uprate, showsan array of strongly orrelated enter-vortex loops tiling the two-dimensional plane. Ifoptimal sreening of the eletron harge loated at the intersetion point is provided bydoping suh that an attrative interation between enter-vortex loops due to Ampère'sLaw beomes important, then the attrative fore between equally direted enter �uxsegments ould lead to the indiated equilibrium on�guration. For a given eletron thereare six neighbouring line segments two of whih experiene repulsion while the other fourexperiene attration. An overlap of �ux lines would reate new intersetion points, eah ofmass ∝ me , whih is topologially forbidden, thus leading to a repulsion at short distanes.(related to resolution) and an optimal sreening of the Coulomb repulsion by the surround-ing reservoir layers. If the temperature (resolution) falls below a ritial value then the�utuations of the intersetion points relative to one another will vanish. Applying anexternal eletri �eld parallel to the plane would set the sti� system of loked eletronsin a olletive motion with zero eletri resistane. Marosopially, this situation is illus-trated by a sti� table loth being pulled over the table in a fritionless way. The measuredpseudo-gap phase in high Tc superondutors will be addressed to loal distortions in thishighly ordered state. These distortions require an �nite amount of energy and are due toinsu�ient sreening and/or to muh of a thermal noise.Let us now turn to the reently disovered, new lass of high Tc superondutors thatare based on oxypnitides (a lass of materials inluding oxygen, an element of the nitrogengroup (pnitogen), and one or more other elements). These do not seem to exhibit strongorrelations between the eletrons ontained in the two-dimensional (FeAs) layers where theeletron dynamis takes plae, see [53℄. If the behaviour of a two-dimensional system of non-interating eletrons, whih are subjeted to an environment represented by a parameter
τ , e�etively is desribable by a oarse-graining proess in a statistial ensemble, as it isinvestigated in Chapter 5, then we should likely address the observation that the entropyvanishes at �nite τ to this partiular kind of high Tc superondutivity. Namely, theobservation that no variane of the ensemble average of the position of the eletri harge



6.2. HIGH-TEMPERATURE SUPERCONDUCTIVITY 57is allowed for at a �nite resolution is ruial for the statement that the two-dimensionalsystem of free quasipartiles is void of any eletri resistane. Free quasipartiles in thesense that expliit interations between the eletrons in the superonduting layer areabsent, but the distortions indued by the noise of the environment is fully taken intoaount. Again, τ should be a monotoni funtion of temperature.





Chapter 7SummaryIn this thesis, we have investigated enter-vortex loops with and without sel�ntersetion,as they emerge in the on�ning phase of SU(2) Yang-Mills thermodynamis. In a noisyenvironment, enter-vortex loops are subjet to a spatial oarse-graining due to a motionby urvature that is desribed by a urve shortening �ow. In a statistial desription ofensembles of enter-vortex loops whih are (loally) embedded into a two-dimensional �atplane, we have de�ned an e�etive `ation' in purely geometri terms that is governed by arenormalization-group �ow driven by the urve shrinking. The `ation' possesses a naturaldeomposition into a onformal and a non-onformal fator. `Observables', suh as theposition of `enter of mass' (N = 0), or the intersetion point (N = 1), are omputed asensemble averages of loal or non-loal operators on the urves.We have made the observation that N = 0 enter-vortex loops exhibit a seond-ordertransition to the onformal limit of vanishing urve length with a ritial mean-�eld ex-ponent of the oe�ient: on average, enter-vortex loops disappear from the spetrum ofon�ning SU(2) Yang-Mills theory, thus generating an asymptoti mass gap. The evolutionof the variane of the initially sharp position of `enter of mass' saturates at �nite valuewithin a �nite derease of resolution Q, the latter related to the resolving power used toprobe to the system. These �ndings bear a strong family resemblane with the unitarytime evolution of a free partile in quantum �eld theory.Sine we believe that N = 0 enter-vortex loops play the role of Majorana neutrinos[4℄, the onept of a neutrino rest mass is no longer appliable. Its mass is the result of thedistortions indued by the environment it is embedded in and depends on the resolution.The disappearane of N = 0 enter-vortex loops from the exitation spetrum and theabsene of a orresponding antipartile would be manifestations of lepton-number violationforbidden in the Standard Model of Partile Physis.In the ase of one-fold interseting enter-vortex loops, we have obtained the unexpetedresult that a statistial ensemble of initial urves evolves into a highly ordered state. Thatis, only a partiular member of the ensemble survives the proess of two-dimensional spatialoarse-graining. As a onsequene, the entropy attributed to the ensemble moves to a zerovalue for a su�ient derease of resolution.We have skethed an alternative approah to high-temperature superondutivity basedon uprates. The entral observation that these depend highly on strong orrelations be-tween eletrons trapped in a �at two-dimensional layer is attributed to an array of bow-tie-like simplies (N = 1 enter-vortex loops) tiling the plane. We have also speulated that thespontaneous emergene of order in an ensemble of planar N = 1 enter-vortex loops ould59



60 CHAPTER 7. SUMMARYbe relevant for the reently disovered new lass of oxypnitide layered high-temperaturesuperondutors that do not seem to exhibit expliit, strong orrelations between eletronswithin the superonduting (FeAs) planes.In a sense, we have reversed the usage of the renormalization group. Instead of startingwith a `physial' ation, from whih an equation of motion follows, and demanding thesystem to be invariant under renormalization-group transformations, we have de�ned ageometri e�etive `ation' the oe�ient of whih is determined by a renormalization-group �ow driven by a oarse-graining proess (urve shrinking). Afterwards, physial`observables', suh as the enter of mass or the loalization of eletri harge, were omputedas mean values in a statistial ensemble. In a manner of speaking, we have `derived' astatistially averaged `equation of motion'. In this ontext, we regard resolution over time(or temperature) as the more fundamental quantity desribing a quantum mehanial orstatistial system. However, this requires the introdution of a model that relates resolutionto time (or temperature).An obvious extension of our statistial approah would be the aount of interationsbetween enter-vortex loops; espeially in view of two-dimensional systems exhibiting high-temperature superondutivity. At a �rst stage, this would inlude Coulomb interationsbetween the harges of N = 1 enter-vortex loops loalized at the intersetion point, and adelta-funtion-like repulsion due the topologially forbidden overlap of enter-vortex loops(ontat interation). This ould be done by adding interation terms to the e�etive`ation' in the partition funtion that are weighted aordingly. Considering a multitudeof on�gurations of initial urves of enter-vortex loops, those on�gurations will be singledout the urves of whih are most likely to survive the proess of oarse-graining. However,the nontrivial issue arises how to gain a weight whih relates the purely geometri `ation'to the one stemming from the eletromagneti interation between enter-vortex loops.
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