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Abstra
tWe 
onsider spatial 
oarse-graining in statisti
al ensembles of non-sel�nterse
ting and one-fold sel�nterse
ting 
enter-vortex loops as they emerge in the 
on�ning phase of SU(2)Yang-Mills thermodynami
s. This 
oarse-graining is due to a noisy environment anddes
ribed by a 
urve shrinking �ow of 
enter-vortex loops lo
ally embedded in a two-dimensional �at plane. The renormalization-group �ow of an e�e
tive `a
tion', whi
h isde�ned in purely geometri
 terms, is driven by the 
urve shrinking evolution.In the 
ase of non-sel�nterse
ting 
enter-vortex loops, we observe 
riti
al behavior ofthe e�e
tive `a
tion' as soon as the 
enter-vortex loops vanish from the spe
trum of the
on�ning phase due to 
urve shrinking. This suggest the existen
e of an asymptoti
 massgap.An entirely unexpe
ted behavior in the ensemble of one-fold sel�nterse
ting 
enter-vortex loops is 
onne
ted with the spontaneous emergen
e of order. We spe
ulate thatthe physi
s of planar, one-fold sel�nterse
ting 
enter-vortex loops to be relevant for two-dimensional systems exhibiting high-temperature super
ondu
tivity.ZusammenfassungDie Anregungen der kon�nierten Phase in der thermodynamis
hen Behandlung der SU(2)Yang-Mills Theorie sind Zentrumsvortexs
hlaufen wel
he aufgrund der We
hselwirkung miteiner raus
henden Umgebung S
hrumpfungsprozess unterliegen. Wir betra
hten statisti-s
he Ensemble von Zentrumsvortexs
hlaufen ohne und mit einfa
hen S
hnittpunkt wel
hein einer �a
hen zweidimensionalen Ebene lokal eingebettet sind. Der S
hrumpfungspro-zess von eingebetteten Zentrumsvortexs
hlaufen wird dur
h eine Di�usionsglei
hung be-s
hrieben. Der Renormierungsgruppen�uss einer in rein geometris
hen Gröÿen de�niertene�ektiven �Wirkung� wird dur
h die Evolution s
hrumpfender Kurven bestimmt.Im Falle von Zentrumsvortexs
hlaufen ohne S
hnittpunkt beoba
hten wir ein kritis
hesVerhalten der e�ektiven �Wirkung� sowie die Vortexs
hlaufen aufgrund des S
hrumpfungs-prozesses aus dem Spektrum der kon�nierten Phase vers
hwinden. Dies legt die Existenzeines asymptotis
hen Massen-Gaps nahe.Ein vollkommen unerwartetes Verhalten im Ensemble von Zentrumsvortexs
hlaufenmit einfa
hem S
hnittpunkt steht in engem Zusammenhang mit dem spontanen Auftretenvon Ordnung. Wir vermuten, dass die Physik ebener Zentrumsvortexs
hlaufen relevant istfür die Bes
hreibung zweidimensionaler Systeme, wel
he die Eigens
haft der Ho
htempe-ratursupraleitung aufweisen.
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Chapter 1Introdu
tionThe importan
e of Yang-Mills theories in mathemati
al and theoreti
al physi
s is generallya
knowledged. Yang-Mills gauge theories are the 
ornerstone of quantum �eld theories inthe Standard Model of Parti
le Physi
s: Besides gravity, all fundamental intera
tions arein
orporated as gauge symmetries in the Standard Model. Although it has been examinedin the framework of perturbation theory due to the enormous 
omplexity implied in thefull story of (espe
ially non-Abelian) gauge theories, the Standard Model has produ
ed alot of striking results and predi
tions. There are many examples, su
h as the explanationof the anomalous magneti
 moment of the ele
tron, the feature of asymptoti
 freedom ofQuantum Chromodynami
s in the high energy limit, or the predi
tion of �avor-
hangingneutral 
urrents in ele
troweak pro
esses [1℄. However, there are still a number of unsolvedmathemati
al problems and unexplained experimental observations. Among those are:The ne
essity of an asymptoti
 mass gap and a rigorous proof of 
olor 
on�nement inpure Yang-Mills theory [2℄. In the Standard Model, the assumption of a zero rest massof the neutrino is refuted by the observation of neutrino os
illations [3℄ and the double
β de
ay [4℄. These observations indi
ate a small, �nite rest mass that also 
annot beex
luded by re
ent experiments measuring the spe
trum of the single β de
ay of tritiumnu
lei near the endpoint [5, 6℄. Furthermore, the Standard Model does not provide for anexplanation of Dark Matter and Dark Energy that a

ount for about 96% of the energydensity in the present universe, and the predi
ted Higgs parti
le has evaded experimentaldete
tion so far. Moreover, the perturbation series of four-dimensional quantum �eldtheories is most likely an asymptoti
 series; the fa
t that a perturbative 
al
ulation of thethermodynami
al pressure 
annot be driven beyond order g5 in the 
oupling 
onstant dueto the weak s
reening of the magneti
 se
tor 
ausing infrared instabilities [7℄, 
ould beshown for Quantum Chromodynami
s at �nite temperature.Sin
e perturbation theory is an expansion in powers of a ne
essarily small 
oupling
onstant about a trivial a priori estimate for the va
uum of the theory, it fails to des
ribestrongly 
oupled physi
s as well as the a

ording nontrivial va
uum state. This va
uumis 
ertainly 
omposed of �nite-a
tion solitoni
 solutions of the 
lassi
al Yang-Mills a
tion.The so 
alled instantons are topologi
ally nontrivial obje
ts in pure Yang-Mills theorythat des
ribe tunneling pro
esses between topologi
al distin
t va
ua, e.g. [8℄. Their weightpossesses an essential zero at vanishing 
oupling, and thus instanton 
ontributions to thepartition fun
tion of the theory are 
ompletely ignored by perturbation theory. Instantonsat �nite temperature are 
alled 
alorons.Therefore, we are advised to 
onsider a nonperturbative approa
h to gauge theories.1



2 CHAPTER 1. INTRODUCTIONSu
h a treatment has already been proven su

essful in terms of an e�e
tive theory forsuper
ondu
tivity [9℄. An analyti
al and nonperturbative approa
h to SU(2) Yang-Millsthermodynami
s was developed in [10℄. In this approa
h the basi
 idea is to subje
t thehighly 
omplex dynami
s of the topologi
ally nontrivial �eld 
on�gurations to a spatial
oarse graining that leads to the emergen
e of ma
ros
opi
 s
alar �elds, and pure gauges.Due to nontrivial (thermal) ground states, the fundamental gauge symmetry is brokensu

essively as temperature de
reases. As a 
onsequen
e, Yang-Mills thermodynami
so

urs in three phases: the de
on�ning, the pre
on�ning and the 
on�ning phase. Thelatter, in whi
h we are primarily interested in this thesis, exhibits three unexpe
ted results.These are the exa
t vanishing of the energy density and the pressure of the ground stateat zero temperature, the Hagedorn 
hara
ter of the pre
on�ning-
on�ning phase transitionand the spin-1/2 nature of the massless and massive ex
itations in the 
on�ning phase.The ground state of the de
on�ning phase is 
omposed of intera
ting 
alorons and an-ti
alorons and exhibits negative pressure. The propagating ex
itations within that phaseare two massive gauge modes - due to the dynami
ally broken SU(2) - and one masslessgauge mode. As temperature de
reases, the likeliness for 
alorons and anti
alorons to dis-so
iate into (BPS saturated) magneti
 monopoles and antimonopoles in
reases strongly inthe vi
inity of a 
riti
al temperature. The ground state of the pre
on�ning (or magneti
)phase starts to form by the pairwise 
ondensation of monopoles and antimonopoles. Ex
i-tations in that phase are propagating dual gauge modes of mass mD (dynami
ally brokenU(1)D). Unstable defe
ts of the magneti
 ground state are 
losed magneti
 �ux lines of�nite 
ore size d that 
ollapse as soon as they are 
reated. This is be
ause, as long as
d > 0, the pressure inside the vortex loop is more negative than outside, thus leading tothe 
ontra
tion of the vortex loop. The magneti
 phase exhibits negative pressure. Atthe Hagedorn transition towards the 
on�ning (also 
alled 
enter) phase, a 
omplete de-
oupling of the gauge �elds takes pla
e. To put it more pre
isely, by the de
ay of themagneti
 ground state into sel�nterse
ting and non-sel�nterse
ting 
enter-vortex loops themass of the dual gauge �eld diverges and the 
ore size of 
enter-vortex loops vanishes, seealso [11, 12℄. As a result of d → 0, the negative pressure P is 
on�ned to the vanishingvortex 
ore. This implies that 
enter-vortex loops be
ome stable parti
le-like ex
itationswith P = 0. These solitons are 
lassi�ed a

ording to their 
enter 
harge and the numberof sel�nterse
tions N , see Fig. 1.1. The mass of an N -fold sel�nterse
ting soliton is NΛC ,where ΛC is the Yang-Mills s
ale. Topologi
ally, solitons with non-vanishing N are stablein the absen
e of external gauge modes 
oupling to the 
harges at the interse
tion points.On the other hand, for N = 0, there is no topologi
al reason for stability.Now 
onsider a situation where a planar 
enter-vortex loop, whi
h is a (lo
al) em-bedding of a 
enter-vortex loop into a two-dimensional �at and spatial plane, still hasnon-vanishing 
ore size d > 0 and the mass of the dual gauge �eld mD is still �nite dueto a noisy environment whi
h lo
ally resolves the otherwise in�nitely thin vortex. In this
ase, the pressure P is lo
ally nonzero and the soliton starts shrinking. Su
h a situationis des
ribed by a 
urve shortening �ow in the (dimensionless) parameter τ . Here, τ is avariable measuring the de
rease of externally provided resolving power applied to the sys-tem. There is a fun
tional dependen
e of τ on the 
orresponding resolution Q (momentumtransfer). For an isolated SU(2) theory the role of the environment is played by the se
torswith N > 0. If the 
on�ning SU(2) is part of a world with additional gauge symmetries,then a portion of su
h an environment arises from the mixing between the 
orrespondinggauge groups. Either way, a 
enter-vortex loop a
quires a �nite 
ore size and as a 
onse-
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Figure 1.1: The topologies of solitoni
 ex
itations with up to N = 3 sel�nterse
tions foran SU(2) Yang-Mills theory in the 
on�ning phase. A magneti
 monopole of 
harge +1or −1 is lo
ated at ea
h point where 
enter-�ux lines interse
t. Solitons with N = 0are unstable in presen
e of a noisy environment, whereas solitons with N = 1 are alwaysstable. Ex
itations with N > 1 are unstable if subje
ted to mixing with theories possessingpropagating gauge �elds.quen
e, a �nite mass for the N = 0 soliton by frequent intera
tion with the environmentafter it was generated by a pro
ess that was subje
t to an inherent, �nite resolution Q0.Knot-like stru
tures are relevant in a number of 
hemi
al, biologi
al and physi
al sys-tems [13℄, e.g. in polymer physi
s, parti
ularly in mole
ular biology, in type-II super
on-du
tor, where string-like vorti
es 
on�ne magneti
 �elds to the 
ores of the vortex-likestru
tures, in super�uid helium (4He), as well as in liquid 
rystals. As early as 1897 LordKelvin proposed that elementary parti
les - at that time atoms were 
onsidered to be el-ementary by Kelvin and others - should be des
ribed as knotted lines of vortex tubes ina medium (the aether) [14℄. As we know now, the point parti
le interpretation of Quan-tum Me
hani
s appears to be a mu
h more elegant and e�
ient framework to des
ribethe physi
s of atoms and mole
ules. But at the same time, the notion of an ele
tron as aspinning point parti
le, albeit an ex
ellent des
ription in a bulk of physi
al situations inatoms, 
olliders and 
ondensed matter systems, 
auses theoreti
al and experimental in
on-sisten
ies. On the one hand, there is the problem of diverging 
lassi
al self-energy of theele
tron. On the other hand, the unexpe
ted explosive behavior in re
ent high-temperatureplasma experiments [15, 16℄ and the strong 
orrelations of ele
trons in two-dimensional pla-nar systems [9℄ are indi
ations of non-lo
al e�e
ts possibly related to the extended spatialstru
ture of the ele
tron. Also, re
ent theoreti
al developments revive Kelvin's des
riptionof elementary parti
les as non-lo
al knot-like entities. In [13, 17℄, the argument is that
on�ning strings, tied into stable knotted solitons, exist when de
omposing the gauge �eldin the low-energy domain of four-dimensional SU(2) Yang-Mills theory.A

ording to the approa
h in [10℄, we tend to interpret one-fold sel�nterse
ting 
enter-vortex loops as ele
trons and a

ordingly non-sel�nterse
ting 
enter-vortex loops as neu-trinos. This implies that the Yang-Mills s
ale ΛC must be set equal to the ele
tron mass



4 CHAPTER 1. INTRODUCTION
Α
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Figure 1.2: Points on the 
enter �ux lines moving oppositely on a line perpendi
ular to thebise
ting line of the angle α with velo
ity modulus v1. For su�
iently small α the velo
itymodulus v2 of the interse
tion point is superluminal: v2 = v1 cot α
2 .

me = 511 keV. The spin-1/2 nature of a 
enter-vortex loop is a 
onsequen
e of its two-folddegenera
y with respe
t to the dire
tion of �ux whi
h is lifted in the presen
e of an ele
tri
or magneti
 ba
kground �eld. It should be noti
ed for a sel�nterse
ting 
enter-vortex loopthat, as long as both wings of 
enter �ux are of �nite size, a spatial shift of the interse
tionpoint requires a negligible amount of energy only. In parti
ular, if the inner angle α be-tween in- and out-going 
enter-�ux at the interse
tion is su�
iently small, then a motion ofpoints on the vortex line that is dire
ted perpendi
ularly to the bise
ting line of the angle
α easily generates a velo
ity of the interse
tion point whi
h ex
eeds the speed of light,e.g. Fig. 1.2. Here, it should be 
onsidered that the path-integral formulation of QuantumMe
hani
s admits su
h superluminal motion in the sense that the a

ording traje
tories
ontribute to transition amplitudes [18℄.The purpose of this thesis is to treat the behavior of N = 0 and N = 1 
enter-vortexloops under 
urve shrinking as a Wilsonian renormalization-group �ow governed by ane�e
tive `a
tion'. The term `a
tion' is slightly misleading sin
e we do not aim at a timeevolution of the system by demanding stationarity of the `a
tion' under 
urve variation.We 
onsider resolution dependent statisti
al ensembles in the presen
e of an environmentrepresented by a parameter σ. The 
orresponding weight-fun
tional for the members of theensemble, written as the exponential of an `a
tion', is de�ned in purely geometri
 terms.In turn the resolution dependen
e of the `a
tion' is determined by the 
urve shrinking�ow. The `a
tion' possesses a natural de
omposition into a 
onformal and a non-
onformalfa
tor. We 
onsider the partition fun
tion of a given ensemble of planar 
urves to beinvariant under the 
ondition of 
hanging the resolution. On
e the evolution of the weight-fun
tional is determined, we are able to 
ompute the resolution dependen
e of `observables'as ensemble averages of (lo
al or non-lo
al) operators.What we observe is that the N = 0 se
tor be
omes unresolvable from a �nite resolution
Q∗ downward. That is, as a 
onsequen
e of a noisy environment planar N = 0 
enter-vortexloops shrink to points with 
ir
ular limiting shape within a �nite de
rease of resolving powerand thus disappear from the spe
trum of the 
on�ning phase of SU(2) Yang-Mills theoryfor a resolution smaller than the 
riti
al Q∗. Sin
e 
enter-vortex loops with N > 0 have�nite mass this generates an asymptoti
 mass gap. We show that the observed transition



5to the 
onformal limit of vanishing 
urve length is a 
riti
al phenomenon with a mean-�eldexponent of the 
oe�
ient asso
iated with the non-
onformal fa
tor. For the N = 1 se
torwe observe the unexpe
ted behavior that, starting from a �nite value, the entropy of thesystem de
reases to an almost zero value as the resolving power is lowered: the ensembleevolves into a highly ordered state in a sense that only a single 
urve survives the pro
essof 
oarse-graining.The thesis is organized as follows: Chapter 2 gives a brief outline of the e�e
tive theoryof thermalized SU(2) Yang-Mills dynami
s in all of its phases as it is developed in [10℄.Chapter 3 provides prerequisites for the mathemati
s of 
urve shrinking �ows in two andthree spa
e dimensions. Chapters 4 and 5 investigate the N = 0 se
tor and respe
tively,the N = 1 se
tor. In Se
tions 4.1 and 5.1, we explain our philosophy underlying thestatisti
s of geometri
 �u
tuations and how the renormalization-group �ow of the e�e
tive`a
tion' is driven by the 
urve-shrinking evolution of the members of a given ensemble of
N = 0 and respe
tively, N = 1 
enter-vortex loops. In Se
. 4.2, we explain our numeri
alanalysis 
on
erning the 
omputation of the e�e
tive a
tion and the varian
e of the `
enterof mass' whi
h is 
ompared to Heisenberg's un
ertainty relation. In Se
. 5.2, we elu
idateour numeri
al analysis 
on
erning the 
omputation of the e�e
tive `a
tion', the varian
e ofthe lo
ation of the sel�nterse
tion, and the resolution-dependent entropy asso
iated witha given ensemble. Chapter 6 deals with ele
trons whi
h are interpreted as 
enter-vortexloops with one sel�nterse
tion. In Se
. 6.1, we give reasons for this interpretation, andin Se
. 6.2, we 
onsider strongly 
orrelated systems of ele
trons in 
uprates exhibitinghigh-temperature super
ondu
tivity and the new 
lass of re
ently dis
overed iron-basedhigh-temperature super
ondu
tors. Chapter 7 gives a short summary of our �ndings.





Chapter 2Brief review of SU(2) Yang-Millsthermodynami
sIn this se
tion, we give a short outline of the analyti
al and nonperturbative approa
hto SU(2) Yang-Mills thermodynami
s as it is developed in [10℄. The basi
 idea is tosubje
t the highly 
omplex dynami
s of topologi
ally nontrivial �eld 
on�gurations to aspatial 
oarse-graining that is des
ribed by emergent ma
ros
opi
 s
alar �elds, one for ea
hphase. Con
eptually, this approa
h is similar to the ma
ros
opi
 Landau-Ginzburg theoryof super
ondu
tivity. Although we are only 
on
erned with the 
on�ning phase in thiswork, we start our outline of [10℄ in the de
on�ning phase at high temperatures whi
hleads us by 
onse
utive phase transitions to the 
on�ning phase.2.1 Basi
s of thermal Yang-Mills theoryYang-Mills theories are non-Abelian gauge theories whose Lagrangian is demanded to beinvariant under lo
al gauge transformations. In this thesis, we restri
t ourselves to the 
aseof SU(2) gauge transformations. In pure Yang-Mills theory, only gauge �eld terms appearin the fundamental Lagrangian while matter �elds are absent. Wi
k-rotating to Eu
lideansignature by t→ −iτ and moving to �nite temperature T , whi
h 
orresponds to imaginarytime 
ompa
ti�ed on a 
ir
le with 
ir
umstan
e β = 1
T , the gauge-invariant a
tion is givenby

S ≡ 1

2g2
tr

∫ β

0
dτ

∫

d3xFµνFµν , (2.1)where g denotes the dimensionless 
oupling 
onstant and tr the tra
e operation. It holdsthat (x1, x2, x3, x4) ∈ R
4. The Yang-Mills �eld strength tensor is de�ned as1

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], (2.2)with the Lie-algebra valued gauge �elds in the adjoint representation
Aµ ≡ Aa

µ

σa

2
, (2.3)1The gauge 
oupling g is absorbed in the de�nition of the gauge �elds.7



8 CHAPTER 2. BRIEF REVIEW OF SU(2) YANG-MILLS THERMODYNAMICSwhere the generators σa are given by the Pauli matri
es. The a
tion density 1
2g2 trFµνFµνis invariant under lo
al SU(2) gauge transformations

Aµ(x)
Ω→ Ω(x)Aµ(x)Ω†(x) + iΩ(x)∂µΩ(x), (2.4)where Ω is an element of SU(2).Instantons are lo
alized �nite-a
tion 
lassi
al solutions in Eu
lidean �eld theory. TheBPST (Belavin-Polyakov-S
hwartz-Tyupkin) instanton is an (anti)selfdual, that is BPS(Bogomol'nyi-Prasad-Sommer�eld) saturated, 
on�guration solving the Euler-Lagrangeequations DµFµν = 0 subje
t to the a
tion (2.1) [19℄. For the 
ovariant derivative Dµof the �eld φ in the adjoint representation we have

Dµφ = ∂µφ− i[Aµ, φ]. (2.5)The (anti)selfduality 
ondition reads
Fµν = ±F̃µν , (2.6)where the dual �eld strength is de�ned as F̃µν ≡ 1

2ǫµνκλFκλ, ǫµνκλ being the total anti-symmetri
 tensor with ǫ1234 = 1. (Anti)selfdual 
on�gurations saturate the BPS bound onthe a
tion whi
h therefore is minimal (in a given topologi
al se
tor) and of value
S =

8π2

g2
|Q|, (2.7)where the Pontryagin index Q is a topologi
al invariant (
harge) and de�ned as

Q ≡ 1

32π2

∫ β

0
dτ

∫

d3xF a
µν F̃

a
µν . (2.8)BPS saturated �eld 
on�gurations Aµ have vanishing energy-momentum tensor.(Anti)
alorons are BPS saturated, periodi
-in-τ 
on�gurations at �nite temperaturewith �nite a
tion and topologi
al 
harge Q = ±1. They are 
lassi�ed a

ording to theeigenvalues of their Polyakov loop (time-like Wilson loop evaluated in periodi
 gauge) atspatial in�nity. An (anti)
aloron is said to be of trivial holonomy, if its Polyakov loop, eval-uated at spatial in�nity, is an element of the 
enter of the gauge group. Otherwise it is saidto have nontrivial holonomy. The Harrington-Shepard (HS) (anti)
aloron is a periodi
-in-τinstanton in singular gauge with topologi
al 
harge Q = ±1 and trivial holonomy, whereasthe Lee-Lu-Kraan-van Baal (LLKvB) (anti)
aloron is of nontrivial holonomy. Des
riptively,trivial holonomy means that the 
aloron has no substru
ture. The LLKvB (anti)
aloron
ontains BPS magneti
 monopoles 
onstituents whi
h, by virtue of quantum 
orre
tions[20℄, are subje
t to an attra
tive intera
tion in the 
ase of small holonomy and to a repul-sive intera
tion for large holonomy. In the 
ase of large holonomy, the repulsion leads toa disso
iation of the 
aloron into a pair of a s
reened magneti
 monopole and antimono-pole. On the other hand, for small holonomy, the (anti)
aloron 
ollapses ba
k to the stable
on�guration of a HS (anti)
aloron by annihilation of their BPS monopole 
onstituents.Thus, single LLKvB 
alorons are unstable under quantum deformations.
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on�ning phaseThe 
omplex mi
ros
opi
 dynami
s in Yang-Mills theory does not seem to allow for adire
t analyti
 
al
ulation of ma
ros
opi
 quantities in terms of the fundamental gauge�elds. A spatial 
oarse-graining, that is the 
omputation of a spatial average over these
tor of topologi
ally nontrivial, BPS saturated �eld 
on�gurations of trivial holonomyturns out to be a feasible and thermodynami
ally exhaustive approa
h. The 
oarse-grainingpro
edure is des
ribed in terms of a ma
ros
opi
 adjoint �eld φ. In order to 
hara
terizethe ma
ros
opi
 ground state, φ has to satisfy for following 
onditions:(i) due to spatial isotropy and homogeneity φ must be a Lorentz s
alar;(ii) homogeneity of the ground state implies that the modulus of φ is independent of spa
eand time. A dynami
ally generated Yang-Mills s
ale Λ enters this modulus as a parameter;(iii) φ is a 
omposite of lo
al �elds and therefore has to transform under the adjoint rep-resentation, be
ause in pure Yang-Mills theory all lo
al �elds transform under the adjointrepresentation of the gauge group;(iv) only the 
olor orientation of φ in a given gauge, also referred to φ's phase, dependson τ . Sin
e φ is 
onstru
ted from (anti)
alorons, whi
h are periodi
 in Eu
lidean time, φ'sphase is also periodi
 in τ , and sin
e the 
lassi
al 
aloron a
tion S = 8π
g2 is independent oftemperature φ's phase is not expli
itly time dependent. The 
omputation of the phase of

φ does not require any information about the Yang-Mills s
ale.Consequently, the �eld 
an be written as
φa = |φ|(ΛE , β)

φa

|φ|

(

τ

β

)

. (2.9)In [10, 21, 22℄ equations of motion for the phase and modulus of the spatially homogeneous,
omposite, emergent adjoint s
alar �eld φ obeying the above 
onditions are derived. The(non-perturbatively) temperature dependent modulus is given by
|φ|(ΛE , β) =

√

Λ3
Eβ

2π
=

√

Λ3
E

2πT
. (2.10)The 
orresponding a
tion is found to be

Sφ = tr

∫ β

0
dτ

∫

d3x ((∂τφ)2 + Λ6
Eφ

−2), (2.11)where φ−1 ≡ φ
|φ|2

. The �eld φ turns out to be quantum me
hani
ally and statisti
allyinert2. It serves as a spatially homogeneous ba
kground for the topologi
ally trivial (Q = 0)se
tor of the 
oarse-grained, propagating gauge �elds aµ. In Eq. (2.11) intera
tions between
alorons are not yet in
luded. This is done via minimal 
oupling by substituting
∂µφ→ Dµφ = ∂µφ+ ie[φ, aµ]. (2.12)The intera
tions are mediated by the topologi
ally trivial �elds that 
hange the holonomyof the (anti)
alorons and subsequently indu
e intera
tions between the magneti
 monopole2This 
an be 
he
ked by dire
t 
omputation but also is implied by the fa
t that a spatial average overnon-propagating gauge �elds must generate a 
omposite that itself is not propagating.
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onstituents of nontrivial holonomy (anti)
alorons. The a
tion for the minimally 
oupled�elds is given by
S = tr

∫ β

0
dτ

∫

d3x (
1

2
Gµν Gµν + (Dµφ)2 + Λ6φ−2), (2.13)where the �eld strength is Gµν ≡ σa

2 (∂µa
a
ν − ∂νa

a
µ − efabcab

µa
c
ν) and e denotes the e�e
tivegauge 
oupling whi
h determines the strength of intera
tion between topologi
ally trivialgauge �eld �u
tuations and the ma
ros
opi
 �eld φ. Due to Lorentz invarian
e, gaugeinvarian
e, perturbative renormalization, and the inertness of φ the a
tion (2.13) is unique.The topologi
ally trivial se
tor is written as a de
omposition

aµ = ags
µ + δaµ, (2.14)where ags

µ is a pure-gauge solution of the equations of motion for aµ following from a
tion(2.13), and δaµ is a (periodi
) �nite-
urvature propagating �u
tuation. The pressure P gs
Eand energy density ρgs

E of the ground state, following from the energy-momentum tensor,read
P gs

E = −ρgs
E = −4πΛ3

ET. (2.15)Mi
ros
opi
ally, the negative ground state pressure arises from the 
reation and annihi-lation of BPS monopoles and antimonopoles within small-holonomy (anti)
alorons. Theemergen
e of the ma
ros
opi
 adjoint s
alar �eld φ breaks the fundamental gauge groupSU(2) down dynami
ally to the subgroup U(1). Due to the adjoint Higgs me
hanism, twoout of three gauge modes δa(1,2)
µ a
quire a temperature dependent mass, while the thirdremains massless,

m1 = m2 = 2e(T )|φ| = 2e(T )

√

Λ3
E

2πT
and m3 = 0. (2.16)Evaluating the Polyakov loop in a di�erent (unitary) gauge gives rise to the 
on
lusionthat the ground state is two-fold degenerated with respe
t to the (broken) global ele
-tri
 Z2 symmetry. Thus, the ele
tri
 phase is de
on�ning. The temperature evolutionof the e�e
tive gauge 
oupling e is derived from the demand for thermodynami
al self-
onsisten
y, it rea
hes a plateau value rapidly as temperature in
reases (T ≫ Tc,E) anddiverges logarithmi
ally for T ց Tc,E,

e(T ) ∝ − log(T − Tc,E). (2.17)Therefore, the massive gauge δa(1,2)
µ modes be
ome in�nitely heavy and de
ouple at Tc,E.The ground state in the de
on�ning phase is 
omposed of intera
ting 
alorons andanti
alorons of topologi
al 
harge-modulus one and trivial holonomy. S
reened magneti
BPS saturated monopoles are spatially isolated defe
ts in the ele
tri
 phase. S
reening o
-
urs due to short-lived magneti
 dipoles provided by intermediary small-holonomy LLKvB(anti)
alorons and due to all other stable and s
reened (anti)monopoles.
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Figure 2.1: Temperature evolution of the e�e
tive gauge 
ouplings e and g as a fun
tionof the dimensionless temperature λE = 2πT
ΛE

. The �gure is taken from [23℄.2.3 The pre
on�ning phaseAt Tc,E = 13.87ΛE

2π , the e�e
tive gauge 
oupling e diverges. Thereby, magneti
 monopolesand antimonopoles, whi
h are generated by the disso
iation of large-holonomy 
alorons,be
ome massless and 
ondense pairwise, thus terminating the de
on�ning phase. Notethat for T < Tc,E, the average 
aloron-anti
aloron holonomy gradually in
reases withde
reasing temperature. After a spatial 
oarse-graining, the thermal ground state of theBose 
ondensate of intera
ting monopoles and antimonopoles is entirely des
ribed by ama
ros
opi
 
omplex s
alar �eld ϕ and a pure gauge aD,gs
µ ; only gauge �elds transformingunder U(1) survive the ele
tri
-magneti
 phase transition. The ma
ros
opi
 
omplex s
alar�eld ϕ turns out to be quantum me
hani
ally and statisti
ally inert. Intera
tions betweenmonopoles mediated by pure gauges generate isolated but unstable defe
ts. These defe
tsare 
losed magneti
 �ux lines that are 
omposed of magneti
 monopoles moving oppositelydire
ted to ea
h other in the vortex 
ore along the �ux lines. The 
losed �ux lines 
ollapseas soon as they are 
reated, thereby indu
ing a negative pressure. It should be noti
ed thatthe magneti
 �ux lines need to be 
losed due to the absen
e of isolated magneti
 
harges inthe monopole 
ondensate. The spatially homogeneous and BPS saturated 
omplex s
alar�eld ϕ breaks the dual gauge symmetry U(1)D dynami
ally: the stable and propagatingex
itations in the magneti
 phase are massive dual gauge modes.In [10℄ equations for phase and modulus of the ma
ros
opi
 
omplex s
alar �eld arederived. The modulus of the �eld ϕ is found to be

|ϕ|(ΛM , β) =

√

Λ3
Mβ

2π
=

√

Λ3
M

2πT
. (2.18)The e�e
tive a
tion for ϕ reads

Sϕ =

∫ β

0
dτ

∫

d3x

(

1

2
∂τϕ∂τϕ+

1

2

Λ6
M

ϕ̄ϕ

)

, (2.19)
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tions between (s
reened) monopoles are absent and ΛM is an externally pro-vided Yang-Mills s
ale. Intera
tions are a

ounted for in analogy to Se
. 2.2: the topolog-i
ally trivial se
tor aD
µ is de
omposed into

aD

µ = aD,gs

µ + δaD

µ (2.20)and is minimally 
oupled to ϕ. The unique e�e
tive a
tion in
luding intera
tion reads
S =

∫ β

0
dτ

∫

d3x

(

1

4
FD

µν F
D

µν +
1

2
DµϕDµϕ+

1

2

Λ6
M

ϕ̄ϕ

)

, (2.21)where the Abelian �eld strength of the dual gauge �eld is given by
FD

µν = (∂µa
D

ν − ∂νa
D

µ ), (2.22)and the 
ovariant derivative involving the e�e
tive magneti
 
oupling g by
Dµ = ∂µ + igaD

µ . (2.23)A pure-gauge solution aD,gs
µ to the equations of motions for the dual gauge-�eld in theba
kground of ϕ is found.The evaluation of the Polyakov loop suggests that the ele
tri
 Z2 degenera
y, as o
-
urred in the ele
tri
 phase, no longer exists in the magneti
 phase: the ground state ofthe magneti
 phase is unique and 
on�nes fundamental, heavy and fermioni
 test 
harges.Nevertheless, massive gauge modes still propagate be
ause the Polyakov loop does not van-ish entirely. Therefore, the magneti
 phase is 
alled pre
on�ning. The dual gauge groupU(1)D is dynami
ally broken due to the emergen
e of the ma
ros
opi
 s
alar �eld ϕ. As a
onsequen
e, the dual gauge ex
itation δaD

µ be
omes Meiÿner massive via the dual AbelianHiggs me
hanism,
mD = g(T )ϕ. (2.24)The evolution of the temperature dependent e�e
tive gauge 
oupling g is predi
ted bythermodynami
al self-
onsisten
y. The 
oupling vanishes for T ր Tc,E and diverges loga-rithmi
ally for T ց Tc,M :
g ∝ − log(T − Tc,M ), (2.25)where Tc,M denotes the temperature where the transition to the 
enter phase takes pla
e.The typi
al energy of a non-sel�nterse
ting 
enter-vortex loop (CVL) is ∝ g−1.During the ele
tri
-magneti
 phase transition, the number of polarizations of the `pho-ton' jumps from two to three, thereby indu
ing a dis
ontinuity in the energy density. Thenegative pressure of the ground state arises due to an equilibrium between vortex-loop
reation by disso
iation of large-holonomy 
alorons and the annihilation of vortex loops by
ontra
tion. The non-vanishing pressure P gs

M and energy density ρgs
M of the ground stateevaluate as

P gs
M = −ρgs

M = −πΛ3
MT. (2.26)A
ross the ele
tri
-magneti
 phase transition at Tc,E, where e = ∞ and g = 0, the pressureis 
ontinuous (see Fig. 2.2) relating the s
ales ΛE and ΛM :

ΛE =

(

1

4

)1/3

ΛM . (2.27)
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λEFigure 2.2: Ratio of the energy density ρ and temperature T 4 a
ross the ele
tri
-magneti
phase transition as a fun
tion of the dimensionless temperature λE = 2πT
ΛE

. The dashedline represents the 
ontinuation of the energy ρE of the ele
tri
 phase (solid bla
k line)for de
reasing temperature T < Tc,E (super
ooled state, mD = 0). The solid grey linerepresents the energy density ρM in the magneti
 phase for in
reasing temperature (mD >
0). As long as no additional energy is available, the system remains in a super
ooled stateuntil a temperature λE = 12.15 is rea
hed. The �gure is taken from [23℄.The magneti
 phase is not dete
ted by �nite-size latti
e simulations, sin
e the mono-poles 
ondensate posses in�nite 
orrelation length (∝ (Mm+a)

−1), where Mm+a is the sumof the monopole and antimonopole mass after s
reening:
Mm+a =

8π

eβ
. (2.28)2.4 The 
on�ning phaseFirst we provide some fa
ts on the Abrikosov-Nielsen-Olesen (ANO) vortex. When embed-ded in three spa
e dimensions, a point-like two-dimensional ANO vortex be
omes a vortexline. A mesos
opi
 des
ription of a stati
 ANO vortex is given by the a
tion of Eq. (2.21)where the potential is absent. A BPS saturated solution to the equation of motions, fol-lowing from a
tion (2.21), 
an be found that 
arries one unit of magneti
 �ux (2π

g ) and hasvanishing 
ore size. Outside the vortex 
ore the pressure Pv(r), whi
h is isotropi
 in the
x1-x2 plane, reads

Pv(r) = −1

2

Λ3
Mβ

2π

1

g2
r2, (r > 0), (2.29)where r is the radial ve
tor in the x1-x2 plane. Noti
e the minus sign on the right hand sideof Eq. (2.29). For a �nite energy, the length of the ANO vortex line must be �nite. The
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Figure 2.3: The oppositely dire
ted 
enter �uxes in the 
ore of the interse
tion of a sel�n-terse
ting 
enter-vortex loop generate an eddy where an isolated magneti
 Z2 monopole islo
ated.
on�guration is stati
 as long as it possesses 
ylindri
 symmetry, but as soon as the vortexis bend the 
on�guration be
omes unstable: the pressure inside the vortex loop is morenegative than outside. Thus, the vortex 
ollapses as soon as it is 
reated at �nite 
oupling
g. Noti
e that in the limit where g diverges the pressure vanishes. This implies that theformerly unstable vortex loop be
omes a stable and massless parti
le-like ex
itation fortemperatures below Tc,M . The typi
al 
ore size d and energy Ev of a CVL are given by

d ∝ 1

mD

=
1

g

√

Λ3
M

β
and Ev ∝ π

g

√

Λ3
Mβ

2π
. (2.30)By the 
olle
tive disso
iation of large-holonomy 
alorons and anti
alorons in the pre-
on�ning phase, isolated and 
losed magneti
 �ux lines start to form. At Tc,M , where themagneti
 
oupling g diverges logarithmi
ally, the dual gauge �eld be
omes in�nitely heavy.Thus, a 
omplete de
oupling of the dual gauge modes takes pla
e at the magneti
-
enterphase transition. As a result, only 
onta
t intera
tions between 
enter-vortex-loops arepossible.The de
ay of the monopole-antimonopole 
ondensate and the subsequent formation ofthe (Bose)
ondensate of CVLs is des
ribed by a ma
ros
opi
 
omplex s
alar �eld Φ in apotential VC(Φ). The expe
tation of Φ is proportional to the expe
tation of the 't Hooftloop operator whi
h is a dual order parameter for 
on�nement. CVLs in the magneti
phase are 
reated by phase jumps of Φ and an in
rease in the modulus of Φ. This pro
ess
ontinues until Φ relaxes to one of the Z2 degenerated, energy and pressure free minima ofa potential VC . The phase of Φ is given by a line integral of the dual gauge �eld aD

µ alonga spatial 
ir
le of in�nite radius SR=∞
1 measuring the (quantized) magneti
 �ux throughthe minimal surfa
e MSR=∞

1

. The 
reation of a CVL now pro
eeds by an in�nitely thin�ux line and its �ux reversed partner traveling in from in�nity and interse
ting with the
SR=∞

1 , thereby pier
ing the surfa
e MSR=∞
1

. The energy needed to 
reate a single 
enter-vortex loop is provided by the potential VC . Sel�nterse
ting and therefore massive CVLs
ome into existen
e when generated single CVLs that move fast enough to 
onvert someof their kineti
 energy into mass 
ollide and merge, thus 
reating sel�nterse
tions. Ea
hinterse
tion point 
arries one unit of magneti
 
harge, see Fig. 2.3, where ea
h sign isequally likely. The spe
trum of ex
itations is equidistant sin
e the mass of a soliton with
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N self-intera
tions is given by NΛC , ΛC being the Yang-Mills s
ale. Modulo the 
hargemultipli
ities the number of distin
t topologies of N -fold sel�nterse
ting solitons is givenby the number of distin
t topologies of 
onne
ted bubble diagrams with N verti
es in as
alar λφ4 quantum �eld theory. In Fig. 1.1 the topologies of CVLs with up to N = 3sel�nterse
tions are shown. If subje
ted to mixing with theories possessing propagatingphotons the only stable ex
itations are non-sel�nterse
ting and one-fold sel�nterse
tingCVLs. This is due to the repulsive or attra
tive for
es between the 
harges of CVLs withmore than one sel�nterse
tion. CVLs without sel�nterse
tion, however, are unstable in thepresen
e of a noisy environment, see Se
. 2.6.In [10℄ the potential VC for the ma
ros
opi
 �eld Φ is found to be

VC =

(

Λ3
C

Φ
− ΛCΦ

)(

Λ3
C

Φ
− ΛCΦ

)

, (2.31)satisfying the following properties (see also [24℄):(i) VC is invariant under 
enter jumps Φ → exp(iπ)Φ only;(ii) it allows for the 
reation of spin-1/2 fermions by a forward- and ba
kward tunnelingwhi
h 
orresponds to lo
al 
enter jumps of Φ's phase;(iii) the degenerated minima of VC have zero energy density and are related by lo
al 
enterjumps;(iv) a mass s
ale ΛC o

urs to parameterize the potential VC ;(v) VC needs to be real.The pro
ess of relaxation of Φ to one of the minima of VC is des
ribed by the a
tion
S =

∫

dx4

(

1

2
∂µΦ ∂µΦ − 1

2
VC

)

. (2.32)On
e Φ has rea
hed VC 's minima, quantum �u
tuation δΦ are absent be
ause every po-tential �u
tuation would be harder than the maximal resolution.Negle
ting 
onta
t intera
tions between and internal degrees of freedom within solitonsas well as long-range intera
tions between 
harges mediated by photons, the naive seriesfor the total pressure PC at temperature T represents an asymptoti
 expansion in powersof a suitably de�ned 
oupling 
oupling 
onstant λ ≡ exp(−ΛC/T ). That is, the sum
PC =

∞
∑

N=0

PC,N (2.33)over partial pressures PC,N of spin-1/2 states arising from solitons with N sel�nterse
tionsseems to 
onverge up to a 
riti
al, temperature-dependent value Nc(T ), but 
onvergeswhen in
luding higher 
ontributions. This signals that the assumption that solitons witharbitrary N are stable breaks down to hold for N > Nc as a 
onsequen
e of 
onta
tintera
tions whi
h in
rease due to the higher density of interse
tion points and vortexlines. Though formally divergent, the sum over partial pressures PC,N turns out to beBorel summable for negative (unphysi
al) values of λ. The inverse Borel transformationis meromorphi
3 in the entire λ-plane ex
ept for a bran
h 
ut along the positive-real axis.Continuation to the physi
al region λ > 0 leads to a sign-inde�nite imaginary part whi
h3A meromorphi
 fun
tion is holomorphi
 on an open subset of the 
omplex plane ex
ept for a set ofisolated poles.
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iently small temperatures. Complex admixtures tothe pressure be
ome manifest as turbulen
e-like phenomena in the plasma and thus violatethermal equilibrium. At zero temperature, the pressure of the ground state is pre
isely nil.Be
ause of the over-exponential rise of spin-1/2 fermion states with in
reasing temperature,the imaginary part starts to dominate the pressure and the thermodynami
al des
riptionof the system begins to fail (violation of spatial homogeneity). That is, at temperature
TH ∼ ΛC , the entropy wins over the Boltzmann suppression in energy and the partitionfun
tion diverges. This is an indi
ation for the Hagedorn transition to the pre
on�ningphase. For details see [25℄. Similar behavior is observed for the expansion of the energydensity [26℄

ρC =

∞
∑

N=0

ρC,N , (2.34)where ρC,N is the energy density of soliton states with N sel�nterse
tions and mass NΛC .Demanding for 
ontinuity of the negative pressure a
ross the magneti
-
enter phasetransitions yields a relation between ΛM and ΛC :
ΛM ∝ 21/3ΛC . (2.35)The question may arise whether there are stable sel�nterse
ting vortex-loops in themagneti
 phase. By the de
ay of the ma
ros
opi
 ground state in the magneti
 phase itsenergy density is used to 
reate sel�nterse
ting CVLs. An N -fold twisted CVL possessesa mass NΛC , where the Yang-Mills s
ale is about ΛC ∝ TH . For this reason, the potentialin the magneti
 phase 
annot provide enough energy density to 
reate a sel�nterse
tion inthe magneti
 phase.2.5 The postulate SU(2)CMB = U(1)YWe have mentioned in Se
. 2.2 that the spatial 
oarse-graining over the topologi
ally non-trivial se
tor leads to the emergen
e of a ma
ros
opi
 adjoint Higgs �eld whi
h breaksthe fundamental gauge group SU(2) down dynami
ally to the subgroup U(1). Thereby,two out of three gauge bosons be
ome massive. At Tc,E = 13.87ΛC

2π , where the ele
tri
-magneti
 phase transition takes pla
e, the mass of these two gauge �eld diverges and themassless mode remains exa
tly massless be
ause radiative 
orre
tions are absent due tothe de
oupling from its heavy partners.Now 
onsider the U(1)Y fa
tor of the ele
troweak gauge group SU(2)W ×U(1)Y of thepresent Standard Model of Parti
le Physi
s (SM). In Quantum Ele
trodynami
s (QED),the photon is observed to be uns
reened and pra
ti
ally massless (mγ < 10−14 eV) [27℄.It is des
ribed by the gauge group U(1) the progenitor of whi
h is the U(1)Y fa
tor. Asstated above, there is only a single point in the phase diagram of SU(2) Yang-Mills ther-modynami
s that exhibits a pre
isely massless gauge mode: the de
on�ning-pre
on�ningphase transition at Tc,E. Therefore, in [10, 23, 28, 29℄, the postulate was pushed forwardthat the U(1)Y fa
tor of the ele
troweak gauge group is the unbroken subgroup of an SU(2)Yang-Mills theory with a s
ale 
omparable to the temperature of the 
osmi
 mi
rowaveba
kground (CMB) TCMB = 2.728 eV. This group is denoted SU(2)CMB. The photon γ inthe SM has to be identi�ed with the massless gauge mode of SU(2)CMB. In analogy to the
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W± gauge bosons of the SM, the remaining two in�nitely massive and thus undete
tablegauge modes of SU(2)CMB are denoted V ± (mV ± = 2eφ with e = ∞ at Tc,E). Furthermore,the average temperature of the universe TCMB is identi�ed with the 
riti
al temperature
Tc,E of SU(2)CMB. This �xes the only free parameter of the theory, the Yang-Mills s
ale ΛE ,to ΛE = 2π

13.87TCMB = 1.065 × 10−4 eV. For temperatures mu
h above Tc,E, the e�e
ts of
V ± are 
ompletely negligible, whereas for temperatures a few times of TCMB, these lead toa visible modi�
ation of the bla
k-body spe
trum at low frequen
ies (spe
tral gap) [29, 30℄.The spe
tral gap 
ould also provide for an explanation why old (estimated age ∼ 50 millionyears), 
old (mean brightness temperature ∼ 20 K) and dilute (number density ∼ 1.5 
m3)
louds in between the spiral arms of the outer galaxy are 
omposed of atomi
 instead ofmole
ular hydrogen, and why these 
louds are stable [31℄.Regarding the transition towards the pre
on�ning phase, the postulate SU(2)CMB =
U(1)Y implies that the photon will a
quire a Meiÿner mass be
ause of the 
oupling tothe newly emerging super
ondu
ting ground state (
ondensate of magneti
 monopoles).The system, however, remains in a super
ooled state down to T = 12.15ΛE

2π due to theshift in energy density at Tc,E (additional degree of freedom), see also Fig. 2.2. In [23℄an upper bound for the time the photon remains massless was estimated to be ∼ 2.2billion years. The observed intergala
ti
 magneti
 �elds 
an possibly be explained bythe ele
tri
-magneti
 phase transition. Conventional super
ondu
tors 
onsist of a Cooper-pair 
ondensate of ele
tri
 
harges and expel magneti
 �elds from their interior (Meiÿnere�e
t). If the o

urren
e of intergala
ti
 magneti
 �elds is addressed to the emergen
e ofa super
ondu
ting ground state, this leads to the 
on
lusion that a magneti
ally 
hargedobje
t in the gauge group SU(2)CMB is interpreted as an ele
tri
ally 
harged obje
t withrespe
t to U(1)Y . Therefore, the ground state of the magneti
 phase is a 
ondensateof ele
tri
ally 
harged monopoles and antimonopoles with respe
t to U(1)Y , and thusgenerates intergala
ti
 magneti
 �elds.2.6 Motion by 
urvatureHere, we would like to illustrate how the 
urve shrinking pro
ess is indu
ed by the 
urvatureof a CVL. Re
all that the vortex loop is generated by the bending of a straight ANO vortexline whi
h exhibits isotropi
 pressure perpendi
ular to its symmetry axis. Now 
onsidera situation where a CVL of an isolated SU(2) Yang-Mills theory is (lo
ally) embeddedinto a �at two-dimensional surfa
e at mD < ∞ and d > 0. Then, a hypotheti
al observermeasuring a positive (negative) 
urvature of a segment of the vortex line experien
es more(less) negative pressure in the intermediate vi
inity of this 
urve segment (see Se
. 2.4)leading to its motion towards (away from) the observer, see Fig. 2.4. The (inward dire
ted)velo
ity of a point in the vortex 
ore will be a monotoni
 fun
tion of the 
urvature atthis point. On average, this shrinks the CVL. Alternatively, one may globally 
onsiderthe limit mD → ∞, d → 0, that is the 
on�ning phase, but now taking into a

ount thee�e
ts of an environment that lo
ally relaxes this limit (by 
ollisions) and thus also indu
es
urve shrinking. This situation is des
ribed by a 
urve shrinking �ow in the dimensionlessparameter τ
∂τ~x(ξ, τ) =

1

σ
∂2

ξ~x(ξ, τ), (2.36)
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Figure 2.4: Highly spa
e-resolved snapshot of a segment of a 
enter-vortex loop. Thepressure Pi in the region pointed to by the normal ve
tor n is more negative than thepressure Pe thus leading to a motion of the segment along n.where ~x is a point on the planar CVL, ξ is ar
 length, and σ a string tension e�e
tivelyexpressing the distortions indu
ed by the (noisy) environment. After a res
aling to dimen-sionless variables,
x ≡

√
σ~x and s =

√
σξ, (2.37)�ow equation (2.36) assumes the form:

∂τx(s, τ) = ∂2
sx(s, τ). (2.38)In the following se
tions, we will resort to the dimensionless �ow equation.



Chapter 3Mathemati
al Prerequisites: Curveshrinking �owIn the 1970s, William Thurston developed a program for the 
lassi�
ation of three-dimen-sional manifolds. It had a great impa
t in the �eld of three-dimensional topology andrevealed a very strong 
onne
tion between low-dimensional topology and di�erential ge-ometry, espe
ially between hyperboli
 geometry and Kleinian groups [32, 33℄.Now 
onsider a smooth 
losed (that is, 
ompa
t and without boundary) manifold Mequipped with a smooth time-dependent Riemannian metri
 g(τ). A (topologi
al) manifoldis a topologi
al spa
e whi
h is lo
ally homeomorphi
 to a Eu
lidean spa
e, but with angenerally more 
ompli
ated global stru
ture. A manifold equipped with a Riemannianmetri
 g is a real di�erentiable manifold M, in whi
h ea
h tangent spa
e is endowed withan inner produ
t g in a manner that varies smoothly from point to point. It should benoted that not every manifold admits a geometry. The Ri

i �ow is a means of pro
essingthe metri
 g by the evolution of g under the following partial di�erential equation (PDE)
∂

∂τ
g(τ) = −2Ric(g), (3.1)where Ri
 is the Ri

i 
urvature. In lo
al 
oordinates the 
oe�
ients Rij of the Ri

i
urvature tensor are given by a 
ontra
tion of the Riemannian 
urvature tensor Ri

jkl,
Rij = Rk

ikj. Roughly speaking, the Ri

i-�ow 
ontra
ts regions of positive 
urvature andexpands those of negative 
urvature, thereby smoothing out irregularities in the metri
.In this spirit, it is formally analogous to the di�usion of heat that des
ribes how an irreg-ular temperature distribution in a given region tends to be
ome more homogeneous overtime. An example of its appli
ation is the proof of the two-dimensional uniformizationtheorem, whi
h states that any surfa
e admits a Riemannian metri
 of 
onstant Gaussian
urvature. Here, the (suitably renormalized) Ri

i �ow is used to 
onformally deform atwo-dimensional metri
 on M into one of 
onstant 
urvature [34℄. Ri
hard Hamilton intro-du
ed the Ri

i �ow with the intention to gain insight into the geometrization 
onje
tureproposed by William Thurston in 1980 [35℄. The geometrization 
onje
ture is the analoguefor three-manifolds of the uniformization theorem for surfa
es and implies several other
onje
tures, su
h as Thurston's elliptization 
onje
ture or the Poin
aré 
onje
ture. Let us�rst 
onsider the Poin
aré 
onje
ture, whi
h was originally posed as a question at the end ofan arti
le by Henri Poin
aré in 1904. In its standard form, it states that every simply 
on-ne
ted, 
ompa
t three-manifold without boundary is homeomorphi
 to the three-sphere.19



20 CHAPTER 3. MATHEMATICAL PREREQUISITES: CURVE SHRINKING FLOWA more pre
ise phrasing is that the fundamental group of a 
losed three-manifold M istrivial, if and only if M is homeomorphi
 to the three-sphere. Now, the geometrization
onje
ture 
on
erns the topologi
al 
lassi�
ation of three-dimensional smooth manifolds.The original phrasing of Thurston goes as follows [35℄: �The interior of every 
ompa
t3-manifold has a 
anoni
al de
omposition into pie
es whi
h have geometri
 stru
tures�1.In three dimension there are pre
isely eight geometri
 stru
tures 
alled the eight Thurston(model) geometries (involving the spheri
al geometry S3, the Eu
lidean geometry R
3, thehyperboli
 geometry H

3, the geometry of S2 × R, the geometry of H
2 × R, the geometryof the universal 
over of SL2(R), the nil geometry and �nally the sol geometry). The
anoni
al de
omposition is 
arried out in two steps. In the �rst stage, also referred to asthe prime de
omposition, one 
uts a three-manifold M along two-spheres embedded in

M su
h that neither of the obtained manifolds is a three-ball, then one glues three-ballsto the resulting boundary 
omponents. This de
omposition is unique up to the sequen
eand additional three-balls. The se
ond stage involves 
utting along 
ertain tori that arenontrivially embedded in M obtaining a three-manifold the boundary of whi
h 
onsists oftori. Hamilton's basi
 idea was to pla
e an arbitrary metri
 g on a given smooth manifold
M and to dynami
ally deform M by the Ri

i �ow to yield one of Thurston's geomet-ri
 stru
tures. Hamilton su

eeded in proving that a 
losed three-dimensional manifold,whi
h 
arries a metri
 of positive Ri

i 
urvature, is a spheri
al spa
e form that a
ts likean attra
tor under the Ri

i �ow [36℄. This is known as the Hamilton theorem. How-ever, in general, the Ri

i �ow 
an be expe
ted to develop a singularity in �nite time.Then, in a series of eprints starting in 2002, Grigori Perelman sket
hed a proof for thegeometrization 
onje
ture [37℄. Thereby, Perelman modi�ed Hamilton's program to proveThurston's geometrization 
onje
ture by stopping the Ri

i �ow on
e a singularity hasbeen formed, then 
arefully performing `surgery' on the evolved manifold, systemati
allyex
ising singular regions before 
ontinuing the �ow. This is 
alled Ri

i �ow with surgery.The results obtained in this thesis heavily depend on the important work on the 
urveshortening �ow done by Gage and Hamilton [38℄, and Grayson [39, 40℄. The 
urve shorten-ing �ow, also known as heat equation on immersions2, is the one-dimensional analogue tothe Ri

i �ow and originally inspired Hamilton in the development of the Ri

i �ow. Letus now 
onsider the properties of 
urve shrinking �ows in two and three spa
e dimensions.3.1 Embedded 
urves without sel�nterse
tion3.1.1 Planar 
urvesConsider a family of smooth, 
losed 
urves x(s, τ) of length L embedded3 in a two-dimen-sional �at plane R

2, where x is a point along the 
urve, s ∈ [0, L] is the ar
 length thatis unique only up to a 
onstant and τ ∈ [0, T ] the �ow parameter whi
h parametrizes thefamily. The initial 
urve x(s, 0) evolves as a fun
tion of `time' τ to x(s, τ). The Eu
lidean1A geometri
 stru
ture is de�ned to be a spa
e modeled on a homogeneous spa
e (X, G), where X isa manifold and G is a group of di�eomorphisms of X su
h that the stabilizer of any point x ∈ X is a
ompa
t subgroup of G [35℄. For every x in X, the stabilizer subgroup of x (also 
alled the isotropy groupor little group) is de�ned as the set of all elements in G that �x x: Gx = {g ∈ G|g · x = x}2An immersion is a lo
al embedding.3An embedding is a map f : X → Y between di�erentiable manifolds X and Y where the map f is ahomeomorphism between X and its image f(X).
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Figure 3.1: The Eu
lidean 
urve shortening �ow. The arrows point towards the unit normal
n and the length of the arrows is proportional to the 
urvature k.
urve shortening �ow is de�ned as

∂τx(s, τ) = ∂2
sx(s, τ) ≡ k(s, τ)n(s, τ), (3.2)where the derivative ∂τ := ∂

∂τ is taken along a �xed value of s. This is a paraboli
, nonlinearse
ond-order partial di�erential equation, where n is the inward-pointing Eu
lidean unitnormal and k the s
alar 
urvature, de�ned as
k(s, τ) = |∂2

sx(s, τ)| = det(∂sx(s, τ), ∂2
s x(s, τ)), (3.3)with |v| ≡ √

v · v, v · w denoting the Eu
lidean s
alar produ
t, and det(·, ·) denotes thedeterminant of the 2 × 2 matrix 
reated by two 2 × 1 ve
tors. It is a standard resultfor paraboli
 equations that solutions exist for a short time and are unique. In the 
urveshortening �ow, the 
urve x(s, τ) is deformed along its unit normal n(s, τ) at a rate thatis proportional to its 
urvature k(s, τ). This �ow deserves the attribute 
urve shortening,be
ause its �ow lines in the spa
e of 
losed 
urves are tangent to the gradient for the 
urvelength fun
tional, see Eq. (3.17). For the remainder of this se
tion, we assume that asolution to Eq. (3.2) exists on the maximal time interval [0, T ). A more visual des
riptionof this �ow is the evolution of an elasti
 band in a vis
ous medium. If the tension inthe elasti
 is kept 
onstant then its behavior is approximately determined by Eq. (3.2),see also Fig. 3.1. Sin
e motion normal to the 
urve a�e
ts ar
 length, s is not preservedunder 
urve shrinking. Thus, s and τ are not independent and 
ommute a

ording to thefollowing rule
∂τ∂s = ∂s∂τ + k2∂s. (3.4)Therefore, we introdu
e the 
urve parameter u (modulo 2π) related to s by
ds = |∂ux| du. (3.5)The quantity |∂ux| 
an also be thought of as an ar
 length density. A
tually, Eq. (3.5)de�nes s. The operator ∂s then writes as
∂s =

1

|∂ux|
∂u. (3.6)



22 CHAPTER 3. MATHEMATICAL PREREQUISITES: CURVE SHRINKING FLOWIn the following, we resort to a slight abuse of notation by using the same symbol x forthe fun
tional dependen
e on u or s. Let us now introdu
e 
oordinates in R
2, x(u, τ) =

(x(u, τ), y(u, τ))T (where T denotes the transpose). The tangent ve
tor to the 
urve isgiven by ∂ux, and thus we de�ne the unit tangent t ve
tor as
t(u, τ) :=

∂ux

|∂ux|
=

1

|∂ux|

(

∂ux
∂uy

)

. (3.7)The unit normal is then given by
n(u, τ) :=

1

|∂ux|

(

−∂uy
∂ux

)

. (3.8)The unit tangent and normal ve
tors are written in terms of ar
 length s as
t(s, τ) =

(

∂sx
∂sy

)

, and n(s, τ) =

(

−∂sy
∂sx

)

. (3.9)So we 
an write the Frenet-Serret formulas, whi
h des
ribe the kinemati
 properties of apoint (parti
le) that moves along the planar 
urve x as
∂

∂s

(

t

n

)

=

(

0 k
−k 0

)(

t

n

)

, (3.10)where the 
urvature, when expressed in 
oordinates, is
k(s, τ) = ∂sx ∂

2
sy − ∂2

sx ∂sy. (3.11)The 
ir
umferen
e of the 
urve L at time τ is de�ned as
L(τ) ≡

∫ L(τ)

0
ds =

∫ 2π

0
du |∂ux(u, τ)| . (3.12)The evolution of L under the �ow is given by

L̇(τ) :=
dL(τ)

dτ
≡ −

∫ L(τ)

0
ds k2 = −

∫ 2π

0
du |∂ux| k2. (3.13)For the area A en
losed by the 
urve we have

A(τ) ≡ 1

2

∣

∣

∣

∣

∣

∫ L(τ)

0
ds x(s, τ) · n(s, τ)

∣

∣

∣

∣

∣

. (3.14)Surprisingly, the time derivative of the en
losed area remains 
onstant under 
urve shrink-ing,
Ȧ(τ) :=

dA(τ)

dτ
= −2π. (3.15)For planar 
urves, the de
reasing integral ∫ L

0 ds |k| measures the total 
hange in angle. Inthe spe
ial 
ase of 
onvex planar 
urves, ∫ L
0 ds |k| =

∫ L
0 ds k measures the winding numberof the 
urve and is an invariant of the �ow (until a singularity develops).



3.1. EMBEDDED CURVES WITHOUT SELFINTERSECTION 23In [41℄, Grayson stated that under the �ow Eq. (3.2) `the 
urve is shrinking as fast asit 
an using only lo
al information'. Let us see how this statement 
an be understood.Consider the 
urve length L(τ) =
∫ 2π
0 du |∂ux|. To take the time derivative of L wedi�erentiate |∂ux|2 with respe
t to τ and obtain

∂τ |∂ux| =
1

|∂ux|
∂ux · ∂τ∂ux. (3.16)Substituting this into L̇(τ) and integrating by parts, we obtain the following expressionfor the rate of de
rease of 
urve length

L̇(τ) = −
∫ L(τ)

0
ds k n · ∂τx. (3.17)Therefore, Eq. (3.2) expresses the lo
al 
ondition that the rate of de
rease of L(τ) ismaximal with respe
t to a variation of the dire
tion of the velo
ity ∂τx of a given pointon the 
urve at �xed magnitude |∂τx| [42℄. However, the magnitude |∂τx| is not in generalthe speed whi
h maximizes L̇(t).Setting A(τ = 0) ≡ A0, the solution to Eq. (3.15) is

A(τ) = A0 − 2π τ. (3.18)By virtue of Eq. (3.18) the 
riti
al value T , where A and with it the 
urve vanishes, isrelated to A0 as
T =

A0

2π
. (3.19)The isoperimetri
 ratio is de�ned as L2

A , and the isoperimetri
 inequality states that
L(τ)2

A(τ)
≥ 4π. (3.20)Equality is a
hieved if and only if the 
urve is a 
ir
le. Therefore, one 
an 
onsider it ameasure of `how 
ir
ular' the 
urve is.In 1983, Gage showed that when a smooth 
onvex 
urve evolves a

ording to Eq. (3.2),the isoperimetri
 ratio L2

A de
reases, so that if A → 0, then L → 0 and the 
urve shrinksto a point [43℄. In 1984, Gage showed that a 
onvex 
urve is be
oming 
ir
ular and L2

Aapproa
hes 4π, as the en
losed area approa
hes zero, provided that the 
urvature does notblow up prematurely, that is the 
urve does not form a 
usp [44℄. As a 
onsequen
e, theratio Rout

Rin
of the 
ir
ums
ribed ratio to the ins
ribed ratio 
onverges to unity. This 
an be
onsidered a C0-
onvergen
e to the 
ir
le. Hen
e, in the absen
e of singularities, a stri
tly
onvex and embedded 
urve remains 
onvex and embedded under the evolution.In 1986, Gage and Hamilton showed that for 
onvex 
urves the 
urvature does not blowup prematurely for limτ→T A(τ) = 0 [38℄. Thus, the 
urve remains 
onvex and be
omes
ir
ular, as it shrinks to a point for τ ր T , where 0 < T < ∞. The 
urve shrinks to a
ir
le in the sense that:(i) the ratio Rout

Rin
approa
hes unity;(ii) the ratio of the maximum 
urvature to the minimum 
urvature kmax

kmin
approa
hes unity(C2-
onvergen
e);



24 CHAPTER 3. MATHEMATICAL PREREQUISITES: CURVE SHRINKING FLOW(iii) the higher order derivatives of the 
urvature k 
onverge to zero uniformly (C∞-
onvergen
e).In 1987, Grayson showed that embedded (non-sel�nterse
ting) planar 
urves be
ome 
on-vex before T without developing singularities [41℄. Thus, this 
ompletes the proof of thewell known Gage-Hamilton-Grayson theorem that 
urve shortening determined by Eq. (3.2)shrinks embedded plane 
urves smoothly to points, with round limiting shape. It is impor-tant to note that some planar 
urves, whi
h are immersed but not embedded will surelydevelop singularities, e.g. the �gure-eight of Se
. 3.2 or the Limaçon of Pas
al.Consider the set of all Eu
lidean transformations in R
2, that is the set of all rotations,translations and re�e
tions of a �gure in R

2. Su
h a transformation ET : R
2 → R

2 is afun
tion of the form
ET (x) = Ux + a, (3.21)where U is an orthogonal 2 × 2 matrix and a ∈ R

2. The Eu
lidean 
urve shortening �owis de�ned in terms of the Eu
lidean 
urvature k and the Eu
lidean unit normal n that areinvariant under Eu
lidean transformations ET .3.1.2 Spa
e 
urvesThere are several possibilities of generalizing the 
urve shortening �ow. One is the mean
urvature �ow, whi
h is the generalization of Eq. (3.2) for hypersurfa
es. In this 
ase, theresults of Se
. 3.1.1 
ontinue to hold for 
onvex 
urves, but for non-
onvex 
urves they donot [45℄.For our purposes, it is more interesting to look at the extension of the 
urve shortening�ow for 
urves embedded in the three-dimensional Eu
lidean spa
e R
3. Consider a 
ontin-uous, di�erentiable (and not ne
essarily 
losed) spa
e 
urve x(s, τ) embedded in R

3. Thetangent, normal and binormal unit ve
tors are denoted t, n and b, respe
tively, also 
alledFrenet-Serret frame, and de�ned as follows:
t is the unit ve
tor tangent to the 
urve, pointing in the dire
tion of motion: t = ∂sx;
n is the normalized derivative of t with respe
t to the ar
 length s of the 
urve: n = ∂st

|∂st|
;

b is the 
ross produ
t of t and n: b = t × n.The Frenet-Serret formulas for a point on the spa
e 
urve are given by
∂

∂s





t

n

b



 =





0 k 0
−k 0 t
0 −t 0



 ·





t

n

b



 , (3.22)where k is the 
urvature and t the torsion. The Frenet-Serret formulas e�e
tively de�nethe 
urvature and torsion of a spa
e 
urve. It should be noted that the existen
e of aFrenet-Serret frame requires |kn|2 > 0. That is, a parti
le traveling along the 
urve mustexperien
e a

eleration. The evolution equation for spa
e 
urve assumes the same form asEq. (3.2),
∂τx(s, τ) = k(s, τ)n(s, τ). (3.23)The unit normal n is not always de�ned, though kn always makes sense. It was shownby Alts
huler and Grayson that solutions to the spa
e 
urve �ow exist until the 
urvature



3.2. IMMERSED CURVES WITH ONE SELFINTERSECTION 25be
omes unbounded. However, spa
e 
urves may not remain embedded in general, and sin-gularities will develop in the 
ase of 
losed 
urves. A phenomenon of spa
e 
urve evolutionis that in�e
tion points (k = 0) may develop during a time interval on whi
h the 
urvatureis bounded. When this happens the 
urvature be
omes zero and the torsion in�nite ata point. Nevertheless the 
urve remains embedded sin
e the �ow ignores these types ofsingularities in the torsion [46, 47℄. A rather surprising property of spa
e 
urve evolutionis, that the formation of a singularity is a planar phenomenon. A spa
e 
urve is said tobe planar at a point (s′, τ ′) if the ratio of torsion and 
urvature vanishes, t
k (s′, τ ′) = 0.In [46℄, Alts
huler showed that if a spa
e 
urve develops a singularity at (s′, τ ′), then

lim(s,τ)→(s′,τ ′)
t
k (s, τ) = 0. Furthermore, Alts
huler showed that the spa
e 
urve is eitherasymptoti
 (τ → ∞) to a planar solution whi
h moves by homothety (self-similarity), ora res
aling of the solution along the singularity 
onverges in C∞ to a limiting solution

x(s, τ = ∞) [46℄, where x(s, τ = ∞) is the family of planar, 
onvex 
urves. The mosttrivial 
ase of a 
urve moving by homothety is the 
ir
le shrinking down to a point. Itshould be noted that the 
onje
ture due to Grayson, that singularity formation is a planarphenomenon, 
an be proven without using the language of res
alings.3.2 Immersed 
urves with one sel�nterse
tionWhen a 
losed 
urve immersed in a plane evolves by its 
urvature a

ording to Eq. (3.2), itremains smooth until its 
urvature blows up. From Se
. 3.1.1, we know that an embedded
losed 
urve 
annot develop a singularity until it shrinks to a point, where the limitingshape of the 
urve 
onverges in C∞ to 
ir
le. In marked 
ontrast to this behavior, it wasshown by Grayson that an immersed 
urve 
an evolve by the 
urvature �ow su
h that itsarea vanishes, but its isoperimetri
 ratio 
onverges to ∞. Su
h a 
urve, namely a �gure-eight, was investigated in [40℄. A �gure-eight is the simplest non-embedded 
urve and isde�ned to be a smooth immersion into the plane with exa
tly one double point, and a totalrotation number zero,
∫ L

0
ds k = 0. (3.24)Here, s is ar
 length, L the 
urve length and k the s
alar 
urvature. Su
h a 
urve dividesthe plane into three disjoint areas two of whi
h are �nite and denoted (the unsigned areas)

A1 and A2. Let x(s, τ = 0) be �gure-eight whi
h evolves to x(s, τ) a

ording Eq. (3.2)for 0 ≤ τ < T . The 
urvature is unbounded as τ → T . The main result of [40℄ is thatthe isoperimetri
 ratio L2

A 
onverges to ∞ as τ → T if and only if the loops bound regionsof equal area, A1(0) = A2(0). This in turn implies that L2

A for a 
urve with unequal-arealoops is bounded as τ → T .Sin
e for immersed 
urves the number of double points is a non-in
reasing fun
tion oftime [48℄, a �gure-eight remains a �gure-eight until one of its loops 
ollapses or the �owen
ounters a singularity. The 
urve stays smooth and the �ow 
ontinues until A1 or A2
onverge to zero. For the total area A of a �gure-eight we have
A(τ) = A1(τ) +A2(τ). (3.25)The time derivative of the area en
losed by one of loop of the 
urve is equal to −|

∫

ds k|over the loop. Unlike the 
ase of a non-sel�nterse
ting 
urve, the rate of 
hange of the



26 CHAPTER 3. MATHEMATICAL PREREQUISITES: CURVE SHRINKING FLOWtotal area is not longer 
onstant, but 
onstrained as
−4π ≤ dA(τ)

dτ
≤ −2π. (3.26)However, we have the ni
e property of �gure-eights that the di�eren
e of areas boundedby the two loops of x(s, τ) remains 
onstant under the �ow evolution:

A1(τ) −A2(τ) = const. (3.27)Aside from a number of appli
ations in di�erential geometry, 
urve shortening �owsare also used in multi-agent systems, su
h as mobile autonomous robots [42℄, in imagepro
essing where the �ow provides an e�
ient way to smooth 
urves representing the
ontours of obje
ts, or in 
omputer vision. For a 
omplete a

ount of many of the resultsof 
urve shrinking see [45, 49℄.In the following, we suppress the fun
tional dependen
e on u in the argument of x and
n and write x(τ) := x(u, τ) and u(u, τ) := n(τ)



Chapter 4Non-sel�nterse
ting 
enter-vortexloopsWe apply 
urve shrinking to the N = 0 se
tor in the sense of Se
. 2.6. It should benoti
ed that the restri
tion of the motion of a CVL to a two-dimensional �at plane is amajor assumption whi
h needs to be supplemented by additional physi
al arguments forits validity.4.1 Wilsonian renormalization-group �owIn this se
tion, we exploit the 
on
ept of renormalization-group transformations to yieldan e�e
tive `a
tion' that enables us to 
ompute statisti
al quantities. The renormalizationgroup allows one to investigate the 
hange in the physi
al parameters of a system whi
h isasso
iated with the 
hange in s
ale (energy or resolution) and ne
essary to keep the physi
s
onstant. In our 
ase, the 
hange of s
ale 
orresponds to a 
hange of the resolution Q usedto probe the system. Here, the resolution Q is a stri
tly monotoni
 de
reasing fun
tionof the �ow parameter τ . The 
hange in parameters of the e�e
tive `a
tion' is impli
itlydetermined by a renormalization-group �ow in τ .4.1.1 Geometri
 partition fun
tionLet us now interpret the pro
ess of 
urve shrinking determined by Eq. (3.2) as a renorm-alization-group transformation of a statisti
al ensemble made up of planar N = 0 CVLs.A partition fun
tion, whi
h is the sum over suitable de�ned weights of the members in theensemble, is 
onsidered to be invariant under a de
rease of resolution Q determined by the�ow parameter τ . Physi
ally, τ is a monotoni
ally de
reasing fun
tion of Q/Q0, where Q(Q0) are mass s
ales asso
iated with the a
tual (initial) resolution applied to the system.The role of Q 
an also be played by the �nite temperature of a reservoir that is 
oupledto the system.To de�ne a suitable weight, we devise an ansatz for the e�e
tive `a
tion' S = S[x(τ)]in geometri
 terms of the 
urves in the ensemble, sin
e these are the only a

essible quan-tities in the system of isolated non-intera
ting CVLs. The `a
tion' as a fun
tional of x isexpressible in terms of integrals over lo
al densities in s. Furthermore, we take advantageof the following symmetries the a
tion should possess:27



28 CHAPTER 4. NON-SELFINTERSECTING CENTER-VORTEX LOOPS(i) s
aling symmetry x → λx, λ ∈ R+: for both 
onformal limits, λ→ ∞ and λ→ 0, wherethe 
urves at �xed L gets unobservable sin
e λL→ ∞ and λL→ 0, the `a
tion' S shouldbe invariant under further �nite res
alings (de
oupling of the �xed length s
ale σ−1/2);(ii) Eu
lidean point symmetry in R
2, that is the group of all rotations, translations andre�e
tions of a �gure (
urve) in the plane: su�
ient but not ne
essary for this is a repre-sentation of S in terms of integrals over s
alar densities with respe
t to these symmetries.That is, the `a
tion' density should be expressible as a expansion in series involving prod-u
ts of Eu
lidean s
alar produ
ts of ∂n

∂sn x, n ∈ N
+, or 
onstan
y. However, s
alar integrals
an be 
onstru
ted whi
h involve non-s
alar densities. For instan
e, 
onsider the area Aen
losed by 
urve and given by

A(τ) =
1

2

∣

∣

∣

∣

∣

∫ L(τ)

0
ds x(τ) · n(τ)

∣

∣

∣

∣

∣

. (4.1)The density x · n in this expression is not a s
alar under translations.We now de
ompose the e�e
tive `a
tion' into a 
onformal and a non-
onformal fa
tor
S = Fc × Fnc , (4.2)where in addition to Eu
lidean point symmetry Fc is invariant under x → λx, whereas Fncis not. In prin
iple, in�nitely many operators 
an be de�ned to 
ontribute to Fc. Sin
ethe evolution generates 
ir
les for τ ր T and thus homogenizes the 
urvature, higherderivatives of k with respe
t to s rapidly 
onverge to zero [38℄. We expe
t this to be truealso for Eu
lidean s
alar produ
ts involving higher derivatives ∂n

∂sn x. To yield 
onformallyinvariant expressions su
h integrals need to be multiplied by powers of √A and/or L or theinverse of integrals involving lower derivatives. At this stage, we are not able to 
onstrainthe expansion in derivatives by additional physi
al or mathemati
al arguments. To bepragmati
, we simply set Fc equal to the isoperimetri
 ratio:
Fc(τ) ≡

L(τ)2

A(τ)
. (4.3)We 
onsider the non-
onformal fa
tor Fnc in S as a formal Taylor expansion in inversepowers of L or A due to the 
onformal invarian
e of the 
urve for L,A→ ∞ and L,A→ 0.Sin
e the renormalization-group evolution of the e�e
tive `a
tion' is driven by the 
urveshortening �ow of ea
h member in the ensemble, we allow for an expli
it τ dependen
e ofthe 
oe�
ient c of the lowest nontrivial power 1

L . The idea is to in
lude the 
ontributionof higher-order operators, that do not exhibit an expli
it τ dependen
e, into a resolu-tion dependen
e of the 
oe�
ient of the lower-dimensional operators. Thus, we make thefollowing ansatz
Fnc(τ) = 1 +

c(τ)

L(τ)
. (4.4)The initial value c(τ = 0) is determined from a physi
al boundary 
ondition su
h as themean length L̄ at τ = 0 whi
h determines the mean mass m̄ of a N = 0 CVL as m̄ = σL̄.We have also 
onsidered a modi�ed fa
tor

Fnc(τ) = 1 +
c(τ)

A(τ)
(4.5)
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tion' in Eq. (4.2).For later use, we investigate the behavior of Fnc(τ) for τ ր T for an ensemble 
onsistingof a single 
urve only and require the independen
e of the `partition fun
tion' under 
hangesin τ . Using Eq. (3.18) in the vi
inity of τ = T , where the limiting of 
urve is a 
ir
le withradius R, we have
L(τ) = 2πR =

√
8π

√
T − τ . (4.6)Sin
e Fc(τ ր T ) = 4π, independen
e of the `partition fun
tion' under the �ow in τ impliesthat

c(τ) ∝
√
T − τ . (4.7)That is, Fnc approa
hes a 
onstant value for τ ր T whi
h brings us ba
k to the 
onformallimit by a �nite renormalization of the 
onformal part Fc of the e�e
tive `a
tion'. In thisparametrization of S, the 
oe�
ient c(τ) 
an thus be regarded as an order parameter for
onformal symmetry with a mean-�eld 
riti
al exponent.4.1.2 E�e
tive `a
tion'We now want to derive an e�e
tive `a
tion' S[x(τ)] resulting from a partition fun
tion Zfor a nontrivial ensemble E. The partition fun
tion ZM is de�ned as the average

ZM =

M
∑

i=1

exp (−S[xi(τ)]) (4.8)over the ensemble E = {x1, . . . xM}. EM denotes an ensemble 
onsisting of M 
urveswhere EM is obtained from EM−1 by adding a new 
urve xM (u, τ). We are interested ina situation where all 
urves in EM shrink to a point at the same value τ = T . Be
ause of
T = A0/(2π), we demand that at τ = 0 all 
urves in EM have the same initial area A0. Thee�e
tive `a
tion' S in Eq. (4.2) (when asso
iated with the ensemble EM we will denote it as
SM , and the 
orresponding 
oe�
ient cM ) is determined by the fun
tion cM (τ), 
omparewith Eq. (4.4), the �ow of whi
h follows from the requirement of τ -independen
e of ZM :

d

dτ
ZM = 0 . (4.9)This is an impli
it, �rst-order ordinary di�erential equation for cM (τ), whi
h is in need foran initial 
ondition c0,M = cM (τ = 0). An obvious 
hoi
e of initial 
ondition is to demandthat the statisti
 mean length L̄(τ), de�ned as

L̄M (τ) ≡ 1

ZM (τ)

M
∑

i=1

L[xi(τ)] exp (−SM [xi(τ)]) , (4.10)
oin
ides with the geometri
 mean length L̃M (τ) de�ned as
L̃M (τ) ≡ 1

M

M
∑

i=1

L[xi(τ)] (4.11)
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L̄M (0) = L̃M (0). (4.12)From this initial 
ondition a value for c0,M follows. In the 
ase of the modi�ed `a
tion' inEq. (4.5), the 
hoi
e of initial 
ondition L̄M (τ = 0) = L̃M (τ = 0) leads to Fnc(τ) ≡ 0 whi
his equivalent to a uniform distribution. This is be
ause initial 
ondition (4.12) is identi
allyful�lled for the modi�ed `a
tion' if c(0) = −A0 is 
hosen, then setting c(τ) = −A(τ) solves

dZM/dt = 0 trivially. While the geometri
 e�e
tive `a
tion' is thus profoundly di�erent forsu
h a modi�
ation of Fnc(τ), physi
al results su
h as the evolution of the varian
e of theposition of the `
enter of mass' agree remarkably well, see Se
. 4.2.4. We 
on
lude, thatthe geometri
 e�e
tive `a
tion' itself has no physi
al interpretation in 
ontrast to quantum�eld theory and 
onventional statisti
al me
hani
s where the a
tion in prin
iple is relatedto the physi
al properties of a given member of the ensemble. Rather, going from oneansatz for SM to another des
ribes a parti
ular way of redistributing the weight in theensemble whi
h seems to have no signi�
ant impa
t on the physi
s.4.2 Results of simulation4.2.1 Preparation of ensembleFor the 
urves depi
ted in Fig. 4.1, we make the 
onvention that A0 ≡ 2π × 100. Itthen follows that T = 100 by virtue of Eq. (3.19). Furthermore, we have prepared theensembles su
h that the position of `
enter of mass' (COM) 
oin
ides with the origin. Itshould be re
alled that su
h a translation does not alter the e�e
tive `a
tion' (Eu
lideanpoint symmetry). Also note that we use the same notation EM for the primed and theunprimed ensemble. In Fig. 4.2, the evolution of two di�erent initial 
urves under 
urveshrinking is shown.4.2.2 Numeri
al pro
edureThe initial 
urves depi
ted in 4.1 are generated as follows. First, we 
hose a list of pointsin the x-y plane su
h that the initial 
urve x(u, τ = 0) 
onse
utively passes the points,where initial and �nal point 
oin
ide. A spline, whi
h is made of pie
ewise third-orderpolynomials with C1 
ontinuity, interpolates ea
h point in the list. Sin
e Mathemati
a'sSplineFit sets the se
ond derivatives of the spline at the endpoints to zero, the �rst twopoints are appended to the end of the list. The analogue holds for the last two points ofthe original list. To yield a smooth 
urve with more than C1 
ontinuity ea
h 
oordinateof the 
urve is �tted by trigonometri
 fun
tions up to order eight in its Fourier-expansion.Area, length and 
entroid of the initial 
urve are 
omputed numeri
ally with NIntegrate,where the latter is given by
xCOM =

1

L

∫ 2π

0
du |∂ux| x. (4.13)Now we 
an prepare the ensembles as des
ribed in Se
. 4.2.1.To simulate the �ow evolution of the initial 
urves one sear
hes for solutions to these
ond-order partial di�erential equation

∂τx(u, τ) =
1

|∂ux(u, τ)|∂u
1

|∂ux(u, τ)|∂ux(u, τ) (4.14)
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xFigure 4.1: Initial 
urves 
ontributing to the ensembles EM . The positions of the `
enterof mass' 
oin
ide with the origin, and all 
urves have the same area 200π.subje
t to periodi
 boundary 
onditions in the 
urve parameter, x(u = 0, τ) = x(u =
2π, τ), and for the initial 
onditions x(u, τ = 0) depi
ted in Fig. 4.1. This is done usingthe Numeri
al Method of Lines. This is a te
hnique for solving PDEs by dis
retizingin all but one dimension, and then integrating the semi-dis
rete problem as a system of
oupled ordinary di�erential equations (ODEs) or di�erential-algebrai
 equations. Here,we partially dis
retize the �ow equation Eq. (4.14) on a uniform grid in the parameter
u yielding an ODE initial value problem in τ that was solved by the ODE integrators inMathemati
a's NDSolve. Fig. 4.2 indi
ates why this te
hnique is 
alled the method of lines.As one 
an also see from Fig. 4.2, a set of dis
rete points on the 
urve, although remainingequidistant in u, may evolve under the �ow su
h that the spatial distan
es between adja
entpoints falls below the numeri
al pre
ision. The �ow then en
ounters a purely numeri
allyand thus virtual singularity (not to be 
onfused with the earlier mentioned non-virtualsingularities at τ = T ). Therefore, the exe
ution of NDSolve is broken up into severalbasi
 steps whi
h are 
arried out separately. These steps are:(i) equation pro
essing and method sele
tion,(ii) method initialization,(iii) numeri
al solution,(iv) solution pro
essing.The low-level fun
tions that are used in Mathemati
a to break up these steps are ND-Solve�Pro
essEquations (i,ii), NDSolve�Iterate (iii) and NDSolve�Pro
essSolutions (iv).NDSolve�Pro
essEquations 
lassi�es the di�erential system into an initial-value prob-



32 CHAPTER 4. NON-SELFINTERSECTING CENTER-VORTEX LOOPS

Figure 4.2: Plots of the evolution of planar N=0 CVLs (
urve 2 and 6 of Fig. 4.1) underthe 
urve shortening �ow. The thi
k 
entral lines depi
t the traje
tories of the `
enter ofmass' (see Se
. 4.2.4) whi
h 
oin
ides with the origin at τ = 0. The �ow is started at τ = 0and stopped at τ = 100.lem, boundary-value problem, di�erential-algebrai
 problem, partial-di�erential problem,et
. It also 
hooses appropriate default integration methods and 
onstru
ts the mainNDSolve�StateData data stru
ture. NDSolve�Iterate advan
es the numeri
al solution.The �rst invo
ation initializes the numeri
al integration methods. NDSolve�Pro
essSo-lutions 
onverts numeri
al data into an InterpolatingFun
tion to represent ea
h solution.More pre
isely, the 
urve parameter range is divided into n equidistant intervals yielding
n points on the 
urve whi
h are generally not equidistant in spa
e. For our simulation thenumber of points n is 
hosen between 130 and 300. The dis
retization of �ow equation(4.14) with respe
t to the variable u needs to 
onvert the derivatives into �nite di�eren
es.The se
ond-order 
entered (with respe
t to to the set of sample points around x(ui)) for-mula for the �rst derivative is given by

x′(ui) =
x(ui+1) − x(ui−1)

2h
+ O(h2), (4.15)where h is the grid spa
ing. Here, �nite di�eren
es of sixth order are used whi
h are 
om-puted with Mathemati
a's NDSolve�FiniteDifferen
eDerivative. In the following, everyquantity involving derivatives evaluated on a dis
rete set of data points is 
omputed usingMathemati
a's NDSolve�FiniteDifferen
eDerivative. After NDSolve�Pro
essEquations isinvoked the �rst time at τ = τ1 = 0, the numeri
al solution is advan
ed using ND-Solve�Iterate by a unit `time' step ∆τ = 1 up to τ2. Then the 
omputation is interruptedto 
ompute an error estimate that indi
ates whether a virtual singularity is starting toevolve. The error estimate exploits that A(τ) = A0 − 2π τ and is 
omputed as

104 × (A(τ2) −A(τ1) + 2π(τ2 − τ1)), (4.16)
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rete version of Eq. (3.14) evaluated on the point grid givenby NDSolve.Until τ2 rea
hes T , the solution is advan
ed step by step as long as the error estimatedoes not ex
eed the empiri
ally found value of 2. But if it does, the by then obtainedsolution is �tted at τ2 − 1 in su
h a way that a new dis
retization yields (spatially) wellseparated points to restart the pro
edure. In Fig. 4.2(b) su
h a situation is shown. The�tted 
urve is obtained as follows. At τ1, one determines the minimal ar
 length smin whi
his the least of all ar
 length between adja
ent points on the 
urve. Then, at τ2 − 1, allthose points on the 
urve are dropped the ar
 length of whi
h to their next neighbors isless than the minimal ar
 length smin. The remaining points are �tted by trigonometri
fun
tions, where the order of the �t is 
hosen to depend on τ (sin
e the 
urve is gettingsmoother with in
reasing τ). In the 
ase of the error estimate of the �tted 
urve ex
eedingthe toleran
e, the number of grid points has to be in
reased or the initial 
urve needs to besmoothed slightly. In order to avoid dis
ontinuities in the τ -evolution of L, A and xCOM,and singularities in their derivatives that o

ur sin
e the �t pro
edure generates pie
ewisede�ned fun
tions, and sin
e after the �t the values of A and L slightly deviate from theirformer values, these quantities are interpolated by polynomials for 0 ≤ τ ≤ T using Find-Fit. To improve the a

ura
y of L near the 
riti
al value T , the isoperimetri
 ratio L2

A is�tted instead of L, and L is 
al
ulated from √

(

L2

A

)�tted · A.The analyti
al results of Se
. 3.1 su
h as the 
onvergen
e of L2

A to 4π, the 
onstan
yof Ȧ or the vanishing of L and A for τ ր T are numeri
ally well reprodu
ed, thereby
on�rming the validity of the simulation.The impli
it �rst-order di�erential equation dZ
dτ = 0 for the 
oe�
ient is solved usingNDSolve. If not set at will, the initial 
ondition c0 for c(τ) was derived from Eq. (4.12)using Mathemati
a's FindRoot. The varian
e of the position of COM was 
omputed. Thesquare of the 
oe�
ient c(τ) asso
iated to the non-
onformal fa
tor was �tted with fun
tion

c(τ)2 = k(T0 − τ)α, (4.17)where k and α are �t parameters. We have determined the 
riti
al exponent of the 
oe�-
ient to α
2 = 0.5 as τ → T , in a

ordan
e with the theoreti
al value of Eq. 4.7. For 
he
kingpurpose, we have also used T0 as �t parameter, yielding ex
ellent agreement within thenumeri
al pre
ision.A CD-ROM 
ontaining the used Mathemati
a notebooks is atta
hed to the thesis1.4.2.3 Renormalization-group invarian
e of partition fun
tionThe fun
tion c2M (τ) is plotted in Fig. 4.3. A

ording to Fig. 4.3 it seems that the larger theensemble the 
loser c2M (τ) is to the evolution of a single 
ir
le of initial radius R =

√

A0

π .For growing M the fun
tion c2M (τ) approa
hes the form
c2as,M (τ) = kM (T − τ) , (4.18)1The results for non-sel�nterse
ting 
urves were obtained using Mathemati
a version 6.0.2 or below.Here, a remark 
on
erning the used Mathemati
a version is in order. Due to in
omprehensible reasonsversion 6.0.3 is not 
apable to solve the impli
it ODE for the 
oe�
ient c(τ ), not even in the trivial 
aseof an ensemble 
onsisting of a single 
urve. In the 
ase of one-fold sel�nterse
ting 
urves, version 6.0.3 stillworks and was used.
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ΤFigure 4.3: The square of the 
oe�
ient cM (τ) entering the e�e
tive `a
tion' SM =
L(τ)2

A(τ)

(

1 + cM (τ)
L(τ)

) for various ensemble sizes M = 1, . . . , 12. Noti
e the early onset of thelinear drop of c2M (τ). The slope of c2M (τ) near τ = T does not depend on c20,M ≡ c2M (τ = 0)and thus not on the initial 
hoi
e of L̄, but only on the spe
i�
 
hoi
e of 
urves in
ludedin the ensemble.where the slope kM depends on the strength of deviation from 
ir
les of the representa-tives in the ensemble EM at τ = 0, that is, on the varian
e ∆LM at a given value A0.Physi
ally speaking, the value τ = 0 is asso
iated with a 
ertain initial resolution of themeasuring devi
e (the stri
tly monotoni
 fun
tion τ(Q), Q being a physi
al s
ale su
h asenergy or momentum transfer, expresses the 
hara
teristi
s of the measuring devi
e andthe measuring pro
ess), the value of A0 des
ribes the strength of noise asso
iated with theenvironment (A0 determines how fast the 
onformal limit of 
ir
ular points is rea
hed),and the values of c0,M and kM , see Eq. (4.18), are asso
iated with the 
onditions at whi
hthe to-be-
oarse-grained system is prepared. Noti
e that this interpretation is valid for the`a
tion'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

L(τ)

)only.If we relax initial 
ondition L̄M (0) = L̃M (0) for c0,M and set the initial value for c0,Mat will, the 
oe�
ient starts at the given value and rapidly adapts to the evolution depi
tedin Fig. 4.3 and respe
tively, Fig. 4.4. In Se
. 4.1.2, we have argued that for the modi�ed`a
tion' and the initial 
ondition L̄M(0) = L̃M(0) the 
urves are uniformly distributed.Relaxing this initial 
ondition in the 
ase of the modi�ed `a
tion', means that the 
urvesare no longer uniformly distributed for τ = 0. However, the uniform distribution is restoredrapidly as the 
urves evolve under the �ow.
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ΤFigure 4.4: The 
oe�
ient cM (τ) entering the e�e
tive `a
tion' SM = L(τ)2

A(τ)

(

1 + cM (τ)
A(τ)

)for ensemble sizes M = 1, . . . , 12.4.2.4 Varian
e of mean `
enter of mass'Having obtained the 
oe�
ient in the non-
onformal fa
tor of the e�e
tive `a
tion', weare now able to 
ompute the �ow of an `observable', su
h as the COM position in a givenensemble and its statisti
al varian
e. The COM position xCOM of a given 
urve x(s, τ) isde�ned as
xCOM(τ) = (xCOM(τ), yCOM(τ))T =

1

L(τ)

∫ L(τ)

0
dsx(s, τ) . (4.19)We will present below results on the statisti
al varian
e of the COM position.At τ = 0, the statisti
al varian
e in the position of the COM is prepared to be nil,physi
ally 
orresponding to an in�nite resolution applied to the system by the measuringdevi
e. In Fig. 4.5, the �ow of the COM position 
orresponding to the initial 
urvesdepi
ted in Fig. 4.1 is shown.The mean COM position x̄COM over the ensemble EM is de�ned as

x̄COM(τ) = (x̄COM(τ), ȳCOM(τ))T ≡ 1

ZM

M
∑

i=1

xCOM,i(τ) exp (−SM [xi(τ)]) . (4.20)The s
alar statisti
al deviation ∆M,COM of x̄COM over the ensemble EM is de�ned as
∆M,COM(τ) ≡

√varM,COM;x(τ) + varM,COM;y(τ) , (4.21)wherevarM,COM;x ≡ 1

ZM

M
∑

i=1

(xCOM,i(τ) − x̄COM(τ))2 exp (−SM [xi(τ)])

= −x̄2COM(τ) +
1

ZM

M
∑

i=1

x2COM,i(τ) exp (−SM [xi(τ)]) , (4.22)
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Figure 4.5: Flow of the positions of the `
enters of masses' for the initial 
urves depi
tedin Fig. 4.1.and similarly for the 
oordinate y. In Fig. 4.6, plots of ∆M,COM(τ) are shown when
∆M,COM(τ) is evaluated over the ensembles E1, . . . , E12 with the `a
tion'

SM =
L(τ)2

A(τ)

(

1 +
cM (τ)

L(τ)

)and subje
t to the initial 
ondition L̄M (τ = 0) = L̃M (τ = 0). In Fig. 4.7, the a

ordingplots of ∆M,COM(τ) are depi
ted as obtained with the modi�ed `a
tion'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

A(τ)

)and subje
t to the initial 
ondition L̄M (τ = 0) = L̃M (τ = 0). In this 
ase, one has
cM (τ) = −A(τ) leading to equal weights for ea
h 
urve in EM . Note that the slightqualitative deviation of the last graph E12 for small values of τ regarding to the previousgraphs in Fig. 4.6 is due to the fa
t that the 
urves whi
h were added to the ensemble atlast are the most twisted ones. Graph E12 still saturates at a �nite value of τ , nevertheless.The �u
tuations in graph E1 of Fig. 4.6 are within the range of the numeri
al pre
ision.4.2.5 Quantum me
hani
al versus statisti
al un
ertaintyIn view of the results obtained in the last se
tion, we would say that an ensemble of evolvingplanar CVLs in the N = 0 se
tor qualitatively resembles the Quantum Me
hani
s of a freepoint parti
le2 of mass m in one spa
e dimension x. Namely, an initially lo
alized squareof the wave fun
tion ψ with |ψ(τ = 0, x)|2 ∝ exp

[

−x2

a2

0

], where ∆x(τ = 0) = a0, a

ording2It is no relevan
e at this point whether this parti
le 
arries spin or not.
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ΤFigure 4.6: Plots of ∆M,COM(τ) for M = 1, . . . , 12 when evaluated with the `a
tion' SM =
L(τ)2

A(τ)

(

1 + cM (τ)
L(τ)

). Noti
e the rapid generation of an un
ertainty in the COM positionunder the �ow and its saturation when approa
hing the 
onformal limit τ ր T . Therealso is a saturation of this limiting value with a growing ensemble size.
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ΤFigure 4.7: Plots of ∆M,COM(τ) forM = 1, . . . , 12 when evaluated with the modi�ed `a
tion'
SM = L(τ)2

A(τ)

(

1 + cM (τ)
A(τ)

). This 
orresponds to a uniform distribution when evaluated withinitial 
ondition (4.12). Noti
e the qualitative agreement with the results displayed inFig. 4.6.



38 CHAPTER 4. NON-SELFINTERSECTING CENTER-VORTEX LOOPSto unitary time evolution in quantum me
hani
s evolves as
|ψ(τ, x)|2 = | exp

[

−i
Hτ

~

]

ψ(τ = 0, x)|2 ∝ exp

[

−(x− p
mτ)

2

a2(τ)

]

, (4.23)where H = p2

2m is the free-parti
le Hamiltonian, p the spatial momentum, and a(τ) ≡

a0

√

1 +
(

~τ
ma2

0

)2. In agreement with Heisenberg's un
ertainty relation, one has during theevolution that
∆x∆p =

~

2

√

1 +

(

τ~

ma2
0

)2

≥ ~

2
. (4.24)The time evolution in a quantum me
hani
al system and the pro
ess of lowering the reso-lution in a statisti
al system des
ribing planar CVLs share the same property: the `time'(resolution) evolution generates out of a small initial position un
ertainty (
orrespondingto a large initial resolution ∆p) a larger position un
ertainty as `time' in
reases (resolutionde
reases). Possibly, future development will show that interferen
e e�e
ts in QuantumMe
hani
s 
an be tra
ed ba
k to the non-lo
al nature of the degrees of freedom (CVLs)entering a statisti
al partition fun
tion.



Chapter 5Sel�nterse
ting 
enter-vortex loopsLet us now turn to the 
ase of N = 1 CVLs. We pro
eed as far as possible in 
lose analogyto the N = 0 se
tor.5.1 Wilsonian renormalization-group �ow5.1.1 Geometri
 partition fun
tionAs in the N = 0 se
tor, we interpret 
urve-shrinking as a Wilsonian renormalization-group�ow. The partition fun
tion is now de�ned over an ensemble of N = 1 CVLs, and we
onsider it to be independent under a 
hange of resolution Q and thus independent of τ .We express the e�e
tive `a
tion' in terms of integrals over lo
al densities in s, and demandthe following symmetries in order to 
on
eive an ansatz for the e�e
tive `a
tion':(i) s
aling symmetry x → λx , λ ∈ R+: for λ → ∞, implying λL → ∞ at �xed L, the`a
tion' S should be invariant under further �nite res
alings (de
oupling of the �xed lengths
ales σ−1/2 and Λ−1).(ii) Eu
lidean point symmetry of the plane: this is su�
iently satis�ed for a representationof S in terms of integrals over s
alar densities with respe
t to these symmetries. Thus,we 
an represent the `a
tion' density as a series involving produ
ts of Eu
lidean s
alarprodu
ts of ∂n

∂sn x , n ∈ N+ , or 
onstan
y.As in Se
. 4.1.1, we resort to a fa
torization ansatz as
S = Fc × Fnc, (5.1)where in addition to Eu
lidean point symmetry Fc (Fnc) is (is not) invariant under x →

λx. In prin
iple, in�nitely many operators 
an be de�ned to 
ontribute to Fc. Sin
ethe evolution homogenizes the 
urvature, ex
ept for a small vi
inity of the interse
tionpoint where one or both loops of the 
urve vanish, higher derivatives of k with respe
tto s should not be of importan
e. This should also hold for Eu
lidean s
alar produ
tsinvolving higher derivatives ∂n

∂sn x. Conformally invariant expressions are obtained fromsu
h integrals if multiplied by powers of √A and/or L or the inverse of integrals involvinglower derivatives. The 
onformal fa
tor Fc is set equal to the isoperimetri
 ratio,
Fc(τ) ≡

L(τ)2

A(τ)
. (5.2)39
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onformal invarian
e for L,A→ ∞ suggests to express the non-
onformalfa
tor Fnc as a formal expansion in inverse powers of L or A ≡ A1 + A2. We allow foran expli
it τ dependen
e of the 
oe�
ient c of the lowest nontrivial power 1
L or 1

A . Inprin
iple, this sums up the 
ontribution to Fnc of 
ertain higher-power operators whi
h donot exhibit an expli
it τ dependen
e.We restri
t to the following two ansätze for the non-
onformal fa
tor in Eq. (5.1),
Fnc(τ) = 1 +

c(τ)

L(τ)
. (5.3)and for the modi�ed `a
tion'

Fnc(τ) = 1 +
c(τ)

A(τ)
. (5.4)The initial value c(τ = 0) is determined from the physi
al boundary 
ondition su
h as themean length L̄ at τ = 0. Although the modi�ed ansatz (5.4) in Fnc of the geometri
 `a
tion'is profoundly di�erent physi
al results su
h as the evolution of entropy or the varian
e ofinterse
tion of a given ensemble agree remarkably well, see Se
. 5.25.1.2 E�e
tive `a
tion'The e�e
tive `a
tion' SM [x(τ)] results from a partition fun
tion ZM whi
h is de�ned asthe average

ZM =

M
∑

i

exp (−SM [xi(τ)]) (5.5)over the nontrivial ensemble EM = {x1, . . . xM}. The ensemble EM , 
onsisting of M
urves, is obtained from EM−1 by adding a new 
urve xM (τ). The e�e
tive `a
tion' SMin Eq. (5.1) is determined by the fun
tion cM (τ), the �ow of whi
h follows from therequirement of τ -independen
e of the partition fun
tion:
d

dτ
ZM = 0. (5.6)As in Se
. 4.1.2, we obtain the initial 
ondition c0,M = cM (τ = 0) to this impli
it �rst-orderordinary di�erential equation by the 
onstraint that the geometri
 mean 
oin
ides with thestatisti
 mean at τ = 0,

L̄M (0) = L̃M (0). (5.7)5.2 Results of simulation5.2.1 Preparation of ensemblesSimilar to Se
. 4.2.1, all 
urves are normalized 
urves to have the same initial total area
A0 = A0,1 +A0,2 and sin
e we are now interested in the position of the interse
tion wherethe (anti)monopole is lo
alized (see Se
. 2.4 or Fig. 6.1), we have applied a translationto ea
h 
urve in the ensemble EM su
h that the lo
ation of the interse
tions initially
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xFigure 5.1: Initial 
urves xi(u, τ = 0) 
ontributing to the ensemble EM=16. The interse
-tion points xint,i(τ = 0) 
oin
ide with the origin, and all 
urves have the same area 200π.By de�nition EM=16 is T -ordered.
oin
ide with the origin. Again, su
h a transition does not alter the e�e
tive `a
tion' dueto Eu
lidean point symmetry.We order the members of the maximal-size ensemble EM=16 into sub-ensembles EM<16su
h that Ti=1 ≥ Ti=2 ≥ · · · ≥ TM , be
ause the 
riti
al value T of the �ow parameter
τ varies from 
urve to 
urve. These ensembles EM are referred to as T -ordered. Wehave also performed all simulations with ensembles E′

M<16 the members of whi
h arepi
ked randomly from EM=16 and have obtained similar results for ensemble averages of`observables' using EM<16 and E′
M<16 for the τ evolution to the left of τ = min{Ti|xi ∈

E′
M<16}. The main di�eren
e is that the 
omputation of the 
oe�
ient, and with it the �owof `observables', terminates at a smaller τ sin
e the ensembles E′

M are no longer T -ordered.The maximal-size ensemble EM=16 at τ = 0 is depi
ted in Fig. 5.1 with the universal
hoi
e A0 = 200π. The 
urves in Fig. 5.1 are arranged in a T -ordered way. We have
Ti=1 = 65 ≥ T2 ≥ · · · ≥ TM = 43. In Fig. 5.2, the evolution of an initial 
urve (number 12of Fig. 5.1) under 
urve shrinking is shown from two points of view. The �ow is started at
τ = 0 and stopped at a value of τ shortly below T . In Fig. 5.3, the �ow of the interse
tionpoints xint,i(τ) 
orresponding to the initial 
urves depi
ted in Fig. 5.1 is shown.
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Figure 5.2: Plots of the evolution of an N = 1 
enter-vortex loop (
urve 12 of Fig. 5.1)under 
urve shrinking. The thi
k 
entral line depi
ts the traje
tory of the interse
tionpoint whi
h 
oin
ides with the origin at τ = 0.
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Figure 5.3: Flow of the interse
tion points xint,i(τ) for the initial 
urves depi
ted in Fig. 5.1.
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al investigationIn general, the pro
edure is in 
lose analogy to Se
. 4.2.2. Therefore, we solely mentionthe di�eren
es 
ompared to Se
. 4.2.2. The 
hoi
e of sample points, used to generate theinitial 
urves, is now done in su
h a way that, if interpolated one after another by a 
ubi
spline with 
oin
iding initial and end point, the 
urve will 
ross itself on
e. The number ofgrid points n is set to 300 for all 
urves, ex
ept for 
urve 9 where 500 points are used. Forthe simpli
ity of the 
omputation of the interse
tion of the initial 
urve, the interse
tionpoint is in
luded in the set of sample points as a double point and is 
hosen to 
oin
idewith the origin.The sear
h for solutions to the �ow equation is pro
eeded as in Se
. 4.2.2 using theNumeri
al Method of Lines. Starting from τ = τ1 = 0 the solution is advan
ed step bystep as long as τ < T or a virtual singularity evolves. If the latter is the 
ase we startthe same �tting pro
edure as in Se
. 4.2.2. The error estimate of Se
. 4.2.2, based on the
onstant value of Ȧ, is no longer appli
able in the 
ase of sel�nterse
ting 
urves, however,
∆A(τ) = A1(τ)−A2(τ) = constant 
an serve to estimate a value that indi
ates the validityof the numeri
al solution. The error estimate is de�ned as

106 ×
(

1 − ∆A(τ)

∆A(τ1)

)

. (5.8)In the 
ase where both areas of the 
urve have almost the same value, and the absolute of
A falls below the numeri
al pre
ision, we have used

106 × (∆A(τ1) − ∆A(τ)). (5.9)Sin
e Eq. (3.27) involves the two-dimensional 
url the straight forward dis
retization ofthis equation already 
omputes the (signed) di�eren
e ∆A of the areas en
losed by the
urve. Therefore, we do not have to keep tra
k of the sel�nterse
tion during the numeri
alevolution of the 
urve. However, the 
omputation of the total area involves knowledge of
A1 and A2, and this in turn of the interse
tion point. On
e the error estimate ex
eeds avalue of 2 the 
urve is �tted to yield again spatially well separated points. We also usedthe error estimate to re
ognize the �nal (non-virtual) singularity at T , where a furtherevolution in the sense of the �ow equation is impossible and does not make sense.To 
ompute the position of interse
tion point one sear
hes, at a �rst step, for those twopoints in the solution set at given τ whi
h are spatially nearest to ea
h other, but withthe restri
tion that they are element of di�erent line segments of the 
urve whi
h generatethe interse
tion point. Therefore, the spatial distan
es between the ith and jth point onthe 
urve are determined for all pairs of points with |i − j| > dmin, where dmin dependson the 
onsidered 
urve and has to be adjusted for ea
h individually. Then it is sear
hedfor the least of all distan
es to �nd that pair of points whi
h is 
losest to the interse
tionpoint. The minimal distan
e of indi
es dmin is introdu
ed be
ause, as the �ow evolvesthe 
urve, next neighboring points 
ould be
ome (spatially) 
loser to ea
h other than thepoints nearest to the interse
tion. On
e the pair of points whi
h is next to the interse
tionis found, the two 
urve segments around these points are approximated by 
ubi
 splines.Now the interse
tion of these two splines is 
omputed using Mathemati
a's FindRootAt given τ , length and area of the 
urves are 
omputed with their dis
rete formulasusing Mathemati
a's FiniteDi�eren
eDerivative. For the same reasons as in Se
. 4.2.2 the
τ -evolution of L, A and xint are interpolated by polynomials.
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ΤFigure 5.4: The squares of the 
oe�
ients cM (τ) entering the ansatz for e�e
tive `a
tion'
SM = L(τ)2

A(τ)

(

1 + cM (τ)
L(τ)

) for T -ordered ensembles up to M = 16.Finally, the impli
it �rst-order di�erential equation dZ/dτ = 0 for the 
oe�
ient issolved using NDSolve for all ensembles sizes and orderings and for both `a
tions'. If notset at will, the initial 
ondition c0 for c(τ) was derived from Eq. (5.7) using Mathemati
a'sFindRoot. Varian
e of mean interse
tion and entropy were 
omputed.A CD-ROM 
ontaining the used Mathemati
a notebooks is atta
hed to the thesis1.5.2.3 Renormalization-group invarian
e of partition fun
tionWe now present the results of the simulation. For all ensembles EM , the τ dependen
eof the 
oe�
ient cM in Eq. (5.3) roughly behaves like a square root ∝
√
TM − τ where

TM is the weakly ensemble-dependent minimal resolution. For the modi�ed `a
tion' SM =
L(t)2

A(t)

(

1 + cM (t)
A(t)

) the 
oe�
ient cM (τ) is well approximated by a linear fun
tion ∝ TM − τ .Again, TM is a weakly ensemble-dependent minimal resolution. For T -ordered ensemblesthe results for cM (τ) for the `a
tions' Eq. (5.3) and Eq. (5.4) are shown in Fig. 5.4 andrespe
tively, in Fig. 5.5. The results for the ensembles E′
M do not di�er sizably from thosepresented in Fig. 5.4 and respe
tively, in Fig. 5.5.5.2.4 Varian
e of lo
ation of sel�nterse
tionThe mean interse
tion x̄int(τ) over the ensemble EM is de�ned as

x̄int(τ) = (x̄int(τ), ȳint(τ))T ≡ 1

ZM

M
∑

i=1

xint,i(τ) exp (−SM [xi(τ)]) , (5.10)1Mathemati
a version 6.0.3 was used. Pay attention to the footnote in Se
. 4.2.2.
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ΤFigure 5.5: The 
oe�
ient cM (τ) entering the ansatz for the e�e
tive `a
tion' SM =
L(τ)2

A(τ)

(

1 + cM (τ)
A(τ)

) for T -ordered ensembles up to M = 16.where xint,i(τ) = (xint(τ), yint(τ))T is the lo
ation of the point of sel�nterse
tion of 
urve
xi at τ . The s
alar statisti
al deviation ∆M,int of x̄int over the ensemble EM is de�ned as

∆M,int(τ) ≡ √varM,int;x(τ) + varM,int;y(τ) , (5.11)wherevarM,int;x ≡ 1

ZM

M
∑

i=1

(xint,i(τ) − x̄int(τ))2 exp (−SM [xi(τ)])

= −x̄2int(τ) +
1

ZM

M
∑

i=1

x2int,i(τ) exp (−SM [xi(τ)]) (5.12)and similarly for the 
oordinate y. In Fig. 5.6, plots of ∆M,int(τ) are shown when evaluatedover the ensembles E1, . . . , E16 subje
t to the `a
tion'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

L(τ)

)and the initial 
ondition L̄M (τ = 0) = L̃M (τ = 0). In Fig. 5.7, the a

ording plots of
∆M,int(τ) are depi
ted as obtained with the `a
tion'

SM =
L(τ)2

A(τ)

(

1 +
cM (τ)

A(τ)

)and subje
t to the initial 
ondition L̄M (τ = 0) = L̃M (τ = 0). Relaxing the 
onstraint of
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ΤFigure 5.6: Plots of ∆M,int(τ) for the T -ordered ensembles EM with M = 1, . . . , 16. Wehave employed the ansatz for the `a
tion' SM = L(τ)2

A(τ)

(

1 + cM (τ)
L(τ)

).
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T -ordering (EM → E′

M ) does not entail a qualitative 
hange of the results. The �u
tuationin the �rst graph of Fig. 5.6 and in Fig. 5.7, representing the trivial ensemble EM=1 iswithin the range of the numeri
al pre
ision. The results presented in Fig. 5.6 and Fig. 5.7are unexpe
ted sin
e in the N = 0 se
tor the varian
e of the `
enter of mass' saturatesrapidly to �nite values. In 
ontrast, for the N = 1 se
tor, the varian
e of the lo
ationof sel�nterse
tion initially in
reases, rea
hes a maximum, and de
reases to zero at a �nitevalue of τ . This is readily 
on�rmed by the evaluation of the entropy, see next se
tion.5.2.5 Evolution of entropyLet us now investigate the �ow of entropy. The weight-fun
tional PM is de�ned as
PM (τ) = PM [xint,i(τ)] ≡ 1

ZM
exp(−SM [xi(τ)]), (5.13)and the entropy ΣM as

ΣM (τ) = ΣM [xint,i(τ)] ≡
M
∑

i=1

PM [xint,i(τ)] log (PM [xint,i(τ)]) (5.14)
= logZM +

1

ZM

M
∑

i=1

SM [xi(τ)] exp (−SM [xi(τ)]) (5.15)where SM [xi(τ)] is given by Eq. (5.1). In Figures 5.8 and 5.9, plots are shown for ΣM (τ)when evaluated with the `a
tion'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

L(τ)

)and respe
tively, when evaluated with the modi�ed `a
tion'
SM =

L(τ)2

A(τ)

(

1 +
cM (τ)

A(τ)

)for T -ordered ensembles of size M = 1, . . . , 16. The 
ontinuous approa
h of entropy tozero at �nite values of τ implies the spontaneous emergen
e of order in the system as theresolution de
reases: starting at a �nite value of τ , a parti
ular member of EM is singledout by its weight approa
hing unity. This is validated by Fig. 5.10 where the weight-fun
tionals PM are shown for T -ordered ensembles of size M = 2, . . . , 4. The pattern thata 
urve is singled out by its weight-fun
tional as τ in
reases 
ontinues for all ensemblesizes M . In view of Chapter 4, this behavior is highly unexpe
ted and we 
on
lude thatthe nontrivial topology of the N = 1 se
tor indu
es qualitative di�eren
es into the 
oarse-graining pro
ess.
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ΤFigure 5.8: Flow of the entropies ΣM for T -ordered ensembles of size M = 1, . . . , 16 whenevaluated with the `a
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(

1 + cM (τ)
L(τ)
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ZM
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urves xi for i = 1, . . . ,M and for T -orderedensembles of size M = 2, . . . , 4 when evaluated with the `a
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Chapter 6Appli
ationsHere, it should be re
alled that a magneti
 
harge emerging as a result of the dynami
allybroken gauge-symmetry SU(2) → U(1) in the de
on�ning phase is interpreted as an ele
tri

harge with respe
t to the U(1)Y subgroup of the ele
troweak se
tor. In view of Se
. 6.2,re
all that the magneti
 
enter �ux of the 
on�ning SU(2)e is dually interpreted as ele
tri
�ux.6.1 Solitoni
 fermionsThe notion of a point-like ele
tron has always been plagued by its diverging self-energy.Even in 
lassi
al �eld theory it is present in the shape of the in�nite self-energy of a point
harge. If the ele
tron is 
onsidered to be a little sphere of radius R and mass me withele
tri
 
harge e atta
hed to the sphere, then the ele
tri
 �eld energy U is given by
U =

e2

8πR
. (6.1)Sending R to zero, as we have to if we think of the ele
tron as a point parti
le, the self-energy 
ontribution to the mass of the ele
tron diverges. In Quantum Ele
trodynami
s(QED), the problem persists: the 
orre
tion to the ele
tron mass is still in�nite, althoughit has a mu
h softer logarithmi
 divergen
e (c = ~ = 1),

δmQED = 3
e2

8π2
ln(meR). (6.2)Therefore, one needs to employ renormalization theory to 
ope with the emerging diver-gen
es that are to a large extent a dire
t 
onsequen
e of lo
ality: the point-parti
le likenature of the ele
tron. �..., and despite the 
omparative su

ess of renormalisation theorythe feeling remains that there ought to be a more satisfa
tory way of doing things.� asLewis Ryder put in [8℄.In the Standard Model, the ele
tron is represented by the famous Dira
 equation.Though it su

essfully predi
ts the ele
tron's antiparti
le, the positron, and the magneti
moment with an g-fa
tor of 2 it has to introdu
e the 
on
ept of the Dira
 sea to make senseof the in�nite number of negative-energy eigenstates. The Dira
 sea leads to an in�nite
ontribution to the energy density of the `va
uum' whi
h has to be 
an
eled, somehow.Furthermore, the Standard Model does not provide for a deeper explanation of the value of51
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 dipole moment other than that following from the Dira
 equation and smallradiative 
orre
tions. Moreover, the ele
tron mass enters the QED Lagrangian as a freeparameter, and the running of whi
h with resolution needs additional experimental input.The ex
itations in the 
on�ning phase of SU(2) Yang-Mills thermodynami
s are singleand sel�nterse
ting 
enter-vortex loops. The mass of ea
h interse
tion point in a self-interse
ting 
enter-vortex loop is given by the Yang-Mills s
ale Λc. Sin
e a monopole(antimonopole) is lo
ated at the interse
tion, it 
arries one unit of ele
tri
 
harge. Re
allthat a magneti
ally 
harged obje
t in the de�ning gauge theory has to be interpreted as anele
tri
ally 
harged obje
t in the Standard Model - and vi
e versa. In a given segment of a�ux tube, the monopoles (antimonopoles) 
an move in both dire
tions: there is a two-folddegenera
y of dire
tion of the 
enter �ux that is analogue to the two-fold degenera
y ofthe spin proje
tion. Moreover, for ea
h 
enter-vortex loop it is possible to move along theentire �ux system on a 
losed 
urve. Thus, the proje
tion of the dipole moment generatedby the 
urrent of monopoles and antimonopoles inside the vortex 
ore onto a given dire
-tion in spa
e is two-fold degenerated as well. Therefore, we identify ea
h soliton with aspin-1/2 fermion. Setting the Yang-Mills s
ale ΛC equal to the ele
tron mass me, we areled to interpret N = 1 
enter-vortex loops as ele
trons or positrons [10, 16, 23℄.Let us 
onsider the pro
ess of twisting and 
harge lo
alization more 
losely. The tran-sition from a non-sel�nterse
ting to sel�nterse
ting 
enter-vortex loop is by twisting of anon-sel�nterse
ting 
urve. The emergen
e of a lo
alized (anti)monopole in the pro
ess isdue to its 
apture by oppositely dire
ted 
enter �uxes in the 
ore of the interse
tion (eyeof the storm). By a rotation of the left half-plane in Fig. 6.1(a) by an angle of π, seeFig. 6.1(b), ea
h wing of the 
enter-vortex loop forms a 
losed �ux loop by itself, therebyintrodu
ing equally dire
ted 
enter �uxes at the interse
tion point. This does not allowfor an isolation of a single spinning (anti)monopole in the 
ore of the interse
tion and thusis topologi
ally equivalent to the untwisted 
ase Fig. 6.1(a). However, another rotation ofthe left-most half-plane in Fig. 6.1(
) introdu
es an intermediate loop whi
h by shrinkingis 
apable of isolating a spinning (anti)monopole due to oppositely dire
ted 
enter �uxes.Noti
e that in the last stage of su
h a shrinking pro
ess (short distan
es between the 
oresof the �ux lines), where propagating dual gauge modes are available1, there is repulsiondue to Biot-Savart whi
h needs to be over
ome. This ne
essitates an investment of energymanifesting itself in terms of the mass of the isolated (anti)monopole (eye of the storm).Alternatively, the emergen
e of an isolated (anti)monopole is possible by a simple pin
hingof the untwisted 
urve, again having to over
ome lo
al repulsion in the �nal stage of thispro
ess.In the analysis performed in Chapter 5, we have solely regarded the situation depi
tedin Fig. 6.1(d), sin
e the dire
tion of 
enter �ux within a given 
urve segment is irrelevantfor the pro
ess of a spatial 
oarse-graining mi
ros
opi
ally des
ribed by the same 
urve-shrinking �ow as applied to N = 0 
enter-vortex loops in Chapter 4.There are also phenomenologi
al reasons that argue for a non-lo
al nature of the ele
-tron. Re
all that the imaginary part of the pressure in the 
on�ning phase starts todominate when approa
hing the Hagedorn transition, thereby indu
ing mi
roturbulen
esin the plasma (see Se
. 2.4). Su
h a nonthermal behaviour is likely to be related to the ob-served but poorly understood mi
roturbulen
es and internal transport barriers in tokamakexperiments with magneti
ally 
on�ned plasma. This presumes to identify the neutrino1On large distan
es these modes are in�nitely massive whi
h is 
hara
teristi
 of the 
on�ning phase.
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Θ = 0

HaL

Θ = Π Θ = Π

HcL

Θ = Π

HbL

Θ = 2Π

HdLFigure 6.1: (Topologi
al) transition from the N = 0 se
tor (a), (b), (
) to the N = 1 se
tor(d) by twisting and subsequent 
apture of a magneti
 (anti)monopole in the 
ore of the�nal interse
tion. Arrows indi
ate the dire
tion of 
enter �ux.and the ele
tron with the non-sel�nterse
ting and the one-fold sel�nterse
ting 
enter-vortexloop of the 
on�ning phase of SU(2)e with Yang-Mills s
ale Λc = me = 511 keV. Here, itshould be noti
ed that due to the absen
e of an antiparti
le in the 
ase of a N = 0 solitonneutrinos need to be of Majorana type whi
h is in 
omplian
e with the su

essful sear
hfor the neutrinoless double β de
ay [4℄.This interpretation is also supported by re
ent high-temperature Z-Pin
h experimentsat Sandia National Laboratories dete
ting an unexpe
ted powerful 
ontained explosion.There, an ele
tri
 
urrent rises in a wire array up to ∼ 20 MA within ∼ 100 ns, therebythe wire is transformed into a plasma 
olumn. The strong magneti
 �eld indu
ed by the
urrent results in an inward dire
ted (magneti
) pressure Pm whi
h 
ompresses the plasmauntil it 
ollapses. In the 
ourse of the implosion, the ions and ele
trons are a

eleratedtowards the plasma axis. The radiated soft x-ray energy is as mu
h as four times the kineti
energy that is expe
ted to be released by the interse
tion of ions and ele
trons. However,before the plasma explodes it stabilizes for about 5 ns (stagnation). The measured ele
trontemperature Te is found to be ∼ 3 keV at stagnation. Pre
eding the explosion, an iontemperature Ti about 300 keV is sustained shortly after the plasma has stagnated [15℄.The outward dire
ted plasma pressure Pp needs to be equal in magnitude to Pm = −1.8×
10−12 MeV in order that the implosion stagnates. The measured ele
tron temperature is afa
tor 1/8.5 too low if it is asserted that the plasma pressure is 
arried by ele
trons only; thiswould 
orrespond to Te ∼ 31.55 keV. In [50℄, the observed imbalan
e between the energy in-and output was addressed to the rapid (∼ 1 . . . 2 ns) 
onversion of magneti
 �eld energy toa very-high-ion-temperature plasma by the unexpe
ted forming of short wavelength m =
0 magnetohydrodynami
s (MHD) instabilities at stagnation whi
h subsequently provide
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iated vis
ous ion heating. At stagnation, the ions rea
h mu
h more rapidly than theele
trons (∼ 1 . . . 2 s) a temperature of ∼ 300 keV, and subsequently heat the ele
tronsup to ∼ 300 keV, at least lo
ally. By equipartition the ion energy is transferred to theele
trons, leading to the soft x-ray radiation.A

ording to Se
. 2.4 and the dis
ussion in [16℄ this will involve 
enter-vortex loops witha higher number of sel�nterse
tions. These a

elerate the transit of thermal energy fromions to ele
trons and generate a larger energy density and pressure than expe
ted fromele
tron dynami
s only. As a 
onsequen
e, the ele
tron temperature rises rapidly afterstagnation. After the ion-indu
ed heating the Debye s
reening mass mD of a 
onventionalele
tron-photon plasma is 
omparable to Te. Thus, at about ∼ 5 ns after stagnation, theplasma is absolutely opaque and no radiation is released.For Te < 0.6me and NC = 6, the trun
ated sums P̄Nc =
∑Nc

N=1 PC,N and ρ̄Nc =
∑Nc

N=1 ρC,N of the pressure PC =
∑∞

N=0 PC,N and the energy density ρC =
∑∞

N=0 ρC,Nin the ele
troni
 system are in the regime of asymptoti
 
onvergen
e [16℄. The 
ase i = 1
orresponds to a 
ontribution of ele
trons and positrons only. While for Te ≪ me 
enter-vortex loops with higher mass (higher number of interse
tions) are strongly suppressed,these do signi�
antly 
ontribute to the pressure and energy density for Te & 0.1 MeV.At Te = 0.25 MeV, the relative partial pressure and the relative partial energy densityis P̄6 ∼ 3 P̄1 and respe
tively, ρ̄6 ∼ 4.8 ρ̄1, and at Te = 0.3 MeV, already P̄6 ∼ 5 P̄1 andrespe
tively, ρ̄6 ∼ 9.4 ρ̄1. Noti
e that at Te = 0.25 MeV, the ratio of P̄1 to the magneti
pressure Pm at stagnation is: P̄1

Pm
∼ −4.4× 108. The existen
e of 
enter-vortex loops withhigher mass fa
ilitates the rapid in
rease of Te to Ti ∼ 0.3 MeV and eventually initiatesthe powerful explosion.When the ele
tron temperature approa
hes a value of about 0.5 MeV the Hagedorntransition towards the pre
on�ning phase is expe
ted to take pla
e where all 
harges 
on-dense densely pa
ked into a new ground state. The Z ve
tor boson of the Standard Modelis identi�ed with the de
oupled dual gauge mode in the magneti
 phase of SU(2)e.The ele
tron appears to be stru
tureless for (nearly) all external momenta that areused to probe the system be
ause of the existen
e of a Hagedorn-like density of states:the invested energy deposited into the vertex is 
onverted into entropy asso
iated withthe ex
itations of a large number of unstable and heavy resonan
es (see Fig. 1.1 for theex
itations with up to N = 3 sel�nterse
tions). Only for momenta 
omparable to theYang-Mills s
ale Λc, the BPS monopole lo
ated at the interse
tion be
omes ex
ited andreveals a part of its stru
ture. For momenta sizeably below Λc, there is nothing to beex
ited in BPS monopole.6.2 High-temperature super
ondu
tivityLet us now sket
h an alternative approa
h to high-temperature (high Tc) super
ondu
tivity.Re
all, that the magneti
 
enter �ux, dually interpreted as ele
tri
 
enter �ux, is two-folddegenerated. Now the ele
tri
 
harges that travel along the �ux lines in the vortex 
oreprodu
e a magneti
 dipole moment. The proje
tion of whi
h onto a given dire
tion inspa
e is either parallel or antiparallel and represents the two-fold degenera
y of the spinproje
tion. Here, it should be re
alled that a shift of the interse
tion point of an isolated

N = 1 
enter-vortex loop leaves the mass of this soliton invariant.Coin
identally, there are quantum systems in nature the un
onventional behaviour of
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h seems to be 
losely related to the restri
tion of ele
tron dynami
s to two spa
edimensions. In parti
ular, these in
lude high Tc super
ondu
tors su
h as the family ofsuper
ondu
ting materials largely 
ontaining (rare-earth) doped 
ooper-oxide (
uprates)planes as well as the re
ently dis
overed new 
lass of layered oxypni
tide super
ondu
tors.Let us 
onsider the former at �rst. In both 
ases, super
ondu
ting layers of magneti
moments are interspersed with layers of nonmagneti
 material. This nonmagneti
 materialalso serves as an reservoir that provides, by doping, for the ele
trons and s
reens theCoulomb repulsion in the super
ondu
ting layer between them. Now the question ariseshow long-range intera
tions of magneti
 moments at given optimal doping and su�
ientlylow temperature lead to super
ondu
tivity in the 
uprate layers.Sin
e, at small enough temperatures, 
opper-oxide planes are Mott insulators with long-range antiferromagneti
 order of spins, the 
onventional Hubbard model must be used. A
anoni
al transformation involving a Gutzwiller proje
tion leads to the `t−J ' model, where
t des
ribes the hopping of ele
trons from site to site and J the superex
hange J = 4t2/Uwith U des
ribing the Coulomb repulsion. Here, the Gutzwiller proje
tion, whi
h removesmost of the phonon pairing intera
tion, is mandatory. Variation of the ele
troni
 degreesof freedom results in a set of gap equations for the ground state that give the predi
ted
d-wave gap and the super
ondu
ting order parameter (related to the 
riti
al temperature
Tc) as a fun
tion of doping [51℄.Let us now sket
h a somewhat spe
ulative approa
h to high Tc super
ondu
tivity beingwell aware of our la
king theoreti
al knowledge on details in this �eld of resear
h. The keyidea is already en
oded in Fig. 6.1(d). A

ording to SU(2) Yang-Mills theory, the ele
tronrepresented as a sel�nterse
ting 
enter-vortex loop is a non-lo
al obje
t the magneti
 dipolemoment of whi
h is only loosely related to the lo
alization of its 
harge: the magneti
 mo-ment, 
arried by the vortex 
ore of the �ux lines, re
eives 
ontributions from line segmentswhi
h are spatially far separated (on the s
ale of the diameter of the interse
tion) from thelo
ation of the ele
tri
 
harge. This suggests a system of planar 
enter-vortex loops trappedin a two-dimensional layer where the intera
tion between vortex lines be
omes importantdue to an e�e
tive s
reening of the ele
tron 
harge leading to an ordering e�e
t. In viewof the reported strong 
orrelations between ele
trons in two-dimensional super
ondu
tingsystems [52℄, we imagine a situation as it is depi
ted in Fig. 6.2.Due to Ampère's law equally dire
ted ele
tri
 �ux lines attra
t ea
h other, whereas op-positely dire
ted �ux lines experien
e a repulsive for
e. So, for a given 
enter-vortex loop,there is an attra
tive intera
tion of four out of six line segments de�ned by the neighbouringele
trons while the other two repulse ea
h other. The existen
e of intera
tions between �uxlines that are mediated by the photon is a 
onsequen
e of the mixing between the gaugegroups SU(2)e and SU(2)CMB, the latter pertinent to the existen
e of propagating photons,see [10, 23℄. It should be noti
ed that the spin proje
tion of a given ele
tron is equallydire
ted for two of its neighbours while the other four have oppositely dire
ted spins. Thissupports the observation that high Tc super
ondu
tivity is an e�e
t not related to s-wavepairing [52℄. An overlap of �ux lines would lead to additional interse
tion points whi
hrequire an extra amount of energy ΛC for ea
h interse
tion and is therefore energeti
allyforbidden be
ause the �u
tuations in energy density of the system will not allow for the
reation of an interse
tion of mass me = 511 keV. This leads to a repulsive for
e as thespatial distan
e between adja
ent vortex segments vanishes. In order that an equilibriumbetween attra
tion and repulsion where the interse
tion point is �xed with respe
t to itsneighbours o

urs, as it is depi
ted in Fig. 6.2, one needs a su�
iently low temperature
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Figure 6.2: The �gure, possibly related to the super
ondu
ting state in a 
uprate, showsan array of strongly 
orrelated 
enter-vortex loops tiling the two-dimensional plane. Ifoptimal s
reening of the ele
tron 
harge lo
ated at the interse
tion point is provided bydoping su
h that an attra
tive intera
tion between 
enter-vortex loops due to Ampère'sLaw be
omes important, then the attra
tive for
e between equally dire
ted 
enter �uxsegments 
ould lead to the indi
ated equilibrium 
on�guration. For a given ele
tron thereare six neighbouring line segments two of whi
h experien
e repulsion while the other fourexperien
e attra
tion. An overlap of �ux lines would 
reate new interse
tion points, ea
h ofmass ∝ me , whi
h is topologi
ally forbidden, thus leading to a repulsion at short distan
es.(related to resolution) and an optimal s
reening of the Coulomb repulsion by the surround-ing reservoir layers. If the temperature (resolution) falls below a 
riti
al value then the�u
tuations of the interse
tion points relative to one another will vanish. Applying anexternal ele
tri
 �eld parallel to the plane would set the sti� system of lo
ked ele
tronsin a 
olle
tive motion with zero ele
tri
 resistan
e. Ma
ros
opi
ally, this situation is illus-trated by a sti� table 
loth being pulled over the table in a fri
tionless way. The measuredpseudo-gap phase in high Tc super
ondu
tors will be addressed to lo
al distortions in thishighly ordered state. These distortions require an �nite amount of energy and are due toinsu�
ient s
reening and/or to mu
h of a thermal noise.Let us now turn to the re
ently dis
overed, new 
lass of high Tc super
ondu
tors thatare based on oxypni
tides (a 
lass of materials in
luding oxygen, an element of the nitrogengroup (pni
togen), and one or more other elements). These do not seem to exhibit strong
orrelations between the ele
trons 
ontained in the two-dimensional (FeAs) layers where theele
tron dynami
s takes pla
e, see [53℄. If the behaviour of a two-dimensional system of non-intera
ting ele
trons, whi
h are subje
ted to an environment represented by a parameter
τ , e�e
tively is des
ribable by a 
oarse-graining pro
ess in a statisti
al ensemble, as it isinvestigated in Chapter 5, then we should likely address the observation that the entropyvanishes at �nite τ to this parti
ular kind of high Tc super
ondu
tivity. Namely, theobservation that no varian
e of the ensemble average of the position of the ele
tri
 
harge
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ru
ial for the statement that the two-dimensionalsystem of free quasiparti
les is void of any ele
tri
 resistan
e. Free quasiparti
les in thesense that expli
it intera
tions between the ele
trons in the super
ondu
ting layer areabsent, but the distortions indu
ed by the noise of the environment is fully taken intoa

ount. Again, τ should be a monotoni
 fun
tion of temperature.





Chapter 7SummaryIn this thesis, we have investigated 
enter-vortex loops with and without sel�nterse
tion,as they emerge in the 
on�ning phase of SU(2) Yang-Mills thermodynami
s. In a noisyenvironment, 
enter-vortex loops are subje
t to a spatial 
oarse-graining due to a motionby 
urvature that is des
ribed by a 
urve shortening �ow. In a statisti
al des
ription ofensembles of 
enter-vortex loops whi
h are (lo
ally) embedded into a two-dimensional �atplane, we have de�ned an e�e
tive `a
tion' in purely geometri
 terms that is governed by arenormalization-group �ow driven by the 
urve shrinking. The `a
tion' possesses a naturalde
omposition into a 
onformal and a non-
onformal fa
tor. `Observables', su
h as theposition of `
enter of mass' (N = 0), or the interse
tion point (N = 1), are 
omputed asensemble averages of lo
al or non-lo
al operators on the 
urves.We have made the observation that N = 0 
enter-vortex loops exhibit a se
ond-ordertransition to the 
onformal limit of vanishing 
urve length with a 
riti
al mean-�eld ex-ponent of the 
oe�
ient: on average, 
enter-vortex loops disappear from the spe
trum of
on�ning SU(2) Yang-Mills theory, thus generating an asymptoti
 mass gap. The evolutionof the varian
e of the initially sharp position of `
enter of mass' saturates at �nite valuewithin a �nite de
rease of resolution Q, the latter related to the resolving power used toprobe to the system. These �ndings bear a strong family resemblan
e with the unitarytime evolution of a free parti
le in quantum �eld theory.Sin
e we believe that N = 0 
enter-vortex loops play the role of Majorana neutrinos[4℄, the 
on
ept of a neutrino rest mass is no longer appli
able. Its mass is the result of thedistortions indu
ed by the environment it is embedded in and depends on the resolution.The disappearan
e of N = 0 
enter-vortex loops from the ex
itation spe
trum and theabsen
e of a 
orresponding antiparti
le would be manifestations of lepton-number violationforbidden in the Standard Model of Parti
le Physi
s.In the 
ase of one-fold interse
ting 
enter-vortex loops, we have obtained the unexpe
tedresult that a statisti
al ensemble of initial 
urves evolves into a highly ordered state. Thatis, only a parti
ular member of the ensemble survives the pro
ess of two-dimensional spatial
oarse-graining. As a 
onsequen
e, the entropy attributed to the ensemble moves to a zerovalue for a su�
ient de
rease of resolution.We have sket
hed an alternative approa
h to high-temperature super
ondu
tivity basedon 
uprates. The 
entral observation that these depend highly on strong 
orrelations be-tween ele
trons trapped in a �at two-dimensional layer is attributed to an array of bow-tie-like simpli
es (N = 1 
enter-vortex loops) tiling the plane. We have also spe
ulated that thespontaneous emergen
e of order in an ensemble of planar N = 1 
enter-vortex loops 
ould59



60 CHAPTER 7. SUMMARYbe relevant for the re
ently dis
overed new 
lass of oxypni
tide layered high-temperaturesuper
ondu
tors that do not seem to exhibit expli
it, strong 
orrelations between ele
tronswithin the super
ondu
ting (FeAs) planes.In a sense, we have reversed the usage of the renormalization group. Instead of startingwith a `physi
al' a
tion, from whi
h an equation of motion follows, and demanding thesystem to be invariant under renormalization-group transformations, we have de�ned ageometri
 e�e
tive `a
tion' the 
oe�
ient of whi
h is determined by a renormalization-group �ow driven by a 
oarse-graining pro
ess (
urve shrinking). Afterwards, physi
al`observables', su
h as the 
enter of mass or the lo
alization of ele
tri
 
harge, were 
omputedas mean values in a statisti
al ensemble. In a manner of speaking, we have `derived' astatisti
ally averaged `equation of motion'. In this 
ontext, we regard resolution over time(or temperature) as the more fundamental quantity des
ribing a quantum me
hani
al orstatisti
al system. However, this requires the introdu
tion of a model that relates resolutionto time (or temperature).An obvious extension of our statisti
al approa
h would be the a

ount of intera
tionsbetween 
enter-vortex loops; espe
ially in view of two-dimensional systems exhibiting high-temperature super
ondu
tivity. At a �rst stage, this would in
lude Coulomb intera
tionsbetween the 
harges of N = 1 
enter-vortex loops lo
alized at the interse
tion point, and adelta-fun
tion-like repulsion due the topologi
ally forbidden overlap of 
enter-vortex loops(
onta
t intera
tion). This 
ould be done by adding intera
tion terms to the e�e
tive`a
tion' in the partition fun
tion that are weighted a

ordingly. Considering a multitudeof 
on�gurations of initial 
urves of 
enter-vortex loops, those 
on�gurations will be singledout the 
urves of whi
h are most likely to survive the pro
ess of 
oarse-graining. However,the nontrivial issue arises how to gain a weight whi
h relates the purely geometri
 `a
tion'to the one stemming from the ele
tromagneti
 intera
tion between 
enter-vortex loops.
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