
NLO QCD corrections
to WH + jet production

at the LHC

Diplomarbeit
von

Robin Roth

An der Fakultät für Physik
Institut für Theoretische Physik

Referent: Prof. Dr. D. Zeppenfeld

Korreferent: Prof. Dr. M. Steinhauser

Bearbeitungszeit: 31. Oktober 2012 – 30. Oktober 2013

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum der Helmholtz-Gesellschaft www.kit.edu





iii

Ich versichere, dass ich diese Arbeit selbstständig verfasst und ausschließlich die angegebenen
Hilfsmittel verwendet habe.

Robin Roth
Karlsruhe, den 30. Oktober 2013

Als Diplomarbeit anerkannt.

Prof. Dr. D. Zeppenfeld
Karlsruhe, den 30. Oktober 2013

iii





CONTENTS

1. Introduction 1

2. Theoretical essentials 5
2.1. The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Quantum chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. The Electroweak sector . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Anomalous couplings and effective field theories . . . . . . . . . . . . . . . . . 9
2.3. Next-to-Leading Order effects in QCD . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1. Catani Seymour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Particle colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1. Hadron colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2. Event rates and cross sections . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3. Parton distribution functions . . . . . . . . . . . . . . . . . . . . . . . 15

2.5. Higgs boson physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1. Decays of the Higgs boson . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2. Higgs boson production . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3. Higgsstrahlung – WH . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6. Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1. Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2. VEGAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. WH and WHj production at NLO 23
3.1. VBFNLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1. New processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2. Effective currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2. Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1. Breit-Wigner resonance – Tan mapping . . . . . . . . . . . . . . . . . 25
3.2.2. WHj phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3. Leading order calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1. Higgs boson decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4. Next-to-leading order calculation . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1. Renormalization and Counterterms . . . . . . . . . . . . . . . . . . . . 29
3.4.2. Virtual amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



vi Contents

3.4.3. Real emission and subtraction terms . . . . . . . . . . . . . . . . . . . 31
3.5. CKM matrix effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1. Including the CKM matrix using modified PDFs . . . . . . . . . . . . 33
3.5.2. One quark line coupling to a W boson . . . . . . . . . . . . . . . . . . 33
3.5.3. Effect on Wj and WHj production . . . . . . . . . . . . . . . . . . . . 34
3.5.4. Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6. Flavour scheme – nf = 4 or 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.1. Consistent choice of nf . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.2. Problems and features of four- and five-flavour scheme . . . . . . . . . 39
3.6.3. Implementing external b quarks . . . . . . . . . . . . . . . . . . . . . . 39
3.6.4. Comparing and merging four and five flavour schemes . . . . . . . . . 40

4. Checks 41
4.1. LO matrix element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2. LO cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3. Virtual contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1. Top-loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2. Gauge test and Ward identities . . . . . . . . . . . . . . . . . . . . . . 43

4.4. Subtraction terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5. NLO cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1. MCFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2. vh@nnlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.3. Ji-Juan et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.4. WHj (NLO) check coverage . . . . . . . . . . . . . . . . . . . . . . . . 52

5. Phenomenology 53
5.1. Event selection/Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2. NLO effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1. Top-loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3. Scale dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1. Scale choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.2. Scale variation as error estimate . . . . . . . . . . . . . . . . . . . . . 58

5.4. Jet veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5. Anomalous couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6. Boosted Higgs boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6. Summary and Outlook 69

7. Zusammenfassung 73

Appendix 81
A. Physical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 83

vi



CHAPTER 1

INTRODUCTION

Particle physics studies the fundamental building blocks of the universe and their interactions
on very small scales. The Standard Model (SM) of particle physics is a relativistic quantum
field theory, which was developed in the 1960s and 70s. Since then it has been successfully
used to predict both precision experiment outcomes as well as new particles. Recently, a new
particle was discovered. The resonance observed so far resembles the SM Higgs boson, however
the measurements of its properties still have to be completed. The particle was detected by
ATLAS and CMS [1, 2], two experiments situated at the Large Hadron Collider (LHC) at
CERN, Geneva. The LHC is the latest in a series of collider experiments. It was built to
search for new particles and probe our understanding of particle physics. It was designed
not only to search for the Higgs boson, but also to study theories going beyond the SM. The
discovery of the Higgs boson is the verge to a new generation of SM precision measurements
and particles at the TeV scale.

Despite the SM success, we now know that the SM is not able to describe all phenomena.
There are issues related to the theoretical construction of the SM. In the SM (nearly) all
masses are free parameters and they stretch over several orders of magnitude. The traditional
SM does not include neutrino masses which must be non-zero due to the measurement of
neutrino oscillations. Several experiments are trying to measure the neutrino mass, but so far
only limits were imposed. While it is possible to add a massive neutrino sector to the SM,
their masses have to be below 1 eV. There is no explanation of the mass difference between
charged leptons and neutrinos within the SM. On the other hand, the top quark, the heaviest
of the elementary particles, has a mass which is six orders of magnitude bigger. Currently,
there is not a satisfactory explanation of the broad mass spectrum covered in the SM.

Some open problems of the SM are related to observations in astronomy. Firstly, gravity is
not described by the SM. The theory of general relativity provides a well proven formulation
of gravity, but no successful formulation of a combined theory of general relativity and the
SM has been achieved.

Astronomical observations show two interesting features that have so far not been explained:
Dark Matter and Dark Energy. The movement of stars in galaxies can not be explained just
based on the visible, baryonic matter. This can be solved by assuming additional (dark)
matter being distributed around the galaxy, but the SM does not provide a natural candidate
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2 1. Introduction

for dark matter. Dark Energy is related to the accelerating expansion of the visible universe,
which is unexpected and not fully understood.

The early development of the universe is described by Big Bang nucleosynthesis. This theory
can not explain why the unbalance between matter and anti-matter is as large as observed
in the universe today. The SM has mechanisms violating CP, but they can not explain the
observed difference.

Because the SM does not describe gravity, it can at most be valid up to the Planck scale
of about 10 · 1019 GeV. The SM then is assumed to be a low-energy effective theory of an
unknown theory at the Planck scale. When calculating higher-order corrections to masses
of particles, the corrections are of the same order as the scale of the theory. Because of the
observed mass, those corrections of a high-energy theory must be small. While the other
particles are protected from large corrections by mechanism like custodial symmetries, there
is no such mechanism for the Higgs boson. If there is no new theory up to the Planck scale,
fine-tuning of the theoretical parameters would be required to explain the observed mass.
This issue is called the hierarchy problem.

While the SM has proven successful in describing many particle physics phenomena to high
precision, hints on physics beyond the SM were recently found in precision experiments. The
g-factor of the muon, which relates spin and magnetic moment, is the most precise measured
physical quantity. While there are calculations with sufficient accuracy, they show a deviation
from the measured value [3].

The SM is based on the gauge group SU(3)C × SU(2)L ×U(1)Y. The factor SU(2)L ×U(1)Y
describes the electroweak (EW) sector. The weak force is mediated by W and Z boson. The
W boson is among others responsible for radioactive β-decay.

SU(2)L × U(1)Y is broken via spontaneous symmetry breaking by the Higgs mechanism to
the group U(1)em. This group describes quantum electrodynamics (QED) – the interaction of
electrically charged particles via photons. The Higgs mechanism generates the masses of the
gauge bosons and fermions.

The group SU(3)C describes quantum chromodynamics (QCD), which is the theory of the
strong interaction. It acts on particles with color charge, which are quarks and gluons. The
two sectors of the SM are often referred to by their coupling constants: α for the EW sector
and αs for the strong sector.

Despite the great success of calculations performed in lattice QCD in the last decades,
predictions of the SM are mostly calculated using perturbation theory. This means that
observables are expanded as a series in coupling constants. The first term of such an expansion
is called leading order (LO), followed by the next-to-leading order (NLO) and the next-to-next-
to-leading order (NNLO). Because αs is an order of magnitude larger than α, this expansion
is often only done in αs. A calculation including NLO terms in αs is called NLO QCD.

Except for direct searches for new particles or processes, possible theories beyond the SM
can be studied by comparing the SM prediction to data and then setting limits on general
extensions of the SM. For the newly discovered Higgs boson, this means to investigate the
different production and decay mechanisms.

The main production mechanisms for the Higgs boson in the SM are shown in chapter 1. The
production mode with the largest cross section is called Gluon Fusion. There two gluons
produce the Higgs boson via a fermion loop. Another interesting production mechanism is
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Figure 1.1: Feynman diagrams for the three most important Higgs boson production channels are
shown. In this thesis the production of WH and WHj is calculated at NLO QCD.

Vector Boson Fusion, which has the second highest cross section and a good signal/background
ratio. The Higgs boson can also be produced in association with a weak boson or top
quarks. The production with a weak boson (VH) is also called Higgsstrahlung, because the
corresponding Feynman diagram has the Higgs boson “radiating” off a W or Z.

This set of production mechanisms is interesting, because they allow to measure the couplings
of the Higgs boson to different SM particles. In the SM, these couplings are not independent
but fixed by a small number of parameters, so possible inconsistencies can be studied with
high precision.

The Higgs boson is unstable and decays immediately. There are many possible decay channels.
Detecting a Higgs boson through one of the possible decays is challenging, because for each of
them there are other SM processes yielding the same final state. These are called background
processes and need to be known accurately to allow the extraction of the signal. Thus, NLO
QCD corrections are important for both background and signal processes.

The LHC experiments searched for WH production considering the decay of the H to bb
[4, 5] and WW [6]. In these channels there is no established signal, but the measurement is
still consistent with the SM prediction. WH production was also used in searches for physics
beyond the Standard Model [7].

The NLO QCD corrections for WH production are large and phase space dependent, demon-
strating the importance of NLO calculations. A large fraction of the WH events comes
accompanied of additional jets. In this thesis, WHj production at NLO QCD is computed. In
WH production at NLO, at most one jet computed at LO is included, so WHj production
at NLO can be used to estimate higher order corrections to the WH production mechanism.
Leptonic decays of the W are included as well as decays of the Higgs boson (previous results
involved on-shell W). As a by product also the NLO corrections of W, WH and WJ production
are calculated. This thesis is organized as follows:

In chapter 2, the theoretical background will be discussed. A short introduction to the SM
and the physics of hadron colliders is given. The Higgs boson is discussed in more detail,
including the different production and decay modes. This leads to the introduction of the WH
production process with its features. It follows a description of the fundamental techniques
used for the numerical calculation: Monte Carlo integration with importance sampling and
automatic optimization using VEGAS. The NLO QCD calculation requires special treatment
to allow numerical integration. The Catani Seymour method is applied for that purpose.

Based on the methods discussed, the calculation of WH and WHj is described in chapter 3.
The calculation is implemented in the program VBFNLO, which is introduced. The different
parts of the calculation are discussed, starting from the phase space integration, leading to

3



4 1. Introduction

the matrix element at LO and NLO QCD. Two special aspects of the calculation are discussed
in more detail: the treatment of the CKM matrix and the choice of flavour scheme.

Chapter 4 describes the checks performed to guarantee the correctness of the calculation.
These checks start with the LO matrix elements and the LO cross section, but also cover
the NLO QCD correction. This includes the virtual contributions, which were checked using
internal consistency checks as well as comparisons with external codes, and subtraction terms
which are constructed using the Catani Seymour method. Finally, the NLO cross section is
compared with existing calculations for WH and Wj, as well as a previous calculation of WHj
for on-shell W and Higgs boson.

Using the checked implementation of WH(j), the phenomenology of this process is studied in
chapter 5. This study discusses the effects and properties of the NLO calculation, which has
an influence on the scale dependence of the process. A common analysis technique requiring
a boosted W and/or Higgs boson is studied and the effect of anomalous couplings on this
process is discussed.

In the final chapter 6, conclusions are given as well as an outlook on further related calculations
and possible studies.
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CHAPTER 2

THEORETICAL ESSENTIALS

In this chapter, a brief introduction to several essential theoretical aspects is given. The
Standard Model is presented in section 2.1. Anomalous couplings entering in a general
extension of the Standard Model are discussed in section 2.2. The fundamental building blocks
of a next-to-leading order calculation are introduced in section 2.3. Section 2.4 describes
particle colliders and the general approach used to describe hadronic collisions. Production
and Decay of the Higgs boson and the production process used in this thesis are introduced in
section 2.5. Section 2.6 describes the method used for numerical integration.

2.1. The Standard Model
The Standard Model (SM) is a relativistic quantum field theory. Since its development in the
1970s, it has been very successful in describing particle physics, both in new phenomena as well
as in precision measurements. The SM consists of two sectors. The electroweak sector covers
the electromagnetic interaction, mediated by the photon, and weak interaction, mediated by
the W and Z boson. The strong sector is described by quantum chromodynamics (QCD),
where the gluon mediates the strong force. These interactions can be described by gauge
theories which are identified with symmetry groups. The overall gauge group of the SM is

SU(3)C × SU(2)L ×U(1)Y. (2.1)

The group SU(3)C corresponds to QCD, while the group SU(2)L ×U(1)Y describes the EW
sector, both of them will be described in the following. This thesis will closely follow the
notation and convention of Ref. [8], where a more detailed introduction to quantum field
theories can be found.

2.1.1. Quantum chromodynamics

The Lagrangian of quantum chromodynamics is

L =
∑

quark flavours
Ψi
(
i /Dij −mqδij

)
Ψj −

1
4
(
Gaµν

)2
− 1

2ξ
(
∂µAaµ

)2
+ c̄a

(
−∂µDac

µ

)
cc. (2.2)

5



6 2. Theoretical essentials

QCD is described by the group SU(3)C. The quark fields Ψi transform under the fundamental
representation of SU(3)C and the gauge field of this theory, the gluon field Gaµ, is in the adjoint
representation. This gives 3 quark colors and 8 gluons. The gluon field strength tensor is

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν , (2.3)

with the strong coupling gs and the structure constants fabc of SU(3)C. Using the Faddeev-
Popov method for quantization gives additional ghost fields, called ca. Those are anticommut-
ing fields in the adjoint representation and are introduced to formulate a consistent Lagrangian,
where unphysical degrees of freedom are removed.

The strong coupling is in general expressed in terms of αs ≡ g2
s/4π. It is scale dependent and

the running used for the calculation is given by the two-loop level as

αs(Q2) = 4π
b0

[
1

ln(Q2/Λ2
QCD) −

b1
b20

ln ln(Q2/Λ2
QCD)

(ln(Q2/Λ2
QCD))2

]
, (2.4)

with b0 = 11− 2/3nf, b1 = 51− 19/3nf and ΛQCD dependent of the order of perturbation theory
and fit used, in this calculation ΛQCD = 226GeV. Instead of using ΛQCD, the running could
also be expressed based on αs at a fixed scale µ. The one-loop running can be written as

αs(Q2) = αs(µ2)
1 + αs(µ2)

4π b0 ln
(
Q2

µ2

) . (2.5)

This scale dependence is the reason for two fundamental properties of QCD: asymptotic
freedom and confinement. For Q2 →∞, the coupling αs vanishes, which means that at large
scales, the coupling is small and the interaction between quarks and gluons is weak. In that
energy regime they behave like free particles. This feature is called “asymptotic freedom”.
Thus, at high energies the QCD interaction can be described well using perturbation theory.

On the opposite side of the energy spectrum for Q2 → ΛQCD, the coupling diverges. This
makes bound states (corresponding to the low scale) very stable. When trying to separate
two quarks, the strong potential will build up enough energy to produce a quark-antiquark
pair and, thereby, two bound states instead of giving up the first binding.

2.1.2. The Electroweak sector

The EW sector covers electromagnetic and weak interactions. The theory was developed by
Glashow, Salam and Weinberg (and is therefore called GWS-theory) in Refs. [9, 10, 11].

It is described by the group SU(2)L ×U(1)Y. There are gauge fields corresponding to both
groups,

SU(2)L : W a
µ , a = 1, 2, 3, (2.6)

U(1)Y : Bµ . (2.7)

Using these gauge fields, the interaction Lagrangian can be constructed. To do so, the covariant
derivative is used, which includes the couplings g (and g′) corresponding to SU(2)L (and
U(1)Y) and T a = σa

2 , with the Pauli matrices σa, which are the generators of SU(2). The
covariant derivative is given by

Dµ = ∂µ − igW a
µT

a − ig′Y Bµ . (2.8)

6



2.1. The Standard Model 7

The coupling of gauge fields (and thus the particles corresponding to them) to fermions can
be written in a compact form using the covariant derivative as

L =
∑

L=EL,QL

iL /DL+
∑

R=eR,uR,dR

iR /DR . (2.9)

Left- and right-handed components of the fermion fields transform under different representa-
tions of SU(2)L. Right-handed fields are singlets: eR, uR, dR. Left-handed fields transform as
doublets

EL =

νe
e−


L

, QL =

u
d


L

. (2.10)

Only doublets and, thus, the left-handed fields can couple to the SU(2)L gauge bosons. The
Lagrangian given in equation (2.9) can be written in several forms. A convenient way is to
give the interactions in terms of the mass eigenstates. In this way, the couplings of fermions
to the W bosons can be written as

L = g
(
W+
µ J

µ+
W +W−µ J

µ−
W

)
, (2.11)

where Jµ+
W = 1√

2
νLγ

µeL + 1√
2
uLγ

µdL , (2.12)

Jµ−W = 1√
2
eLγ

µνL + 1√
2
dLγ

µuL . (2.13)

2.1.2.1. Higgs Mechanism

Using the fermion fields, the usual mass term would be of the form m
(
LR+RL

)
. However,

since L and R are in different representations, there is no direct mass term compatible with
the symmetries. Nevertheless mass terms can be generated using spontaneous symmetry
breaking. To accomplish this, a new SU(2)L doublet is introduced. Additionally, a potential
is added to the Lagrangian which leads to a non-zero vacuum expectation value (vev) of that
new doublet,

L = |Dµφ|2 + µ2φ†φ− λ
(
φ†φ

)2
. (2.14)

For µ2, λ > 0, this potential has a Mexican hat shape and, therefore, a minimum that leads to
a non-zero vev with absolute value

|φ0| =

√
µ2

2λ ≡
v√
2
. (2.15)

This vev breaks the SU(2)L ×U(1)Y symmetry down to a U(1)em symmetry. The remaining
symmetry leaves an (unphysical) freedom of choice for the minimum of the potential. The
conventional choice is to have the vev in the second component. This breaking of SU(2)L
fixes the left handed fields and the convention to have a real vev in the second component is
implied in equation (2.10). Particles in this doublet can be understood as excitations around
the minimum. There are four possible directions. Three of them correspond to Goldstone
bosons which are absorbed by the masses of the W and Z bosons. The other direction can be
associated with a new physical particle. This mechanism was developed by Brout, Englert
and Higgs [12, 13, 14]. The new particle predicted is usually named after the latter and thus
called Higgs boson.

7



8 2. Theoretical essentials

The Higgs field h is a scalar field and with the vev, the doublet is

φ(x) = 1√
2

 0
v + h(x)

 . (2.16)

The Lagrangian for the Higgs coupling to the EW bosons naturally leads to mass terms for
the W, Z and Higgs boson,

LHiggs = 1
2 (∂µH)2 − 1

2m
2
HH

2 +
[
m2
WW

+
µ W

−µ + 1
2m

2
ZZµZ

µ
](

1 + H

v

)2
. (2.17)

The masses depend on the vev and the couplings as

mW = g
v

2 , m2
Z =

√
g2 + g′2

v

2 , mH =
√

2λv . (2.18)

Here the EW bosons were written as mass eigenstates. These are related to the interaction
eigenstates W a

µ and Bµ used earlier via

W±µ = 1√
2

(
W 1
µ ∓ iW 2

µ

)
and (2.19)Zµ

Aµ

 =

cos θW − sin θW
sin θW cos θW

W 3
µ

Bµ

 . (2.20)

The weak mixing angle θW is defined by

cos θW = g√
g2 + g′2

. (2.21)

The mass basis corresponds to the U(1)em eigenbasis so that the particles have well defined
em charges.

The Higgs doublet can also generate mass terms for the fermions, both leptons and quarks,
because it allows to write gauge invariant terms for the Lagrangian which contain left- and
right-handed fields simultaneously,

Llepton masses =− λeEL · φeR + h.c. = − 1√
2
λeveLeR + h.c. , (2.22)

Lquark masses =− 1√
2
λdvdLdR −

1√
2
λuvuLuR + h.c. . (2.23)

In the SM, there are 3 generations of quarks and leptons,

uiL = (uL, cL, tL) , diL = (dL, sL, bL) , liL = (eL, µL, τL) . (2.24)

The interaction and mass eigenstates can also differ and are in general related by a unitary
transformation

uiL = U iju u
′j
L, diL = U ijd d

′j
L. (2.25)

8



2.2. Anomalous couplings and effective field theories 9

The coupling of quarks to the W boson as introduced in equation (2.13) acts only within
one generation. When more generations are added, they are independent in the interaction
basis. Rotating to the mass basis by substituting equation (2.25) in equation (2.13), leads to
couplings involving quarks of different generations,

Jµ+
W = 1√

2
uiLγ

µdiL = 1√
2
u′
i
Lγ

µ
(
U †uUd

)
ij︸ ︷︷ ︸

Vij

d′
j
L . (2.26)

The new matrix Vij is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which allows transi-
tions of quarks to different generations (or flavours). The effect of the CKM matrix for WH(j)
production will be discussed in section 3.5.

2.2. Anomalous couplings and effective field theories
Anomalous couplings are a general extension of the SM couplings. They are described by
an effective field theory (EFT). The idea of EFTs is to take a theory at a high scale Λ and
consider its low energy limit. Operators are written in terms of the low-energy fields while the
high-energy theory enters in the form of additional derivatives in these operators. Effective
field theories are useful to describe and parametrize effects of (high scale) new physics with
minimal additional assumptions. The Lagrangian of an EFT is in general non-renormalizable,
which manifests in dimensionful couplings,

LEFT =
∑
i

fi
Λd−4O

(d)
i . (2.27)

In equation (2.27), the general structure of an EFT Lagrangian is shown. As it is valid at
a certain low-energy regime, the operators O(d)

i must respect the symmetries at that scale.
The overall mass dimension of a term in the Lagrangian is 4 to make the action S =

∫
d4xL

dimensionless. Therefore, an operator O(d)
i of mass dimension d requires a coupling of the

form fi/Λd−4. While there is no inherent limit on the dimensionality of these operators, the
low-energy limit corresponds to an expansion in (E/Λ)d, so that typically only the lowest order
operators are considered.

The classic example of an EFT is the description of weak interactions by Fermi [15]. This
theory describes β-decay using a vertex connecting four particles directly. The Lagrangian for
this interaction can be written as

L = −GF√
2
p̄γα(1− γ5)n ēγα(1− γ5)νe . (2.28)

This formulation already makes use of the vector minus axial vector structure of the weak
interaction. The dimensionality of the operator requires the coupling to have mass dimen-
sion −2. Experimentally the coupling is well studied and the value is known precisely:
GF = 1.63371(6) · 10−5 GeV−2 [16].

As any EFT, this theory is only valid in a certain energy regime and the full theory must be
used to give a correct description of the high energy region. In case of the Fermi interaction, at
energies at the order of the weak scale, the W boson propagator can be resolved and the GWS
theory introduced in section 2.1.2 needs to be used. As shown in figure 2.1 the four-fermion
vertex is then replaced by two weak couplings and a propagator.

9



10 2. Theoretical essentials

n
p+

νe

e−

GF

n
p+

νe

e−

W

Figure 2.1: β-decay can be described in the low-energy limit by Fermi’s interaction (left), while the
description by the weak interaction (right) holds up the electroweak scale. In the low energy limit the
intermediate W propagator is reduced to a vertex with a dimensionful coupling.

In the Lagrangian this replacement corresponds to

− GF√
2
↔ g2

8
1

q2 −m2
W
. (2.29)

In the low energy limit the propagator is reduced to the mass,

1
q2 −m2

W

q2→0−→ − 1
m2

W
. (2.30)

This relates the couplings as
GF√

2
= g2

8m2
W
. (2.31)

2.2.0.2. Anomalous couplings

Anomalous couplings as an extension of the SM enter in dimensionful operators added to the
SM Lagrangian. Assuming a QFT at a higher scale, the SM would be the leading terms in
the low-energy expansion and anomalous couplings appear in higher order terms.

Considering the EW bosons and the Higgs boson, terms in the Lagrangian can be written by
using

Ŵµν = i
g

2W
a
µνσ

a , B̂µν = i
g′

2 Bµν ,

Dµ = ∂µ + igW a
µ

σa

2 + i
g′

2 Bµ , Φ = 1√
2

 0
v +H

 .
(2.32)

With these “building blocks” operators can be constructed. New operators have to respect all
symmetries of the theory, including gauge symmetries. With the given symmetries it is not
possible to construct operators of odd dimension. The SM operators have dimension 4, so
that anomalous couplings can enter as dimension 6 or dimension 8 operators. New terms are
suppressed by Λ−d+4, so the lowest possible dimensions should give the largest contribution.
For the VVH vertex, all possible Lorentz structures are present in the dimension 6 operators.
Therefore, dimension 8 operators only add additional couplings. While those could be used to
fit several cross sections simultaneously, they do not provide additional information to WH(j)
production and, hence, will not be discussed here.

10



2.3. Next-to-Leading Order effects in QCD 11

The relevant dimension 6 operators are [3, 17]

OW = (DµΦ)†Ŵµν(DνΦ) ,
OB = (DµΦ)†B̂µν(DνΦ) ,

OWWW = Tr
[
ŴµνŴ

νρŴµ
ρ

]
,

OWW = Φ†ŴµνŴ
µνΦ ,

OBB = Φ†B̂µνB̂µνΦ ,

OΦ,1 = (DµΦ)†ΦΦ†(DµΦ) ,

ODW = Tr
([
Dµ, Ŵνρ

] [
Dµ, Ŵ νρ

])
,

OBW = Φ†B̂µνŴµνΦ .

(2.33)

As discussed in Refs. [3, 18], the last 3 operators, OΦ,1, ODW and OBW modify the gauge boson
two-point functions. They are strongly restricted and including only the vertex corrections
without modifying the propagators leads to inconsistencies. Therefore they are not considered
in this thesis. Operators influencing only the Higgs boson self couplings are also ignored.

The operators in equation (2.33) are CP-even. In analogy CP-odd operators can be constructed
using the dual field strength tensors,

ˆ̃
Wµν = 1

2εµνρσŴ
ρσ ,

ˆ̃
Bµν = 1

2εµνρσB̂
ρσ .

(2.34)

The possible dimension 6 CP-odd operators are

O
W̃

= (DµΦ)† ˆ̃
W

µν

(DνΦ) ,

O
B̃

= (DµΦ)† ˆ̃
B
µν

(DνΦ) ,

O
W̃WW

= Tr

[
ˆ̃
WµνŴ

νρŴµ
ρ

]
,

O
W̃W

= Φ† ˆ̃
WµνŴ

µνΦ ,

O
B̃B

= Φ† ˆ̃
BµνB̂

µνΦ .

(2.35)

For the production of WH(j), these operators do not lead to new Feynman diagrams, but only
modify the WWH vertex. The operators contributing to this vertex are OW ,OW̃ ,OWW and
OW̃W . The Feynman rules corresponding to these operators were calculated and implemented
in Ref. [18]. The effect of anomalous couplings on differential cross sections will be discussed
in section 5.5.

2.3. Next-to-Leading Order effects in QCD
The calculation of the cross section is performed within perturbation theory as an expansion
in the coupling constants. This lowest order in this expansion is called leading order (LO). In
the processes discussed here, LO occurs at tree level and therefore it does not contain loops.

11



12 2. Theoretical essentials

The next-to-leading order contains all contributions with one additional factor of the coupling
constant. There are two fundamental couplings involved: αs for QCD and α for the EW
interactions. αs ≈ 0.1 is an order of magnitude larger than α ≈ 0.008, therefore the QCD
corrections are in general dominating. In this thesis, EW corrections are not included in the
calculation.

There are two contributions to the NLO cross section: The virtual corrections σV and the
real emission σR, which are distinguished by the number of final state particles and therefore
phase space dimension. Schematically this can be written as

σNLO =
∫
m

dσV +
∫
m+1

dσR. (2.36)

For the real emission, the addition of a final state QCD particle adds one factor of the coupling,
so that |MRE|2 has one more factor of αs than the LO matrix element squared.

In case of the virtual corrections, an additional loop can be thought of as an additional gluon
connected to a quark line in two places so that there are two couplings giving an overall
factor of αs. Therefore, the virtual contributions enter as interference terms in the form
2 Re [MBMV]. For the NLO calculation also different PDFs have to be used, which absorb
initial-state singularities.

2.3.1. Catani Seymour

When performing the numerical integration of equation (2.36) to calculate a NLO cross section,
two integrals with different dimensionality have to be evaluated. These two integrals are
individually divergent. These divergences occur when pairs of particles are soft or collinear.

Their divergence structure can be made apparent using regularization. There are different
regularization schemes. A common choice is dimensional regularization which changes the
space-time dimension to be D = 4 − 2ε. With ε, a small quantity which regularizes the
divergences. The divergent parts show up as 1/ε and 1/ε2. The IR divergent poles in the virtual
contribution should exactly cancel the poles in the real emission. This cancellation is stated
in the Kinoshita-Lee-Nauenberg (KLN) theorem [19, 20].

The poles on the real emission only appear after the phase space integration. However, this
would spoil the convergence of our MC program. To extract the poles prior integration, several
methods exit in the literature. A common choice for NLO Monte Carlos was developed by
Catani and Seymour [21, 22].

The subtraction term is constructed to reproduce the divergence structure of the real emission
and be analytically integrable over a variable parametrizing the soft and collinear limit.
Technically, in equation (2.36) the integrated version of the subtraction terms is added to the
virtuals and the unintegrated version subtracted from the real emission. This makes both
phase space integrals separately finite without modifying the sum. Including the subtraction
terms the cross section is

σNLO =
∫
m

(
dσV +

∫
1
dσA

)
+
∫
m+1

(
dσR − dσA

)
. (2.37)

There are not only terms resembling the divergence structure but also finite terms. These can
be moved from the m to the m+ 1 dimensional integral, which can be used to cross check the
consistency of the calculation.

12



2.4. Particle colliders 13

Colliding particles leptons hadrons
electrons, muons protons, anti-protons

particles in hard
interaction

same as accelerated partons inside the hadron

energy spread narrow,
known from acceleration

wide, partons carry momen-
tum fraction

maximum energy few hundred GeV
limited by synchrotron radia-
tion

several TeV
synchrotron radiation smaller
by [me/mp]4

final state small number of additional
particles

many hadron remnants and ad-
ditional QCD interactions

Table 2.1: Lepton and hadron colliders are compared in several key aspects.

2.4. Particle colliders
There are many possible experiments for testing theories in particle physics. To produce
heavy particles and study their properties, both high energies and a large number of events
are needed. The most common experimental approach to achieve this is to study particle
collisions. Collisions can either be produced by shooting particles on a fixed target or by
a head-on collision of two particles. In the first case, the center-of-mass energy,

√
s, of the

final state produced depends on the beam energy E and the mass m of the target particle:
s = 2mE. For a particle collider with two approximately massless particles with the same
energy E, the center-of-mass energy is given by s = 2E2.

While the mass of accelerated particles m is of the order of a few GeV, E can reach hundreds
of GeV or even a few TeV in modern colliders. Therefore, they offer a superior energy for
experiments.

In general, accelerating particles is easiest if they are

• charged: such that a combination of electric and magnetic fields can be used to accelerate,
deflect and focus them

• easily produced: so they are available in large quantities

• stable/long lived: so they do not decay before the collision

Typical combinations used were

• electron - positron (LEP, CERN),

• electron - proton (HERA, DESY),

• proton - antiproton (Tevatron, Ferminlab),

• proton - proton (LHC, CERN).

Other possibilities include muons [23] or heavy nuclei. The choice of particles to collide
is critical for the design of the accelerator and detectors as well as the possible physical
observations. An overview of key differences between lepton and hadron colliders is presented
in table 2.1.

13



14 2. Theoretical essentials

2.4.1. Hadron colliders

Hadrons are a stable bound of partons (quarks and gluons). When they collide at energies
well above their mass, there is a hard interaction between one parton of each of the colliding
particles. “After” this hard interaction, the resulting particles hadronize to form colour-neutral
states, which can then be identified in detectors.

When predicting events at a hadron collider, the calculation is therefore divided into calculating
a hard cross section using perturbation theory with partons and then modelling other effects
at lower energies around that. In this thesis, only the hard interaction will be discussed.

2.4.2. Event rates and cross sections

In a collider experiment, events are recorded, which are a set of final state particles with their
energies and momenta. The frequency with which events with a given property occur gives
the event rate. This rate depends on the accelerator setup as well as the selection criteria of
the event. The dependence on the accelerator setup can be factorized,

N︸︷︷︸
event rate

= σ︸︷︷︸
cross section

· L︸︷︷︸
luminosity

. (2.38)

Luminosity

L is the luminosity. Its units are 1/Area·Time. The luminosity measures the number of potential
collisions a collider produces per unit of time. Frequently, the integrated luminosity is used,
which is the integrated luminosity over time.

For a simplified model of two beams in a storage ring with several bunches, the luminosity is
given by

L = fn
N2

A
, (2.39)

where

• n is the number of particle bunches

• N the number of particles within one bunch

• f the frequency of a bunch going around the ring

• A the effective interaction area of two crossing bunches, which depends on the particle
densities within a bunch and their shape

Integrated luminosity is typically given in barn, with 1 barn = 1 · 10−24 cm−2. In 2012 the
proton-proton LHC delivered ≈ 23 fb.

Factoring out the luminosity, the cross section σ, which depends on type and energy of the
particles colliding should be computed.

Cross section

The cross section can be calculated using the framework of QFT. As derived in Ref. [8], the
cross section can be written as

dσ = 1
2ŝ |M (p1, p2 → {pf})|2 dPS, (2.40)

14



2.4. Particle colliders 15

where

• 1
2ŝ is the flux factor, which is written here in the case of massless/relativistic particles as
the inverse of twice the invariant mass squared of the incoming particles

• M is the matrix element

• dPS is the phase space factor

The matrix element can be calculated using Feynman Rules derived from the underlying
Theory. The phase space factor includes the integration over the possible final state momenta
in a Lorentz invariant way,

dPS =
(∏

f

d3pf

(2π)3 2Ef

)
(2π)4 δ(4)

(
p1 + p2 −

∑
pf
)
. (2.41)

Details on how to perform the integral are described in section 2.6.

2.4.3. Parton distribution functions
When describing hadronic collisions, the hard interactions take place between the constituents
of the hadron, the partons. Therefore, a hadronic cross section has to account for this by
summing over the possible partons and integrating over the possible momentum fractions.
Additionally, there is a factor that describes the probability that at a given energy scale, a
specific parton with a certain momentum fraction will interact. This probability is given by
the parton distribution function (PDF).

Using PDFs, the cross section for the interaction of two protons can be written,

σ =
∫
dx1dx2

∑
partonic subprocesses

fq1

(
x1, Q

2
)
fq2

(
x2, Q

2
)
σpartonic (q1, x1P1; q2, x2P2 → {pf}) .

(2.42)

The sum includes all relevant combinations of partons q1 and q2 for the specific process and
the integral folds the PDFs with the corresponding parton-level cross section. This cross
section then only depends on the type of partons and the momenta of the parton, which is
given by the momentum fraction xi multiplied with the proton momentum Pi.

The dependence of the PDFs on the energy scale is known, so that they can be evolved to
arbitrary scales starting from a given scale using the DGLAP equation [24, 25, 26]. There are
several groups calculating PDFs by parametrizing a general shape and fitting it to existing
data from scattering experiments. The PDFs used here are presented in Refs. [27, 28] and
shown in figure 2.2. PDFs have to fulfill several constraints. The overall momentum of the
proton should be conserved, ∫ 1

0

∑
partons

x q(x) dx = 1 . (2.43)

At low scales, the total parton content of the proton should be uud. Therefore,∫ 1

0
u(x)− ū(x) dx = 2 ,∫ 1

0
d(x)− d̄(x) dx = 1 ,∫ 1

0
q(x)− q̄(x) dx = 0 ∀q 6∈ {u, d} .

(2.44)
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Figure 2.2: The PDFs from Refs. [27, 28] are used in this thesis. The gluon PDF is dominant for
small x and the quark PDFs show the dominant valence quarks u and d as well as the sea quarks.

2.5. Higgs boson physics

In July 2012, a new particle was discovered by ATLAS [1] and CMS [2], which looks like the
SM Higgs boson. This discovery is the beginning of a new series of studies of the properties of
the discovered particle. The properties of the SM Higgs boson are theoretically well studied
and many interesting production processes and decay channels are known, which will help to
understand the properties of the new particle and compare it to the SM expectations.

2.5.1. Decays of the Higgs boson

Because the Higgs boson couples to all massive particles and is itself quite heavy, there are
many possible decay channels. The Higgs boson does not carry colour or charge. These
properties are conserved and, therefore, the final state of the decay also has to be electrically
neutral and have no colour.

The Higgs boson coupling to fermions is proportional to their mass. The heaviest fermion is
the top, which is heavier than the Higgs boson (173GeV compared to 126GeV). Therefore,
the decay into of the Higgs boson in to two top quarks is not possible. A decay into a final
state via two virtual tops is possible but heavily suppressed. The Higgs boson can decay via a
top-loop, which makes use of the large coupling but is not kinematically restricted.

The most common decay channels for the Higgs boson are shown with their branching ratio in
figure 2.3. The dependence of the branching ratios on the mass of the Higgs boson is shown.
In the following, a Higgs mass of 126GeV is assumed and numerical values from Ref. [29] are
used.

bb The second heaviest fermion in the SM is the b quark. Therefore, the Higgs boson couples
rather strongly to it. The decay to a b and anti-b (b) quark is the most likely for the
SM Higgs with a mass of 126GeV: BR(h→ bb) = 56%.
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Figure 2.3: This plot from Ref. [29] shows the branching ratio of the Higgs boson in the main decay
channels depending on the Higgs mass. The decays to WW and ZZ are dominant for large Higgs
masses, though below their mass threshold the decay to bb is the dominant channel. The different
decays and their properties are discussed in the text.

τ+τ− The τ is the next heaviest fermion. It can decay leptonically, providing a good signature
in the detector. This decay contains neutrinos, which limits the mass resolution of the
reconstruction.

γγ The decay to photons is loop-induced, which reduces the branching ratio. The mass
resolution in this channel is really good, so that the rather smooth background can be
fitted in side-bins and subtracted. It is one of the discovery channels.

ZZ→ 4l The decay via ZZ to 4 leptons is also called the Golden Channel. Leptons allow a
precise mass reconstruction and especially muons provide a mass resolution comparable
to photons. This channel is limited by the small branching ratio.

WW In comparison, WW has a relatively high rate, but because leptonic W decays produce
neutrinos, the mass can not be reconstructed. A transverse mass can be reconstructed,
which allows a mass fit to simulation data. Spin correlations of the decay favor the leptons
in the same direction. This allows to use angular distributions to reduce backgrounds.

Zγ This channel is similar to γγ, but due to the Z→ 2l branching ratio it has a smaller cross
section. It is interesting for setting limits on decays to non-SM particles, as theories
beyond the SM often allow parameter choices to explain the γγ, WW and ZZ rate, but
not at the same time the Zγ rate.
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18 2. Theoretical essentials

µµ The decay to muons is the only possible channel to measure the Yukawa couplings of the
second generation at the LHC. It has a good mass resolution but it is limited by the
small branching ratio and a large background from muon pair production via a virtual
Z or photon.

invisible The branching ratio of the Higgs boson to particles not visible in the detectors can
be limited in production processes, which allows a tagging of associated particles, as in
VBF or VH. Limiting this branching ratio allows to test beyond SM theories.

2.5.2. Higgs boson production

At the LHC there are several channels to produce a Higgs boson. As seen in figure 2.4, there
are 4 relevant production channels at the LHC. The Feynman diagrams of these processes are
shown in figure 2.5. In more detail the processes are:

Gluon Fusion (GF), gg → H GF has the largest cross section and, therefore, it is the dom-
inant discovery channel. Corrections beyond NNLO have been calculated and they
are large (≈ 80% − 100%, [30]). Additionally, there are accompanying jets radiated
quite isotropically. This implies that there are huge backgrounds from X + multijet
productions processes.

Vector Boson Fusion (VBF), qq → qqH VBF is the production process with the second
largest cross section. While a naive estimate based on couplings would suggest this
process is suppressed by α2

EW, it is only a factor 10 smaller than GF. VBF has two
additional jets in the final state which have the remarkable kinematical feature that
they tend to be forward, allowing a clear tagging of these events. Additional radiation
in the central part of the detector is highly suppressed, which helps to eliminated
QCD backgrounds. VBF is related to Vector Boson Scattering, which is interesting for
studying unitarity violations.

Higgsstrahlung (VH), qq→ WH The third highest cross section for producing a Higgs boson
at the LHC is via the associated production with a vector boson. This is also known
as Higgsstrahlung, which refers to the Feynman diagram that can be described as the
production of a vector boson which then radiates off a Higgs boson. The vector boson
can be either a W or Z, where the WH case is slightly larger than ZH. The vector boson
in the final state can decay leptonically. This lepton can then be tagged, allowing a
better discrimination against backgrounds.

In this thesis, Higgsstrahlung with a W boson is calculated as well as the production in
association with an additional jet.

Associated production with heavy quarks The Higgs boson can also be produced in associa-
tion with heavy quarks (top or bottom). This channel is interesting for studying models
with enhanced bbH or ttH couplings. In the SM case there is a large QCD background
which restricts the H→ bb decay channel while the others are restricted by the small
cross section.

2.5.2.1. Higgs boson self couplings

Determining the decay widths and production cross sections of the different channels is an
important check for the consistency of the observed particle with the SM Higgs boson. Another
step is to measure the coefficients of the Higgs potential introduced in equation (2.14).
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shown. Gluon fusion has the largest cross section. The other processes produce the Higgs boson in
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This Higgs potential has two parameter, µ and λ. Together with the vev v they describe the
Higgs sector of the SM. v can be expressed by Gf and mW,Z, which are measured in the EW
sector. Together with the Higgs boson mass, µ can be derived. The quartic term in the Higgs
potential leads to Higgs self couplings in the form of triple and quartic vertices. The effect of
those vertices could be measured as corrections to other processes, but those are generally
small. The production of two Higgs bosons would give access to the triple vertex, hence, to λ.

2.5.3. Higgsstrahlung – WH

For the production of a Higgs boson in association with a W boson, there are several interesting
decay channels. Because of the rather small production cross section, the decays with a large
branching ratio (BR) are more interesting.

The largest Higgs BR is H→ bb, which leads to the final state Wbb. This final state has a
large background from W + jets. This background can be reduced by applying subjet analysis
in the boosted regime as suggest in Ref. [31]. Other decays like H→WW or H→ γγ lead to
triple EW boson final states, which are also studied to examine gauge boson interactions.

The leptonic decay of the additional vector boson can be tagged in the detector to identify
events. This facilitates a search for invisible decays of the Higgs boson or decays to particles
beyond the Standard Model in WH production. An example for such a search is presented by
ATLAS in Ref. [7].

WH also gives access to the WWH coupling as well as the bbH coupling. For the decay H→ bb,
WH is expected to give a better signal than GF and VBF, due to the large backgrounds in
those channels.

In the experimental searches for WH production at the 7 and 8 TeV LHC presented in
Refs. [4, 5], there was no established signal yet, but a SM Higgs boson should be visible in
WH production with increased luminosity.

2.6. Monte Carlo

When calculating a cross section, the integral over the available phase space has to be computed
as discussed in section 2.4.2. This integration is difficult for several reasons:

high dimensionality Depending on the number of jets and the chosen Higgs boson decay
channel, there are up to 21 integration variables. Therefore, a naive integration using a
grid with equal spacing in each dimension is not feasible, since the number of function
evaluations grows with the number of dimensions as Nd.

large variance The integrand (the matrix element) is not flat, but has many peaks and other
features. Any approximation that assumes only small deviations from a flat distribution
will therefore not give a good approximation.

non-diagonal boundaries when using general cuts The integral boundaries depend on the
experimental cuts chosen. Those often combine several variables (e.g. in separation
cuts) and can not be directly modelled by integration boundaries.

computing time For each phase space point evaluated, the corresponding matrix element has
to be calculated. This calculation can be slow, especially in the case of loop integrals.
Therefore, the number of integrand evaluations should be kept rather small.
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A general introduction to Monte Carlo techniques is given in Ref. [32]. The idea of Monte
Carlo integration is to choose random points in the phase space and use those to estimate the
integral. For simplicity an integration over the unit hypercube [0, 1]d is assumed,

I =
∫
f(x)ddx. (2.45)

Using N random points xi, the Monte Carlo estimate of the integral is

EN = 1
N

N∑
i=1

f(xi). (2.46)

This estimate converges to the full integral for large N

lim
N→∞

1
N

N∑
i=1

f(xi) = I. (2.47)

Monte Carlo integration allows to give an error estimate for finite N. To do so, the variance
σ2
f of a function f is used, which is defined as

σ2(f) = 1
N − 1

N∑
i=1

(f(xi)− EN )2 . (2.48)

The variance of the Monte Carlo integral is

σ2
EN

= 1
N2

N∑
i=1

σ2(f) = 1
N
σ2(f). (2.49)

The error of the estimate EN will be of the same order as the variance. The function variance
is a constant, such that the overall dependence on the number of phase space points used
is σEN ∝ 1/

√
N. This does not depend on the dimensionality of the integral, which is an

important advantage compared to traditional integration methods.

This variance can be calculated using the function values at the random points chosen and,
thereby, allows to give a continuous estimate of the variation while performing the integration.

2.6.1. Importance sampling

Using properties of the integrand, the Monte Carlo integration can be improved. There are
different methods available, which highly depend on the application at hand and can be
automated to different degrees.. Manual improvements will be discussed in section 3.2.

The algorithm used for the calculations in this thesis is based on the idea of importance
sampling, which is also discussed in Ref. [32]. The idea of importance sampling is to guess a
function that approximates the integrand and use it to change the integration variables,∫

f(x)dx =
∫ f(x)

p(x)p(x)dx =
∫ f(x)

p(x)dP(x). (2.50)

This requires the knowledge of P (x) which is the integral of p(x).

The statistical integration error then is σ(f/p)/
√
N . So if p(x) is chosen to be proportional

to f(x) then σ(f/p) = 0. In any real situation p(x) is only an approximation to f(x) such
that σ(f/p) is non-zero but for a good choice of p(x) it is significantly smaller than σ(f).
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22 2. Theoretical essentials

2.6.2. VEGAS

VEGAS [33, 34] is an algorithm based on importance sampling. The integration is performed
in several iterations which improve the importance sampling based on the calculated integrand
values. The probability density p in equation (2.50) is factorized,

p(x1, x2, . . . , xd) = p1(x1) · p2(x2) · . . . · pd(xd). (2.51)

Each pi is considered individually and split into bins. The random sampling in uniform within
each bin and all bins are used with the same probability. In the first iteration, those bins are
of equal size. Using the function values of one iteration, the bin sizes in the next iteration are
determined, such that each bin contains the same weight. By resizing the bins, integration
regions with a larger contribution will get more points.
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CHAPTER 3

WH AND WHJ PRODUCTION AT NLO

In this chapter, the calculation of the WH and WHj production cross sections, as well as
those for W and Wj production, is discussed. The processes W+H and W−H are very similar
and will be discussed simultaneously. For numerical examples in general the process W+H is
considered.

Cross sections calculated at LO have large uncertainties, which fails to fix the normalization
of the cross section. They show up as scale dependencies. The calculation of NLO corrections
reduces those uncertainties and is required to produce reliable predictions.

An overview of the program VBFNLO, into which the processes are implemented, is given
in section 3.1. The phase space integration and the optimizations involved are described in
section 3.2. Sections 3.3 and 3.4 discuss the calculation of processes at leading and next-to-
leading order. Effects of the CKM matrix on the calculation are discussed in section 3.5. The
choice of flavour scheme and its consistent treatment throughout the calculation are described
in section 3.6.

3.1. VBFNLO

The calculated processes were implemented into the flexible Monte Carlo program VBFNLO
[35, 36]. VBFNLO provides implementations of NLO QCD calculations for a variety of
production processes including vector boson fusion and the production of two or three vector
bosons, in several cases also with one or two additional jets. The implementations contain
many reusable parts, including a framework for phase space generation and routines for the
calculation of loops and subtraction terms.

3.1.1. New processes

In this thesis, four new production processes including NLO QCD corrections were implemented
in VBFNLO: W, Wj, WH and WHj. Because they have a similar QCD structure to existing
diboson and triboson processes, many aspects of the calculation could be reused. W and WH
production are based on WA production[37], Wj and WHj production are based on WAAj
production[38] as well as WZj production[39].
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24 3. WH and WHj production at NLO
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ν
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Z

Figure 3.1: A Feynman diagram for WHjj with H → ZZ → 4l is shown as an example of the
separation of EW (green) and QCD part of the diagram (red). The EW part is pre-calculated and
attached to the QCD part in the form of an effective current.

3.1.2. Effective currents

Among the NLO parton level Monte Carlos, VBFNLO stands out especially as far as two
aspects are concerned. First, for many processes, it is very fast. Secondly, anomalous couplings
are implemented in most processes. One aspect that affects both features is the way Feynman
diagrams are calculated. This is done by precalculating the electroweak (EW) parts including
decays and also production of multiple particles via a resonance. These precalculated “effective
currents” are then contracted with the QCD calculation in all necessary places. This separation
is shown in figure 3.1. As an example, a LO diagram for WHjj with the Higgs boson decaying
to 4 leptons is shown. This diagram can be separated into a QCD part, which only contains
quarks and gluons interacting via the strong coupling, and into an EW part, which consists of
W, Z, Higgs bosons and leptons, which are all connected via weak couplings. Both parts are
joined by a W coupling to quarks.

The benefit of factoring EW and QCD parts is that extensions of one of them do not affect
the other. This allows reusing the EW part of a LO calculation in a NLO QCD calculation,
but also the EW part can be expanded with additional decays or anomalous couplings without
modifying the QCD calculation. This allows to reuse the code that is checked and tested for
more complex calculations.

The EW calculations in this thesis treat the W and the H as off-shell and include the leptonic
decays of the W as well as many decays of the H, which are presented in section 3.3.1. Also
anomalous couplings for the HWW vertex and the Higgs boson decays are included. WH
production has the same QCD structure as W production including the NLO corrections. For
WHJ, there are new diagram types at NLO in comparison with Wj, where the Higgs boson is
not radiated off the W. They are discussed in section 3.4.2.2.

3.2. Phase space
As discussed in section 2.4.2, the computation of the cross section includes the calculation
of matrix elements as well as the integration over the phase space. Here the phase space
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3.2. Phase space 25

integration will be discussed first, which is performed numerically. This is done by randomly
generating phase space points. The matrix element is computed at each point and summed
with the corresponding weight.

A point in phase space is generated in two steps. First a point gets generated using the
knowledge of the LO diagrams. Then, this point is subjected to the user specified cuts and
dropped if those are not satisfied. Having an efficient phase space generation is one of the
key aspects for a fast and stable Monte Carlo. Phase space generation is difficult for several
reasons.

The phase space integral has high dimensionality so that isolating independent variables is not
trivial. The dimension of the integration depends on the multiplicity of the final state. For each
final state particle, an integration

∫
d3pi is added. There is an overall δ4(∑ pinital −

∑
pfinal),

which guarantees energy-momentum conservation and can be used to absorb 4 integrations.
For the momenta fractions of partons in the protons, there are 2 integrations

∫
dx1dx2. An

interaction in a particle collider has a rotational symmetry around the beam axis, so that
one

∫
dϕ can be saved. Overall, the number of integrations performed for a final state with n

particles is
dintegration = 3n− 4 + 2− 1 = 3n− 3 . (3.1)

The processes implemented have between 2 (W → lν) and 8 (WHjj → lν4ljj) final state
particles, leading to an integration with up to 21 integration variables. If no decay for the
Higgs boson is chosen, then a general off-shell Higgs boson is produced with a Breit-Wigner
shape factor. An additional integration is added for this parametrization of the Higgs boson
mass.

To explain the difficulty of the task, a grid with 1000 points in each dimension will lead to
1063 matrix element evaluations. Therefore, a naive integration would be very time consuming.
The Monte Carlo approach reduces this number to a more practical size. A general description
of the Monte Carlo method is given in section 2.6.

Monte Carlo integration is optimal for a mostly flat integrand. However, the phase space
dependence of the matrix elements is typically far from flat. Generating phase space points
for a fast and stable convergence of the integration needs knowledge of the structure of
the integrand – the matrix element. This includes propagators and angular correlations of
interactions. Using the VBFNLO framework,1 a basis for the integration is chosen that consists
of variables covering independent structures. When such structures have a known shape and
are parametrized by a single variable, they can be remapped to a more flat distribution. One
recurring distribution is the Breit-Wigner resonance.

3.2.1. Breit-Wigner resonance – Tan mapping

If the shape of a distribution is approximately known, the technique discussed in section 2.6.1
can be used. A commonly recurring shape is the Breit-Wigner resonance which describes the
invariant mass of an unstable intermediate particle. It corresponds to the squared absolute
value of this particles propagator where the width is included in the convention of the complex
mass scheme,

g(p2) = MΓ
π

1
(p2 −M2)2 +M2Γ2

. (3.2)

1VBFNLO has a collection of helper functions in ps_tools.F
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Figure 3.2: To show the effect of tan mapping as given in equation (3.4), for WH production, the
invariant mass of the W (left) and random number describing it (right) are shown. While the mass
follows a Breit-Wigner shape, the mappings leads to a nearly flat distribution of the corresponding
random number. Hence, it is more suited for integration and optimization using VEGAS.

To get optimal sampling of this shape, a mapping for a uniformly distributed number can be
derived. To do this, the inverse of the integral of the original function is required. Integrating
g(p2) gives

G(x) =
∫ x

p2
0

dp2 g(p2) = 1
π

(
arctan

(
M2 − p2

0
ΓM

)
− arctan

(
M2 − x

ΓM

))
. (3.3)

The inverse of G(x) then gives the optimal probability density for integrating this shape using
a [0, 1] random number R. The invariant mass p2 is then generated in the cutoff interval[
p2

0, p
2
max

]
,

p2 = MΓ tan(Gmin + (Gmax −Gmin)R) +M2,

where Gmin = G(p2
0), Gmax = G(p2

max) .
(3.4)

This mapping is implemented in the Resonance function and allows general input values for
M,Γ as well as upper and lower bounds on the invariant mass.

The effect of this mapping can be seen when considering the invariant mass p2 of the final
state W boson, which then decays into lν. In figure 3.2, the differential cross section in p2 is
shown, with the characteristic narrow peak at the W mass, as well as the differential cross
section in the random number used. The tan mapping leads to a nearly flat distribution. Only
the edges show a deviation, which corresponds to far off-shell production of the W boson.
This also shows that the far off-shell region is stable.

3.2.2. WHj phase space

In WHj production, the leading order process consists of diagrams with a structure as shown
in figure 3.3a. This structure is used to generate the phase space by choosing integration
variables that are mostly independent and might have an (approximately) known shape.

The order in which the masses of off-shell particles and the momenta get chosen is designed
to reflect typical variables used in experimental cuts, so that those cuts do not introduce
correlations between those variables. The order is visualized in figure 3.3b. First the “central”
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(a) Representative WHj LO diagram
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(b) Order of generation of a phase space point: In a first step, the invariant masses are generated in the
order shown on the left side, then the momenta are generated in the order shown on the right side. A
2-particle Higgs boson decay is shown as an example. For the decay into 4 particles, the corresponding
invariant masses and momenta are generated following the decay chain.

Figure 3.3: The generation of the phase space for WHj production is discussed based on a LO
diagram.

element gets constructed, by generating the mass of the W∗ coupling to the quarks. This
mass is mapped using the tail of a wide Breit-Wigner resonance. For large invariant masses,
this corresponds to the propagator. Because of the small Higgs boson width, the intermediate
W has an invariant mass larger than the on-shell mass, so that the invariant mass shows a
wide peak around mW +mH.

In the next step, the masses of W and H get generated constraining them to have a sum
below the W∗ mass, which is required for energy-momentum conservation in the WWH vertex.
Depending on the H-decay channel, the decay particle masses are generated, fixing the masses
of all massive particles.

With the masses fixed, the momenta are considered, starting with the QCD part by generating
the momenta of the 2→ jets + W∗ process. For real emission contributions, the generation
of parton momenta cannot be easily restricted to values allowed by the cuts. Thus, first the
momenta of the partons are generated and in a second step the jet algorithm is run and jet
cuts are applied. The parton momenta give the proton momentum fractions x1 and x2 used
in the PDFs.

Subsequently the W∗ momentum gets distributed to the final state particles. This is done
following the cascade in the Feynman diagram figure 3.3b (right). On each 1→ 2 vertex, a
boost into the restframe of the decaying particle is performed. In this reference frame, the
energy components of the decaying particles momenta are fixed by their invariant masses.
The direction of their momenta are generated using spherical coordinates. Thereby, both cuts
on rapidity as well as angular correlations of the interactions are reflected in the integration
variables. Distorting effects on angular distributions by boosts are mostly absorbed by
this procedure so that the integration is stable. Each integration variable is mapped to a
specific random number that is controlled by VEGAS to allow optimization as discussed in
section 2.6.2.

27



28 3. WH and WHj production at NLO

Using the described method for the typical set of parameters used in chapter 5, approximately
half of the generated phase space points pass all cuts and technical cutoffs. Additionally, the
differential dependence of the cross section on the random numbers dσ

drn is rather flat. One
example of this can be seen in figure 3.2. Also, the different distributions are flat in the sense
that there are no variations over more than one order of magnitude and all variations are
smooth. This behaviour facilities VEGAS to further optimize the integration.

This phase space gets used for all WH (j) processes, both at LO and NLO. The number
of partons is adjusted as needed. For the real emission, one parton is added to the main
2 → jets + W∗ generation. At NLO, there is a new contribution: In the virtual amplitude,
there are top-loops that couple the Higgs boson to a gluon instead of radiating it off a W.
Those diagrams give only a small contribution as discussed in more detail in section 5.2.1.
While the existing phase space generation does not map them perfectly, it is still sufficient to
cover them well.

3.3. Leading order calculation
Counting the couplings of the electroweak sector (α) and strong sector (αs), at LO the
production of WH is O(α2) and WHj is O(α2αs). The inclusion of the leptonic decay of the
W gives another factor α. The matrix element for WH and WHj is computed by separating
the EW current and the QCD part of the diagram as described in section 3.1.2. Helicity
amplitudes are used following the formalism of Ref. [40].

The EW current is calculated using HELAS routines [41] and code generated by MadGraph 4
[42], but modified to use a Cartesian polarization basis.

3.3.1. Higgs boson decays

For the Higgs boson several options were implemented. It can be produced as a final state
particle, either on-shell (narrow width approximation) or off-shell with a Breit-Wigner shape
factor.

The Higgs boson decays to bb, γγ, ττ , µµ, WW→ lν lν, ZZ→ ll ll and ZZ→ ll νν are also
included. Because the Higgs boson is a scalar, the decays in its rest frame are isotropic. Two
body decays can be calculated by multiplying the branching ratio on top of the production
cross section of a stable Higgs boson. For the branching ratios the values implemented in the
current VBFNLO version are used. Those reflect the current NLO and NNLO calculations.

For the decay to four leptons via two weak bosons, the full matrix element of the decay
is calculated. Thereby, angular correlations are included. Also anomalous couplings are
considered in those decays. The decay implementation is reused from VBF production in
VBFNLO and was checked there.

User specific cuts can be used to restrict all final state particles in the different decay channels.

3.4. Next-to-leading order calculation
As discussed in section 2.3, the next-to-leading order calculation consists of two parts: the
virtual corrections and the real emission. The following discussion is kept mostly general, but
for the WHj process, specific parts are considered. The other implemented processes (W, Wj,
WH) are simpler and use only a subset of the features of WHj so that all the possible issues
are covered by WHj.
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3.4.1. Renormalization and Counterterms

In the MS renormalization scheme the top-quark can be decoupled from the running of αs.
This leads to additional contributions to the counterterms for αs and the wave function of the
gluon. As shown explicitly in Ref. [43], those contributions cancel coincidentally for the case
of one quark line with one external gluon attached.

3.4.2. Virtual amplitude

The virtual amplitude consists of all Feynman diagrams that are of one higher order in the
coupling than the leading order contributions, but have the same number of external legs.
Because the leading order diagrams are tree diagrams, the virtual contributions are one-loop
diagrams. Two categories of diagrams are distinguished here. The first contains all diagrams
where the Higgs boson is radiated off the W (figure 3.4). All those diagrams therefore share
the same electroweak structure as the leading order diagrams. Because corrections appearing
on the quark line go up to four-point functions (boxes), this category is called boxline.

The second category contains diagrams where the Higgs boson is attached to a top quark loop
and therefore called top-loop (figure 3.6).

3.4.2.1. Boxline diagrams

The category boxlineAbe collects all virtual corrections to a quark line radiating a W boson
and a gluon for a fixed order of the external legs. Thus, to build up the amplitude, the boxline
routine is used twice with the different permutations of external particles. In addition, the
boxlineNoAbe is used, which covers all diagrams with a triple gluon coupling. The names
boxlineNoAbe and boxlineAbe refer to the fact that the latter case is also present in abelian gauge
theories, while the former is not. The diagrams contributing to boxlineAbe and boxlineNoAbe
are shown in figures 3.4 and 3.5, respectively. They include self-energy corrections, vertex
corrections and box diagrams. Those contributions are calculated collectively using the boxline
routines computed in Ref. [44]. The boxline routines were explicitly checked for several
processes within VBFNLO.

The different colour structures in those diagrams can be explicitly extracted, such that gauge
checks are implemented for terms ∝ CA and ∝ CF separately.

3.4.2.2. Top-loop diagrams

All virtual diagrams for WHj which have the Higgs boson attached to a top quark loop are
classified here as top-loops. This top-loop mediates a gluon-gluon-Higgs (ggH) coupling, which
can be thought of as the Higgs boson being radiated off the gluon instead of the W. In terms
of the number of couplings, a WWH vertex is replaced by a same order of magnitude ttH
vertex, which is given by the Yukawa coupling yt. Examples of such diagrams are shown in
figure 3.6. The gluon radiating the Higgs boson can be in either initial or final state.

The ggH coupling can be approximated by an effective vertex as often done in Gluon Fusion.
Problems of this approximation are discussed in section 4.3.1. The top-loop diagrams were
calculated using the routines for massive fermion loops from Ref. [45]. Bottom quark loops
can also be included but are neglected by default as they contribute only at the level of
(mb/mt)2 . 6 · 10−4. Treating bottom quarks massive in this case would not directly conflict
with the choice of nf discussed in section 3.6, but bottom quarks should be treated overall
consistently with the choice of nf.
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Figure 3.4: The diagrams shown contribute to the virtual contribution of WHj (NLO) production
and are calculated using the boxlineAbe routine. They always contain a quark line in the loop, such
that the same diagram types would appear in a QED calculation.
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Figure 3.5: Diagrams with a triple gluon vertex are calculated with the boxlineNoAbe routine. They
contain a triple gluon vertex and are thus specific to non-abelian gauge theories like QCD.
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Figure 3.6: The virtual contribution to WHj (NLO) production also contains diagrams, where the
Higgs boson is not attached to the W boson, but attached to a top-loop. The Higgs boson is then not
radiated off the W boson, but effectively off a gluon. This top-loop can appear for the gluon in both
initial and final state.
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Figure 3.7: The real emission for WHj production contains two classes of diagrams. Diagrams of with
one quark line and thus two external gluons are called ggqq (left). With the gluons in the initial state
this gives access to the large gluon PDFs. The qqqq diagram type consists of two quark lines (right).

3.4.3. Real emission and subtraction terms

As discussed in section 2.3, the real emission consists of all contributions with an additional
QCD emission. Therefore, WHj (LO) gives the diagrams for the WH real emission and
WHjj (LO) those for WHj.

For WHjj, there are two different types of diagrams depending on the type of the external
QCD particles:

ggqq 2 gluons and 2 quarks connected by only one quark line

qqqq 4 quarks connected by two quark lines

The ggqq type allows a gluon-gluon initial state, which is favored by the PDFs in the low-energy
regime, at small Feynman x. The ggqq contributions are about one order of magnitude larger
than the qqqq ones. In the qqqq case there are some subtleties in including the CKM matrix,
which are discussed in section 3.5.3.

In the Catani Seymour implementation using the method described in section 2.3.1, the Real
Emission also includes the subtraction terms. The construction of subtraction terms is very
general. They only depend on the QCD structure and, therefore, WH (+ n jets) can use the
same subtraction terms as W (+ n jets). This allows to reuse already implemented subtraction
terms from WA and WAAj.

The subtraction terms are constructed to smoothly approach the matrix element in the
collinear and soft limit, thereby cancelling the divergences. This cancellation might become
numerically unstable such that a technical cutoff is introduced. This cutoff requires all parton
pairs to have an invariant mass above 0.1GeV.

There are diagrams with the same final state as the real emission, but via an EW process
instead of the QCD production. Example diagrams for this process are shown in figure 3.8.
Those processes include Higgsstrahlung with an additional vector boson, as well as VBF Higgs
boson production with another vector boson. While those diagrams formally replace one order
of αs with α, they could become large in special phase space regions. In this calculation, these
diagrams are not included, as they are considered part of a different process, which includes
an additional vector boson, which can decay hadronically..
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Figure 3.8: The WHjj final state can also be produced via an additional vector boson. Example
diagrams for such a contribution are shown here. These diagrams are not included in this calculation.
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(a) CKM matrix element at Wqq vertex
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(b) elements in the CKM matrix

Figure 3.9: The definition of the CKM matrix is given based on the Wqq vertex. Each matrix
elements corresponds to a possible flavour combination.

3.5. CKM matrix effects

As introduced in section 2.1.2, in the EW sector of the Standard Model for quarks the
interaction and mass basis do not coincide. They can be related by a unitary transformation,
which is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

In calculations using Feynman diagrams and propagators, usually the mass eigenstates are
chosen as a basis. Therefore, interactions with a W boson can change flavour. This is reflected
in the Feynman rules that allow a W coupling to any combination of up- and down-type
quarks and include the corresponding CKM matrix element. The CKM matrix and the vertex
where its elements enter are shown in figure 3.9.

The CKM matrix is dominantly diagonal. This is best seen in the Wolfenstein parametrization
[46]. In this parametrization, the existing hierarchies of the matrix elements are emphasised
by expressing them in an expansion in λ ≈ sin2 θc ≈ 0.225. The Wolfenstein parametrization
and the current experimental values for the CKM are given in figure 3.10. Because the CKM
matrix is mostly diagonal, the off-diagonal elements can be regarded as higher order effects
and are often discarded in calculations.

When calculating Feynman diagrams separately for each flavour combination, there are 6
contributions (all up-down quark combinations of the first 5 flavours). Using a diagonal CKM
matrix, those contributions reduce to two (generations), which are equal up to the PDFs used,
such that only one matrix element has to be computed. Therefore, treating the CKM matrix
diagonally not only reduces complexity but also CPU time.
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1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


(a) Wolfenstein parametrization


0.97427 0.22534 0.00351
0.22520 0.97344 0.0412
0.00867 0.0404 0.999146


(b) current experimental values [47]
(without complex phase)

Figure 3.10: The CKM matrix is mostly diagonal. This is exploited by the commonly used Wolfenstein
parametrization, which expands the matrix elements in a small parameter λ. The currently known
numerical values support the parametrization and show that the mixing between the first two generation
is more than an order of magnitude larger than any mixing involving the third generation.

3.5.1. Including the CKM matrix using modified PDFs

The non-diagonal CKM matrix can be included in an efficient way that only requires minimal
changes on an existing matrix element calculation, which so far does not include flavour
information. This is done by moving the CKM matrix elements occurring in the calculation
to the PDFs. This process will first be discussed on the basic case of one W boson coupling to
one quark line and then expanded to Wj, WHj.

The collider cross section as discussed in 2.4.2 includes a sum over the quark flavours. The
flavour dependence enters in the PDFs and the matrix element,

σ ∝
∫ 1

0
dx1

∫ 1

0
dx2

∑
f1,f2

pdff1,p(x1, Q) · pdff2,p(x2, Q) |M(f1, f2, pi)|2 . (3.5)

3.5.2. One quark line coupling to a W boson

For simplicity only the first two generations of quarks and diagrams with only one quark line
with one W boson attached are considered. Effects of the third generation mixing are highly
suppressed. The flavour dependence of the matrix element is only a factor of one CKM matrix
element squared,

|M(f1, f2, pi)|2 = V 2
f1f2 |M(pi)|2 . (3.6)

This gives the full flavour dependence,∑
f1,f2

pdff1,p(x1, Q) · pdff2,p(x2, Q) · V 2
f1f2 . (3.7)

This sum can be written explicitly. The shorthand fi ≡ pdffi,p(xj , Q) is used, where fi is one
of the quark flavours u, c, t, d, s, b. For a general CKM matrix in the first two generations, this
results in

V 2
ud u · d+ V 2

us u · s+ V 2
cd c · d+ V 2

cs c · s
= u′ · d+ c′ · s with u′ = V 2

ud u+ V 2
cd c, c′ equivalently,

= u · d′ + c · s′ with d′ = V 2
ud d+ V 2

us s, s′ equivalently.
(3.8)

Therefore, the CKM matrix factors can be absorbed into a rotation of the quark basis,
effectively rotating the PDFs. There is a freedom in choosing whether up-type or down-type
quarks are rotated. This freedom of choice will come in handy.
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34 3. WH and WHj production at NLO

q̄

q

Figure 3.11: VBF diagrams only contain initial-final quark lines. They are therefore not affected by
the transition from a diagonal to a non-diagonal CKM matrix, as discussed in the text.

Diagrams that have only one quark line can be organized in three categories, depending on
whether the quarks are in the initial or final state: initial-initial, initial-final, final-final.

In the initial state, the matrix element is folded with the PDFs, so that the flavour information
is important. In the final state, the quark flavour could be identified by flavour tagging in a
detector, but for the four light flavours, this is generally not done.

Considering an initial(f1)-final(f2) diagram, the flavour dependence is∑
f1,f2

pdff1,p(x1, Q) · V 2
f1f2 . (3.9)

The sum over f2, using the unitarity property of the CKM matrix, collapses to a factor of
1 and reproduces the expression for a diagonal CKM matrix. The same effect can be made
explicit by performing the basis rotation introduced in equation (3.8) and rotating the class of
quark in the final state. This PDF is not used and therefore does not enter in the calculation
but absorbs the CKM matrix element.

Analogously, the final-final diagrams are not affected by the CKM matrix. Thus, only one of
the diagram categories is numerically affected by the CKM matrix: initial-initial. For the
other two categories the CKM matrix does not have to be included.

This exclusion affects many processes and reduces the CKM matrix effect. For example, VBF
processes as shown in figure 3.11 are independent of the CKM matrix. They only contain
initial-final quark lines.

3.5.3. Effect on Wj and WHj production

The simple case of one quark line coupling to a W boson can be generalized to all diagrams
occurring in WHj (NLO) production.

Diagrams with one quark line and one gluon are directly covered by the discussion above.
Also the additional Higgs boson radiated off the W boson or the gluon does not affect the
flavour dependence. Loop corrections do not introduce new external quarks, so that all virtual
corrections effectively behave the same way as the Born case.

The only new issues appear in the real emission and subtraction. For the real emission, there
are two types of diagrams as described in section 3.4.3: qqqq and qqgg. For the latter there
is only one quark line, thus, it can be treated like the LO contributions. However, for the
qqqq channel, there are two quark lines which need special treatment. Of these two, only the
quark line with the W boson attached is relevant for the CKM matrix discussion, but with
two quark lines there is the chance of interference between different diagrams. The potentially
problematic interference terms are shown in figure 3.12.
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d u

ūū

d u

ūū

Figure 3.12: The real emission has interference terms between t-channel (left) and s-channel (right)
diagrams. Those interference terms can lead to inconsistencies when flavour transitions are moved to
the PDFs. For WHj production a consistent treatment using modified PDFs is nevertheless possible.

The s-channel diagram is of the initial-initial type and should use modified PDFs, while the
t-channel only has initial-final quark lines and does not need modified PDFs. Just blindly
using the rotated PDFs can also be problematic, because this can introduce spurious terms in
the interference. In the flavour combination shown in figure 3.12, if the modified PDFs are
used for the up-type quarks, the t-channel contains not only du→ uu, but also some fraction
of dc→ uc, while the s-channel gets dc→ uu, which has a different final state and therefore
does not interfere.

These issues can be circumvented for the case of two quark lines with one W boson by using
the modified PDFs for down-type quarks in the case of diagrams with 3 external up quarks
and for up-type quarks in the case of 3 external down quarks. This preserves the separation of
interfering and non-interfering diagrams, prevents CKM matrix element factors on diagrams
that do not contribute and still allows factorizing the CKM matrix effects completely from
the matrix element calculation, which only needs the quark charge information.

A similar procedure is in general also possible for other processes with more than one W boson
coupling and a more complex QCD structure.

3.5.3.1. Numerical effect

To estimate the numerical effect, the case of mixing of the first two generations is considered.
In that scenario the difference between one calculation including the cabibbo angle θc via
Vud = cos2 θc, Vus = sin2 θc, . . . another with the diagonal approximation is considered.

As described above the CKM matrix factors can be included in the PDFs which factorizes
from the matrix element calculation. Therefore, the common matrix element is neglected and
just the PDFs are considered. Then, the difference between the cross section with the CKM
taken diagonally and one including CKM matrix effects is

σdiag ckm − σwith ckm

∝
(
u · d+ c · s

)
−

 V 2
ud︸︷︷︸

cos2 θc

u · d+ V 2
cd︸︷︷︸

sin2 θc

c · d+ V 2
us︸︷︷︸

sin2 θc

u · s+ V 2
cs︸︷︷︸

cos2 θc

c · s


=
(
1− cos2 θc

)
u · d+

(
1− cos2 θc

)
c · s− sin2 θcc · d− sin2 θcu · s

= sin2 θc︸ ︷︷ ︸
≈5%

(u− c) (d− s) .

(3.10)

So the effect of the CKM matrix is a pre-factor sin2 θc ≈ 5% that is multiplied with two
differences of PDFs. While the u PDF is significantly larger than the c PDF, both d and s are
sea quarks and have similar (small) PDFs so that this factor gives an additional suppression.
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Process σ without ckm (fb) σ with ckm (fb) Rel. difference
LO NLO LO NLO LO NLO

W+H 55.72 76.28 55.27 76.00 −0.80% −0.40%
W+Hj 25.32 28.12 25.18 28.07 −0.50% −0.20%

Table 3.1: The numerical effect on the cross section of including Vus = Vcd = sin θc = 0.22535 is
shown. Following equation (3.10), the full calculation with off-diagonal matrix elements is smaller than
the diagonal approximation. For all considered production processes, the cross section is changed by
less then 1%.

This PDF suppression depends on the momentum fraction considered and therefore the phase
space and is especially small for modest parton momenta at small Feynman x.

Effects involving the third generation of quarks will be proportional to the off-diagonal elements
V 2
qb and V 2

tq which are smaller than 0.2% leading to an additional factor 20 suppression compared
to the mixing of the first two generations. Therefore it is safe to neglect any third-generation
CKM matrix effects.

The use of realistic input parameters and the cuts discussed in section 5.1 leads to a numerical
effect on the total cross section below 1%. The effect on the LO and NLO cross section of
WH and WHj is given in table 3.1.

Including the cabibbo angle therefore reduces the cross section between 0.8% for WH (LO)
down to 2 ‰ for WHj (NLO). This effect is at the order of the above mentioned estimation.
Because of the small size of the correction, the off-diagonal CKM matrix is not included in
further numerical results if not stated explicitly.

3.5.3.2. Effect on distributions

The effect of including the CKM matrix on differential distribution in WHj is small. Within
the phase space region dominating the cross section, the effect of the CKM matrix is rather
flat and in general is smaller than other theory uncertainties. The effect of including the CKM
matrix on several distributions is shown in figure 3.13. There, the ratio of the differential cross
section with and without the inclusion of the CKM matrix is plotted. The values for the CKM
are given in appendix A. There are regions where the CKM matrix effect is enhanced. Those
correspond to large x in the PDFs. In figure 3.13 also the energy of the final state parton
is plotted, which shows an increased CKM dependence in the high energy region, where the
effect can reach 2-3%.
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Figure 3.13: For several variables the effect of including a non-diagonal CKM matrix compared to the
diagonal approximation is shown. The pT distributions of the Higgs boson, the W decay lepton and the
hardest jet are essentially flat. For very large final state parton energies, the effect of a non-diagonal
CKM can increase to 2-3%.
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38 3. WH and WHj production at NLO

3.5.4. Checks

Several checks were performed to verify the correct implementation of the CKM matrix. Only
flavour changing interactions between the first two generations were considered for calculations
and checks.

The following checks were performed:

• Disabling the CKM matrix input or choosing the identity restores the result without
CKM.

• When setting the PDFs of all generations equal, random choices of orthogonal matrices
for the CKM matrix lead to the same cross section.

• To check that non-symmetrical choices are treated correctly: When setting the c quark
PDF to 0, introducing a small Vus raises the cross section, introducing a small Vcd does
not.

• At the cross section level agreement was found with MCFM (WH NLO) and Sherpa
(WH, WHj LO). This can also be seen in tables 4.1 and 4.2.

3.6. Flavour scheme – nf = 4 or 5
In QCD calculations, especially those involving loops, a common assumption is to treat quarks
as massless particles. For all QCD interactions this creates a symmetry between the different
quark flavours. Then a process is not defined for individual flavours, but on the basis of quarks
or partons. The number of active flavours in the calculation is called nf.

Treating massive particles massless is only a good approximation if their mass is small
compared to the scale of the interaction. This scale is not a fixed value but only an order
of magnitude so that there is a certain ambiguity in the cutoff. For the process at hand,
deviations due to neglected masses would come as factors of mq/µ depending on the process
scale µ.

For usual events at the LHC, considering d,u,s and c massless is considered a good approxima-
tion (mq ≤ mc ≈ 1.3GeV). The top quark (mt ≈ 173GeV) is too heavy and requires special
treatment. Internal quark loops can be calculated using massive propagators. Often mass
limits are used, like the heavy-top limit, which is discussed in section 3.4.2.2. In the initial
state top quarks are neglected as due to their mass they are not relevant in PDFs. Final state
top quarks decay and can be detected. They can be distinguished from a light jet so that
processes with final top quarks can be separated from other final state partons.

This leaves two possible choices for nf : 4 or 5. In other words, the only remaining choice is
whether to treat the bottom quark as massive or massless.

There is no general best choice, but for most processes one of the two is favored.

3.6.1. Consistent choice of nf

The dependence on nf appears in:

• external quark lines (initial and final)

• PDF set, PDF counter terms

• running of αs, counter terms
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3.6. Flavour scheme – nf = 4 or 5 39

• quark loops

• Catani-Seymour: subtraction terms, I,P,K terms

All those occurrences are interrelated. Choosing nf in one of them fixes all others. Using a
different nf will lead to inconsistencies, as one of the relations as discussed in the following
will be broken.

At LO there are no b quarks present in the discussed processes because a top quark would
appear. They can only enter at NLO. There, they are introduced in the splitting of a gluon
in a bb pair as part of the real emission. The real emission and the subtraction terms are
calculated using the construction by Catani and Seymour, which relates the number of flavours
in the real emission splitting to two parts of the calculation.

On the one hand, nf appears in the I-operator in the splitting of a gluon into a quark pair.
This is constructed to cancel the divergences in the virtual contribution, hence, nf in quark
loops is fixed. This also sets the counter terms, which are constructed based on loop diagrams
and therefore the running of αs.

On the other hand, the gluon splitting appears in the finite P, K terms of the Catani Seymour
construction. The P operator also contains a part dσc, which describes corrections to the PDFs.
Thus, the PDF set has to match the nf used in the real emission. The PDFs usually provide a
running of αs based on their fit, which relates back to the nf in the virtual contribution.

Therefore, all occurrences of nf are connected and choosing different values for nf in different
terms is inconsistent and leads to an over- or underestimation of the result.

3.6.2. Problems and features of four- and five-flavour scheme

With nf = 4, there are no initial state b quarks. In the final state there could be massive
b quarks, but they would only be generated in pairs. Processes with an odd number of final
state b quarks, thus, have unresolved additional b quarks. Processes which require final state
b quarks might lead to large terms of the form log q2/m2

b which are resummed in a five flavour
calculation.

The default choice of nf in current PDF sets (CTEQ, MSTW, . . .) is 5. For a pure QCD
calculation or one involving only neutral currents this is the common choice. With charged
currents a W coupling to a b quark would lead to a top quark. Initial top quarks are not
given by the PDFs and final top quarks can be tagged by their decay so that the process is
not counted as a normal jet. Therefore, in processes with one W coupling the corresponding
quark line should not include b quarks, but other quark lines in the diagram might.

In five-flavour calculations, external bottom quarks are often restricted. For example in
Refs. [48, 49], b quarks in the initial state are neglected due to the “smallness of their PDFs”
and b quarks in the final state are only included if a bb pair is recombined into one jet. This
procedure correctly treats all occurrences of nf related to divergent structures, but neglects
the contribution of b quarks in finite terms. Those terms are expected to be small and of
comparable size as the difference between nf = 4 and nf = 5.

3.6.3. Implementing external b quarks

The existing code for WAAj only included four external quark flavours. Several changes were
made to add external b quark. The only part affected is the real emission of WHj (and Wj).
In that case there are diagrams with two quark lines (called qqqq in section 3.4.3). The quark
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40 3. WH and WHj production at NLO

nf final state b quarks cross section (fb) deviation from full nf = 5
LO NLO LO NLO

4 none 26.410 28.891 −1.1% −1.6%
5 all 26.724 29.359
5 none 26.724 28.451 −3.1%
5 one jet 26.724 28.737 −2.1%

Table 3.2: The cross sections for W+Hj production with nf = 4 and nf = 5 are shown. For the latter
different simplifications for the real emission are shown, which either exclude all final state b quarks
or only include them if they are recombines into one jet. The cuts given in equation (5.1) are used.
The difference between nf = 4 and nf = 5 is 1.1% at LO and 1.6% at NLO. However, an inconsistent
treatment of external b quarks enhances this difference at NLO to 2% or 3% respectively.

line which does not have a W attached can then also be a b quark, adding two external
b quark legs.

There are also additional subtraction terms for b quark diagrams, where the corresponding
Born diagram has the b legs recombined to a gluon. This can only be divergent (and therefore
require a subtraction term) if at least one b leg is in the final state and a b leg can never be
an observer parton. Additionally, finite collinear terms corresponding to the splitting of an
initial b into b and gluon have to be included.

3.6.4. Comparing and merging four and five flavour schemes

When comparing four and five flavour scheme, it is important to use comparable setups.
While one is required to use different PDF sets, they should come from the same family with
the same assumptions and prerequisites for the fit, such that only the change due to nf is
considered. Some PDF sets (e.g. CTEQ6) only include a specific flavour version so that they
are not suitable for comparisons.

On the PDF side, the state-of-the-art is no longer Fixed Flavour Number, but generalized
schemes whose number of active flavours depends on the scale. An overview of the current
schemes is given in Ref. [50].

In a calculation to all orders in perturbation theory both schemes should converge. Having both
approaches allows for a comparison and an estimation of the remaining uncertainty. Calculating
higher order corrections is usually easier in one of the schemes, such that calculations exist
only in one scheme, e.g. four flavour for single top (NLO) [51], five flavour for bbh (NNLO)
[52].

The cross section of W+Hj (NLO) production for different versions of nf = 4 and nf = 5 are
given in table 3.2. For this comparison the MSTW2008 PDF sets [53] were used. The full
calculations in both flavour schemes only deviate by 1.1% at LO and 1.6% at NLO.. However,
neglecting all external b quarks or only considering them if they are combined into one jet,
can reduce the NLO cross section by 2-3% compared to the full nf = 5 calculation. For the
calculation without external b quarks, the corresponding subtraction terms are removed.

40



CHAPTER 4

CHECKS

In order to ensure the correctness of the implemented processes, several checks have been
performed. They are documented in this chapter:

LO matrix element, section 4.1 At LO the matrix element was checked against the auto-
matically generated MadGraph matrix element for individual phase space points.

LO cross section, section 4.2 The cross section for all LO processes was checked against
Sherpa.

Virtual contributions, section 4.3 Several properties of the virtual amplitudes were used for
checks. The NLO calculation allows to check for violations of gauge symmetry, as well
as the reproduction of some analytical results. The top-loop type diagrams were checked
against an external implementation.

Subtraction terms, section 4.4 Cancellations expected by the chosen subtraction mechanism
can be checked explicitly.

NLO cross section, section 4.5 The NLO cross section for WH was checked against MCFM,
as well as against VH@NNLO. The NLO cross section of Wj was also checked against
MCFM.

previous NLO results, section 4.5.3 The results for WHj were compared to an existing cal-
culation for on-shell WHj production.

The production of W+H(j) and W−H(j) are very similar and are in general referred to as
WH(j). Checks were always performed for both cases, but for consistency numerical results in
this chapter are by default given only for W+H(j).
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Process VBFNLO (fb) Sherpa (fb) rel. difference

W+H (LO) 55.721 55.741 −0.03%
W+Hj (LO) 25.322 25.312 +0.04%
W+Hjj (LO) 10.718 10.713 +0.06%
W+Hjj, H→WW (LO) 0.017208 0.017210 −0.01%
W−Hj (LO) 14.502 14.503 −0.01%

W+H (LO, ckm) 55.273 55.292 −0.04%
W+Hj (LO, ckm) 25.182 25.180 +0.01%
W+Hjj (LO, ckm) 10.685 10.678 +0.06%

Table 4.1: The LO cross sections are compared between Sherpa and the implementation into VBFNLO
performed as part of this thesis. Agreement is found for all compared processes within the statistical
accuracy below 1‰. Here a selection of representative processes is shown. The fundamental process
discussed is W+H with up to two jets. Additionally, Higgs boson decays are included and were checked.
Also the implementation of the CKM matrix gives agreement at all implemented jet multiplicities,
with deviations below 1 ‰.

4.1. LO matrix element
MadGraph [42] allows the generation of general LO matrix elements. Those can be computed
for individual phase space points and compared to our implementation. The helicity basis
used by MadGraph differs from the one used in VBFNLO. Therefore, the correct helicity
combination has to be considered. The implementation of the matrix elements of W, Wj,
WH, WHj were compared with the code generated by MadGraph. For all checked points the
relative difference was below 10−10. This check is independent of the phase space integration
and the optimizations involved. This explains the high accuracy of the comparison.

4.2. LO cross section
At LO the cross section was checked against Sherpa [54]. Sherpa allows the automatic
calculation of cross sections including cuts and particle decays. The calculation is based on
the matrix element generators Amegic and Comix. Amegic was found to behave badly for
high multiplicity final states and therefore Comix was used. A selection of the compared cross
sections is given in table 4.1. Agreement better than 1‰ is found.

The Wjj (LO) cross section was checked against an implementation by Matthias Kerner [55].
This implementation allows runs with both nf = 4 and nf = 5. Agreement was found for both
flavour schemes within the statistical uncertainty.
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4.3. Virtual contributions

Comparing the NLO matrix element is less trivial than the LO one, because of the different
existing subtraction schemes and some ambiguities about moving terms between virtual and
real contribution. Thus, no check of the NLO matrix elements was performed. However,
many internal checks as well as comparisons of the cross section as explained in the following
sections were completed.

4.3.1. Top-loops

The top-loop diagrams were compared at the matrix element level against MadGraph. Mad-
Graph automatically generates code for the matrix elements. This is possible not only for the
SM but also for several other theories. MadGraph includes one extension of the SM which
includes effective Hgg and Hγγ vertices. These vertices are constructed by evaluating the loop
integral in the limit of mt →∞ also called heavy top limit. The vertices are approximated by
a Taylor series in q2/m2

t , which allows more accuracy than only the leading term for a Higgs
boson mass below 2mt.

This allows the automatic generation of both born and top-loop diagrams. Therefore, not
only the top-loop contributions can be compared, but also the relative sign between born and
top-loop diagrams can be checked. The heavy top limit assumes that the top mass is the
highest scale in the calculation. This assumption is phase space dependent and breaks down
easily.

As can be seen in figure 3.6 one of the gluons is off-shell. The q2 can be of the order of the ŝ
of the process, which implies

∣∣q2∣∣ > m2
t . In most regions of phase space, q2 is at a few hundred

GeV and therefore the heavy top limit no longer holds.

For a comparison with MadGraph several special parameter choices were considered to
ensure the validity of the heavy top limit approximation and therefore the correctness of the
MadGraph result:

• heavy top: Setting mt = 1000 ·mt,physical restores the required scale hierarchy. In this
limit the agreement between the implementation for this thesis and MadGraph is at the
level of 10−6. This test includes points of all regions of phase space.

• light gluon: Leaving the top mass at its physical value, one can limit the virtual gluon
to be rather light. Requiring

√
q2 < 150GeV cuts away many points, but the remaining

ones have mt as the highest scale. Then, the agreement is at the level of 10%

• light Higgs boson: The gluon q2 must be larger than m2
h. Hence, to reduce it, a

light Higgs boson with mh = 20GeV can be considered. This allows virtualities of√
q2 < 50GeV. For those, the agreement with MadGraph is at the level of 1%.

4.3.2. Gauge test and Ward identities

When checking the numerical result of a matrix element calculation, there are many symmetries
and properties that can be exploited. One that is very useful is the gauge symmetry.

Gauge symmetries leave an unphysical degree of freedom in the theory on which no physical
observable should depend. This can be used in analytical calculations by introducing a gauge
fixing term and confirming that this choice of gauge cancels out in all calculated observables.
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In a numerical calculation a set of identities called Ward identities are useful. For tree level
amplitudes, those imply that the amplitude with the polarization vector of the gluon replaced
by its momentum vanishes,

M|εµ→ pµ
= 0 . (4.1)

This equality not only holds for the full matrix element, but also for gauge-invariant sub-
sets of diagrams. Testing this equality therefore checks whether there is a mistake in the
implementation that would violate gauge invariance.

For loop diagrams, there are related identities, that express an n-point function contracted
with the momentum by a difference of (n − 1)-point functions. In WHj production, box
contributions can be reduced to a difference of vertex corrections.

The box diagram calculation involves a loop integral of the form

Dµ2µ3(p1, p2, p3, p4) =
∫

ddq

(2π)d
1
q2u(p13)γα 1

/q + /p13
γµ3

1
/q + /p12

γµ2
1

/q + /p1
γαu(p1),

where p13 = p1 + p2 + p3, p12 = p1 + p2.

(4.2)

For the matrix element calculation this has to be contracted with the polarization vectors.
Instead contracting with the momentum allows to cancel propagators and rewrite the expression
as

pµ2
2 Dµ2µ3(p1, p2, p3, p4) = [(p2 + p1 + q)µ2 − (p1 + q)µ2 ]Dµ2µ3(p1, p2, p3, p4)

=Cµ3(p1, p2 + p3, p4)− Cµ3(p1 + p2, p3, p4)
(4.3)

The vertex corrections Cµ3 are proportional to the Born matrix element, which allows a
comparison to the leading order calculation.

Furthermore, the different color structures of the gluon attached inside the loop (CF − CA/2)
and the gluon outside the loop (CF ) can be separated and checked individually. Those relations
were explicitly calculated in Ref. [44].

The Ward identity also allows to control numerical instabilities. This can be done by
constructing a “normalized zero”. M is split in two parts of about similar size and the Ward
identity is checked as

M|εµ→ pµ
= 0

⇔ M1|εµ→ pµ
+ M2|εµ→ pµ

= 0

⇔
M1|εµ→ pµ

M2|εµ→ pµ

+ 1 = 0
(4.4)

Using this normalized zero is useful because calculating the left-hand side of equation (4.4)
gives the relative difference from zero compared to the size of the matrix element. In figure 4.1,
a histogram of the accuracy of the gauge test is shown. Most points are calculated with 13
digits of accuracy. In the sample of 105 points none had less than 7 digits of accuracy and
only 10 points were at the level of 8 digits. Since the NLO corrections are about 40% of the
LO cross section, it is sufficient to require 2-3 digits of accuracy for the amplitude, to get a
total cross section with a ‰ accuracy. For this setup no unstable points were found. For all
processes implemented in this thesis the identities are fulfilled for the matrix elements used
within the numerical accuracy.
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Figure 4.1: A histogram of the accuracy of the gauge test for the virtual amplitude in W+Hj
production is shown. Most phase space points fulfill the gauge test with an accuracy of 13 digits. All
points in this sample have an accuracy of at least 7 digits, which is well below the level of 2-3 digits
required for a stable result of the cross section at the ‰ level.

4.3.2.1. ε poles

The virtual contributions contain pole structures as discussed in section 2.3.1. Those can be
expressed as terms proportional to 1/ε and 1/ε2. These divergent terms are known and they
are proportional to the Born matrix element. The finite term is called M̃. Using this, the
virtual matrix element can be written as

MV = couplings ·
(
M̃V +

(
4πµ2

R

−s

)ε
Γ(1 + ε)

[
− a
ε2
− b

ε

]
MB

V

)
, s = (p1 + p2)2. (4.5)

The divergent terms can be checked using the known prefactor andMBorn. Agreement within
the numerical accuracy is found. Additionally, this check tests whether both virtual and born
amplitude use the same couplings and momenta.

4.3.2.2. Reparametrization invariance

The prefactor of the pole terms in equation (4.5) depends on s, the square of the center-of-mass
energy. Considering −s as an independent scale µ0, µ0ε can be expanded in ε, which leads to
an additional finite term proportional to the Born matrix element [44].

M̃′V = M̃V (µ0) + f (µ0)MB
V (4.6)

Then M̃′V is independent of µ0. This can be checked by calculating the matrix element for the
same phase space point with different choices of this scale µo and comparing the corresponding
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M̃′V . Checking with µ0 = −s and µ0 = 1GeV gives agreement at the order of 10−12. This
test is important as it directly checks the algebra for some finite terms in M̃V .

4.4. Subtraction terms
The subtraction scheme described in section 2.3.1 was introduced to cancel the divergences
in the collinear and soft regions of the phase space. These cancellations approach the limit
smoothly, so that they can be seen in the respective regions. Interesting variables for the
soft limit are the energy Ei of a final state parton and for the collinear limit pi · pj , where at
least one parton is in the final state. The cross section contains contributions from the real
emission dσR and the subtraction terms dσA,

dσm+1 = dσR − dσA . (4.7)

The born kinematics of the subtraction terms are derived from the real emission kinematic by
combining two partons. There are 11 possible kinematics for WHj. For this calculation the
implementation of Ref. [39] is used.

The cancellation of real emission and subtraction terms can be seen in the histogram shown
in figure 4.2. This histogram shows contributions to the total cross section in the collinear
region of p2 and p4. In the limit of small p2 · p4 the distribution smoothly vanishes. There is a
technical cutoff to reduce numerical instabilities, requiring m24 > 0.01GeV2. The difference
between real emission and subtraction terms is negligible at that scale.

To test the cancellation of the real emission contribution, one can compare the subtracted with
the unsubtracted result for phase space points in the infrared limit. With the real emission as
normalization this difference is

R ≡ dσR − dσA
dσR . (4.8)

The ratio R given above is shown in figure 4.3 for the phase space region where p1 and p4
are collinear. Because the subtraction terms are also subject to phase space cuts, artifacts
can appear in the cancellation. Requiring all subtraction kinematics and the real emission
to pass the cuts, leads to the cancellation shown in figure 4.3a. If only the real emission has
to pass the cuts, there might be points where all subtraction terms fail the cuts leading to
R = 1. There are also points, for which only one of the two subtraction terms corresponding
to this collinear region passes the cuts. This leads to lines at 1 and 1/2, which can be seen in
figure 4.3b. In the collinear limit the real emission and the subtraction terms grow and cancel
each other. However, differences of two large terms can lead to numerical instabilities. Thus,
a cutoff is introduced in the phase space generation as discussed in section 3.2.
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Figure 4.2: This histogram shows the cancellations between real emission and subtraction terms for
W+Hj production. The differential cross section for the invariant mass m24 = 2p2p4 between a final
and initial state parton is shown. A small invariant corresponds to the partons being collinear. In this
region the real emission approaches the subtraction terms, such that their sum smoothly goes to zero.
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(a) Requiring all kinematics to be included

(b) Including also points where only some kinematics pass the cuts

Figure 4.3: The cancellation of real emission and subtraction terms in the collinear region is shown.
The subtraction terms constructed following the method of Catani and Seymour leads to a smooth
cancellation. When phase space points are included, which did not pass the cuts for some kinematical
combination, artifacts appear, which are discussed in the text in more detail.
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Process VBFNLO (pb) MCFM (pb) Rel. difference

W+ (LO) 5320.8 5320.9 -0.001%
W+ (NLO) 6589.9 6588.6 -0.019%
W+j (LO) 901.4 903.0 -0.17%
W+j (NLO) 1221.4 1221.7 -0.023%
W+j (LO) pTj > 50 339.2 339.8 -0.17%
W+j (NLO) pTj > 50 426.0 426.0 -0.01%
W+H (LO) mcfmcuts 0.34126 / BR 0.34129 / BR -0.01%
W+H (NLO) mcfmcuts 0.44601 / BR 0.44672 / BR -0.16%

Table 4.2: The cross sections calculated are compared with MCFM. For Wj (NLO) and WH (NLO)
production, agreement is found at the level of 2‰. For the WH comparison the default cuts used by
MCFM were used, which are given in equation (4.9). For W−j and W−H production agreement is also
found at the ‰ level.

4.5. NLO cross section
4.5.1. MCFM

MCFM provides NLO implementations of the production of a W boson with up to two jets as
well as WH production [56]. Wj (NLO) production is the most interesting comparison as it
checks the total NLO cross section and covers the majority of the code also used for WHj
(NLO) production.

The cross sections are in general calculated using the parameters and cuts in section 5.1. For
Wj production an additional run with pTj > 50GeV instead of 30GeV is performed. The five
flavour scheme is used. For the comparison of WH production with MCFM, their default cuts
and EW parameters were used, which do not include cuts on leptons. The values used are

Rjj = 0.5, anti-kT -alg. , pT,j = 15GeV , |ηj | < 3 ,
µR = µF = 80GeV ,

√
s = 8TeV .

(4.9)

As shown in table 4.2 agreement is found with a relative difference below 2 ‰. While the
statistical error claimed can be even smaller, the technical cutoffs and differences in the
implementation might introduce differences at the ‰ level.

To test the implementation of Wj (NLO) production even in numerically difficult and unphysical
regions, a comparison with MCFM for extreme scales (10GeV and 1000GeV) was performed.
Both LO and NLO agree up to better than approximately 2 ‰. The numerical results are
given in table 4.3. These extreme scales test all scale dependent parts of the calculation
including especially finite terms of the NLO calculation. The WH implementation in MCFM
also allows to include off-diagonal CKM matrix elements and agrees with this calculation at
the ‰ level.

4.5.2. vh@nnlo

The program vh@nnlo [57] allows the computation of the integrated cross section of WH
and ZH production at NNLO. This also includes the diagrams of the WHj NLO calculation,
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Scale (GeV) VBFNLO (pb) MCFM (pb) Rel. difference
µR µF LO NLO LO NLO LO NLO

10 10 978.0 1573.5 980.0 1569.9 +0.21% −0.23%
20 20 975.1 1407.0 976.8 1406.5 +0.17% −0.03%

500 500 792.3 1111.4 793.2 1111.7 +0.11% +0.03%
1000 1000 749.0 1076.5 749.8 1077.0 +0.10% +0.04%
1000 10 460.8 794.8 461.2 795.2 +0.09% +0.04%

10 1000 1589.7 1500.0 1593.3 1499.3 +0.22% −0.05%

Table 4.3: The cross sections for W+j production are compared to MCFM using extreme scales. This
tests the scale dependent parts of the NLO calculation.

Process VBFNLO (fb) vh@nnlo (fb) Rel. difference
LO NLO LO NLO LO NLO

WH (with ckm) 1201.38 1520.77 1201.45 1524.01 −0.01%−0.21%
WH (no ckm) 1209.88 1528.30 1210.17 1531.11 −0.02%−0.18%

Table 4.4: The inclusive cross section for WH is compared with the NLO implementation of WH
production in vh@nnlo. Agreement on the ‰ level is found.

including box diagrams and top-loops, but the program does not give the cross section for
WHj (NLO). For diagrams where the Higgs boson is radiated off a W (Drell-Yan type) it
uses the code zwprod [58]. The integrated cross section of WH (NLO) was checked in the
narrow-width approximation against vh@nnlo. As shown in table 4.4, agreement was found at
the level of 2 ‰.

4.5.3. Ji-Juan et al.

The first calculation of the differential cross section of WHj (NLO) with W and H being on-shell
was done by Ji-Juan et al. in Ref. [49]. For the comparison the narrow-width approximation
was implemented. For the NLO calculation they used phase space slicing instead of the
method by Catani and Seymour. Their code is not public so that for a comparison their
complete setup had to be reproduced. This includes a non-diagonal CKM matrix. bb pairs
are included, but only if both are in the final state and they are recombined into one jet.

Cross sections are given for a variation around a fixed scale as well as for two choices of
dynamic scales,

µ0 = 1
2 (mH + mW) , (4.10)

µ1 =
√

1
2
[(
pWT
)2 +

(
pHT
)2 +m2

W +m2
H

]
, (4.11)

µ2 =
√(

pWT
)2 +

(
pHT
)2 +m2

W +m2
H . (4.12)

A comparison of the cross sections calculated in this thesis and those presented in Ref. [49] is
shown for the LHC and the Tevatron in tables 4.5 and 4.6 respectively. The comparison shows
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Process mH (GeV) Scale VBFNLO (fb) Ji-Juan et al. (fb) Rel. difference
LO NLO LO NLO LO NLO

W+Hj 120 µ0 533.08 574.77 531.37 572.90 −0.32 % −0.33 %
W+Hj 120 0.5µ0 589.40 585.90 589.49 588.00 +0.02 % +0.36 %
W+Hj 120 2µ0 483.13 577.93 483.21 561.00 +0.02 % −2.93 %
W+Hj 120 µ1 503.29 581.59 503.36 561.20 +0.01 % −3.51 %
W+Hj 120 µ2 479.86 577.58 479.93 556.40 +0.01 % −3.67 %
W+Hj 150 µ0 284.49 304.71 284.49 294.20 0.00% −3.45 %
W+Hj 180 µ0 166.21 173.51 166.18 167.90 −0.02 % −3.23 %

W−Hj 120 µ0 322.95 359.38 323.03 360.20 +0.03 % +0.23 %
W−Hj 120 0.5µ0 357.60 366.01 357.58 367.20 −0.01 % +0.33 %
W−Hj 120 2µ0 292.71 362.22 292.76 352.10 +0.02 % −2.79 %
W−Hj 120 µ1 305.99 365.03 306.02 350.90 +0.01 % −3.87 %
W−Hj 120 µ2 297.60 362.60 291.63 347.90 +0.01 % −4.06 %
W−Hj 150 µ0 167.41 185.34 164.96 180.94 −1.46 % −2.38 %
W−Hj 180 µ0 95.02 102.67 93.69 100.26 −1.40 % −2.35 %

Table 4.5: The cross sections for W±Hj (NLO) at the LHC is compared with the result in Ref. [49].
For a variation of the Higgs mass, as well as for the NLO calculations, disagreement is found, which is
discussed in the text in more detail.

mH (GeV) Scale VBFNLO (fb) Ji-Juan et al. (fb) Rel. difference
LO NLO LO NLO LO NLO

120 µ0 17.44 21.38 17.44 20.08 −0.01 % −6.07 %
120 0.5µ0 21.94 22.50 21.95 21.01 0.04% −6.62 %
120 2µ0 14.16 19.73 14.17 18.61 0.04% −5.67 %
120 µ1 16.01 20.53 16.01 19.60 0.04% −4.53 %
120 µ2 14.45 19.69 14.46 18.79 0.04% −4.57 %
150 µ0 8.38 9.93 8.27 9.31 −1.36 % −6.29 %
180 µ0 4.40 5.06 4.27 4.63 −2.81 % −8.51 %

Table 4.6: The cross section for W−Hj (NLO) at the Tevatron (
√
s = 1960GeV, initial state pp) is

compared with the result in Ref. [49]. Like in table 4.5, there are deviations for a varied Higgs mass at
LO and for all parameter choices at NLO.
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agreement at LO for all parameter choices except for variations of the Higgs mass, where
deviations of several percent are found. However, at NLO there is a discrepancy of up to
4% for the LHC and up to 8.5% for the Tevatron. For W−Hj with a large Higgs boson mass
the disagreement at LO hints towards an inconsistency in interchanging W+ and W−. This
interchange was extensively studied in comparison to Sherpa and MCFM and no discrepancies
were found there.

Because no code is published and the original data of the plots shown in their publication was
not available upon request, it was not possible to perform additional comparisons to locate
the differences.

4.5.4. WHj (NLO) check coverage

There was no successful direct check of the WHj NLO production cross section with on-shell
production. Nevertheless, the calculation was checked indirectly. Wj (NLO) production was
thoroughly checked and good agreement with previous calculations was found. WHj and
Wj production share most of the calculation, especially the NLO QCD calculation including
subtraction terms and box diagrams. Going from Wj to WHj production changes only a small
number of parts in the calculation:

Phase space The phase space for WHj is more complex (especially with the Higgs boson
decays), but was fully checked in WHj (LO) and WHjj (LO).

EW part For the Drell-Yan type diagrams in WHj (NLO) coming from Wj (NLO) only the
EW part changes which is the same substitution (and code) as in the LO case.

Top-loops The only new diagrams in WHj (NLO) are the top-loops, which were checked in
sign and amplitude against the amplitudes generated by MadGraph using the heavy top
limit. The heavy top limit is approached smoothly.

Therefore, WHj (NLO) was checked in all parts of the calculation and the results can be
trusted. Additionally, the scale dependence of WHj was tested by calculating Wj with a virtual
W, that resembled the W∗ in W∗ →WH. This is discussed in more detail in section 5.3.
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CHAPTER 5

PHENOMENOLOGY

In this chapter the phenomenology of Higgsstrahlung with an additional jet is discussed.
This discussion focusses on the production of W+Hj, but the effects are similar for W−Hj
production and to some extent also affect WH production.

In section 5.1 the setup for the analyses is introduced. The general effect of NLO corrections
on the cross section and the contribution of top-loops in particular is discussed in section 5.2.
Section 5.3 describes the scale dependence of the results. WHj production is compared to
Wj production and different scale choices are assessed. In section 5.5 the effect of anomalous
couplings is shown. For experimental analyses a special region of phase space, requiring a
high-pT (boosted) Higgs boson, is interesting as it allows the suppression of backgrounds.
This phase space region is discussed in section 5.6.

5.1. Event selection/Cuts
To simulate experimental analyses performed at the LHC, as center-of-mass energy

√
s = 14TeV

is used. The EW input parameters are given in appendix A. If not stated otherwise, the cuts
and parameters used are

Rjj = 0.8, kT -alg. , Rjl = 0.6 , mh = 126GeV ,
pT,j = 30GeV , pT,l = 20GeV , µR = µF = mZ ,

|ηj | < 4.5 , |ηl| < 2.5 .
(5.1)

5.2. NLO effects
The cross sections given in this section include the leptonic decay of the W to the first lepton
family (W+ → e+ν). They do not include the Higgs boson decay. In a typical experimental
VH analysis, in addition the BR(H → bb) = 57% as well as the decay W+ → µ+νµ are
used. The latter can be included when considering the same cuts and input parameters by
multiplying the total cross section and differential distributions with a factor 2. Other Higgs
decays can be included. Their effect on the cross section depends on both the branching ratio
and the cuts used for the decay products. The branching ratios are taken from VBFNLO
2.7.0 beta 4. Since the dominating region is on-shell WH production, the process discussed
here will be called WH production despite including the leptonic decay.
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Process LO (fb) NLO (fb) K-Factor

W+H 55.724(2) 76.303(7) 1.37
W−H 31.720(2) 44.732(7) 1.41
W+Hj 25.316(4) 28.761(14) 1.13
W−Hj 14.506(3) 16.668(7) 1.15
W+Hjj 10.715(2)
W−Hjj 6.112(2)

Table 5.1: An overview of LO and NLO cross sections for the production of W±H including the decay
W→ eνe and up to two jets is given as well as the NLO K-factors. The uncertainty given is the Monte
Carlo error estimate. The NLO corrections have a sizeable effect and requiring additional jets within
the cuts given in equation (5.1) leads to a reduced, yet sizeable cross section.
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Figure 5.1: The LO and NLO differential cross sections for several variables are compared. The
K-factor for pTh and pTl is generally larger for small pT and reduces for large pT. The dependence on
mWH shows a K-factor in the range between 0.8 and 1.2.

In table 5.1 the cross section at LO and NLO of W±H production with up to two jets (the
latter only LO) is given. This shows (even before discussing distributions) the importance of
NLO effects and also that requiring additional hard jets reduces the cross section. Nonetheless,
the production of WH even with one or two jets is well within the reach of the final luminosity
stage of the LHC. The NLO corrections change not only the total cross section, but also the
shape of distributions. Therefore, it is important to use NLO calculation, as multiplying the
LO results with a constant K-factor does not reproduce differential distributions correctly.

54



5.2. NLO effects 55

NLO cross section (fb)
cuts used with top-loop without top-loop rel. difference

standard cuts, pTj > 30GeV 28.74 28.11 +2.2%
pTj > 100GeV 6.38 6.20 +2.8%

Table 5.2: The contribution of top-loop diagrams to the cross section is shown. They add 2-3% and
show a small dependence on the phase space region.
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Figure 5.2: The ratio comparing the calculation including top-loops to the one without top-loops is
shown. As an example, the dependence on the pT of the lepton, the Higgs boson and the leading jet is
given. There is a modest dependence on the jet pT, while the other distributions are essentially flat.

Examples of affected distributions are shown in figure 5.1.

5.2.1. Top-loops

Including the top-loops in the calculation of the virtual amplitude affects both the cross
sections and the distributions. The total cross section is changed as shown in table 5.2. The
contribution to the cross section is on the level of 2-3%. This is in agreement with the results
presented for WH (NNLO) in Ref. [57].

There are no regions in phase space with especially large effects of the top-loops. The
differential distributions have an approximately flat behaviour, as shown in figure 5.2. There is
a small dependence on the jet cuts. This can be seen in both table 5.2 and the pTj distribution
in figure 5.2. This dependence is less than the total top-loop contribution.
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5.3. Scale dependence

In any hadron collider NLO calculation there are two typical unphysical scales involved that
are a remnant of the incomplete perturbation theory series: The factorization scale µF, which
relates to the PDFs, and the renormalization scale µR.

Those scales only show up, because the calculation involves a finite number of terms in
perturbation theory and their dependence would vanish if all orders were included. Therefore,
they provide access to the possible effects of higher orders and thus the theoretical error.
While any variation must vanish when higher orders are included, there is no certainty that
higher orders can not be larger than the variation. There are quite a few processes where this
is the case, e.g. WW or WZ production. In those examples, at leading order, there is only the
qq initial state, but new partonic subprocesses appear as part of the real corrections, including
qq or gluon initial states, which access enhanced PDFs and, therefore, partially compensate
the αs suppression.

A typical choice for estimating the theoretical error is varying both scales separately by a
factor 2 (or 3) around a chosen center value. The other common choice is to vary both
individually in a certain range and to look for a maximum and minimum in the µR, µF-plane.

5.3.1. Scale choices

The scale to be used for µR and µF is mostly arbitrary, as long as it is a representative scale
associated with the process. Nevertheless, there are choices preferred to others and discussing
scale variation plots will shed light on what a typical process scale could be.

For a fixed scale the obvious choice are the masses of the involved particles. For WHj
production those are mH and mW. One could use one of those masses or their (arithmetic or
geometric) mean. A constant factor (1/2, 1/

√
2, 2) could also be justified. This incomplete list

gives a total of 12 possible scale choices, demonstrating the arbitrariness of the scale choice.

The scale choice has only a small effect on the calculation, as is shown in the next sections, so
that this is not a critical issue. However, static scale choices are recently used less, since they
are not able to describe the dynamics of the system correctly. This is often reflected in a poor
behaviour of the LO differential distributions for those choices.

5.3.1.1. Dynamical Scales

Instead of a fixed scale a dynamical scale can be used, which depends on the phase space
point considered. While this approach might be counterintuitive to the way the scales were
introduced, it leads to more stable results.

A good example for a well-working dynamical scale is vector boson fusion (VBF), which is
shown in figure 2.5b. In this process, there are two quark lines which at NLO can be treated
independently in QCD. Using the momentum transfer Q2, which the parton transfers to the
EW part, as a scale leads to a small scale variation uncertainty and a LO cross section close
to the NLO result.

For WHj production there is no obvious best choice for a dynamical scale. A typical scale
is the q2 of the EW part, which corresponds to the invariant mass of the WH system. This
scale is also used by the LHC Higgs Cross Section Working Group e.g. in Ref. [29]. Another
possible scale choice is the transverse Energy Et =

√
pT2 +m2 of final state particles. There
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Figure 5.3: The scale variation for W+Hj and different scale choices is shown, with the LO (NLO)
cross section as a dashed (solid) line. A constant scale of mZ and the dynamical scale of mWH are
compared to several other choices defined in equation (5.2). An analysis of the shapes is given in the
text.

is an ambiguity which particles to include. Several scales are defined based in transverse
momenta or transverse energy of final state particles,

E2
t,WH,squared ≡

∑
i=W,H

pT
2
i +m2

i , E2
t,had,squared ≡

∑
partons

pT
2,

E2
t,WH,squared,half ≡

1
2
∑

i=W,H
pT

2
i +m2

i , Et,had,max ≡ max
partons

pT
2,

E2
t,all,squared ≡

∑
partons

pT
2 +

∑
i=W,H

pT
2
i , Et,had ≡

∑
partons

pT,

Et,all ≡
∑

partons
pT +

∑
i=W,H

pTi.

(5.2)

Et can include either only the EW particles, only hadronic particles or both. While the total
Et is the sum of energies squared, one could also argue that the relevant scale should be the
(linear) sum of the energies, or the maximum.

This leads to many possible choices for a dynamical scale. While some of the choices might be
backed by better reasons than other, they all are plausible. This spectrum of scales leads to
an overall consistent picture of the process. In figure 5.3 the scale variation for W+Hj with
the different possible scales discussed here is shown. The LO and NLO are drawn as dashed
and solid lines respectively.
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LO

For the LO cross section there is a common behaviour under variation for all scales choices.
This can be seen in figure 5.3, where the scales are varied simultaneously, µF = µR = χµ0.
The scale variation is dominated by the running of αs, which depends on µR. While the
shape is very similar, the different scales have different magnitudes, which leads to a sizeable
separation. The smallest scales only include the Et of the hadronic particles, which (at LO) is
only one parton. Adding more particles to the Et sum increases the value of the scale. It is
maximal when the Et of all particles is combined. Also mWH is one of the largest scales as it
also includes non-transverse components. Larger scales lead to smaller cross sections, due to
the decrease of the value of αs.

NLO

At NLO the situation is different as the dependence on µR is more complex resulting in two
distinct shapes.

The scales that only include the final state partons, shown in the plot as black, blue and pink,
have a maximum and decrease for small χ. These hadronic energies are significantly smaller
than the other scales which all include either mW,mH or an EW particle with a large pT cut.
Therefore, a variation with χ = 0.1 corresponds to a scale of a few GeV. This is too small to
trust the perturbation theory of this process.

All other scales have a approximately linear shape and increase for small χ. The slope is
smaller than in the LO case. Despite the different shapes at NLO, when considering χ = 1, all
scales are within the range of 26 to 28 fb while at LO the range is 20 to 26 fb. Going from LO
to NLO, therefore, improves the scale dependence twofold: The choice of scale has a smaller
effect on the cross section and varying a chosen scale also has a smaller influence.

5.3.2. Scale variation as error estimate

As discussed before, scale variation gives an estimate of the possible effects of higher orders
and, therefore, the uncertainty of the perturbation theory calculation. While scale variation
can be thought of as a lower bound on higher orders, it can underestimate the theoretical
error as shown for example in the following.

5.3.2.1. WHj

In section 5.3.1.1 dynamical scales were introduced and for figure 5.4 the example of mWH is
chosen to illustrate their behaviour.

In figure 5.5 the scale variation for a fixed scale for the process W+Hj is shown. The central
value for the scale is µ0 = mZ. The precise choice is arbitrary and mW,mH or 100GeV would
also be reasonable. In both cases the scale variation is dominated by the dependence on µR.

Following the convention to estimate the theoretical error by varying µF = µR = χµ0,
χ ∈ [0.5, 2] leads to the uncertainty estimates given in table 5.3. Using the NLO calculation
reduces the scale dependence by a factor 3 from 19% to 7%. The remaining uncertainty is on
a similar order as other theoretical errors (PDFs, αs, nf, . . . ).

5.3.2.2. Wj

The behaviour of Wj is different than the one of WHj production. Figure 5.6 shows that when
both scales are varied simultaneously (µR = µF = χµ0), then at LO, there are cancellations,
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Figure 5.4: The scale variation for W+Hj with the dynamical scale µ0 = mWH is shown. The
qualitative behaviour is comparable to the variation of a fixed scale shown in figure 5.5, as is the
resulting scale uncertainty in the interval χ ∈ [0.5, 2].

uncertainty
scale LO NLO

fixed (µ0 = mZ) 21% 6%
dynamical (µ0 = mWH) 19% 7%

Table 5.3: The scale uncertainty comparing LO, NLO with a fixed and dynamical scale for WHj is
given. Both scale choices show a similar scale dependence.

so that the variation seems to be smaller then the one obtained when both scales are varied
separately. Considering just the variation of µR leads to a larger (more realistic) uncertainty.

The scale variation for Wj looks quite different in shape compared to WHj. The difference is
most obvious in the behaviour for small χ. In WHj the LO diverges, showing the typical αs
dependence. In Wj the LO with both scales varied simultaneously shows a cancellation and is
close to flat. The NLO in WHj flattens out for small χ, while it diverges in Wj. As they share
a lot of structure, this is rather unexpected.

The major difference is that in WHj the W coupling to the quark line is far off-shell and has a
typical invariant mass of above 200GeV. This is required to allow the final state Higgs boson
and W to be close to on-shell.

Calculating Wj and forcing an invariant mass of the W above 200GeV leads to the scale
variation shown in figure 5.7. The shape here resembles the one of WHj more closely. This
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Figure 5.5: The scale variation for W+Hj with the fixed scale µ0 = mZ is shown. In the interval
χ ∈ [0.5, 2] the µR dependence dominates. The scale dependence of the NLO calculation is reduced by
a factor 3 compared to the LO.

uncertainty
variation LO NLO

µR = µF = χµ0 9% 9%
µR = χµ0, µF = µ0 23% 14%

Table 5.4: The scale uncertainty for Wj both at LO and NLO is given. The dependence on varying
µR and µF simultaneously is compared to varying only µR around the central scale µ0 = mZ . For Wj
there is a cancellation between the µR and µF dependence, such that varying both scales simultaneously
underestimates the overall scale dependence.

confirms that the behaviour of WHj (or WH) can be mimicked by Wj (or W) in the high-
mass tail. This comparison is also an additional check for the scale dependence of the WHj
implementation.

This region of Wj phase space also explicitly shows one of the contributions to the order
of magnitude difference between WHj and Wj. Forcing the W so far off shell reduces the
cross section from 1.2 · 103 pb to 1.6 pb. This factor of roughly 103 is related to the off-shell
propagator. While in the on-shell case the typical factor is 1/mΓ, in the off-shell case the factor
is 1/p2. The remaining difference to the WHj case is related to the additional WWH coupling.
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Figure 5.7: The scale variation for W+j with the fixed scale µ0 = mZ is shown. The invariant mass
of the W is required to be above 200GeV. This cut resembles the production of WHj, where the W
attached to the quark line has a typical invariant mass of above 200GeV.
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uncertainty
scale LO NLO NLO (jet veto)

µ0 = mZ 21% 6% 1.9%
µ0 = mWH 20% 7% 3.4%

Table 5.5: A jet veto apparently reduces the scale uncertainty, as discussed in the test. The scale
uncertainty is shown, varying µR = µF = χµ0, χ ∈ [0.5, 2] for a fixed and dynamical scale. Depending
on the scale choice the scale dependence is reduced by a factor 2-3.

15

20

25

30

35

40

0.1 0.2 0.5 1 2 5 10

σ
/f
b

χ

LO

NLO

µF = µR = χµ0
µR = χµ0
µF = χµ0

Figure 5.8: Applying a jet veto of pTveto = 50GeV changes the shape of the scale dependence. The
variation is reduced, but does no longer provide a reliable estimate of the theoretical uncertainties, as
shown in the text.

5.4. Jet veto
At NLO the real emission in WHj production leads to two partons in the final state. They
can be clustered into one jet if they are close together, yet they may also be identified as two
jets. The amount of two jet events can be reduced by introducing a jet veto. This means
introducing a cut that removes all two jet events where the second jet has a pT larger than
pTveto. For this discussion a jet veto of pTveto = 50GeV is used.

With a jet veto, the scale dependence seems to be reduced. As shown in table 5.5 the
uncertainty by varying the scale between 0.5 and 2 times a central scale is reduced by a factor
3 in case of the fixed scale and a factor 2 for the dynamical scale. Considering the scale
variation over a larger range in figure 5.8 also shows a flat behaviour of the NLO cross section.
This reduced scale uncertainty is an accidental feature of the jet veto. The jet veto removes
most of the real emission and while the total cross section appears less scale dependent, there
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Figure 5.9: The pT distribution of the hardest jet and the Higgs boson are shown, both with and
without a jet veto of pTveto = 50GeV on the second jet at NLO. The scale variation is given as coloured
bands around the dashed central value. For large pT the jet veto leads to a reduced cross section. The
dependence on the pT of the hardest jet (left) shows a large scale dependence for high pT, which grows
and is far above the scale uncertainty of the total cross section. At approximately 350GeV the scale
variation spreads several orders of magnitude covering also negative values for the cross section. The
absolute value is plotted in that region. On the other hand, the Higgs pT (right) is rather well behaved.
As can be seen for the K-factor, the scale dependence is slightly worse, but comparable to the situation
without jet veto.

can be large scale dependences on other observables. Therefore, the calculated scale uncertainty
can not be used as a theory uncertainty. This behaviour is known and was extensively studied
in Higgs boson production in Gluon Fusion, Ref. [59]. The method proposed there should also
be used here. Its effect on the calculation of WHj production is, that the scale variation of the
inclusive calculation gives a more realistic estimate, but underestimates enhanced uncertainties
in some distributions. In Multiboson plus jet production a similar behaviour can be observed,
as presented in Ref. [38]. Figure 5.9 shows the pT of the Higgs boson and of the hardest jet
for NLO calculations with and without a jet veto. The jet pT shows a large and diverging
scale dependence in the high-pT region, while the Higgs boson pT is less affected. This again
demonstrates that the errors of exclusive samples must be considered carefully.
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fW (TeV−2) cross section (fb) pTh < 200GeV
LO NLO K LO NLO K

0 24.96 28.59 1.14 21.54 24.83 1.15
1 22.93 25.91 1.13 20.45 23.10 1.13
−1 28.05 30.71 1.09 22.70 25.55 1.13
10 52.34 34.61 0.66 13.57 15.47 1.14
−10 103.51 82.68 0.80 36.04 39.96 1.11

Table 5.6: The cross section of W+Hj production with the cuts from equation (5.1) is shown for
different couplings of the OW operator. Anomalous couplings affect the total cross section as well as
the K factor. The normal K-factor can be restored when excluding the high-pT region, but introducing
a cut pTh < 200GeV. This is discussed in the text in more detail.

5.5. Anomalous couplings
Anomalous couplings are a general approach to describe physics beyond the Standard Model
based on an effective field theory. For WH(j) production only anomalous couplings modifying
the WWH vertex are considered. The decay of the Higgs boson is factored, so that both
production and decay include anomalous couplings, but an intermediate Higgs boson is
required. As discussed in section 2.2, only the operators OW ,OWW ,OW̃ and OW̃W affect this
process.

The effect of anomalous couplings is more prominent in the high pT region. To give an example
of the typical shape the operator OW is chosen and the corresponding coupling fW varied.

Anomalous couplings have a significant effect on the total cross section, which is shown in
table 5.6. Also the K-factor is significantly changed, from 1.14 to 0.8 and 0.66. Responsible for
the K-factor is the high-pT region of phase space. Introducing a cut pTh < 200GeV restores
the normal K-factor, but not the normalization of the cross section.

Not only the total cross section is changed, also the shape of distributions change when
including anomalous couplings. In figure 5.10 differential cross sections for observables are
shown, whose shape is affected by anomalous couplings. For the coupling fW the values
±1TeV−2 and ±10TeV−2 are plotted and compared against the Standard Model without
anomalous couplings shown with the scale variation error band.

For fW = ±1TeV−2, the deviation from the Standard Model cross section is comparable to
the scale variation in ηh and pTl, while for pTh & 300GeV there is a significant difference.
Increasing fW to ±10TeV−2 gives cross section shapes that are far from the Standard Model
and show enhancements in the high-pT and the central region for both Higgs boson and lepton.
The behaviour in the large pT region could be suppressed using a form factor.
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Figure 5.10: Anomalous couplings change the shape of differential cross sections. Here, as an example,
the effect of the OW operator for different couplings in TeV−2 on the Higgs pT, the lepton pT and the
pseudo rapidity of the Higgs boson in WHj production is shown. These effects can be much larger
than the SM scale uncertainty, which is shown as a band.
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Process LO (fb) NLO (fb) K

normal cuts 25.31 28.11 1.11
pTh > 200GeV 3.49 3.74 1.07

Table 5.7: The cross sections and K-factors for inclusive cuts and a boosted Higgs analysis are
compared. The cross section is reduced by an order of magnitude, but the K-factor on the total cross
section is unchanged.

H
W

g gW

H

Figure 5.11: This schematic representation illustrates the typical kinematical configuration in the
case of normal detector cuts (left) compared to the boosted Higgs configuration (right). The large pT
of the Higgs boson in the boosted case is balanced against the other final state particles.

5.6. Boosted Higgs boson
For an experimental search of WH production with H→ bb at a hadron collider, the main
background is the production of W+jets and tt̄. Because of the large background, WH
with inclusive cuts is problematic as a Higgs boson discovery channel or for the study of
its properties. The analysis can be crucially improved in a phase space region suggested by
Butterworth, Salam et al. in Ref. [31]. They proposed boosted Higgs searches, which means
a pT cut of about 200GeV for the Higgs boson candidate. This cuts about 90% of the WH
cross section, however, it cuts even more of the W+jets background. This improves the ratio
of signal over background to an experimentally interesting value. Nevertheless, currently most
major analysis consider less stringent cuts due to the small number of events.

In the case of WH without additional jets, requiring the Higgs boson to have high pT is equal
to requiring the W to have high pT, as they can only balance each other. This equivalence
vanishes when considering additional jets.

Table 5.7 shows the cross sections and K-factors comparing the boosted Higgs phase space
region to the normal cuts used in this section. The cross section is reduced by close to an
order of magnitude, but the K-factor on the level of the total cross section stays about the
same. Nevertheless, the differential K-factors will be significantly affected by this new cut.

The typical kinematic configurations of normal WHj production compared to the boosted case
are shown in figure 5.11. With normal cuts, the pT distributions of the Higgs boson as well as
W and jet peak below 100GeV, so that they favor small pT. W and Higgs boson as well as
the jet all balance each other about equally. Requiring high pT for the Higgs boson forces
the other final state particles to balance this pT. The W boson and the jet favour small pT
and, hence, in the boosted Higgs case both balance pTH equally. This leads to events with the
jet closer to the W boson than for normal cuts and both recoiling against the Higgs boson.
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The momenta dependence of the cross section is more complex than this depiction of the
momenta configuration, but it can be used as illustration and is supported by the differential
distributions discussed in the following.

Figure 5.12 shows observables with and without the cut of pTH > 200GeV. The pTH
distribution illustrates the large fraction of the cross section, which is affected by this cut.
The peak of dσ/dpTH is at about 60GeV and therefore well below the cut. The pTj1 tends
to larger transverse momenta with the boosted Higgs cut, so that the small-pTj1 region is
reduced corresponding to the cross section, but for pTj1 ≈ 500GeV nearly the uncut cross
section is restored. The ratio of 1-jet to 2-jet events is shifted from about 2 : 1 with normal
cuts, to 1 : 1 in the boosted case. Additionally, the jets are closer together, as is shown by the
difference in the azimuthal angle of the jets in two-jet events, φj,j .

An important distribution for the tagging of WH events is pTl. Meanwhile for normal cuts
the K-factor is rather flat, the cut on the Higgs boson pT leads to a large variation of the
K-factor. For small transverse momenta of the lepton (and thus to some extent the W boson),
the cross section is enhanced at NLO. This might be related to two-jet events, where both
jets recoil against the Higgs boson and allow for a softer W boson.

The general picture of the W boson and jets recoiling together against the Higgs boson is also
supported by the difference in the azimuthal angle between the hardest jet and the lepton.
While these are mostly in opposite directions with normal cuts, the boosted Higgs cut requires
them to be closer together.

The invariant mass of the WH system in normal cuts shows a peak slightly above mW +mH ≈
200GeV and a non-constant K-factor. Introducing the boosted Higgs cut, the peak is moved
to around 500GeV. An invariant mass of 500GeV approximately corresponds to W and Higgs
boson in opposing directions with both pT close to the boosted Higgs cut.

These distributions show that an analysis using a cut on the pT of the Higgs boson increases
the importance of additional jets and has a strong effect on differential K-factors in observables
important in Higgs boson searches. They demonstrate that NLO calculations are essential for
a precise description of this phase space region.
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Figure 5.12: Considering a boosted Higgs analysis with pTH > 200GeV, differential distributions
for several observables are shown, comparing the boosted analysis to inclusive cuts. The various
kinematical effects are discussed in the text.
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CHAPTER 6

SUMMARY AND OUTLOOK

In this thesis, the production of WHj was calculated at NLO QCD. It is implemented in the
Monte Carlo program VBFNLO together with the processes W, Wj and WH production, which
have a similar structure. The subtraction formalism by Catani and Seymour [21] is used to
combine virtual corrections and real emission in the NLO calculation. The calculation includes
leptonic decays of the W. For the Higgs boson the decays to bb, γγ, ττ , µµ, WW → lν lν,
ZZ → ll ll and ZZ → ll νν are implemented. They can be factorized and are included
using higher order branching ratios for the 2 particle decays and LO matrix elements for the
H→ VV→ 4l decay channels.

The virtual contributions of the NLO calculation consist of self-energy and vertex corrections
as well as box diagrams. These are calculated using existing routines from Ref. [44]. For WHj
(NLO) production there are also diagrams where the Higgs couples to a top-loop, which are
calculated with full top quark mass dependence using the routines for massive quark triangles
in Ref. [45]. The real emission for WHj production has two types of diagrams. The first
involve diagrams with one quark line and two gluons attached to it, which give access to the
large gluon PDFs. The other diagram class has two quark lines.

The non-diagonal CKM matrix is taken into account. A general mechanism is presented,
which describes how to include the CKM matrix by modifying the PDFs and leaving the
matrix elements flavour independent. This allows to include the CKM matrix in calculations,
that are implemented without flavour information in the matrix element. The implementation
is successfully compared against MCFM and Sherpa for WH at NLO and WHj as well as
WHjj at LO. Checks and numerical discussions are based on considering only the mixing of
the first two generations. These effects are shown to be less than 1% in all studied processes
at the level of the total cross section. Effects of about 2% are seen in extreme phase space
regions that have a negligible cross section.

The top-loop diagrams appear in the NLO QCD calculation of WHj production, however
they are not present in Wj production. A comparison of the full mass dependent calculation
to the implementation in MadGraph using the heavy top limit shows that the heavy-top
approximation is not able to describe WHj production well. Nevertheless in several scenarios
agreement with MadGraph was found and the contribution of the top-loop diagrams to the
total cross section is on the level of 2-3%. There is no strong phase space dependence of these
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contributions.

The calculation is implemented in both four and five flavour scheme. The possible choice of
flavour scheme is discussed. The focus of this discussion is on the relations of different parts of
the calculation and how they require a consistent flavour scheme throughout. It is shown that
the choice of flavour scheme leads to changes within the scale uncertainty of a few percent,
but inconsistent choices can increase those.

Several cross checks were performed to confirm the correctness of the implementation. The LO
matrix element was compared with MadGraph. The LO cross section was checked with Sherpa.
For the virtual amplitude internal checks based on Ward identities and known analytical
results were performed. The NLO cross section of WH and Wj production was compared with
MCFM and agreement for all checks was found within the statistical error at the ‰ level.
All parts of the NLO calculation of WHj were successfully checked. In comparison with a
previous calculation of WHj production with on-shell W and Higgs boson [49] differences on
the level of several percent were found. For this comparison the narrow-width approximation
was implemented and used. For several parameter choices there are deviations already at LO
and the differences show a scale dependence. The calculation of WHj production differs from
Wj production in only a few aspects and was fully checked, such that the result can be trusted.
Recently another NLO QCD calculation of VHj production was published in Ref. [60], but
the results could not yet be compared.

The cross section of W+Hj is 25.3 fb at LO and 28.8 fb at NLO. In the case of W−Hj production
the cross section is reduced due to the different combination of PDFs. It is 14.5 fb at LO and
16.7 fb at NLO. This gives a K-factor of 1.13 and 1.15 respectively.

The theoretical error is usually estimated based on the variation of the renormalization scale
µR and factorization scale µF. Several scale choices are discussed and the dependence on
the choice of scale is found to be comparable to the variation of the central value for the
different scales. While no physical argument for an optimal scale is found, the invariant WH
mass is used as a dynamical scale. This scale choice is also used by the LHC Higgs Cross
Section Working Group in Ref. [29]. By performing the NLO calculation the scale dependence
could be reduced significantly. In the case of W+Hj the simultaneous variation of both µR
and µF using a dynamical scale of µ0 = mWH in the interval [0.5µ0, 2µ0] leads to a variation
of the cross section which is reduced by a factor 3 from 19% at LO to 7% at NLO. For Wj
production there is a cancellation between the µR and µF dependence, so that a simultaneous
variation underestimates the scale dependencies. For WHj the renormalization scale dominates
and therefore varying µR = µF results in a reasonable estimate of the theoretical error. The
scale dependence of WHj can be reproduced using Wj, by requiring the W boson to have an
invariant mass above 200GeV, which corresponds to the invariant mass of the W coupling to
the quark line in WHj production.

A jet veto can be used to reduce the apparent scale dependence. However, this introduces
large scale dependences in some differential distributions, such that the variation of the total
cross section is no longer a reliable estimate of the theoretical error.

In WH production experimental analyses often use a boosted Higgs, this means a cut of
pTh > 200GeV. This reduces the cross section, but improves the signal to background ratio.
The K-factor of the total cross section is not affected by this cut, but several observables and
differential K-factors change their shape significantly. This shows, that NLO calculations can
not be approximated by multiplying a constant K-factor.
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Anomalous couplings are implemented and their effect on the production of WHj is discussed.
Both the total cross section and the shape of typical distributions like pTl or pTh are sensitive
to modifications of the WWH vertex. The effect is most prominent in the high pT region.

Based on the presented calculation several further analyses could be performed. The imple-
mentation of anomalous couplings allows to investigate whether WH and WHj could be used
to set experimental limits on operators.

The calculations of WH and WHj production at NLO in QCD could be combined using the
Loopsim method [61]. It allows to produce approximate NNLO results (n̄NLO) for high-pT
observables in WH production. Similar combinations were recently performed for WW [62],
WZ [63] and W/Z + jets [64]. This could then be compared to the full NNLO calculation of
WH production [65] to study the validity of the merging tools.
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CHAPTER 7

ZUSAMMENFASSUNG

Die Teilchenphysik untersucht die fundamentalen Bausteine des Universums und deren Wech-
selwirkung auf sehr kleinen Skalen. Das Standardmodell der Teilchenphysik (SM) ist eine in
den 1960er und 70er Jahren entwickelte relativistische Quantenfeldtheorie. Seitdem wurde
das Standardmodell erfolgreich verwendet, um sowohl Ergebnisse von Präzisionsexperimenten
als auch die Entdeckung neuer Teilchen vorherzusagen. Solch ein neues Teilchen wurde erst
kürzlich entdeckt. Die beobachtete Resonanz entspricht bisher dem SM Higgs Boson, wobei
die Eigenschaften noch nicht vollständig gemessen sind. Das Teilchen wurde von ATLAS
und CMS entdeckt, zwei Experimenten, die am Large Hadron Collider (LHC) am CERN
in Genf angesiedelt sind. Der LHC ist der aktuelle Stand in einer historischen Reihe von
Teilchenbeschleunigern. Er wurde gebaut, um neue Teilchen zu suchen und unser Verständnis
von Teilchenphysik bei zuvor unerreichten Energien zu überprüfen. Designkriterium war nicht
nur die Suche nach dem Higgs Boson, sondern auch die Untersuchung von Theorien jenseits
des Standardmodells. Die Entdeckung des Higgs-ähnlichen Teilchens ist der Anfang einer
neuen Generation von SM Präzisionsmessungen und möglichen Teilchenentdeckungen an der
TeV Skala.

Obwohl das Standardmodell sehr erfolgreich ist, wissen wir heutzutage, dass es nicht in
der Lage ist, alle Phänomene zu beschreiben, so beinhaltet das SM keine Neutrinomassen.
Jedoch ist durch Messungen der Neutrinooszillation bekannt, dass Neutrinos Masse tragen.
Diese lässt sich mit verschiedenen Mechanismen im SM integrieren. Im SM sind nahezu alle
Massen freie Parameter deren Werte nicht vorhergesagt werden. Insbesondere den deutlichen
Größenunterschied zwischen den verschiedenen Teilchengenerationen und die Spanne von
Leptonen und Neutrinos zu den schweren Quarks und den Eichbosonen an der schwachen
Skala erklärt das Standardmodell nicht. Des Weiteren gibt es Erkenntnisse der Astronomie,
wie die Beobachtung von Dunkler Energie und Dunkler Materie, die nicht durch das SM
beschrieben sind. Fundamentaler ist allerdings die Beschreibung von Gravitation durch die
Allgemeine Relativitätstheorie. Diese ist sehr gut getestet und erlaubt die Beschreibung von
Gravitationsphänomenen in unserem Sonnensystem und darüber hinaus. Bisher gelang jedoch
keine erfolgreiche Formulierung einer Theorie, die die Allgemeine Relativitätstheorie mit dem
Standardmodell kombiniert.

Das Standardmodell basiert auf der Eichsymmetrie SU(3)C × SU(2)L × U(1)Y, die sich in
zwei Sektoren aufteilen lässt. Diese beiden Teile des SM werden oft anhand ihrer Kopplungen
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durch α (elektroschwach) und αs (stark) unterschieden. Die Gruppe SU(3)C beschreibt die
Quantenchromodynamik (QCD), die Theorie der starken Wechselwirkung. Diese wirkt auf
Teilchen mit Farbladung, den Quarks und Gluonen, aus denen Hadronen und somit Atomkerne
aufgebaut sind. Die Gruppe SU(2)L × U(1)Y beschreibt den elektroschwachen Sektor. Die
zu dieser Gruppe gehörigen Eichbosonen W und Z vermitteln die schwache Wechselwirkung.
Diese ist zum Beispiel verantwortlich für den radioaktiven β-Zerfall von Atomkernen. Die
Symmetriegruppe SU(2)L ×U(1)Y des elektroschwachen Sektors wird durch spontane Symme-
triebrechung vom Higgs Mechanismus zur Gruppe U(1)em gebrochen. Diese Gruppe beschreibt
die Quantenelektrodynamik (QED) – die Wechselwirkung von geladenen Teilchen, die von
Photonen übertragen wird. Der Higgs Mechanismus ist verantwortlich für die Masse der
Eichbosonen und Fermionen.

Trotz der Fortschritte in Ansätzen wie Gitter QCD werden die meisten Vorhersagen für das
SM in Störungstheorie berechnet. Dabei werden Observablen in den Kopplungskonstanten
entwickelt. Der erste Term einer solchen Entwicklung wird als führende Ordnung (engl. leading
order, LO) bezeichnet. Die folgenden Terme sind dann die nächst-führende Ordnung (next-to-
leading order, NLO) und nächst-nächst-führende Ordnung (NNLO). Da αs deutlich größer
als α ist, wird diese Entwicklung häufig in αs betrachtet. Eine Rechnung, die zusätzlich zum
führenden Term noch einen weiteren in αs berücksichtigt, nennt man NLO QCD.

Außer der direkten Suche nach neuen Teilchen und Wechselwirkungen, können mögliche
Theorien jenseits des Standardmodells auch untersucht werden, indem Vorhersagen des
Standardmodells mit experimentellen Daten verglichen werden und dadurch Grenzen an
allgemeine Erweiterungen des SM gesetzt werden. Dies bedeutet für das neu gefundene
Teilchen, dass die Vorhersagen des SM für das Higgs Boson im Hinblick auf die verschiedenen
Produktions- und Zerfallsprozesse untersucht werden müssen.

Der wichtigste Produktionsprozess für das Higgs Boson im SM heißt Gluon Fusion. In diesem
Prozess koppeln zwei Gluonen über eine Fermionschleife an das Higgs Boson. Der Prozess mit
dem zweitgrößten Wirkungsquerschnitt ist Vektor Boson Fusion. In diesem sind im Endzustand
neben dem Higgs Boson noch zwei Jets zu finden, die durch ihre spezielle Kinematik ein
Filtern von Hintergrundereignissen erlauben. Darüber hinaus kann das Higgs Boson auch
zusammen mit einem Vektor Boson oder schweren Quarks produziert werden. Die Produktion
des Higgs Boson mit einem Vektor Boson (VH) heißt Higgsstrahlung. Dieser Name bezieht
sich auf das Feynman Diagramm, bei dem das Higgs Boson von einem W oder Z „abgestrahlt“
wird.

Das Higgs Boson ist instabil und zerfällt nahezu sofort. Daher kann es nur durch Zerfalls-
produkte beobachtet werden. Die verschiedenen Zerfallskanäle führen zu Endzuständen, die
auch durch Prozesse ohne Higgs Beitrag erzeugt werden können. Diese nennt man Untergrund
(engl. background) und ihre Wirkungsquerschnitte und Eigenschaften müssen genau bestimmt
werden, um ein Filtern des Higgssignals aus dem Untergrund zu erlauben. Hierfür sind NLO
QCD Rechnungen sowohl für Signal- als auch Untergrundprozesse erforderlich.

Diese Auswahl an Produktionsmechanismen und Zerfallsprozessen erlaubt die Kopplung des
Higgs Boson an verschiedene SM Teilchen zu bestimmen. Da diese Kopplungen nicht frei
sind, sondern von einer kleinen Zahl bekannter Parameter festgelegt werden, lassen sich
somit mögliche Abweichungen vom SM mit hoher Präzision testen. Die Entdeckung des neuen
Teilchens wurde in inklusiver Produktion ohne zusätzliche Teilchen zu fordern und im Zerfall in
Photonen und über Z Bosonen in vier Leptonen entdeckt. Beide LHC Experimente untersuchen
aber auch die Produktion in VH in Kombination mit dem Zerfall in zwei b Quarks [4, 5] oder
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zwei W Bosonen [6]. Diese Kanäle haben bisher noch nicht ausreichend statistische Signifikanz,
um eine Entdeckung zu vermelden, zeigen aber einen mit der SM Vorhersage kompatiblen
Überschuss an Ereignissen. Higgsstrahlung wurde zudem bereits verwendet, um Modelle
jenseits des SM zu testen [7]. Die bekannten NLO Korrekturen zu WH Produktion sind groß
und erheblich vom Phasenraum abhängig und sind daher von Bedeutung für experimentelle
Analysen. Viele der WH Ereignisse haben zusätzliche Jets, sodass ebenso die Korrekturen zu
WHj Produktion wichtig sind.

In dieser Diplomarbeit wurden die NLO QCD Korrekturen zur Produktion von WHj, Higgs-
strahlung mit einem zusätzlichen Jet, berechnet und in das flexible Monte Carlo Programm
VBFNLO implementiert. Dieses bietet eine Vielzahl von Prozessen mit NLO QCD Korrekturen,
unter anderem Vektor Boson Fusion sowie die Produktion von zwei oder drei Vektor Bosonen,
in einigen Fällen auch mit einem oder zwei zusätzlichen Jets. VBFNLO nutzt Monte Carlo
Integration zur Berechnung des Wirkungsquerschnitts. Um die Konvergenz zu beschleunigen
wird der VEGAS Algorithmus verwendet, der die Generierung der Phasenraumpunkte während
der Integration anpasst.

Die NLO Rechnung lässt sich in zwei Teile zerlegen, welche sich in der Dimension des
zugehörigen Phasenraums unterscheiden. Die virtuellen Beiträge entsprechen dabei in ihrem
Endzustand der führenden Ordnung, während die reellen Beiträge ein weiteres Parton aufweisen.
Diese beiden Integrale sind getrennt divergent und nur in der Summe endlich, was eine direkte
numerische Integration verhindert. Die Divergenzen können jedoch durch Regularisierung
parametrisiert werden und es existieren verschiedene Verfahren um endliche Integrale zu
konstruieren. In dieser Arbeit wurde das für NLO Monte Carlo Programme häufig verwendete
Subtraktionsschema von Catani und Seymour verwendet [21]. Hierbei wird die reelle Emission
um Subtraktionsterme erweitert, welche die Divergenzen wegheben. Zugleich sind diese Terme
aber analytisch integrierbar, sodass sie in integrierter Form bei den virtuellen Korrekturen
addiert werden können.

Neben WHj wurden auch die Produktion von W, WH und Wj mit NLO QCD Korrekturen
implementiert. Diese Prozesse besitzen eine ähnliche QCD Struktur wie bereits implementierte
Diboson- und Tribosonprozesse, sodass Teile der Rechnung unter anderem analog zu WA [37],
WAAj [38] sowie WZj [39] durchgeführt werden konnten.

VBFNLO nutzt effektive Ströme zur Implementierung. Dabei werden zunächst die elek-
troschwachen Bestandteile eines Diagramms berechnet und als effektiver Polarisationsvektor
beziehungsweise leptonischer Tensor geschrieben. Dieser wird an das restliche aus QCD Wech-
selwirkungen bestehende Diagramm gekoppelt. Diese Trennung ist effizient, da in der NLO
Rechnung eine geringe Zahl elektroschwacher Ströme an diverse QCD Diagramme gekoppelt
werden und nicht jedes Mal erneut zu berechnen sind. Zudem können Erweiterungen im elek-
troschwachen Bereich, z.B. der Zerfall des Higgs Boson oder anomale Kopplungen, unabhängig
von der QCD Rechnung durchgeführt werden. Andererseits lassen sich auf LO genutzte und
überprüfte leptonische Tensoren auch in NLO QCD Rechnungen verwenden.

In der vorliegenden Berechnung von WHj wurden leptonische Zerfälle des W und Zerfälle des
Higgs Boson in bb, γγ, ττ , µµ, WW→ lν lν, ZZ→ ll ll und ZZ → ll νν implementiert. Die
Higgs Zerfälle lassen sich faktorisieren und wurden aus der Berechnung von Higgsproduktion
in VBF übernommen, wobei die Zerfälle in vier Leptonen mit Matrixelementen und somit mit
Spinkorrelationen berechnet werden.

Die NLO Rechnung beinhaltet bei den virtuellen Korrekturen Schleifendiagramme, welche
neben Vertex- und Selbstenergiekorrekturen auch Box-Diagramme umfassen. Sie wurden mit
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der Boxline Routine aus Ref. [44] berechnet und treten auch bei Wj Produktion auf. Bei WHj
Produktion gibt es weitere (nicht bei Wj Produktion existierende) Diagramme, bei denen das
Higgs Boson nicht an ein W, sondern an eine Top-Quark-Schleife, koppelt. Diese Diagramme
wurden mit der vollen mt Abhängigkeit mit den Routinen aus Ref. [45] berechnet.

Die reellen Emissionen von WHj beinhalten zwei Arten von Diagrammen. Der Typ ggqq hat
eine Quarklinie mit zwei zusätzlichen Gluonen. Da diese Gluonen beide im Anfangszustand
sein können, ergibt sich eine Verstärkung durch die großen Gluon PDFs. Der zweite Dia-
grammtyp qqqq beinhaltet zwei Quarklinien, sodass alle externen Partonen Quarks sind. Die
Subtraktionsterme wurden als Teil der reellen Emissionen implementiert.

Im Rahmen der Rechnung wurde die CKM Matrix betrachtet, die bei der Kopplung eines W
an Quarks den Übergang zwischen verschiedenen Quarkgenerationen erlaubt. Da die Matrix
nahezu diagonal ist, stellen diese generationenändernden Kopplungen nur kleine Korrekturen
dar und häufig wird die CKM Matrix als Einheitsmatrix angenähert, so zum Beispiel in
den bisher in VBFNLO implementierten Produktionsprozessen. Dies hat den Vorteil, dass
für die Berechnung des Matrixelements keine Informationen über den Flavour der Quarks
nötig sind. Mit den aktuell experimentell bekannten Werten für die CKM Matrix ist die
Mischung zwischen den ersten beiden Generationen deutlich größer als die Mischung mit der
dritten Generation. Daher werden nur Effekte der Mischung in den ersten beiden Generationen
berücksichtigt.

Nicht-diagonale Matrixelemente lassen sich in eine Berechnung, die von einer diagonalen CKM
Matrix ausgeht, integrieren, ohne der eigentlichen Matrixelementberechnung Flavourinforma-
tionen zu geben. Stattdessen werden CKM Matrix Einträge in die PDFs gezogen und dort die
Quarkbasis rotiert. Der numerische Effekt von Übergängen in den ersten zwei Generationen
lässt sich durch die PDFs ausdrücken, sodass die relative Änderung des Wirkungsquerschnitts
kleiner ist als sin2 θc (u − c) (d − s). Der Vorfaktor sin2 θc beträgt etwa 5% und stellt ein
oberes Limit an den Effekt dar. Für die Produktion von W, WH, Wj und WHj wurden
Wirkungsquerschnittsänderungen von etwas unter 1% gefunden, die auch in differentiellen
Wirkungsquerschnitten nur in extremen Phasenraumbereichen deutlich größer sind.

Die NLO QCD Rechnung wurde sowohl mit vier als auch fünf aktiven Flavours ausgeführt. Die
Zahl der aktiven Flavour wird in verschiedenen Teilen der Rechnung genutzt um zu beschreiben,
welche Quark Flavour einbezogen werden. Da die verschiedenen Terme der NLO Rechnung
untereinander abhängig sind, muss diese Zahl konsistent gewählt werden. Inbesondere sind
virtuelle und reelle Korrekturen miteinander verknüpft. Es gibt bevorzugte Flavour Anzahlen
in bestimmten Prozessen. Eine Rechnung mit allen Ordnungen der Störungstheorie sollte zu
identischen Ergebnissen führen, sodass Abweichungen hier einem Theoriefehler entsprechen.
Diese Abweichungen betragen im Falle von WHj Produktion wenige Prozent.

Die Rechnung wurde auf mehrere Weisen auf ihre Richtigkeit hin überprüft. Die LO Am-
plitude wurde mit MadGraph verglichen, der LO Wirkungsquerschnitt mit Sherpa. Für die
virtuellen Amplituden wurden interne Überprüfungen basierend auf Ward Identitäten sowie
anhand bekannter analytischer Ergebnisse durchgeführt. Die Top-Quark-Schleifen liefern in
verschiedenen Grenzwerten Übereinstimmung mit effektiven Vertices aus MadGraph. Zum
Gesamtwirkungsquerschnitt tragen die Top-Quark-Schleifen 2-3% bei. Der NLO Wirkungsquer-
schnitt für die Produktion von WH und Wj wurde mit MCFM überprüft. Die Implementierung
der CKM Matrix ergibt Übereinstimmung mit den Implementierungen in MCFM und Sherpa.

Der Vergleich mit einer vorherigen Berechnung von Ji-Juan et al. in Ref. [49] von WHj
Produktion auf NLO QCD mit W und Higgs Boson auf der Massenschale zeigt Abweichungen
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im Bereich einiger Prozent. Für bestimmte Parameterwahlen treten Unterschiede bereits
auf LO auf. Des Weiteren zeigen die Abweichungen im Vergleich eine Skalenabhängigkeit.
Die Skalenvariation von WHj Produktion wurde zusammen mit Wj Produktion ausführlich
diskutiert und bestätigt. Die in dieser Arbeit durchgeführte Berechnung von WHj Produktion
differiert nur in wenigen Teilen von Wj Produktion und wurde in diesen Aspekten explizit
überprüft, sodass das Ergebnis abgesichert ist. Vor kurzem wurde eine weitere NLO QCD
Rechnung von VHj veröffentlicht in Ref. [60], aber die Ergebnisse konnten noch nicht verglichen
werden.

Basierend auf dieser Rechnung wurden verschiedene Aspekte der Phänomenologie untersucht.
Für den Wirkungsquerschnitt von W+Hj ergeben sich auf LO 25.3 fb und auf NLO 28.8 fb. Für
W−Hj ist der Wirkungsquerschnitt aufgrund der in einer anderen Kombination auftretenden
PDFs geringer mit 14.5 fb auf LO und 16.7 fb auf NLO. Der K-Faktor, das Verhältnis von
NLO zu LO, ist damit für den Gesamtwirkungsquerschnitt 1.13 bzw. 1.15. Für die weitere
Diskussion wird exemplarisch W+Hj verwendet. Die Top-Quark-Schleifen auf NLO tragen
2-3% zum Wirkungsquerschnitt bei. Dieser Beitrag hängt nur unwesentlich vom Phasenraum
ab.

Der Theoriefehler wird üblicherweise durch die Skalenabhängigkeit abgeschätzt. Hierzu werden
die in der Rechnung auftretende Renormierungsskala µR und Faktorisierungsskala µF um
einen zentralen Wert variiert. Diese Skalenabhängigkeit würde bei einer Rechnung mit allen
Ordnungen der Störungstheorie verschwinden. Die gewählte Skala sollte repräsentativ für den
Prozess sein. Klassisch ist die Nutzung einer konstanten Skala, für WHj zum Beispiel die
Masse des Z Boson, welche zwischen der von Masse von W und Higgs Boson liegt. Es ist jedoch
besser eine dynamische Skala zu verwenden, die phasenraumabhängig ist. Diverse mögliche
Skalen wurden untersucht, wobei sich die Abhängigkeit von der Definition der Skala von der
gleichen Größenordnung wie die Skalenvariation ergab. Eine geeignete Wahl in Bezug auf WHj
Produktion, die auch von der LHC Higgs Cross Section Working Group in Ref. [29] verwendet
wird, ist die invariante Masse mWH des WH Systems. Skalen, die nur auf Partonen basieren,
sind tendenziell klein und führen bei zusätzlicher Variation zu starken Abweichungen.

Für W+Hj Produktion hat eine gemeinsame Skalenvariation von µF und µR im Bereich
[0.5µ0, 2µ0] um µ0 = mWH einen Einfluss auf den Wirkungsquerschnitt von 19% auf LO und
7% auf NLO. Die NLO Korrekturen reduzieren also die Skalenabhängigkeit um einen Faktor
3. Bei Wj Produktion weisen µR und µF auf LO entgegengesetztes Verhalten auf. Daher
unterschätzt eine Skalenvariation, die beide Skalen gemeinsam variiert, die Skalenabhängigkeit
deutlich und ist keine geeignete Abschätzung für den Theoriefehler. Bei WHj Produktion
dominiert die Abhängigkeit von µR, sodass eine gemeinsame Variation adäquat ist. Das
Skalenverhalten von WHj Produktion lässt sich mit Wj Produktion reproduzieren, indem die
invariante Masse des W zu Werten oberhalb von 200GeV gezwungen wird. Bei WHj Produktion
koppelt ein W Boson an die Quarklinie, dessen invariante Masse der des WH Systems entspricht.
Damit ist das W weit von seiner Massenschale entfernt und die Skalenvariation zeigt ein
qualitativ ähnliches Verhalten wie für WHj.

Ein Jet Veto ist ein Phasenraumschnitt, der auf NLO Ereignisse mit einem zusätzlichen
Jet über einer gewissen Grenze pTveto verwirft und dabei scheinbar die Skalenabhängig-
keit reduziert. Dies senkt den Wirkungsquerschnitt und beeinflusst die Form differentieller
Wirkungsquerschnitte. Insbesondere im Bereich hoher Transversalimpulse ist der Wirkungs-
querschnitt reduziert. Die Verringerung der Skalenvariation entspricht nicht einem reduzierten
Theoriefehler. Im Gegenteil gibt es Verteilungen, die mit Jet Veto eine hohe Skalenabhängigkeit
aufweisen, sodass hier eine konservativere Abschätzung der Unsicherheiten basierend auf der
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Skalenvariation der inklusiven Rechnung nötig ist.

Experimentelle Analysen der Produktion in Higgsstrahlung suchen häufig nach geboosteten
Higgs Kandidaten. Kriterium hierfür ist typischerweise pTh > 200GeV. Obwohl dieser Pha-
senraumschnitt den Wirkungsquerschnitt des Signals reduziert, hat er einen größeren Effekt
auf Untergrundprozesse wie W+Jets und erhöht so den Anteil von Signal- zu Untergrunder-
eignissen. Während der K-Faktor des totalen Wirkungsquerschnitts ähnlich bleibt, ändern
sich die differentiellen K-Faktoren mit diesem zusätzlichen Phasenraumschnitt deutlich. Dies
zeigt, dass NLO Rechnungen, insbesondere bei der Suche nach einem boosted Higgs, nicht
durch die Multiplikation mit einem konstanten K-Faktor approximiert werden können.

Anomale Kopplungen sind eine Erweiterung des Standardmodells, die in Form einer effekti-
ven Feldtheorie allgemeine Kopplungen von Eichbosonen parametrisieren. Diese können als
Niederenergie-Grenzwert einer unbekannten Theorie bei einer höheren Energieskala interpre-
tiert werden. In WHj Produktion sind anomale Kopplungen mit ihren Effekten auf den WWH
Vertex implementiert. Anomale Kopplungen beeinflussen sowohl den totalen Wirkungsquer-
schnitt als auch die Form von Verteilungen. Starke Effekte zeigen sich vor allem im Bereich
großer Transversalimpulse.

Basierend auf dieser Berechnung ergeben sich weitere Forschungsmöglichkeiten. So können
Sensitivitätsanalysen mit anomalen Kopplungen durchgeführt werden, um eine mögliche
Einschränkung der Parameterwahl durch die Messungen von WH(j) Produktion zu untersuchen.

Die Berechnungen der Produktion WH und WHj auf NLO können mit der Loopsim Metho-
de [61] kombiniert werden. Dies ermöglicht die Bestimmung angenäherter NNLO Ergebnisse
(n̄NLO) für Observablen im Bereich hoher Transversalimpulse. Ähnliche Kombinationen wur-
den bereits für WW [62], WZ [63] und W/Z + Jets [64] durchgeführt. Ein Vergleich mit der
vollen NNLO Rechnung [65] kann genutzt werden, um die Kombinationsmethode und ihren
möglichen Anwendungsbereich zu untersuchen.
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APPENDIX

A. Physical Constants
The following values for physical constants are used if not explicitly stated otherwise. Where
applicable, they follow the defaults in VBFNLO.

GF = 1.16637 · 10−5 mtop = 172.4GeV sin θW = 0.222646
mh = 126GeV Γh = 0.00427651GeV sin2 θcabibbo = 0.22535
mW = 80.398GeV ΓW = 2.09767297GeV BR(H→ bb) = 57.1%
mZ = 91.1876GeV ΓZ = 2.50841993GeV BR(W→ lν) = 10.84%

(7.1)

If not stated otherwise, for all LO calculations the PDF set CTEQ6L1 and for NLO calculations
CT10 is used [27, 28]. The value of αs is taken from the corresponding PDF set.
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