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Deutsche Zusammenfassung

Monte-Carlo-Ereignisgeneratoren sind aus der Analyse moderner Teilchenbeschleuniger-
Experimente nicht mehr wegzudenken. Die probabilistische Natur der Quantenmechanik
impliziert hier die Simulation von einzelnen, zufällig verteilten Ereignissen, die dann ent-
sprechend der Theorie gewichtet werden. Ein Ereignis wird dabei typischerweise in meh-
reren Schritten simuliert, die als unabhängig angenommen werden.

Die Streuamplituden und Wirkungsquerschnitte auf Elementarteilchenebene können i.a.
störungstheoretisch berechnet werden. In einem Großteil der Prozesse treten hier im
Endzustand Quarks und Gluonen, sogenannte Partonen, auf. Sie unterliegen der starken
Wechselwirkung, welche durch die Quantenchromodynamik beschrieben wird, und sind
die fundamentalen Bausteine der Atomkerne. Partonen werden allerdings nie als freie
Teilchen beobachtet, da sie einer zentralen Eigenschaft der QCD, dem Confinement oder
Quark-Einschluss, unterliegen. In der Folge bilden mehrere Partonen immer gebundene
Zustände, die Hadronen, welche dann im Experiment nachgewiesen werden können. Diese
Eigenschaft lässt sich dadurch veranschaulichen, dass Quarks und Gluonen sogenannte Far-
bladung tragen; gebundene Zustände müssen allerdings immer farblos sein. Am anderen
Ende der Energieskala sind energiereiche Partonen asymptotisch frei und eine störungs-
theoretische Beschreibung ist möglich.

Ereignisgeneratoren bewerkstelligen den Übergang vom harten Prozess zum hadronischen
Endzustand in zwei Schritten. Zuerst wird die Energie der einzelnen Partonen im Par-
tonschauer im Rahmen der Störungstheorie durch sukzessive Abstrahlprozesse reduziert.
Damit wird ein Vielteilchen-Zustand angenähert, der mit einer Berechnung von Streuam-
plituden nicht zu bewerkstelligen wäre. Die Partonschauernäherung basiert hierbei auf
der Abstrahlung von kollinearen und weichen Partonen, welche die größten Beiträge zum
Wirkungsquerschnitt liefern. Zum Ende des Schauers verbleiben Partonen mit geringer
Energie und die Störungstheorie verliert ihre Gültigkeit. Im Anschluss werden daher
Hadronisierungs-Modelle verwendet, um den partonischen Zustand entsprechend des Con-
finements in Hadronen überzuführen. Hierbei kommen phänomenologische Modelle zum
Einsatz, die zuerst farbverbundene (Anti-)Quarks zu größeren Gebilden zusammenfügen,
welche dann in leichtere Hadronen zerfallen.

Ziel dieser Arbeit war die Implementierung eines dipol-artigen Partonschauers in den
Ereignisgenerator Herwig++ unter Berücksichtigung endlicher Partonmassen. In diesem
Dipolschauer-Ansatz wird zusätzlich zur herkömmlichen Abstrahlung ein sogenanntes
Zuschauer-Parton berücksichtigt, welches einen Rückstoß erfährt. Dadurch wird in jedem
Schritt Energie-Impuls-Erhaltung ermöglicht; außerdem erfüllen die Partonen während
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des gesamten Prozesses ihre jeweilige Massenschalen-Bedingung. Diese Beschreibung ver-
spricht, physikalisch sinnvoller zu sein als die Standardimplementierung und macht eine
nachträgliche Korrektur der einzelnen Impulse, wie sie ansonsten nötig wäre, überflüssig.

Ein wichtiger Punkt bei der numerischen Berechnung von störungstheoretischen Korrek-
turen zu Wirkungsquerschnitten ist das Auftreten von Divergenzen in Zwischenschrit-
ten. Im Herwig++ Matchbox-Modul ist hier ein Subtraktions-Ansatz gewählt, in welchem
Zusatzterme eingeführt werden, die die Singularitäten jeweils einmal subtrahieren und an
anderer Stelle addieren, und somit eine numerische Berechnung möglich machen. Diese
Hilfsterme sollten ebenfalls für den Fall endlicher Partonmassen implementiert werden.
Eine weitere Aufgabe bestand darin, Partonschauer und harten Prozess konsistent zusam-
menzuführen, was als Matching bezeichnet wird.

Mit all diesen Modifikationen bestand die Erwartung, besonders Prozesse, an denen schwere
Quarks beteiligt sind, nun besser beschreiben zu können.

Zum Zwecke des verbesserten Partonschauers wurden die nötigen Splitting-Kernel, welche
das Spektrum der Abstrahlung beschreiben, implementiert. Parametrisierungen der Im-
pulse sowie die relevanten Phasenraum-Faktorisierungen wurden für alle Dipolkombina-
tionen und beliebige Massen hergeleitet und ebenfalls für den Fall auslaufender Partonen
implementiert. Das Abstrahlungsspektrum der vollständigen Implementierung konnte mit
einer unabhängigen Rechnung verglichen und verifiziert werden, wobei besonderes Augen-
merk auf den Einfluss großer Quarkmassen gelegt wurde.

Zur Beschreibung von Elektron-Positron-Annihilation in nächstführender Ordnung wurde
die entsprechende Korrektur zum Matrixelement implementiert. Gemeinsam mit neuen
Catani-Seymour-Dipolen, Einschuboperatoren und kinematischen Abbildungen sind somit
alle Bestandteile des Subtraktionsschemas sowie des Matchings verfügbar. Die korrekte
Funktionsweise der Subtraktionsterme konnte numerisch bestätigt werden. Desweiteren
fügen sich die Erweiterungen konsistent in den bisherigen Algorithmus, in welchem eine
masselose Näherung verwendet wird, ein. Übereinstimmung sowohl auf Parton- als auch
Observablen-Niveau wurde gefunden. Mit diesen Erweiterungen besteht nun die Möglich-
keit für den Nutzer, zwischen der masselosen und der weiterentwickelten Implementierung
auszuwählen.

Im nächsten Schritt wurde dieses Setup genutzt, um die Freiheitsgrade der Simulation
an Daten aus dem LEP-Experiment neu anzupassen. Im Fokus stehen hier v.a. Hadro-
nisierungsparameter sowie die untere Energieschranke des Partonschauers, der sogenan-
nte infrarote Cutoff. Generell konnte die gute Übereinstimmung aus der masselosen Im-
plementierung noch leicht übertroffen werden. Ein Schwachpunkt bleibt allerdings trotz
der verbesserten Schauersimulation die Beschreibung der B-Hadron-Fragmentierung, wo
die Neuerungen zunächst nicht die gewünschte Wirkung erzielen konnten. Diese Observ-
able beschreibt das Energiespektrum derjenigen Hadronen, die schwere b-Quarks enthal-
ten und ist damit besonders sensibel auf die Neuerungen im massiven Partonschauer.
Auf der Suche nach Hinweisen auf die Ursache dieser Unzulänglichkeit, wobei jedoch
das nicht-pertubative Hadronisierungsmodell unangetastet bleiben sollte, wurde daher
der (experimentell unzugängliche) Zustand nach dem Schauer und direkt vor der Hadro-
nisierung untersucht. Das Spektrum der Primär-Cluster hängt dabei zum einen von der
Art des Schauers (dipol-artig oder herkömmlich) ab, zum anderen auch sehr stark vom in-
fraroten Cutoff. Obwohl die Erwartung besteht, dass der Dipolschauer generell eine bessere
Beschreibung liefern sollte, so ist ein Vergleich mit dem erfolgreichen Standardschauer dur-
chaus sinnvoll, und deutet in Richtung eines sehr niedrigen Cutoffs für die Evolution von
sowohl schweren als auch leichten Quarks. Desweiteren wurde festgestellt, dass Quark-
Antiquark-Bildung im Schauer überschätzt wird. Ein zugeschnittenes weiteres Tuning
konnte diese Ergebnisse bestätigen und die Beschreibung der B-Hadron-Fragmentierung
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wurde signifikant verbessert. In anderen Worten wird durch den niedrigen Cutoff in der
Simulation mehr Verantwortung vom Hadronisierungsmodell an den pertubativen Parton-
schauer übertragen.

Es erscheint jedoch wichtig, weitere Studien zum Übergang vom Partonschauer in den
nicht-pertubativen Bereich durchzuführen. Besonderes Augenmerk wäre hier auf die Un-
terschiede im partonischen Endzustand von dipol-artigen und herkömmlichen Parton-
schauern zu legen. Gerade unter dem Gesichtspunkt, dass die gängigen Hadronisierungs-
modelle im Zusammenspiel mit monopol-artigen Partonschauern entwickelt wurden,
scheint eine genauere Analyse vielversprechend. Weiterhin wurde die Frage aufgeworfen,
wie der im Dipolschauer auftretende Überschuss an Splittings von g 7→ qq̄ begrenzt werden
kann. Hier wäre eine interessante Fragestellung, welche Rolle der infrarote Schauercutoff
sowie die Abschirmskala der Splittingkernels genau spielen, sowie in welchem Rahmen
Modifikationen an den Splittingkernels möglich sind.

Zusammenfassend lässt sich feststellen, dass die konsistente Implementierung eines dipol-
artigen Schauers für massive Partonen im Endzustand eine gute Beschreibung der LEP-
Daten liefern kann. Desweiteren wurden die relevanten Größen und Abbildungen, welche
im Splittingprozess benötigt werden, auch für den Fall von Hadron-Beschleunigern bes-
timmt, wodurch einer Implementierung nichts mehr im Wege steht. Dies ist gerade im
Hinblick auf den LHC interessant, da hier zum einen ein- und auslaufende Partonen Dipole
bilden können, die dann Schauerevolution durchlaufen, und zum anderen wesentlich höhere
Energien erreicht werden, wodurch der Einfluss schwerer Quarks besonders zum Tragen
kommt.
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CHAPTER 1

Introduction

In the history of particle physics, many insights into the properties of elementary parti-
cles and forces have been gained. With experiments successively reaching higher energy
regimes, new particles were detected which are now consistently incorporated into the Stan-
dard Model of Particle Physics [1, 2, 3]. Besides known shortcomings which led to many
competing theories commonly denoted BSM theories (beyond the Standard Model), it has
been well confirmed by the large majority of experiments. Quantum Chromodynamics
(QCD) as part of the Standard Model describes the interactions of quarks and gluons, the
fundamental building blocks of atomic nuclei. These particles, collectively called partons,
show the peculiar characteristic of never appearing on their own - they always combine
to larger entities called hadrons, an effect which is known as confinement. If they are
produced in collider experiments, this leads to final states not consisting of elementary
particles but of a complicated accumulation of a large number of hadrons which occur in
particle jets. Owing to this complexity, plain calculations by hand alone are no longer
suitable and a simulation of parton evolution and hadronization becomes necessary. For
this reason, Monte Carlo event generators [4, 5, 6] play a crucial role in modern particle
physics. Based on sophisticated algorithms that emulate single collider events by mak-
ing use of random numbers, they allow for detailed simulations that can be compared to
experimental data.

In this work, we focus on the QCD simulation of hard scattering processes and subsequent
parton showers. Our aim is to give an improved description of the partonic final state by
extending the existing implementation in the event generator Herwig++ [4, 7]. Specifically,
our implementation takes finite quark masses fully into account, i.e. it provides a more
accurate description of heavy particles. The main obstacle here is that for each non-zero
mass, an additional energy scale is introduced that leads to modifications in the pole
structure of matrix elements and to a more complicated parametrization of the available
phase space. We study leptonic collisions in particular, since they produce very clear
hadronic signals with well-defined initial conditions. Thus, our implementation of a new
parton shower can easily be compared to data from the LEP experiment.

The outline of this work is as follows.

In Chapter 2, the basic properties of QCD are sketched. Some specific aspects of pertur-
bative corrections are given in Chapter 3. In particular, matrix element corrections and
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the parton shower approximation are at the core of this work. Chapter 4 outlines the
functionality of Herwig++ and the analysis tools used to obtain results from our imple-
mentation.

The properties of massive dipole-type parton showers, which we derived in the course of
this work, are described in Chapter 5. Chapter 6 depicts the implementation into the
existing framework.

The validity of our implementation was investigated at parton level, which is described in
Chapter 7. In Chapter 8, simulation results are systematically compared to experimental
data in order to adjust the free parameters of the model. This particularly involves the
degrees of freedom in the hadronization model and limiting conditions of the parton shower
evolution.

Conclusions are drawn in Chapter 9, and a critical analysis of the advantages of the
algorithm is made. An outlook suggests possible future studies on the topic.



CHAPTER 2

Quantum Chromodynamics

The Standard Model of Particle Physics (SM) is a quantum field theory describing all
known fundamental particles and forces (except for gravity) in Nature. Its success stems
from the ability to describe the majority of experiments performed at particle colliders so
far with very high accuracy. The entire SM particle content has been experimentally con-
firmed, except for the postulated Higgs boson whose properties are expected to be severely
restricted in the near future by the LHC. Since Quantum Chromodynamics (QCD), the
theory of quarks and gluons, will play a prominent role throughout this thesis, its basic
properties are outlined in this chapter. The SM as a whole is a combination of electroweak
theory and QCD, described as the quantum field theory of the underlying gauge group
SU(3)× SU(2)×U(1).

2.1. Quantum Field Theory

The basic entity from which quantum field theories are constructed is a Lagrangian density.
For non-interacting fermionic fields ψ of spin 1/2 and spinless bosonic fields φ, respectively,
the Lagrangian reads

Lfree
fermion = ψ̄(ı/∂ −m)ψ , (2.1)

Lfree
boson =

1

2
(∂µφ)2 − 1

2
m2φ2 . (2.2)

Quantization is carried out by interpreting the fields as operators, on which (anti-)commutation
properties are imposed1,

{ψa(~x), ψ†b(~y)} ≡ ψa(~x)ψ†b(~y) + ψ†b(~y)ψa(~x) = δ(3)(~x− ~y) δab ,

[φ(~x), π(~y)] ≡ φ(~x)π(~y)− π(~y)φ(~x) = ıδ(3)(~x− ~y) , (2.3)

where ψi denotes a component of the spinor ψ and π is the conjugate momentum density
to the field φ.

Many interesting properties arise by virtue of Emmy Noether’s theorem, which states
that to every continuous symmetry under which the action

∫
d4xL remains invariant,

1We denote 3-vectors by ~x and 4-vectors by x, where the components are given by xµ, i.e. x ·y ≡ gµνxµyν ≡
xµyµ ≡ x0y0 − ~x · ~y.
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a corresponding conserved quantity exists. In this sense, invariance under the spatial
transformations of the Poincaré group leads to conservation of energy, momentum and
angular momentum. Clearly, this is the case for the free Lagrangians in Eqs. (2.1) and
(2.2).

Interacting field theories are obtained by imposing intrinsic symmetries on the fields. In the
simplest case, demanding invariance under local U(1) transformations of the field spinors
(i.e. multiplying each spinor by exp [−ıα(x)]) leads to Quantum Electrodynamics, the the-
ory of electrons, positrons and photons. Electroweak theory includes the weak force of
radioactive decays and is based on a local SU(2) × U(1) symmetry. The introduction of
the Higgs field breaks the symmetry again, thus introducing mass terms for the fermions
and weak gauge bosons. The last ingredient of the Standard Model, Quantum Chromody-
namics, is the theory of quarks and gluons which interact via the strong force. We outline
the construction of QCD from a local SU(3) symmetry in more detail in the following
section, since it plays an important role throughout this thesis.

2.2. The QCD Lagrangian

Quantum Chromodynamics is a non-abelian gauge theory based on an SU(3)C gauge group
(where C stands for “colour”). Starting from a fermionic Lagrangian for different quark
flavours f

L =
∑

f=u,d,s,...

Ψ̄f (ıγµ∂
µ −mf ) Ψf , (2.4)

the symmetry is locally imposed together with a connection (expressed through gauge
fields A), which is required for consistency. This procedure results in a Lagrangian where
partial derivatives are replaced by covariant derivatives and is known as minimal coupling,

∂ 7→ D ≡ ∂ 1colour − ıgsAata . (2.5)

gs denotes the strong coupling constant. The gauge fields2 {Aa} represent gluon fields
that transform according to the adjoint representation. Hence, they can be decomposed
into a basis formed by the eight generators ta of the symmetry group SU(3)C . In the
fundamental representation, the generators are given by the Gell-Mann matrices: ta ≡ λa

2 .

The fermions (quarks) transform according to the standard representation, i.e. they are
colour triplets Ψf ≡ Ψc

f (c = red,blue, green). In order to simplify the notation, colour
indices are suppressed from now on whenever unambiguous. After an infinitesimal local
SU(3)C transformation, which is expressed through parameters αa ≡ αa(x), the respective
fields are given by

Ψ(x) 7→ (1 + ıαata) Ψ(x) , (2.6)

DµΨ(x) 7→ (1 + ıαata)DµΨ(x) , (2.7)

Aa 7→ Aa +
1

gs
∂αa + fabcAbαc , (2.8)

where fabc are the structure constants of the SU(3)C Lie algebra which obey

[ta, tb] = ıfabctc . (2.9)

Here lies the crucial difference between QCD and abelian gauge theories such as QED,
where the structure constants vanish. This property is related to gluon self-coupling and
ultimately leads to asymptotic freedom, see Section 2.3.

2In our notation, the set of all components Aa is denoted {Aa}.
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A gauge-invariant field-strength tensor can be defined via the covariant derivative

[Dµ, Dν ] = −ıgsF aµνta (2.10)

which, expressed in terms of the gauge fields, is given by

F aµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (2.11)

The whole QCD Lagrangian then reads (colour indices suppressed)

L = −1

4
(F aµν)2 +

∑
f=u,d,s,...

Ψ̄f (ıγµD
µ −mf ) Ψf . (2.12)

Note that in QCD as a separate theory, the gauge-invariant Lagrangian can contain
fermionic mass terms as written above since they do not break SU(3) gauge theory. On
the other hand, the underlying SU(2)×U(1) symmetry of electroweak theory is explicitly
broken by similar terms. This is one of the reasons for the introduction of an additional
Higgs field in the Standard Model, where QCD and electroweak theory are merged. As we
are not concerned with electroweak interactions in this work, we do not go into any detail
here. However, a comprehensive discussion of QCD and the Standard Model can be found
in many textbooks, see e.g. Ref. [8].

Quantization of the gluon fields can be carried out by adding a gauge-fixing term to the
Lagrangian in order to eliminate a large class of physically equivalent gauges. Unphysical
gluon polarizations can be compensated by the introduction of additional (and equally
unphysical) Faddeev-Popov ghost fields. Alternatively, the gauge fields can be treated in
the axial gauge where n ·Aa = 0 for fixed gauge vector n.

2.3. Phenomenological Properties of QCD

When considering higher-order corrections to QCD processes, ultraviolet divergences occur
and are handled by distinguishing between the bare parameters of the Lagrangian and
physical quantities. In this procedure, which is called renormalization, the divergence-
free and physically meaningful renormalized coupling constant αS(µ2) is defined, where
αS ≡ g2

s/4π. Corrections from higher orders in perturbation theory are incorporated in αS ,
which also exhibits a dependence on the renormalization scale µ, i.e. the scale of momentum
transfer at which renormalization is performed. Requiring any result to be independent
of the arbitrary choice of µ leads to a differential equation for the renormalized coupling
αS(µ2), which is governed by the so-called β function,

∂

∂(lnµ2)
αS(µ2) = β(αS(µ2)) . (2.13)

β(αS) is derived from higher-order calculations and reads (to one-loop order accuracy)

β(g) = − g3

(4π)2

[
11

3
C2(G)− 4

3
nfC(r)

]
. (2.14)

The SU(N) Casimir operators are given by C(r) = 1
2 and C2(G) = N respectively. For the

SU(3) symmetry group and nf = 6 observed quark flavours, the β function is of negative
sign. The resulting running coupling constant αS(Q2) thus becomes effectively smaller at
higher scales (which corresponds to smaller distances) and the solution of Eq. (2.13) is
given by

αS(Q2) =
αS(µ2)

1 + αS(µ2)
12π (33− 2nf ) log (Q2/µ2)

, (2.15)
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where Q2 denotes the scale of the momentum transfer of the process under consideration.
Two important effects arise from this property. First, perturbative QCD calculations are
valid only for energy scales & ΛQCD = O(100 MeV), since in this regime the coupling con-
stant αS can be considered small. This implies that in the high-energy regime, quarks
and gluons appear to be almost free particles, an effect which is known as asymptotic
freedom [9, 10]. Second, for large distances (or, correspondingly, low energy scales) per-
turbation theory breaks down. Experimentally, only SU(3)C singlet states (hadrons) are
observed in this regime. This property, which cannot be described within the perturbative
framework of QCD, is called confinement.
Asymptotic freedom is a distinct property of non-abelian gauge theories with an appro-
priately small number of flavours [11, Chapter 14.6], and can be traced back to three- and
four-gluon vertices, whose analogues are absent in abelian theories.



CHAPTER 3

Parton Showers and Higher Orders in Perturbation Theory

Performing QCD calculations beyond the leading order is absolutely crucial in order to
obtain reliable results, as will be motivated in this chapter. We thus give a brief description
of the structure of these higher-order corrections with a focus on their largest contributions.
By virtue of the Kinoshita-Lee-Nauenberg (KLN) theorem [12], computational results
for sufficiently inclusive and infrared-safe observables are always finite. In intermediate
steps, however, infrared divergences occur which can be traced back to soft and collinear
partons. These terms have to be cancelled analytically, but this procedure prevents from
a straightforward numerical implementation. A calculational formalism that explicitly
overcomes these obstacles is introduced in Section 3.2.

The focus of this work lies on the implementation of an improved (dipole-type) parton
shower that explicitly takes all finite parton masses into account. Therefore, Section 3.3
gives a description of the basic properties of parton showers. In Section 3.4, we reca-
pitulate the shower formalism proposed in Ref. [13] and implemented in the Herwig++
DipoleShower module for massless partons, which is the basis for our new implementation.
Section 3.5 outlines the merging of NLO calculations and parton showers, called matching.
A consistent matching algorithm is implemented in the Herwig++ Matchbox module for
massless partons, which also was extended in the course of this work.

3.1. Higher-Order Corrections

In perturbative QCD, the strong coupling constant is still of O(0.1) at scales typically
encountered at collider experiments. Due to this fact, higher-order corrections to matrix
elements can in general not be considered to turn out small. These corrections include
loop diagrams as well as additional real emissions on top of the leading-order (LO) pro-
cess. A conventional estimate of higher orders in perturbation theory is by means of scale
variations. The energy scale at which αS(Q2) is evaluated in the calculation is varied by
a factor of 2 and 1/2, and the difference between the respective results serves as a predic-
tion of the absolute value of higher-order corrections. Indeed, thus estimated theoretical
uncertainties typically become smaller as higher orders in αS are determined.

An inclusive observable 〈O〉 at next-to-leading order (NLO) accuracy receives contributions
from the LO or Born part of the cross section (σB), from real emission (σR) and from
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virtual corrections (σV )

〈O〉NLO =

∫
m

dσB({pi})Om({pi})

+

∫
m+1

dσR({pi})Om+1({pi}) +

∫
m

dσV ({pi})Om({pi}) . (3.1)

∫
n denotes the integration over the n-parton final state phase space.

An important issue in higher-order calculations is the handling of divergences which oc-
cur at intermediate steps during calculations. Ultraviolet (UV) divergences stem from
integrating over (unbounded) loop momenta and are absorbed into physically meaningful
renormalized field operators, coupling constants and masses. The second class of diver-
gences – infrared (IR) divergences – is connected to either the emission of a soft gluon or
two massless partons becoming collinear. Massive partons do not exhibit collinear diver-
gences, however, the respective contributions are still very large in the related phase-space
regions. In either case the two partons undergo hadronization and cannot be resolved as
separate jets by any experiment. Most commonly, the divergences are regularized by ana-
lytic continuation of the integrals to d = 4− 2ε space-time dimensions, as this is the only
known gauge- and Lorentz-invariant procedure. In this prescription, the IR divergences of
the virtual contribution are manifest in poles in ε whereas those of the real emission con-
tribution emerge implicitly after integration over the respective phase-space regions. At
NLO, poles of the form 1/ε stem from (massless) collinear partons or soft gluon emission.
Poles of the form 1/ε2 arise in massless configurations and are related to soft-and-collinear
divergences. For sufficiently inclusive and IR safe quantities, these divergences always can-
cel between the real emission and virtual contribution of a fixed-order matrix element, as
expressed by the KLN theorem.

Subtleties arise whenever initial-state partons or identified final-state partons are involved.
Both types of processes are referred to as processes with identified partons. Initial-state
partons occur in hadronic collider experiments where they are extracted from a hadron
with momentum distribution according to the parton distribution function (PDF). To
leading order in QCD, the parton momenta are collinear to the momentum of the proton,
and if the hard parton-level process involves scattering into a final state X, the cross
section at hadron level is given by the convolution

σ(p+ p 7→ X + Y ) =

∫ 1

0
dx1

∫ 1

0
dx2

∑
a,b

fa(x1;µF ) fb(x2;µF ) σ̂(a(x1P1) + b(x2P2) 7→ X) ,

(3.2)
where fi denotes the respective PDF, Y is any hadronic final state and we considered
proton-proton collisions with momenta P1,2. The partons carry longitudinal momentum
fractions xi, additionally all possible flavours a, b for the process under consideration have
to be taken into account. The PDFs depend on the factorization scale µF which corre-
sponds to the resolution at which the hadron is being probed.

In the partonic cross section, the phase space exhibits further constraints since the direc-
tion of the identified parton momenta has to be kept fixed. Thus, integrating the real
emission contribution over the collinear region does generate additional poles in ε which
are not compensated by the divergences stemming from the virtual contribution any more.
However, this problem can be solved by realizing that parton and hadron momenta are
connected via a momentum fraction x. The additional divergences are inseparably con-
nected with the non-perturbative PDFs (or, for the case of identified partons in the final
state, fragmentation functions) and can be absorbed into renormalized distributions. As a
formal result, in calculations at parton level an additional divergent term has to be added
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in order to render the cross section finite, called collinear counter term,∫ 1

0
dz

∫
m

dσB({pCi (z)})Om({pCi (z)}) Γ(z) . (3.3)

It is defined via a process-independent factor Γ(z) that is divergent as ε 7→ 0, and the
phase-space point {pCi (z)} denotes that one parton entering the Born cross section is
carrying a momentum fraction z with respect to the momentum of the respective parton
in the real emission contribution.

While arbitrary processes turn out to produce a finite prediction due to the cancellation of
all divergences, a straightforward numerical integration is prohibited: IR divergences first
have to be extracted and cancelled analytically before evaluating the respective integrals
in d = 4 dimensions. Once this is done, Monte Carlo event generators such as Herwig++
can be used to simulate events and make predictions for an observable O.

3.2. The General Method of Catani and Seymour

In order to numerically evaluate the separately divergent integrals of NLO calculations,
several subtraction schemes have been developed. Commonly used schemes are FKS [14]
and antenna subtraction [15, 16], however, we base our implementation on a general and
very flexible formalism put forward by Catani and Seymour in 1997 [17] and extended to
incorporate the influence of finite parton masses five years later [18]. In this formalism,
an auxiliary cross section dσA is introduced which is to have the same point-wise singular
behaviour as dσR in d space-time dimensions. The quantity dσR−dσA can then be safely
integrated in d = 4 dimensions. As an additional property, outside the singular regions
dσA is constructed in a way which allows for an analytical integration over the one-parton
subspace related to parton emission. The KLN theorem then states that the poles in
ε emerging from this integration cancel all poles from the remaining terms. Thus, the
modified virtual contribution dσV +

∫
1 dσA can also be safely integrated in four space-time

dimensions as long as no initial-state partons or identified partons in the final state are
involved. If, however, identified partons do occur, an additional counter term is to be
added as outlined in the previous section. More precisely, in the general case an inclusive
and IR-safe observable 〈O〉 is calculated as

〈O〉NLO =

∫
m

dσB({pi})Om({pi})

+

∫
m+1

[
dσR({pi})Om+1({pi})− dσA({pi})Om({pi})

]
+

∫
m

[
dσV ({pi}) +

∫
1

dσA({pi})
]
Om({pi})

+

∫ 1

0
dz

∫
m

dσB({pCi (z)})Om({pCi (z)}) Γ(z) . (3.4)

The first two terms on the right-hand side are finite and integrable in four space-time
dimensions. The divergences in the virtual contribution and collinear counter term cancel
analytically against the auxiliary term integrated over the one-parton subspace.
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In QCD, the differential real emission cross section features properties called factorization,
see e.g. Ref. [19]. More specifically, in the phase-space regions of

• a soft gluon,

• two partons in the quasi-collinear limit1,

the differential real emission cross section can be expressed as the convolution of the
squared Born matrix element with process-independent factors. Specifically, these factors
only depend on the external legs of the Born element and generally exhibit colour cor-
relations with the latter in the soft region and spin correlations in the (quasi-)collinear
region. Note that the factorization properties hold in the very phase-space regions where
the poles in the integrals occur, i.e. the auxiliary cross section dσA is required to resemble
the real emission contribution dσR only in the limits where the factorization properties
hold. Therefore, dσA can be similarly decomposed into dσB and process-independent fac-
tors. Symbolically, we express dσA as a sum over dipole factors dVdipole convoluted with
the Born cross section (indicated by the symbol ⊗),

dσA =
∑

dipoles

dσB ⊗ dVdipole . (3.5)

Each dipole factor describes radiation off an external parton (the “emitter”), with another
external parton acting as a “spectator”. A detailed discussion of the splitting kinematics is
presented in Chapter 5, where the dipole picture is used to put forward a parton shower.
A visualization of the dipoles is depicted in Fig. 3.1.

Since the dipole factors are process-independent, the integral over the one-parton subspace
can be carried out analytically and yields a universal factor which in the simple case of no
identified parton reads

I ≡
∑

dipoles

∫
1

dVdipole . (3.6)

This contribution is called insertion operator since in the calculation, it is convoluted with
(“inserted into”) the Born matrix element. In the general case, additional divergences
emerge in this integral which are analytically cancelled against the collinear counter term.
The resulting operator I again removes all divergences from the virtual contribution. Ad-
ditionally, a finite remainder is left from the collinear counter term which carries the de-
pendence on the momentum fraction z. It is split into two new insertion operators P and
K featuring a different dependence on z and the rescaled momenta {pCi (z)}, respectively.
Most notably, only P depends on the factorization scale.

1The collinear divergence, which is obtained by letting the transverse momentum between two massless
partons vanish (p⊥ 7→ 0), is screened by finite parton masses. Therefore, the quasi-collinear limit is defined
by the property that parton masses and transverse momentum vanish uniformly, p⊥ 7→ λp⊥, mi 7→ λmi

where λ 7→ 0. With this definition, factorization properties hold for massive partons as well.
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Figure 3.1.: Diagrammatic visualization for the different emitter-spectator cases. Final
state partons are labelled i, j, k, initial state partons a, b. {qn} denote the momenta after
splitting. The spectator absorbs a longitudinal recoil such that all partons remain on their
respective mass shells. Starting from the upper left, the dipole configurations are named
as follows: final-final, final-initial, initial-final, and initial-initial, according to whether the
emitter and spectator belong to the initial or final state.

Incorporating all the notations outlined above, the cross section is rewritten,

〈O〉NLO =

∫
m

dσB({pi})Om({pi})

+

∫
m+1

(dσR({pi})
)
ε=0

Om+1({pi})

−

 ∑
dipoles

dσB({pi})⊗ dVdipole({pi}))


ε=0

Om({pi})


+

∫
m

[
dσV ({pi}) + dσB({pi})⊗ I({pi})

]
ε=0

Om({pi})

+

∫ 1

0
dz

∫
m

[
dσB({pCi (z)})⊗ (P + K)(z, {pCi (z)})

]
ε=0

Om({pCi (z)}) . (3.7)

The insertion operators I, P and K are universal and, after analytic cancellation of the
divergences between I and the virtual contribution, finite for ε 7→ 0. Therefore, all phase-
space integrals can be evaluated numerically in four space-time dimensions.

The explicit form of all the process-independent factors in the dipole formalism is derived
in Refs. [17, 18] and listed in Appendix B. In order to evaluate the terms where operators
are inserted into the Born matrix element, colour and spin projections of the latter are
required.

3.3. The Parton Shower Approximation

Fixed-order calculations in perturbative QCD typically give an accurate description of
processes in the regime where the perturbation series expansion is convergent. However,
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there are kinematic regions in phase space where higher-order corrections can overcome the
smallness of the coupling αS . These enhancements appear in configurations related to the
emission of soft or collinear partons and occur as poles in 1/ε2 or 1/ε in the calculations.
If a cutoff parameter ρ is applied (where the singularities correspond to ρ 7→ 0), the result
is enhanced by factors of the form

αS ln2 (ρ) and αS ln (ρ) (3.8)

(in one-to-one correspondence with the poles in 1/ε2 and 1/ε). These contributions occur
to all orders in αS ,

αnS ln2n (ρ) and αnS ln2n−1 (ρ) , (3.9)

and are referred to as leading logarithmic (LL) contributions. Less singular contributions
αnS ln2n−2 (ρ), ... are referred to as next-to-leading logarithmic (NLL) contributions etc.
The aim of the parton shower approximation is to effectively resum the leading terms to
all orders, which is possible for a large class of observables.

The enhancements in the (quasi-)collinear limit are associated with parton branching. The
factorization properties of the real emission cross section state that

dσm+1 = dσm
dQ

Q
dz
αS
2π
Psplit(Q, z) , (3.10)

where the factor
dQ

Q
dz
αS
2π
Psplit(Q, z) ≡ dP(Q, z) (3.11)

can be interpreted as the splitting rate [20], i.e. higher-orders corrections are obtained
by considering emissions off external partons. Common choices for the scale Q are the
virtuality t of the parton under consideration, the opening angle θ between the splitting
products, or the transverse momentum p⊥ between the latter. In the dipole shower formal-
ism treated in this thesis, p2

⊥ is chosen as the typical scale of a splitting and will be used in
the following. z denotes the second kinematic variable, e.g. a quantity proportional to the
energy fraction of the first daughter parton to the mother parton. Any dependence on the
azimuthal angle is already assumed to be integrated out. Psplit denotes the splitting kernel,
which is derived in the (quasi-)collinear limit and governs the spectrum of the emission.

Parton showers are built from multiple branching as a Markov process, whose main calcu-
lational tool is the Sudakov form factor

∆(Q2, p2
⊥) = exp

[
−
∫ Q2

p2⊥

dp̄2
⊥

p̄2
⊥

∫ z+(p̄2⊥)

z−(p̄2⊥)
dz
αs
2π
Psplit(p̄

2
⊥, z)

]
, (3.12)

giving the probability of evolution from a hard scale Q2 to a scale p2
⊥ without resolved split-

ting. The Sudakov anomalous dimension is obtained by integrating the splitting kernels,
Γ(p̄2
⊥) ≡

∫
dzPsplit(p̄

2
⊥, z). p⊥ can be chosen as the evolution variable of the parton shower,

together with a second suitable kinematic variable. When considering non-collinear en-
hancements due to soft gluon emission as well, we are led to the choice of the opening
angle [20] or transverse momentum [13] as evolution variable. In the first case, an angular-
ordered parton shower emerges where soft gluon emission is confined to a cone around
the emitter parton. The correct LL and NLL contributions are then recovered if strong
ordering of successive splittings is imposed [13], θn+1 � θn or pn+1

⊥ � pn⊥, respectively,
and the shower is called coherent.

In fact, the Sudakov form factor sums enhanced virtual as well as real contributions to
all orders, since the virtual corrections contribute to the no-splitting probability. By
unitarity, i.e. branching and no-branching probabilities sum to one, the cancellation of the
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Figure 3.2.: Relevant splitting processes in a QCD parton shower.

divergences in the splitting functions and the corresponding virtual corrections is handled
implicitly.

In QCD, possible splittings include gluon emission and the splitting of a gluon into a
quark-antiquark pair, see Fig. 3.2. Thus, in the Sudakov form factor all possible splittings
from all legs contribute. The form factor itself, often referred to as a jet function, plays
a central role in any parton shower since it is used to determine the scale of the next
splitting.

3.4. A Formalism using Catani-Seymour Kernels

A parton shower formalism based on Catani-Seymour dipole kernels was proposed in
Refs. [21, 22] and implemented into Herwig++ for the case of massless partons, follow-
ing a new approach put forward in Refs. [13, 23, 24]. These kernels have originally been
derived in the context of the subtraction formalism for NLO calculations, cf. Section 3.2.
A substantial feature of the formalism is the implementation of exact 4-momentum con-
servation at each splitting by considering 2 7→ 3 processes. The additional parton acts
as a so-called spectator and is chosen to absorb the longitudinal recoil. On the contrary,
in previous implementations of a conventional 1 7→ 2 parton shower, this is not possible
and all parton momenta have to be put on mass shell after the evolution terminated. In
the dipole picture, each two colour-connected partons form an emitter-spectator pair that
may radiate. The definition of colour-connection is illustrated in Fig. 3.3. Both legs have
to be considered for emission and the recoil absorbed by the partner parton is to be taken
in the longitudinal direction of the splitting, i.e. only the direct splitting products expe-
rience a transverse momentum component. When these conditions are met, interference
diagrams are collinearly subleading and the splitting kernels are left unchanged by the
recoil. See again Fig. 3.1 for an illustration, which is now interpreted as showing emissions
during the parton shower. The blob symbolizes the part of the process connecting the
emitter-spectator pair.

Parton shower evolution is ordered in transverse momentum p⊥, in the sense that the
absolute value of p⊥ is successively reduced in each splitting process. By also applying
suitably chosen phase-space boundaries, the correct expression for the Sudakov anomalous
dimension is recovered. Effects which stem from the recoils only enter beyond NLL. Ad-
ditionally, the hard scale of a single cascade is to be chosen to be the dipole’s invariant
mass in order to reproduce the correct LL contributions. Via strong evolution ordering in
transverse momentum (as opposed to angular ordering for monopole-type showers [20]),
the correct coherence properties related to multiple gluon emission are reproduced, as
mentioned in the previous section.

Since finite parton masses do not call for any conceptual adjustment of this line of argu-
ment, the reader is referred to Ref. [13] for technicalities. We will, however, present the
work flow of the implementation in more detail in Chapter 6, together with a discussion
of the modifications which are necessary in the case of finite parton masses.
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Figure 3.3.: In the large-Nc limit, where Nc is the number of colours in QCD, each
outgoing (anti-)quark can be assigned an (anti-)colour, and each gluon carries both colour
and anticolour. As a result of colour charge conservation, unambiguous and continuous
colour lines can be reconstructed. The colour flow of primary partons is determined by
the matrix element.

3.5. Matching

In this section, we describe in very simple terms the procedure of matching parton showers
and higher-order matrix element calculations. Parton showers give an approximation of
the leading terms of a process to all orders, whereas fixed-order matrix elements are exact
to some specified order k in the coupling constant αS . When both are combined, an effect
known as double counting occurs which leads to wrong results. By use of a matched
calculation together with subsequent showering, however, the correct result is recovered.

3.5.1. Motivation

Let us first have a look at the difference between a fixed-order calculation and the parton
shower prediction at NLO. The NLO calculation can be decomposed into the born part
(B) and two perturbative corrections of O(αS), namely the virtual contribution (V) and
the real emission contribution (R)

+ +B V R

.

(For illustration purposes, an ll̄ 7→ qq̄ process is depicted.) On the other hand, each
emission in the parton shower formally increases the order k in αS to k + 1, thus serving
as an approximation to the complete fixed-order calculation. Starting off the Born matrix
element, emissions are possible from both final-state legs, and the shower prediction can
symbolically be written

+ + +B B B B

.

The second term symbolizes that virtual corrections are incorporated in the Sudakov form
factor and cancel the IR divergences from the real emission contribution. We see that if we
näıvely let the parton shower act on the matrix elements at NLO, the shower emission off
the Born part contributes additional terms formally of O(αS). Thus, the NLO contribution
is doubly counted which leads to a wrong result. Note that when the shower starts off the
real emission contribution, the first emission will formally be of higher order α2

S .
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In the following we give a schematic derivation of matched NLO calculations, where the
doubly-counted contributions are being removed.

3.5.2. NLO Matching

In a simplified model, we consider an LO process with m partons in the final state and
we symbolize all kinematic degrees of freedom in the phase space by the variable x. The
additional degrees of freedom describing the real emission contribution are denoted y,
where the notation y 7→ 0 indicates the limit of unresolved parton emission. An observable
O is labelled O(x) if referring to the m-parton configuration, and O(x, y) if referring to
the real emission m+ 1-parton configuration. We require that O is infrared safe, i.e.

O(x, y) 7→ O(x) , if y 7→ 0 . (3.13)

For the sake of clarifying the simplified notation, we quickly recapitulate the matrix element
evaluation in the Catani-Seymour subtraction scheme, cf. Section 3.2. At NLO accuracy,
the prediction for O is given by the Born and real emission contribution with respective
squared amplitudes B(x) and αSR(x, y)/y, and the virtual interference term αSV (x),

〈O〉NLO =

∫
m

dxB(x)O(x)

+ αs

∫
m

dxV (x)O(x)

+ αs

∫
m+1

dx dy
R(x, y)

y
O(x, y) . (3.14)

In order to easily keep track of the order in αS of each term, the coupling constant is
extracted from the respective integrals. The virtual and real emission contributions are
separately IR divergent, which is indicated by the notation R(x, y)/y for the real emission
contribution. The divergence exhibited by the virtual contribution is implicitly given in
terms of a pole in ε = (d−4)/2, V (x) = −B(x)/ε+V̄ (x). Using the subtraction formalism,
an auxiliary cross section αSA(x, y)/y which resembles the divergences in the real emission
part is introduced, i.e. A(x, y) 7→ B(x) as y 7→ 0. Hence, the NLO prediction is modified
in the following way,

〈O〉NLO =

∫
m

dxB(x)O(x)

+ αs

∫
m

dx

[
V (x) +

∫
1

dy
A(x, y)

y1−ε

]
O(x)

+ αs

∫
m+1

dx dy
R(x, y)O(x, y)−A(x, y)O(x)

y
. (3.15)

The notation A(x, y)/y1−ε indicates that the collinear divergences are expressed as poles
in ε and analytically cancel against those from the virtual contribution. As a result, all
integrals are finite and numerically integrable in d = 4 dimensions.

In comparison, a parton shower starting off the Born matrix element gives the following
prediction,

〈O〉PS =

∫
m+1

dx dy B(x)

[
δ(y) ∆(x) + θ(y − µ)αs

P (x, y)

y
∆(x)

]
O(x, y) , (3.16)

where the first term in square brackets denotes unresolved branching. µ is an infrared
shower cutoff, P (x, y) the splitting kernels associated with the final state partons, and



16 3. Parton Showers and Higher Orders in Perturbation Theory

∆(x) the Sudakov form factor which we recall from Section 3.3 in a compactified notation,

∆(x) = e
−αs

∫ 1
µ dy

′ P (x,y′)
y′

= 1− αs
∫ 1

µ
dy′

P (x, y′)

y′
+O(α2

s) . (3.17)

Thus, the parton shower prediction to O(αS) is given by

〈O〉PS =

∫
m

dxB(x)O(x) + αs

∫
m+1

dx dy
P (x, y)

y
[O(x, y)−O(x)]B(x) +O(α2

s) .

(3.18)

Again, we see that if the parton shower starts off the exact NLO calculation (3.15), ad-
ditional terms formally of O(αS) are added, and the correct result is not obtained due to
double counting. Specifically, combining Eq. (3.15) with the prediction (3.18) given by the
subsequent parton shower yields

〈O〉NLO+PS =

∫
m

dxB(x)O(x)

+ αs

∫
m

dx

[
V (x) +

∫
1

dy
A(x, y)

y1−ε

]
O(x)

+ αs

∫
m+1

dx dy
R(x, y)O(x, y)−A(x, y)O(x)

y

+ αs

∫
m+1

dx dy
P (x, y)

y
[O(x, y)−O(x)]B(x)

+O(α2
s) , (3.19)

where the additional term of O(αS) stems from parton shower emission off the Born part.
Note that further terms of O(α2

S) are given by three distinct contributions, namely two or
more successive splittings off the Born part, emission off the subtracted virtual contribution
or emission off the subtracted real emission contribution.

The basic idea of matching parton showers with fixed-order matrix element calculations is
to modify the matrix element in a way such that after parton shower evolution, the correct
result at NLO accuracy (3.15) is recovered. Thus, the corrections of O(αS) that are added
on top of a fixed-order calculation during the parton shower, cf. Eq. (3.19), are removed
from the cross section by hand. The matched matrix element which enters the simulation
reads

〈O〉NLOmatched =

∫
m

dxB(x)O(x)

+ αs

∫
m

dx
[
V̄ (x) +Afinite(x)

]
O(x)

+ αs

∫
m+1

dx dy
P (x, y)B(x)−A(x, y)

y
O(x)

+ αs

∫
m+1

dx dy
R(x, y)− P (x, y)B(x)

y
O(x, y) , (3.20)

where all divergences have been explicitly cancelled. Combining Eqs. (3.18) and (3.20),
the fixed-order calculation at NLO accuracy is reproduced together with all parton shower
corrections that enter beyond NLL. The implementation of an automated matching pro-
cedure forms the core of the Herwig++ Matchbox module, of which we give an overview
in Chapter 6. Note that A(x, y) and P (x, y) feature the same dipole-type structure and
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that there is some freedom of defining these terms away from the quasi-collinear limit, such
that the matched matrix element (3.20) can be significantly simplified. Common matching
schemes are MC@NLO [25] and POWHEG [26], which are both implemented in Herwig++.

In the POWHEG scheme, matrix element corrections are applied to the parton shower, i.e.
the splitting kernels are expressed by

PPOWHEG(x, y)

y
=
R(x, y)

y

/
B(x) . (3.21)

Thus, the last term on the right-hand side of Eq. (3.20) vanishes. In turn, the splitting
kernels of the first parton shower emission are determined by the full radiative corrections.

Conversely, in the MC@NLO scheme, the third term on the right-hand-side of Eq. (3.20)
vanishes by choosing the auxiliary cross section of the subtraction scheme according to the
splitting kernels of the parton shower,

AMC@NLO(x, y)

y
=
P (x, y)

y
·B(x) . (3.22)

With the implementation of a dipole-type parton shower, this matching prescription is
compatible with the Catani-Seymour subtraction formalism since the same dipoles are
used. A subtlety of MC@NLO matching is that it has to be assured that the first emission
is also the hardest emission in terms of transverse momentum p⊥. This constraint is
naturally respected by the dipole shower as its evolution variable is given by p⊥.

For the sake of completeness we also note that other matching schemes are possible, par-
ticularly mixed schemes which allow to interpolate smoothly between the two methods
outlined above.





CHAPTER 4

The Herwig++ Event Generator and Analysis Tools

Herwig++ [4] is a multi-purpose Monte Carlo event generator designed for the simulation of
lepton-lepton, lepton-hadron and hadron-hadron scattering. It provides a full simulation
of high energy collisions including the hard process, parton shower, hadronization and
particle decays, as well as multiple scatterings (for the latter see e.g. Ref. [27]). We give
an overview of those features which are most important for electron-positron annihilation,
since this lies in the focus of this work.

4.1. Hard Process

The hard process handles the high p⊥ interaction of incoming particles extracted from
the beams at an energy scale where perturbation theory is valid. Matrix elements are
typically implemented at LO, though NLO corrections are available for some processes.
Leading higher-order QCD corrections are resummed by the parton shower, giving rise to
additional parton radiation. Outgoing momenta are sampled according to the hard cross
section. In hadronic processes, a parton is first extracted from the hadron with a weight
given by parton distribution functions (PDF). Colour flows are assigned to all external
partons, which serves as an important initial condition for the parton shower as well as
for multiple scattering. In Herwig++ all matrix elements which will be taken into account
during the simulation are specified by the user.

A large variety of hard processes that are not implemented in Herwig++ can be included
via the Les Houches Accord interface [28, 29] and extensions to allow calculations at NLO
accuracy have been proposed as well. This standard file format allows the exchange of data
between matrix element generators such as VBFNLO [30] or MadEvent/MadGraph [31]
and multi-purpose event generators (besides Herwig++, common event generators are
Pythia [5] and SHERPA [6]).

In this work, we did not use this interface but directly implemented the massive extension
of e+e− 7→ qq̄ at NLO.

4.2. Parton Shower

The parton shower performs the perturbative transition from the hard process down to
a scale at the onset of non-perturbative effects, where hadronization models take over.
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Figure 4.1.: Sketch of a sample parton shower in leptonic collisions.

Through successive parton emissions, higher orders in perturbation theory are effectively
resummed. In this way, any outgoing parton from the hard process initiates a branching

cascade (“final state radiation”). At each step, the Sudakov form factor ∆((p
(i)
⊥ )2, (p

(i+1)
⊥ )2)

is used to determine the scale of the next splitting. The evolution terminates when no
splitting above the infrared cutoff µIR can be selected. Fig. 4.1 depicts a sample final-state
parton shower.

In hadronic collisions, initial state partons undergo parton showering as well, starting at
the hard process and evolving backwards in time from higher to lower scales. Again,
the shower terminates when the evolution variable p2

⊥ falls below µIR. The parton is then
extracted from the hadron if the shower evolution stopped at a valence (anti-)quark. If this
is not the case, additional splittings are imposed in order to force the evolution to terminate
with a valence (anti-)quark [32]. All partons emitted during initial state radiation may
themselves initiate further final state radiation.

The infrared cutoff µIR is a free parameter of the parton shower and is constrained by the
requirement that perturbative QCD is still possible at this energy scale. Its value is deter-
mined by tuning the simulation results to experimental data, cf. Section 4.5 and Chapter 8.
Typically, separate values for initial-state and final-state branching are implemented.

An implementation of a dipole shower in the massless approximation is already available
in the Herwig++ DipoleShower module, and a detailed description of the massive dipole
shower which we implemented in the course of this work is given in Chapter 5. Note that
the standard implementation in Herwig++ is given by a monopole-type shower (1 7→ 2
splittings) [33] which also takes finite parton masses into account. Both previous imple-
mentations can serve as a reference for comparisons with our simulation results.

4.3. Hadronization

After the shower evolution has terminated, the parton-level final state is converted into
hadrons that can be experimentally observed. Hence, hadronization is very sensitive to the
details of the partonic final state and it is absolutely crucial to adjust the hadronization
parameters once a new shower has been implemented. We will give a brief overview,
focusing on those quantities which are sensitive to our parton shower. Herwig++ uses a
cluster hadronization model as originally proposed in Ref. [34].
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Figure 4.2.: Parton shower and clustering in a typical LEP event. Gluons are non-
perturbatively split into quark-antiquark pairs, then clusters are formed from each colour-
singlet quark-antiquark pair. Colour flow is unambiguously determined by the flavour
structure of the parton shower and represented by red lines.

Before hadronization, all partons are put on their respective constituent mass shells. Glu-
ons are then non-perturbatively split into quark-antiquark pairs. From this state, colour-
singlet clusters are formed with the momentum given by the sum of the momenta of the
constituent (colour-connected) partons, see Fig. 4.2. These clusters can be interpreted
as highly excited hadron resonances. Before decaying into the observed hadrons, heavy
clusters (of mass M) are split if the following condition holds,

MClpow ≥ Clmax
Clpow + (m1 +m2)Clpow . (4.1)

m1,2 are the masses of the constituent partons of the cluster and Clmax, Clpow are para-
meters of the hadronization model that are not known from first principles. In practice,
separate values of both Clmax and Clpow are used for clusters containing light (u, d, s),
charm or bottom quarks respectively. Thereby, the description of bottom and charm
hadrons is further improved, which is important for identified particle spectra. If a cluster
qiq̄j is selected to be split, a qq̄ pair (quark mass mq) is popped from the vacuum and the
new clusters read qiq̄ and qq̄j respectively. The masses are given by

M1 = m1 + (M −m1 −mq)R1
1/Psplit ,

M2 = m2 + (M −m2 −mq)R2
1/Psplit , (4.2)

where M1,2 denote the masses of the splitting products,R1,2 are random numbers and Psplit

is an adjustable parameter that takes separate values for clusters containing light, charm
or bottom quarks. Note that in hadron collisions, additional clusters are formed from the
beam remnants and are treated separately. For a treatment of multiple interactions, see
e.g. Ref. [27].

In the final step of the cluster hadronization model, each cluster is decayed into a pair
of hadrons. For heavy clusters, both mesonic and baryonic decays are possible and the
respective rates can be controlled in order to obtain agreement with experimental data. By
default, partons that stem from the final state of the parton shower retain their directions
(and so do their respective hadrons), whereas in general the decay products are distributed
isotropically. All hadron momenta are smeared through an angle θsmear according to a
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Gaußian distribution,

cos θsmear = 1 + Clsmr logR . (4.3)

Again, R is a random number and the parameter Clsmr can be separately set for clusters
containing light, charm or bottom quarks.

4.4. The Rivet Analysis Toolkit

4.4.1. Overview

Besides its own analysis tools, Herwig++ features an output via the HepMC event record
interface. The Rivet generator validation system [35] is both a library of experimental
analyses and provides tools for calculating physical observables at the simulation-level
from the event record. Through this procedure, the analysis is completely separated from
the MC generator behaviour. At the moment, more than 100 verified analyses from various
collider experiments are included. Throughout this work we made use of Rivet to compare
our simulation output to experimental results.

4.4.2. New Analysis

Rivet has been designed in a way to simplify the coding of new analyses by the user. As
will be evident from Chapter 8, identified particle spectra are crucial for tuning the free
parameters of the simulation to experimental data. For this reason, we implemented a new
analysis that is not yet included in the set of standard analyses. Based on experimental
results published by the SLD Collaboration [36], the new observables are the spectra
of charged pions π±, charged kaons K± and (anti-)protons p± in (uds), c and b quark
events, respectively, and several ratios. These observables play an important role when we
investigate the impact of our implementation, see Chapter 8.

4.5. The Professor Tuning System

The Professor tuning system [37] was designed for tuning model parameters of a Monte
Carlo event generator to experimental data, where simulation results are by default ob-
tained using the Rivet analysis toolkit outlined in the previous section. Best possible
agreement is sought for by adjusting the free parameters of the simulation. For that pur-
pose, a large number of generator runs with different sets of parameters is required, where
each run corresponds to one point in the multi-dimensional parameter space under con-
sideration. Typically, these parameter points are sampled randomly within a predefined
hypercube characterizing the physical ranges of the parameters. In contrast to brute-force
methods, Professor interpolates between the individual parameter points and is thus able
to find a best fit which most likely does not coincide with one of the sampled points in
parameter space.

For this purpose, a certain number of runs is accumulated into several run combinations.
Each run combination is treated separately in order to obtain systematic control over the
tuning results. The generator’s response to parameter changes as present in the various in-
dependent runs of a run combination is parametrized, using a cubic polynomial by default.
This is done by the prof-interpolate routine bin-by-bin for every observable. Owing to
this method, different weights can not only be assigned to certain observables, but also
to particular regions within these distributions. The minimum number of runs necessary
for the tune is given by the number of free parameters of the interpolation function. For
example, the tuning of ten free parameters to experimental data by making use of a cubic
polynomial requires a minimum of 286 independent runs to act as “anchor points” for the
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fit. However, significant oversampling is recommended by the developers in order to obtain
a more robust fit.

Before the actual tuning stage, sensitivity plots of all the observables to shifts in parameter
space can be produced. Tuning is performed for all respective run combinations by making
use of the prof-tune method. A goodness of fit function is defined in a manner where
statistical errors at simulation level enter as well, such that having only a relatively small
number of events for each run is sufficient. Finally, the tuning results for all distinct run
combinations are combined and the results can be investigated in scatter plots.

We mentioned the fact that it is recommended to create several independent run combina-
tions in order to obtain a robust tune. These sets of runs are not required to be disjoint,
but should only have a reasonable overlap. In our case, we chose to oversample by a factor
of three and performed tuning for 100 different run combinations. Our particular strategy
of tuning a large set of parameters to data is described in Chapter 8, together with the
results.





CHAPTER 5

Massive Parton Shower with Local Recoils

Our aim was the implementation of a new dipole-type parton shower as described in
Chapter 3 that takes full account of finite parton masses. The shower is constructed from
the kinematic variables and splitting kernels introduced in Ref. [18], where the reader is
referred to for details. However, we present all additional ingredients which we derived
in the course of this work and which are necessary for an implementation in an event
generator. The considerations in this chapter are a generalization of the dipole shower
for massless partons, as developed in Ref. [13]. We will not recall the special case of
vanishing parton masses, but do stress the fact that our parametrization reproduces the
exact massless limit as laid out in Ref. [13] at each step of the process.

In the following, we present a derivation for the parametrization of the splitting momenta,
the phase-space factorization and give an expression of the resulting splitting probability
for all possible emitter-spectator pairs. Recall Fig. 3.1 for a visualization of the splittings
for the respective emitter-spectator combinations.

5.1. Final-State Radiation and Final-State Spectator

In the Catani-Seymour dipole formalism, massive partons only appear in the final state.
Hence, we first present final-state radiation with a final-state spectator which is the most
generic case. In this thesis, it also is the most relevant case since we study the LEP
experiment in detail.

5.1.1. Kinematics

The dipole-type splitting of a mother parton with momentum pi in two daughter partons
with respective momenta qi, q can be described by a pair of Lorentz-invariant variables y
and z [18],

y =
qi · q

qi · q + qi · qj + q · qj
, z =

qi · qj
(qi + q) · qj

. (5.1)

The spectator observes a recoil and its momentum is rescaled from pj to qj during the
splitting. y is a measure of the invariant mass of the splitting products, whereas z denotes
how the momentum of the mother parton is split amongst the two daughter partons. In
our implementation, the evolution variable of the shower is given by transverse momen-
tum (see Chapter 3), whose definition in terms of Lorentz scalars is not obvious. Hence,
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Figure 5.1.: Schematic depiction of the final-final splitting kinematics in the dipole’s rest
frame. The momentum pi of the emitter is divided among the splitting products according
to z, symbolized by the notation “z”. Both momenta acquire transverse momentum p⊥
with respect to the orientation of the dipole but in opposite direction, respectively. The
spectator momentum observes a recoil, its direction is however preserved. Owing to the
dipole picture, momentum conservation is applied and all partons are on mass shell.

a Sudakov decomposition of the daughter momenta in terms of the parent momenta pi,j
and transverse momentum k⊥ would be preferable. Following the parametrization given
in Ref. [13] for the massless case, the daughter momenta are given by qn ≡ qn(pi, pj ; p⊥, z),
where p⊥ denotes the absolute value of transverse momentum k⊥. See Fig. 5.1 for an illus-
tration of the physical splitting variables (p⊥, z). It is noteworthy that the splitting kernels
have been derived using the variables y, z presented in Eq. (5.1), i.e. a bijective mapping
(y, z) ↔ (p⊥, z) is absolutely crucial for a consistent description of parton splittings in
our formalism. Under these conditions and due to the fact that all partons may feature a
finite mass, an applicable parametrization with the desired properties could however not
be found.

Instead, we present an explicit, component-wise parametrization similar to the ones given
in Refs. [21, 22]. We work in the rest frame of the dipole and use the following abbrevia-
tions1

Q = pi + pj = qi + q + qj ,

s = Q2 ,

s̄ = s−m2
i −m2 −m2

j ,

µi =
mi√
s
, µ =

m√
s
, µj =

mj√
s
. (5.2)

From the definitions of z and y immediately follows

2qi · q = ys̄ , (5.3)

2qi · qj = z(1− y)s̄ , (5.4)

2q · qj = (1− z)(1− y)s̄ . (5.5)

The centre-of-mass frame is oriented in such a way that the spectator momentum pj points
along the (positive) z axis. The daughter parton momenta are decomposed as follows,

qi = (q0
i , p⊥ cos θ,−p⊥ sin θ, q

||
i ) , (5.6)

q = (q0,−p⊥ cos θ, p⊥ sin θ, q||) , (5.7)

qj = (q0
j , 0, 0, q

||
j ) , (5.8)

1We choose the masses of the partons after splitting to be expressed by minuscule letters, m2
i = q2i etc.,

those of the partons before splitting by capital letters, M2
i = p2i etc.
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where the particle energies q0
n and longitudinal momentum components q

||
n are defined in

the following way,

q0
n =

Q · qn√
s

, q||n = |~qn| cos (^~qn, ~qj) =
q0
nq

0
j − qn · qj√
(q0
j )

2 − q2
j

. (5.9)

The physical transverse momentum is defined to be the absolute value of the remaining
spatial components in the dipole’s rest frame, given by

p⊥ ≡ pphys
⊥ = |q⊥i | =

(
(q0
i )

2 − (q
||
i )2 −m2

i

)1/2

= |q⊥| =
(

(q0)2 − (q||)2 −m2
)1/2

. (5.10)

It is evident that this parametrization preserves exact energy-momentum conservation.
Additionally, the direction of the emitter remains the same, which is a crucial requirement
in our formalism. From the relations (5.3)-(5.5), the respective components are easily spelt
out. The parton energies explicitly read

q0
i =

s̄(1− (1− z)(1− y)) + 2m2
i

2
√
s

, (5.11)

q0 =
s̄(1− z(1− y)) + 2m2

2
√
s

, (5.12)

q0
j =

s̄(1− y) + 2m2
j

2
√
s

; (5.13)

the remaining momentum components are functions of the particle energies and masses.

5.1.2. A new Evolution Parameter

In the previous section, we constructed a kinematic splitting parametrization from a pair
of variables (y, z) which fulfils the desired properties. The variables used in the shower,
(p⊥, z), can simply be read off the momentum vectors. However, the inverse mapping
(p⊥, z) 7→ (y, z) is not feasible. We therefore present a practically more useful definition
pcoll
⊥ in the following.

In the quasi-collinear limit (in which the shower approximation holds), a Sudakov decom-
position in terms of k⊥ and z can easily be given2,

qi = zp+ k⊥ −
k2
⊥ + z2M2

i −m2
i

z

n

2p · n ,

q = (1− z)p− k⊥ −
k2
⊥ + (1− z)2M2

i −m2

1− z
n

2p · n , (5.14)

where p points towards the collinear direction and fulfils the property p2 = M2
i , n is a

light-like auxiliary vector along the collinear direction, and k⊥ is the spatial momentum
component orthogonal to both p and n, (kµ⊥)2 = −(pcoll

⊥ )2. From the definition of y,
Eq. (5.1), we obtain the desired relations,

y =
(pcoll
⊥ )2 + (1− z)2m2

i + z2m2

s̄z(1− z)
⇔ (pcoll

⊥ )2 = s̄yz(1− z)− (1− z)2m2
i − z2m2 . (5.15)

2Recall that the transverse momentum and all parton masses are understood to be uniformly vanishing in
this expression.
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In case of a massless spectator parton, this expression coincides with the physical transverse
momentum. Furthermore, in the quasi-collinear limit, pphys

⊥ and pcoll
⊥ coincide for arbitrary

parton masses. Since the shower approximation is performed in this phase-space region as
well, both quantities can be equivalently used as evolution parameter presumably without
changing the shower prediction of the leading-logarithmic contributions. For performance
reasons, pcoll

⊥ will be used in the algorithm and the corresponding replacement p⊥ 7→ pcoll
⊥

has to be made in the respective formulæ.

5.1.3. Phase Space and Splitting Probability

The kinematic parametrization gives rise to the phase-space factorization [18]

dφ(qi, q, qj |Q) = dφ(pi, pj |Q) dqi(pi, pj) Θ(1− µi − µ− µj) , (5.16)

where the single-parton phase space is given by

dqi(pi, pj) =
1

16π2

s s̄√
λ(s,M2

i ,M
2
j )

(1− y)dydz
dφ

2π

=
1

16π2

s√
λ(s,M2

i ,M
2
j )

(1− y(p2
⊥, z))dp

2
⊥

dz

z(1− z)
dφ

2π
. (5.17)

The Jacobian determinant used for the derivation of the latter expression directly follows
from Eq. (5.15). λ is the triangular (Källén) function,

λ(a, b, c) = (a+ b+ c)2 − 4(ab+ ac+ bc) . (5.18)

The (purely kinematic) boundary of the full, unconstrained phase space is determined by
the limits of the angle between emitter and spectator given in Eq. (5.9),

| cos (^~qi, ~qj)| ≤ 1 , (5.19)

and explicitly reads

φ ∈ (0, 2π) ,

y− =
2mim

s̄
, y+ = 1− 2mj(

√
s−mj)

s̄
,

z± =

(
2m2

i + s̄y
)

(1− y)±
√
y2 − y2

−

√(
2m2

j + s̄(1− y)
)2
− 4m2

js

2(1− y)
(
m2
i +m2 + s̄y

) . (5.20)

Yet the phase space has to be further restricted due to evolution ordering. In order to
reproduce the correct leading logarithms, the transverse momentum has to be further
constrained, µ < p⊥ < min(plast

⊥ , pmax
⊥ ) ≡ phard

⊥ (µ being an infrared cutoff). The cor-
responding phase-space boundaries are obtained by solving y(p⊥, z

′
±) ≤ y+ for z′±. We

obtain3

pmax
⊥ =

√
λ
(
µ2
i , µ

2, (1−µj)2
) √

s

2− 2µj
, (5.21)

z′± =
1

2(1− µj)2

[
1+µ2

i−µ2+µ2
j−2µj ±

√
λ
(
µ2
i , µ

2, (1−µj)2
)√

1− p2
⊥

(phard
⊥ )2

]
. (5.22)

3In fact, by simply solving the inequality above we obtain the quoted expressions strictly only if plast⊥ ≥ pmax
⊥ .

However, we want to constrain the phase space particularly due to ordering in transverse momentum which
is exactly the opposite case. We are therefore led to apply the rescaled value of p⊥ into the näıve expression
of the z boundaries, z′±(p⊥) 7→ z′±

(
p⊥ ·pmax

⊥ /phard⊥
)
, which then yields the quoted expression. The same

considerations hold for the other splittings depicted in the remainder of this chapter as well.
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Figure 5.2.: Allowed phase-space regions for emission off a final-final dipole expressed
in Dalitz variables xk = 2Q · qk/Q2 for a dipole of mass

√
s = 100 GeV, infrared cutoff

µ = 5 GeV with the quark mass set to mq = 10 GeV. The light-shaded region is accessible
from emissions off the emitter parton i when starting at the hard scale. The dark-shaded
region is excluded when starting at a lower scale phard

⊥ = 30 GeV. The impact of the
finite infrared cutoff can be most easily seen in the massless case on the lower right. Also,
it is obvious that heavy partons tend to demand a larger value of xk compared to the
similar configuration with a massless parton. The parton mass and the infrared cutoff are
exaggerated for illustration purposes.
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For a p⊥-ordered parton shower like the one we are considering here, both kinematic
and evolution boundaries have to be taken into account because they address different
phase-space regions. The available phase space is depicted in Fig. 5.2 for several dipole
configurations.

The final-final splitting kernels take the form (averaged over the azimuthal angle)

8παS
(qi + q)2 −M2

i

〈V (y, z)〉 , (5.23)

such that together with the phase-space factorization (5.17), the splitting probability fol-
lows as

dP(y, z) =
αS
2π
〈V (y, z)〉 s̄√

λ(s,M2
i ,M

2
j )

s(1− y)

m2
i +m2 −M2

i + s̄y
dy dz . (5.24)

Note that large invariant masses of the emitter-emission pair, which correspond to large-
angle hard splittings, are suppressed as an effect of the finite recoil. Also note that all
quantities can safely be taken to the limit of vanishing masses, where the respective ex-
pressions from the massless calculation follow (cf. Refs. [13, 17, 24]).

5.2. Final-State Radiation and Initial-State Spectator

5.2.1. Kinematics

In the case of an initial-state spectator (denoted by the subscript a), the momentum
transfer between the initial state and the final state remains invariant under the considered
splitting,

Q = pi − pa = qi + q − qa . (5.25)

A simple crossing of the kinematics derived in the previous section, pj 7→ −pa, qj 7→ −qa,
however, is not possible since in general a “centre-of-mass” frame of Q does not exist.
Nevertheless, we can instead give a Sudakov decomposition of the daughter momenta in
terms of the parent momenta pi,j and transverse momentum k⊥, since the spectator is
massless and its 4-momentum can be simply rescaled,

qi = zpi +
p2
⊥ +m2

i − z2M2
i

zs̄
pa + k⊥ ,

q = (1− z)pi +
p2
⊥ +m2 − (1− z)2M2

i

(1− z)s̄ pa − k⊥ ,

qa =

(
1 +

p2
⊥ + (1− z)m2

i + zm2 − z(1− z)M2
i

z(1− z)s̄

)
pa , (5.26)

where we defined
s̄ = 2pi · pa = M2

i −Q2 . (5.27)

k⊥ is perpendicular to both dipole momenta before splitting, k⊥ · pi = k⊥ · pa = 0. It is
taken to be purely spacelike in a frame where pi+pa is at rest, and we define the evolution
variable as p2

⊥ = −k2
⊥. The kinematic variables are defined as follows [18],

x =
qi · qa + q · qa − qi · q + 1

2(M2
i −m2

i −m2)

(qi + q) · qa
, z =

qi · qa
(qi + q) · qa

, (5.28)

such that by virtue of the parametrization given in Eq. (5.26), x is expressed in terms of
the shower variables (p⊥, z) by

x =

(
1 +

p2
⊥ + (1− z)m2

i + zm2 − z(1− z)M2
i

z(1− z)s̄

)−1

. (5.29)
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Recall that the initial-state spectator is evolved backwards in time, i.e. pa enters the
hard process and qa is extracted from the incoming hadron (in case of only one splitting;
however, a generalization is straightforward).

5.2.2. Phase Space and Splitting Probability

Our parametrization yields the phase-space factorization

dφ(qi, q, qa|Q+ qa) = dφ(pi, pa|Q+ pa)
dφ

2π

x

16π2

dz

z(1− z)dp2
⊥ , (5.30)

in agreement with Ref. [18]. Since the momentum of the initial-state spectator is rescaled,
for the relevant measure at hadron level, the parton distribution function fa and the
kinematic factor of the partonic flux have to be taken into account,

fa(xa)

4qa · pb
dφ(qi, q, qa|Q+ qa) dxa =(
fa(xa/x)

fa(xa)
θ(x− xa)

dφ

2π

x

16π2

dz

z(1− z)dp2
⊥

)
fa(xa)

4pa · pb
dφ(pi, pa|Q+ pa) dxa . (5.31)

xa denotes the momentum fraction of the spectator parton with respect to the incoming
hadron (momentum Pa) before taking the recoil. In the flux factor, the momentum pb of
the second incoming particle enters. Considering the spectator momentum, we obtain the
following limiting condition

qa =
1

x
pa =

xa
x
Pa

!
< Pa

⇒ x > xa . (5.32)

Using Eq. (5.29), the phase-space boundary turns out to be given by

µ2 < p2
⊥ <

s∗

4xa
λ

(
1,
xam

2
i

s∗
,
xam

2

s∗

)
≡ (pmax

⊥ )2 ,

z± =
1

2

(
1 +

xa(m
2
i −m2)

s∗
±
√
λ

(
1,
xam2

i

s∗
,
xam2

s∗

)√
1− p2

⊥
(phard
⊥ )2

)
, (5.33)

where µ denotes an infrared cutoff and s∗ ≡ s̄(1 − xa) + xaM
2
i . Again, the hard scale of

the transverse momentum is given by phard
⊥ = min(plast

⊥ , pmax
⊥ ).

The additional, purely kinematic phase-space boundaries stemming from the finite parton
masses read [18]

x+ = 1 +M2
i − (µi + µ)2 , (5.34)

z± =
1− x+M2

i + µ2
i − µ2 ±

√
(1− x+M2

i − µ2
i − µ2

j )
2 − 4µ2

iµ
2

2(1− x+M2
i )

, (5.35)

where the rescaled parton masses are defined as µn = mn/
√

2pi · qa (again, the capi-
tal letter M denotes incoming partons). The allowed phase-space region for final-initial
branching is visualized in Fig. 5.3.

The final-initial splitting kernels take the form (averaged over the azimuthal angle)

8παS
(qi + q)2 −M2

i

1

x
〈V (p2

⊥, z)〉 , (5.36)
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Figure 5.3.: Allowed phase-space region for emission off a final-initial dipole for invariant
momentum transfer

√
s̄ = 100 GeV, infrared cutoff µ = 5 GeV and xa = 0.1 for all different

types of splittings. The quark mass is set to mq = 10 GeV in each plot. The infrared cutoff
and parton masses are exaggerated for illustration purposes. The light-shaded region is
the accessible phase space for the evolution starting at the hard scale. The dark-shaded
region is excluded when starting at a lower scale phard

⊥ = 70 GeV.
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such that, combined with the phase-space factorization, Eq. (5.31), the splitting probability
reads

dP(p2
⊥, z) =

αS
2π
〈V (p2

⊥, z)〉
fa(xa/x)

fa(xa)

dp2
⊥

p2
⊥

dz . (5.37)

The finite recoil only enters in the PDF ratio, reproducing the correct quasi-collinear limit
when x 7→ 1. Again, all quantities reproduce their respective counterparts in Ref. [13] for
vanishing parton masses.

5.3. Initial-State Radiation and Final-State Spectator

Since within the formalism all initial-state partons are treated as massless, the only con-
figuration not covered above nor in Ref. [13] is given by initial-state radiation with a
final-state spectator. Note that the shower evolution is given by a backward evolution
(pa, pj) 7→ (qa, q, qj), where the physical (forward) splitting process is qa 7→ (pa, q). For
consistency, the emission q is also treated as massless although belonging to the final state.

5.3.1. Kinematics I

A Sudakov decomposition where the momentum transfer remains invariant,

Q ≡ q + qj − qa = pj − pa , (5.38)

is given by

Rqa =
1

x
pa , (5.39)

Rq = upj +
−k2
⊥ − u2m2

j

us̄
pa − k⊥ , (5.40)

Rqj = (1− u)pj +
−k2
⊥ +m2

j − (1− u)2m2
j

(1− u)s̄
pa + k⊥ , (5.41)

where s̄ = 2pa · pj , m2
j = p2

j = q2
j and R denotes a Lorentz transformation. Again, the

transverse momentum obeys k⊥ · pa = k⊥ · pj = 0 and is defined to be purely space-like in
the dipole’s rest frame (before emission). Note that for R=1, the direction of the emitter
remains unchanged, whereas within the dipole shower formalism, preserving the direction
of the spectator is preferred4. The kinematic variables introduced in Ref. [18] are defined
as follows,

x =
q · qa + qj · qa − q · qj

q · qa + qj · qa
, u =

q · qa
q · qa + qj · qa

. (5.42)

The transverse momentum obeys

− k2
⊥ = u(1− u)

1− x
x

s̄− u2m2
j . (5.43)

4In this type of splitting kinematics, the direction of the initial-state emitter is allowed to obtain transverse
momentum for any spectator. After the shower evolution has terminated, a realignment boost is applied
to the complete system. In this way, any emission off an initial-state parton can contribute transverse
momentum to the final-state system, which is not the case for the kinematics considered in Eqs. (5.39)-(5.41)
for R=1.
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5.3.2. Kinematics II

We now present a different parametrization of the three daughter momenta with all the
desired properties (in particular that the spectator does not obtain transverse momentum
through the recoil). This has not yet been considered in the literature. Since a “centre-
of-mass” frame of the momentum transfer Q does in general not exist, it is not clear if
a component-wise calculation (as in Chapter 5.1.1) would give any simplification. We
therefore present a (yet somewhat unwieldy) Sudakov decomposition,

qa = apj + a′pa + k̃⊥ , (5.44)

q = bpj + b′pa + k̃⊥ , (5.45)

qj = cpj + c′pa . (5.46)

The respective coefficients are obtained using Eq. (5.42), mass-shell conditions and mo-
mentum transfer conservation. Explicitly, they are given by

a =
−s̄+

(
s̄(x+ u− 2xz) + 2m2

jxu
)/√

(x− u)2 + 4xum2
j/s̄

2x(s̄−m2
j )

, (5.47)

a′ =
s̄+ α

(
s̄(x+ u− 2xu) + 2m2

jxu
)/√

(x− u)2 + 4xum2
j/s̄

2x(s̄−m2
j )

, (5.48)

b =
−s̄(1−x−u) +

∣∣∣s̄(u(1− u)− x(1− x)) + 2m2
jxu
∣∣∣/√(x− u)2 + 4xum2

j/s̄

2x(s̄−m2
j )

, (5.49)

b′ =
s̄(1−x−u) + α

∣∣∣s̄(u(1− u)− x(1− x)) + 2m2
jxu
∣∣∣/√(x− u)2 + 4xum2

j/s̄

2x(s̄−m2
j )

, (5.50)

c =
s̄(x− u)− 2xm2

j +
√
s̄2(x− u)2 + 4s̄m2

jxu

2x(s̄−m2
j )

, (5.51)

c′ =
−s̄(x− u) + 2xm2

j + α
√
s̄2(x− u)2 + 4s̄m2

jxu

2x(s̄−m2
j )

, (5.52)

where α = 1− 2m2
j/s̄. The transverse momentum is given by

k⊥ =
√

(x− u)2 + 4xum2
j/s̄ k̃⊥ . (5.53)

One can easily verify that this parametrization preserves the momentum transfer Q.

Considering the collinear limit u 7→ 0, the emitter momentum reads

qa = O(u)pj +
1

x2

(
x+ u(1− x)α+O(u2)

)
pa +

1

x
O(1)k⊥ . (5.54)

We are therefore led to choose the physical splitting variables to be given by

z = x+ u(1− x)α , κ ≡ p2
⊥
s̄

= u(1− u)(1− x) , (5.55)

where in the definition of the transverse momentum the mass term, which is of O(u2), was
dropped from Eq. (5.43) in order to simplify the expressions, i.e. p2

⊥ 6= −k2
⊥. Similar to the

considerations for final-final splittings, evolution ordering is performed not strictly in the
physical transverse momentum but in a quantity p⊥ which coincides with the former in all
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relevant phase-space regions. Conversely, the inverse mapping is considerably simplified
and reads

x =
α2κ+ 2z − α(1 + z) + α

√
(1− z + ακ)2 − 4κ(1− z)

2(1− α)
, (5.56)

u =
1− z + ακ−

√
(1− z + ακ)2 − 4κ(1− z)
2(1− z) . (5.57)

5.3.3. Phase Space and Splitting Probability

The kinematic parametrization gives rise to the phase-space factorization

dφ(q, qj , qa|Q) = dφ(pj , pa|Q, x)
dφ

2π

1

16π2
s̄

dx

x
du

= dφ(pj , pa|Q, x)
dφ

2π

1

16π2

s̄

x

∣∣∣∣det
∂(z, κ)

∂(x, u)

∣∣∣∣−1

dz dκ , (5.58)

with the Jacobian determinant given by∣∣∣∣det
∂(z, κ)

∂(x, u)

∣∣∣∣ = (1− x)(1− 2u+ u2α) . (5.59)

Averaging over azimuth, the initial-final splitting kernels read

8παS
2qa · q

1

x
〈V (p2

⊥, z)〉 , 2qa · q =
u

x
s̄ , (5.60)

such that the splitting probability directly follows,

dP(p2
⊥, z) =

αS
2π
〈V (p2

⊥, z)〉
fa(xa/x)

fa(xa)
θ(x− xa)

1

uxs̄

∣∣∣∣det
∂(z, κ)

∂(x, u)

∣∣∣∣−1

dz dp2
⊥ , (5.61)

with the respective quantities given in Eqs. (5.56), (5.57) and (5.59). Since the momentum
fraction of the incoming parton is rescaled during the splitting, the ratio between the
respective parton distribution functions enters, with xa the momentum fraction before
splitting. The phase-space boundaries are given by the requirement xa < x, which can be
solved for z, such that

µ2 < p2
⊥ <

(1− xa)s̄
4

≡ (pmax
⊥ )2 , (5.62)

z± =
1

2

(
α+ xa − (α− 1)xa + α(1− xa)

√
1− p2

⊥
(pmax
⊥ )2

)
. (5.63)

Due to the finite mass of the spectator parton, an additional constraint arises, given by

0 ≤ u ≤ 1− x
1− x+ xm2

j/s̄
. (5.64)

See Fig. 5.4 for a visualization.



36 5. Massive Parton Shower with Local Recoils

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1
−
u

x

massive spectator

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1
−
u

x

massless case

Figure 5.4.: Available phase-space region for emission off an initial-final dipole at in-
variant momentum transfer

√
s̄ = 100 GeV, infrared cutoff µ = 5 GeV and xa = 0.1 for a

massive spectator (mj = 10 GeV) and a massless spectator, respectively. The light-shaded
region is accessible for the evolution starting at the hard scale. The dark-shaded region is
excluded when starting at a lower scale phard

⊥ = 30 GeV. The impact of a finite spectator
mass can hardly is hardly visible with the naked eye.

5.4. Initial-State Radiation and Initial-State Spectator

Since all initial-state partons are treated as massless, this configuration does not call for
any alterations due to finite parton masses. The reader is referred to Ref. [13], where all
properties needed for an implementation are discussed in detail.



CHAPTER 6

The Herwig++ Matchbox and DipoleShower Add-On Modules and Our
Implementation

In this chapter we outline the basic work flow of the Herwig++Matchbox add-on module, an
extension to the Herwig++ event generator. We put emphasis on those elements which call
for modifications in the presence of finite parton masses. For a more detailed description
the reader is referred to Refs. [24, 23]. Sections 6.1-6.3 sketch the main features of the
add-on module; Section 6.4 summarizes the new components implemented in the course
of this work.

6.1. The exsample Library

In any Monte Carlo event generator, predictions are gained via the generation of randomly
distributed single events, to which then certain weights are assigned. Since all events are
sampled from random numbers, the specific sampling algorithm plays a crucial role for the
efficiency of the whole algorithm. Owing to the complexity of the simulation process (in
particular dipole shower and matching algorithms), a new sampler has been introduced
within the Matchbox module, called exsample (for exponential sampler) [38]. Its main
features include the capability of self-adapting and automated sampling for Sudakov-type
probability densities only known through a function call. This type of density appears e.g.
in the generation of splittings in the parton shower (see Chapter 3.3).

The resulting exsample library is based on very general grounds and implemented in a
generic way where the density object only needs to provide some certain methods. Within
the Matchbox module, it is used to sample events from differential cross sections and
the above-mentioned Sudakov-type densities. Since finite parton masses do not call for
conceptual modifications at all, we do not go into any detail here.

6.2. The DipoleShower Module

We present the parton shower outlined in Section 3.4 and Chapter 5 as implemented in
the Herwig++ Matchbox module. We recall the basic properties of the general algorithm
in the order of the work flow, starting from initial conditions and finishing with a final
state which is then further treated by the hadronization model.
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Figure 6.1.: Examples of dipole chains. Each pair of subsequent partons is colour-
connected, as indicated by the red lines, and forms a dipole. As gluons exhibit two colour
partners, chains of connected dipoles are formed. The left figure shows a non-circular and
the right figure a circular chain.

6.2.1. Initialization

The initial conditions for the parton shower are determined by the colour flow in the
hard process [39]. To each (anti-)quark a colour or anti-colour is assigned depending on its
membership to either the initial or final state. Accordingly, a gluon carries both colour and
anti-colour yet does not form an independent colour-anti-colour pair (due to the underlying
SU(3) gauge group). The algorithm is set up in the large-N limit (N being the number of
different colours) such that each (anti-)colour is unique.

In the parton shower considered, colour singlets evolve independently, hence all partons
from the hard sub-process are first sorted into colour singlets. This is done by exploiting
the fact that a colour singlet is simply connected in the sense of its colour flow topology:
each parton can be reached from any other parton by walking along (anti-)colour lines.
We do not consider colour reconnection models (see e.g. Ref. [40]), therefore these colour
singlets can indeed be regarded as independently evolving entities.

In the last step before the actual evolution, the partons in each singlet are sorted in such a
way that colour-connected partons are in subsequent positions. Any such two neighbours
form a dipole which may radiate during shower evolution. An (ordered) set of dipoles
is called dipole chain, see Fig. 6.1 for examples. When a quark and an anti-quark are
involved, the dipole chain is called open or non-circular since they mark the end points of
the chain. On the other hand, a chain is called circular if it only consists of gluons and
hence each parton has two colour partners.

In the algorithm, a dipole is represented in one-to-one correspondence by a Dipole class
object. An (ordered) set of Dipole objects is assembled in a DipoleChain object. The hard
scales are reported by the DipoleEvolutionOrdering object, given additional parameters
such as the type of the splitting through a reference to a DipoleSplittingKernel object.

6.2.2. Evolution

In each dipole chain, all possible splittings are considered to compete with all other possible
splittings of the chain. For a specific dipole (i, j) this involves all splittings (i, j) 7→ (i′, k, j)
as well as all splittings from the second leg where i, j are interchanged. The splitting with
the largest value of (squared) transverse momentum p2

⊥ is selected as long as it is above
the shower’s infrared cutoff, p2

⊥ > µ2
(f),IR. We include the possibility of different shower

cutoffs for the different involved flavours f , see Chapter 8. If no allowed splitting could be
selected, the chain stops evolving and is inserted into the event record. For any candidate
splitting (given an associated hard scale (phard

⊥ )2) a scale p2
⊥ is selected with probability



6.3. The Matchbox Module 39

given by the Sudakov form factor

∆(i,j)7→(i′,k,j)(p
2
⊥, (p

hard
⊥ )2) = exp

(
−
∫ (phard⊥ )2

p2⊥

dq2

∫ z+(q2)

z−(q2)
dzP(i,j) 7→(i′,k,j)(q

2, z)

)
, (6.1)

where P(i,j)7→(i′,k,j)(q
2, z) is the appropriate splitting probability defined in Chapter 5.

The base class for kinematic parametrizations and phase space weight is called
DipoleSplittingKinematics. Separate objects are implemented for final-final, final-
initial, initial-final, and initial-initial splittings. The azimuthally averaged splitting kernels
are stored in DipoleSplittingKernel objects for all possible configurations respectively.
Each DipoleSplittingKernel can flag a certain splitting type to be equivalent to an-
other splitting type for performance issues1. DipoleSplittingGenerator objects assem-
ble DipoleSplittingKernel, DipoleSplittingKinematics and ThePEG:AlphaS objects
to completely define the splitting probability. The scale p2

⊥ is then sampled according to
Eq. (6.1) using the exsample library and a splitting is selected for the DipoleChain object
considered.

In the case of a (g, x) 7→ (q, q̄, x) splitting being selected, a circular chain becomes non-
circular and an already non-circular chain is split up into two non-circular chains which
then evolve independently. See Fig. 6.2 for an illustration.

The complete showering cascade is managed by the DipoleShowerHandler class.

6.2.3. Finalization of the Shower

If for each dipole chain no allowed splitting can be selected, the shower evolution stops.
Due to initial-state radiation, the incoming parton momenta in general have obtained
non-vanishing transverse momenta with respect to the beam axis during parton shower
evolution. Therefore, the complete event is realigned after the shower has terminated.

6.3. The Matchbox Module

The Matchbox module performs the calculation of matched matrix elements at NLO using
the Catani-Seymour dipole subtraction formalism and the matching procedure outlined in
Chapter 3 in an automated way. The generation of the subtraction terms is outlined in
Subsection 6.3.1. In Subsection 6.3.2 we sketch the generation of matched matrix elements.

6.3.1. Automatic Generation of Subtraction Terms

Recall from Section 3.2 that in order to perform an NLO calculation in the Catani-Seymour
subtraction scheme the following expressions are required [18]:

• process-dependent quantities

– a set of independent colour projections of the matrix element squared at the
Born level, summed over parton polarizations (in d dimensions)

– an additional projection of the Born-level matrix element over the helicity of
each external gluon (in four dimensions)

– the one-loop contribution dσV (in d dimensions)

– the real emission contribution dσR (in four dimensions)

1E.g. {(q, q̄) 7→ (q, g, q̄)} ∼ {(q̄, q) 7→ (q̄, g, q)} or, for up quarks treated in the massless approximation,
{(x1, u) 7→ (x2, x3, u)} ∼ {(x1, g) 7→ (x2, x3, g)}.
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→ →

For gluon emission off a circular chain, the chain stays circular.

→ →

For gluon emission off an open chain, the chain stays open.

→ →

For quark pair production, a circular chain becomes open.

→ →

For quark pair production, an open chain breaks up.

Figure 6.2.: Examples for parton splittings in dipole chains. In each chain, all possible
emissions off all dipoles compete for splitting. Recall that additionally in each dipole,
emission from both legs is possible. When a chain breaks up, both resulting chains evolve
independently.

• process-independent quantities

– the subtraction dipoles Dij,k
– the insertion operators I, P and K

– a kinematic 3 7→ 2 mapping in order to merge two external legs

The colour and helicity projections of the Born matrix element squared are essential in
order to apply the insertion operators which exhibit said correlations. Note that only
the finite part of the respective expressions is needed for numerical evaluations, since the
process-independent factors have been explicitly tailored to analytically remove all singu-
larities. The correct set of subtraction dipoles and Born matrix elements for the process
under consideration is obtained by investigating all possible mergings of external partons
that appear in the real emission contribution. After these preparations, all respective
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contributions to the NLO calculation can be performed numerically.

In the remainder of this section, we merely mention the classes implemented in the
Matchbox module which are in one-to-one correspondence to the expressions outlined
above. This is done for the sake of completeness and in order to enable the interested
reader to track the modifications done in the course of this work.

By default, matrix elements are implemented in the following way: MatchboxMEBase is
the base class for tree-level matrix elements and virtual corrections2. The squared ampli-
tudes |M|2, colour and potentially spin and colour correlated amplitudes 〈M|Ti ·Tj |M〉,
〈Mµ|CµνTi · Tj |Mν〉, one-loop/Born interference and a phase space generator for the
implemented process are represented here.

The SubtractionDipole class is the base class for subtraction dipoles Dij,k, whilst the in-
sertion operators I,P,K are implemented as MatchboxInsertionOperator objects.
Dipoles and insertion operators may be registered with the DipoleRepository from which
they can be accessed during calculations. The Born process and virtual corrections are
calculated by making use of the MatchboxNLOME class. In order to assemble the subtracted
real emission matrix element from the concerning MatchboxMEBase object and several
SubtractionDipole objects, all possible mergings of external partons are investigated to
obtain the correct set of subtraction dipoles and Born matrix elements. The respective
3 7→ 2 kinematic mappings, pi,j ≡ pi,j(qi, q, qj), are implemented in TildeKinematics

objects3. The SubtractedME class then calculates the subtracted real emission matrix
element within the Catani-Seymour subtraction formalism.

Finally, the matrix elements are handed over to the NLOFactory and are used to calculate
the matched matrix elements. We sketch this process in the following subsection.

6.3.2. Matching with Matrix Element Corrections

POWHEG-type matching [26] can be automatically performed by the PowhegFactory class.
Various ratios of squared matrix elements or subtraction dipoles divided by a sum of sub-
traction dipoles are calculated. They are used to obtain re-weighted matrix elements.
The InvertedTildeKinematics class is the base class for the 2 7→ 3 kinematic map-
ping, {qi, q, qj} ≡ {qi, q, qj}(pi, pj ; p2

⊥, z, φ), similar to the DipoleSplittingKinematics

class used for parton shower evolution. All pieces are assembled automatically by the
PowhegFactory class. A specialized post sub-process handler generates real emission radi-
ation according to the matrix-element-corrected Sudakov form factor and may eventually
replace a Born-type with a real-emission-type sub-process.

6.4. Our Implementation

During the course of this work, we implemented several modifications in order to incorpo-
rate the effects of finite parton masses. Due to the very flexible layout of the underlying
algorithm, this included mostly a definition of “massive” sister classes to already existing
“light” classes. Concerning splittings, more information about the splitting products is
necessary compared to the massless approximation. The new dipoles and splitting kernels
have been carefully defined in order to not interfere with processes involving only massless
partons. Specifically, detailed log files of the shower evolution have been examined. No

2Note that the real emission matrix element is itself the tree level of a process involving one additional
parton in the final state.

3The name refers to the notation used in the original papers on the subtraction formalism where the momenta
pi, pj , pk are mapped to p̃ij , p̃k. Conversely, a splitting is denoted (ĩj, k) 7→ (i, j, k) accompanied by the
kinematic mapping (p̃ij , p̃k) 7→ (pi, pj , pk).
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misbehaviour was found concerning the selection of the correct set of candidate splittings
and the identification of equivalent parton configurations.

Due to additional phase-space constraints which arise from finite parton masses, the gener-
ation of parton branching was equipped with a veto mechanism concerning the kinematic
variables.

All new methods have been separately checked to reproduce the results obtained by the
“light”methods when the parton masses are set to zero. Particularly in the case of insertion
operators, numerical instabilities can occur when the parton masses approach zero4. In-
situ checks have explicitly shown the numerical stability of our implementation in this
limit.

A systematic verification of the interplay between splitting kernels and kinematics as well
as an investigation of the subtraction algorithm is presented in Chapter 7.

With all these modifications, the user is now able of switching between a massless approx-
imation and an implementation taking full account of finite parton masses at input file
level. See Appendix A where our implementation is described from a user point of view.
Additionally, a complete list of the classes implemented in the course of this work is given.

So far, we only implemented and investigated a modified parton shower for final-state
radiation with a final-state spectator. This has been done for the sake of a complete
verification and parameter tuning to the LEP experiment. However, the modifications
necessary for an improved simulation of events involving initial state partons as well have
been outlined above. An implementation will be subject to future studies.

4E.g. due to factors of the form ln (ρ) ln (1 + ρ) or ρ ln ρ with ρ 7→ 0 for m 7→ 0.



CHAPTER 7

Analysis I: Code Validation

This chapter gives an overview of the validation of the simulation code. Extensive checks
have been performed for the massless implementation and are documented in Ref. [24],
hence we do not focus on a general validation but on the extensions implemented during
the course of this work in order to incorporate finite parton masses. Most classes in
the DipoleShower and Matchbox modules provide the possibility of printing out detailed
diagnostic information during the simulation. These log files have been investigated and no
misbehaviour could be found. Additional information has been printed out and examined
to explicitly monitor potential numerical instabilities concerning the massless limit and
the kinematic setup. Again, no malfunction could be recognized.

In the following we discuss validations of the new shower implementation as well as the
subtraction scheme. After those validations at parton level, consistency with the massless
approximation implementation is examined at observable level.

7.1. Shower Radiation

A cross check of the correct implementation of the splitting kernels and kinematics is to
consider the spectra of the two kinematic quantities p⊥ and z for emissions generated
by the shower, validated against a numerical integration of the expected Sudakov-type
distribution. The latter has been implemented in a completely independent code, following
the arguments presented in Chapter 5. Full agreement was found for final-final splittings
off a qq̄ dipole, where we investigated the situation for light and heavy quarks, respectively.
See Fig. 7.1 for radiation off a bb̄ dipole and Fig. 7.2 for other scenarios involving light and
charm quarks. As can be seen, our implementation allows for an improved parton shower
simulation at parton level when heavy quarks are involved.

Since the structures handling and sampling the splitting probabilities are implemented in
a completely generic way, all other types of final-final splittings are expected to show the
same degree of agreement. Gluon emission off a qq̄ dipole was chosen as a representative to
demonstrate the validity of the shower implementation because it is also the first emission
in LEP-like simulations.
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Figure 7.1.: p⊥ and z spectra as generated from a final state bb̄ dipole in LEP events
(
√
s = 91.2 GeV) versus results from a numerical integration. In the upper plot, effects

stemming from the infrared cutoff as well as a reduced maximum transverse momentum
pmax
⊥ <

√
s/2 as a result of the large b quark mass can be observed.
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Figure 7.2.: p⊥ and z spectra as generated from a final state qq̄ dipole in LEP events
(
√
s = 91.2 GeV) for different quark flavours (red lines) versus results from a numerical

integration (green broken lines). Perfect agreement was found for arbitrary quark masses.
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7.2. Matrix Element Subtraction

The functionality of the subtraction terms has been validated. These terms particularly
include the dipoles and insertion operators which were implemented during this work.
Fig. 7.3 shows typical examples of the ratio of subtraction to real emission cross section,
plotted against the respective propagator invariant causing the singularities if the quasi-
collinear limit is reached. The ratio tends to 1 as the quasi-collinear region is approached
for light quarks (demonstrated for up quarks). Although finite quark masses both screen
the singularities in the matrix element and prevent from actually reaching the quasi-
collinear limit, the ratio tends close to 1 for charm and bottom quarks as well. Since the
soft singularity is still present for finite parton masses, the plots showing the same ratio
against the energy of the emitted gluon are much more relevant for the desired verification.
Here, the ratio reaches unity for arbitrary parton masses, thus proving the consistency of
our implementation within the subtraction scheme.

7.3. Observables in the Massless Limit

A good check of consistency is to force the simulation to use all newly implemented massive
classes but explicitly set all masses to zero, and compare the results to the massless imple-
mentation. This validation has been carried out for a large class of observables, ranging
from event shapes to identified particle spectra. See Fig. 7.4 for exemplary observables.
All plots show perfect agreement, proving the correct limiting behaviour of our imple-
mentation. It is striking that the simulation results exactly coincide even in phase-space
regions of low statistics, where the exact same statistical fluctuations are reproduced. This
indicates that the two implementations are indeed identical in the massless limit.

7.4. Conclusions

Our implementation of a dipole shower taking full respect of finite parton masses has been
validated to be fully compatible with the existing setup of the Matchbox add-on module.
Complete agreement with the present implementation in the massless approximation was
shown. The consistent implementation of splitting kernels and kinematics in the shower
as well as dipoles and insertion operators for matrix element subtraction was confirmed
for arbitrary parton masses.
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Figure 7.4.: Exemplary observables for simulations with the dipole shower in the massless
approximation and our implementation where all masses are set to zero by hand. In each
plot only one of the two curves is visible since the two simulation results exactly coincide,
proving the correct limiting behaviour of the new shower. Experimental data was obtained
by the ALEPH collaboration [41] for oblateness, sphericity and the 2-jet fraction, the
DELPHI collaboration [42] for C and D parameter, and the SLD collaboration [36] for the
π± production ratio.



CHAPTER 8

Analysis II: Simulation Results

This chapter presents further analyses concerning our implementation, which aim at a
better description of a large class of observables at LEP. Special emphasis is put on the
description of heavy partons.

Since the implementation of the new parton shower could be validated in the previous
section, the partonic final state is expected to give a more accurate description compared
to the massless approximation. Therefore, tuning has to be performed where the free
parameters of the parton shower and of the non-perturbative hadronization model are re-
adjusted, see Chapter 4.3. In Section 8.1 the tuning procedure is described and results are
presented. Section 8.2 gives a discussion of B-hadron fragmentation which is particularly
sensitive to the dynamics of heavy quarks. Conclusions are drawn in Section 8.3.

8.1. Tuning

We aim at a complete tune of both shower and hadronization model parameters to LEP
data. Since in our implementation heavy quarks evolve qualitatively differently com-
pared to light quarks, separating shower and hadronization parameters for different quark
flavours is reasonable. Thus, in comparison to the massless approximation, a larger set of
parameters is available and tuning is expected to further improve simulation results.

8.1.1. Setup

As quark masses only enter the shower dynamics in terms of the form m2/Q2 where Q2

is a typical scale of the dipole, the effects of light quark masses are very limited. We
therefore allow flavour-dependent parameters for light (u, d, s), charm and bottom quarks,
respectively. A complete list of the parameters varied during the tuning stage and their
respective ranges is given in Tab. 8.1.

Tuning was performed using the Professor tuning system sketched in Section 4.5. Due
to the large number of free parameters, it was carried out as a multistage process where
light-, charm- and bottom-quark-related parameters were treated in separate groups. At
each stage, the previously obtained results were used as default input parameters. For
reference data, event shape variables and jet rates as measured by the DELPHI [42, 43] and
ALEPH [41] experiments, jet observables as determined by the OPAL collaboration [44],
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Parameter Range Description

αS(M2
Z) 0.1− 0.13 strong coupling constant at the Z mass

µ
(f)
IR,FF 0.5 GeV− 2.0 GeV infrared shower cutoff for final-final dipoles

µ
(f)
soft,FF 0.3 GeV− 1.2 GeV soft scale for final-final dipoles

mg,c 0.67 GeV− 3.0 GeV gluon constituent mass

Cl
(f)
max 0.5 GeV− 10 GeV maximum cluster mass

Cl
(f)
pow 0.0− 10.0 cluster mass exponent

Cl
(f)
smr 0.0− 10.0 cluster direction smearing

P
(f)
split 0.0− 1.4 cluster mass splitting parameter

Table 8.1.: The parameters varied for the fit to LEP data. Parameters indicated by the
superscript (f) exist in three copies, depending on the heaviest flavour associated where
f = (uds), c, b. The hadronization parameters were introduced in Section 4.3.

and identified particle spectra as reported by the SLD collaboration [36] were used. The
“light” and global parameters were tuned to event shapes, jet rates, multiplicities and
those identified particle spectra with no particular reference to heavy flavours. Shower
and hadronization parameters for charm and bottom quarks were tuned to the respective
identified particle spectra. In a last step, the global parameters were once more fitted in
order to incorporate the improved behaviour of the heavy quark simulation.

This tuning cycle was repeated several times, assigning different weighting to the observ-
ables in order to find the best possible description of experimental data. However, tunes
where large weights were assigned to the B-hadron fragmentation turned out to be unsta-
ble within our setup and agreement with data could not be achieved. We therefore decided
to aim at a tune satisfactory for the large majority of observables under consideration and
give a separate discussion of the B-hadron fragmentation in Section 8.2.

8.1.2. Results and Discussion

The fitted parameter values are given in Tab. 8.2. Generally, no significant difference
between the parameters for the LO and NLO fit is found. Moreover, the hadronization
parameters for the different quark flavours are of the same order.

The standard deviation for αS(M2
Z) given by Professor is particularly small compared to

the other parameters. Although a determination to this accuracy seems implausible, the
results are still compatible with the world average [45] of 0.1184(7).

The values obtained for the infrared shower cutoff µ
(f)
IR of charm and bottom quarks yield

an inconsistent picture. In particular, the large differences between the values obtained at
LO compared to NLO are surprising. However, this peculiarity can be explained by the
strong dependence of the heavy flavour cutoffs on only a limited number of observables
during the tune. A smaller value for the light flavour cutoff is preferred by the NLO fit, i.e.
more of the dynamics are modelled by a QCD prediction than by the phenomenological
hadronization model. Conversely, the reverse effect is found for charm and bottom quark
evolution.

In Fig. 8.1 LO and NLO simulation results are compared for selected observables and
in general give a comparably accurate description of experimental data. For clarity, we
therefore only make use of the LO simulation for further comparisons with other shower
algorithms. A comparison between LO simulation results, a previous tune [23] of the dipole
shower in the massless approximation and the Herwig++ standard shower is shown in
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Parameter LO NLO

αS(M2
Z) 0.11845(7) 0.11756(7)

µ
(uds)
IR,FF 1.219(5) GeV 1.064(4) GeV

µ
(c)
IR,FF 0.37(7) GeV 0.61(9) GeV

µ
(b)
IR,FF 0.63(2) GeV 1.159(12) GeV

µ
(uds)
soft,FF 0.813(4) 0.68(2)

µ
(c)
soft,FF 0.81(6) 0.59(7)

µ
(b)
soft,FF 0.877(18) 0.764(12)

mg,c 1.599(7) GeV 1.533(4) GeV

Cl
(uds)
max 3.839(18) 2.982(12)

Cl
(c)
max 2.0(4) 3.8(4)

Cl
(b)
max 3.98(18) 3.52(8)

Cl
(uds)
pow 5.05(2) 5.044(16)

Cl
(c)
pow 2.6(5) 3.5(4)

Cl
(b)
pow 7.94(12) 7.70(5)

Cl
(uds)
smr 5.02(3) 5.39(2)

Cl
(c)
smr 3.6(5) 3.9(7)

Cl
(b)
smr 4.69(2) 2.39(11)

P
(uds)
split 0.801(2) 0.742(2)

P
(c)
split 0.45(7) 0.36(6)

P
(b)
split 0.004(13) 0.024(8)

Table 8.2.: Parameters for LO and NLO fits to LEP data.

Fig. 8.2. The generally good agreement of the dipole shower predictions with experimental
results is further improved by our implementation, and the overall description of event
shapes and jet rates by the dipole shower is closer to experimental data than the standard
shower. Nevertheless, hadron multiplicities are off data in the dipole shower but largely of
the same order, see Tab. 8.3.

Fig. 8.3 shows the energy-energy correlation, which has not been included in the fit and
serves as a test of the predictive efficiency of the simulation. Almost perfect agreement is
found for the LO and NLO fits.
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Particle Average Multiplicity
Simulation

LO NLO

mean charged 21.16(21) 21.64 21.57

π+ 17.02(19) 16.29 16.32

π0 9.42(32) 8.92 8.99

K+ 2.228(59) 3.248 3.210

K0 2.045(26) 3.160 3.109

D+ 0.175(16) 0.298 0.314

D0 0.454(30) 0.463 0.576

ρ(770)0 1.231(98) 0.930 0.971

ρ(770)± 2.40(43) 2.00 2.10

ω(782) 1.016(65) 0.719 0.759

φ(1020) 0.0963(32) 0.1693 0.1769

J/Ψ(1S) 0.0052(4) 0.0036 0.0041

p 1.050(32) 1.566 1.462

Table 8.3.: Average hadron multiplicities per hadronic e+e− annihilation events at√
s = 91.2 GeV, as published by the Particle Data Group [46] compared to the LO and

NLO predictions of our implementation. The experimental data for the mean charged
multiplicity is taken from the OPAL collaboration [47]. Statistical fluctuations in the MC
runs are negligible.
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Figure 8.1.: Some differential jet rates and event shapes as predicted by the leading order
and next-to-leading order simulations.
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Figure 8.2.: Some event shape variables as predicted by the leading order simulations.
Here, we compare to both the previous implementation of the dipole shower in the mass-
less approximation and the standard Herwig++ shower. The new dipole shower gives a
significantly improved description.
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Figure 8.3.: Energy-energy correlation and asymmetry of the energy-energy correlation.
These observables have not been included in the fit and thus provide a test of the predictive
efficiency of the simulation.
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8.2. B-Hadron Fragmentation

The B-hadron fragmentation distribution is an important tool for investigating the impact
of our implementation, since it is explicitly related to heavy quarks. Fig. 8.4 shows the
simulation results for various shower setups. Although the description is improved by the
new parton shower in comparison to the dipole shower in the massless approximation,
agreement with experimental data seems out of reach.

b

b b

b

b

b

b
b

b

b

DELPHI datab

Dipole Shower

Dipole Shower (massless approx.)

Herwig++ LO

10−1

1

b quark fragmentation function f (x
prim
B )

1
/

N
d

N
/

d
x

B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.6

0.8

1

1.2

1.4

xB

M
C

/
d

a
ta

b

b b

b

b

b

b b

b

b

10−1

1

b quark fragmentation function f (xweak
B )

1
/

N
d

N
/

d
x

B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.6

0.8

1

1.2

1.4

xB

M
C

/
d

a
ta

Figure 8.4.: B-hadron fragmentation for three different parton shower implementations.

Therefore, we investigated the partonic final state and the subsequent formation of primary
clusters just before hadronization in more detail. Since the Herwig++ standard shower
gives a fairly accurate description of the B-hadron fragmentation, it served as a benchmark
to which the dipole shower spectra were tuned manually. Fig. 8.5 shows the spectrum of
the partonic state right before hadronization as well as the spectrum of primary clusters
which contain a b or b̄ quark. In both spectra, an excess of particles carrying a very high
energy fraction arose, which corresponds to shower evolution without any branching at

all. Lowering the IR cutoff to µ
(b)
IR = 0.25 GeV was found to yield quite good agreement

in this phase-space region. Additionally, the respective soft scale µ
(b)
soft which screens the

Landau singularity in the coupling constant was significantly lowered to 0.2 GeV in order
to give a better description in the perturbative domain.

A second effect of our implementation is manifest in a bump in the primary cluster spec-
trum at 10 ∼ 11 GeV. Since the default value of the bottom quark constituent mass
is 5 GeV in Herwig++, the bump corresponds to bb̄ clusters just above the production
threshold. At least one of the constituent quarks must have been produced during shower
evolution from g 7→ bb̄ splittings, which is strongly suppressed in the standard shower.
As a practical choice, this particular shower kernel was removed from further simulations.
The prediction by the modified simulation is also plotted in Fig. 8.5.

Lastly, the impact of the cutoff µ
(uds)
IR on the full spectrum of primary clusters was in-

vestigated. Fig. 8.6 shows that the best agreement with the standard shower spectrum

was found for a value of µ
(uds)
IR = 0.8 GeV. Note that the spectra considered cannot be

obtained by experiment and that the outcome of the Herwig++ standard shower is con-
sidered plausible simply because it yields satisfactory agreement with experimental data
and its shape can be explained by quark production threshold considerations.

After applying the parameters discussed above and manually excluding g 7→ bb̄ branching,
B-hadron fragmentation was significantly improved. A new tune of b quark evolution and
b hadronization parameters based on these considerations supports a low IR shower cutoff,
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Figure 8.5.: Spectra of b quarks after shower evolution terminated and primary b clusters
which are formed from colour-connected pairs of partons. The modified dipole shower was
manually adjusted in order to yield better agreement with the spectra obtained by the
standard Herwig++ parton shower.

and results are portrayed in Tab. 8.4. For comparison, g 7→ bb̄ branching was excluded
for the massless shower implementation, too, and a tune of newly introduced b-quark-
specific parameters was attempted. Due to evident deficiencies concerning heavy quark
evolution, agreement could not be achieved. Fig. 8.7 shows the results of our adjusted
implementation together with the dipole shower in the massless approximation and the
standard Herwig++ shower. Agreement with experimental data is still not as good as
the results obtained for the standard shower, but the improvement by incorporating finite
parton masses is immense.



56 8. Analysis II: Simulation Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.1 1 10 100

N
−

1
G

eV
d
N
/d
m

Invariant mass / GeV

Herwig++
Dipole Shower

Modified Dipole Shower

Figure 8.6.: Primary cluster spectrum right before hadronization.

b

b b

b

b

b

b
b

b

b

DELPHI datab

Modified Dipole Shower

Dipole Shower (massless approx.)

Herwig++ NLO

10−1

1

b quark fragmentation function f (x
prim
B )

1
/

N
d

N
/

d
x

B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.6

0.8

1

1.2

1.4

xB

M
C

/
d

a
ta

b

b b

b

b

b

b b

b

b

10−1

1

b quark fragmentation function f (xweak
B )

1
/

N
d

N
/

d
x

B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.6

0.8

1

1.2

1.4

xB

M
C

/
d

a
ta

Figure 8.7.: B-hadron fragmentation as predicted by the leading order simulation after
adjusting the b quark and primary cluster spectra and performing a new tune with exclu-
sion of g 7→ bb̄ shower branching. For comparison, the results for the (similarly modified
and tuned) dipole shower in the massless approximation and for the standard Herwig++
parton shower are presented as well.

Parameter LO NLO

µ
(b)
IR,FF 0.273(12) GeV 0.27(3) GeV

µ
(b)
soft,FF 0.61(3) 0.392(8)

Cl
(b)
max 4.06(9) 0.58(4)

Cl
(b)
pow 4.89(12) 9.98(4)

Cl
(b)
smr 0.0 0.43(6)

P
(b)
split 0.017(10) 0.000(4)

Table 8.4.: Parameters concerning b quark evolution for LO and NLO fits of the modified

dipole shower to LEP data. Cl
(b)
smr was set to zero as it was determined negative in the LO

tune (but compatible with zero).
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8.3. Conclusions

A complete tune of shower and hadronization parameters to experimental data from the
LEP experiment was achieved. For a large class of observables, good agreement was
found. A detailed investigation of B-hadron fragmentation showed that the best results

are obtained for a very low shower cutoff for b quark evolution, specifically µ
(b)
IR = 0.27 GeV.

An investigation of the primary cluster spectrum hints towards a lower value of the light

quark IR cutoff µ
(uds)
IR ≈ 0.8 GeV, too. However, it is not clear if this value is justified by

perturbative QCD. Both cutoff parameters are significantly lower than the default value
in the massless dipole shower (µm=0

IR ≈ 1.4 GeV [23]) and the value obtained by tuning.
In other words, more emphasis is put on the perturbative QCD shower evolution than on
the phenomenological hadronization model.

The overestimation of g 7→ bb̄ splittings in the dipole shower is not understood. Raising
the screening scale and IR cutoff for this particular kernel within a reasonable range
does not reduce this effect in a sufficient manner. We therefore dropped the kernel from
our simulation, which improves the description of B-hadron fragmentation significantly.
However, this procedure can only be regarded as a temporary solution and further studies
on the dipole shower are necessary, particularly when higher centre-of-mass energies are
investigated where neglecting b quark pair production is not justified.





CHAPTER 9

Conclusions and Outlook

The aim of this work was to provide an implementation of a dipole-type parton shower
which takes full account of finite parton masses in the event generator Herwig++. In parton
showers, higher-order corrections are effectively resummed and enhancements to all orders
in perturbation theory are approximated. Furthermore, the exact result at NLO accuracy
can be obtained when the real emission matrix element is matched to the shower, and
all quantities necessary for this procedure were to be provided, too. The implementation
had to be tested and validated both at parton and observable level. Moreover, a complete
tune to LEP data with emphasis on heavy quarks was necessary due to the qualitatively
different description of the evolution of the partonic ensemble. For the sake of a detailed
investigation of the new algorithm, an implementation of all quantities that are necessary
for hadron collider experiments was postponed.

The desired parton shower implementation has been provided. Parametrizations of the
splitting kinematics, phase-space factorization properties and phase-space boundaries were
derived for all possible emitter-spectator pairs and arbitrary parton masses. Together with
the Catani-Seymour splitting kernels they were implemented and the emission spectrum
of the full code was validated against an independent numerical calculation.

Catani-Seymour dipoles, insertion operators and kinematic mappings were provided within
the subtraction scheme for NLO calculations. Besides, the real emission contribution to
e+e− 7→ jets events was implemented. The functionality of the subtraction algorithm,
specifically accordance of the auxiliary subtraction terms with the real emission contribu-
tion in the singular phase-space regions, was confirmed numerically.

Consistency of the full implementation with the original algorithms developed for the
massless approximation was found at parton and observable level.

Thus, an improved description of the partonic final state was achieved and tuning to
LEP data was performed. It was shown that generally good agreement with experimental
results is possible. Although significant improvement stemming from the incorporation
of finite-mass effects was found for B-hadron fragmentation as well, agreement with data
was not obtained at this stage. Since we did not concern ourselves with the hadronization
model in Herwig++, the partonic final state at the onset of hadronization was investigated
in more detail. Whereas the dipole-type parton shower is expected to provide a more
accurate description, a comparison to the successful Herwig++ standard parton shower is
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reasonable. This comparison suggests substantially lower IR shower cutoffs particularly
for bottom quark branching, on which the spectra of the partonic final state after shower
evolution and of primary clusters crucially depend. Hence, within the new algorithm more
weight is assigned to the perturbative QCD simulation in the parton shower compared
to the phenomenological hadronization model. Moreover, the cluster spectra indicated a
strong suppression of g 7→ bb̄ splittings. After the shower was modified in this way, a new
tune fully confirmed the previous results and the description of B-hadron fragmentation
was significantly improved.

In conclusion, our implementation yields the correct physical results within reach of the
dipole shower approximation and gives a good description of the LEP experiment. Addi-
tionally, all tools have been provided in order to extend the algorithm to the case of hadron
colliders. However, further studies concerning the transition from the parton shower to
the non-perturbative domain are indicated. The cluster hadronization model implemented
in Herwig++ was developed in the presence of standard parton showers, yet dipole-type
showers yield a qualitatively different partonic final state. New insights might be gained
via an investigation with emphasis on this aspect. Another loose end of our investigations
is the excess of g 7→ qq̄ branching in our implementation, which was discovered due to
its impact on B-hadron fragmentation. An investigation of the role of the shower cutoff
and the splitting kernel screening scales as well as possible modifications of the splitting
kernels seems to deserve special attention.



APPENDIX A

Implementation

A.1. Modified and New Classes

In this appendix we present the modifications implemented in the course of this work at
code level. See Table A.1 for a listing of the respective classes concerned with shower
evolution and Table A.2 for those connected to the evaluation of matrix elements in the
subtraction and matching schemes introduced in Chapter 3. For an outline of the structure
of the code recall Chapter 6.

A.2. Simulations using Our Implementation

With the introduction of the modifications outlined above to Herwig++ we are able to
simulate events using a dipole-type parton shower which takes full account of finite parton
masses. The user may switch between the different implementations at input file level.
For this purpose, we give a prescription of the new settings which are now available.

First, the default values for the quark masses can be retained, i.e. the entries

set /Herwig/Particles/d:NominalMass 0*GeV

set /Herwig/Particles/dbar:NominalMass 0*GeV

set /Herwig/Particles/u:NominalMass 0*GeV

set /Herwig/Particles/ubar:NominalMass 0*GeV

set /Herwig/Particles/s:NominalMass 0*GeV

set /Herwig/Particles/sbar:NominalMass 0*GeV

set /Herwig/Particles/c:NominalMass 0*GeV

set /Herwig/Particles/cbar:NominalMass 0*GeV

set /Herwig/Particles/b:NominalMass 0*GeV

set /Herwig/Particles/bbar:NominalMass 0*GeV

are safe to be removed from Matchbox.in and DipoleShower.in. As dipole kernels and
insertion operators are registered with the repository in an automated way, no adjustments
concerning matrix element calculations and matching have to be done.

In DipoleShower.in the current way to assign different infrared shower cutoff parameters
to heavy quarks is via the creation of additional DipoleSplittingKinematics objects,
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Class name Description
← inherits from
(light sister class)

DipoleSplittingKinematics

←HanderBase

Base class for kinematic parametrizations and phase-
space weight. Modified to pass more information
about the respective splitting to its methods.

FFMassiveKinematics

←DipoleSplittingKinematics

(FFLightKinematics)

Contains the kinematic parametrization and phase-
space weight for final-final splittings as derived in
Chapter 5.

FFMgx2ggxDipoleKernel,
FFMgx2qqxDipoleKernel,
FFMqx2qgxDipoleKernel.
←DipoleSplittingKernel

(FFgx2ggxDipoleKernel etc.)

Azimuthally averaged splitting kernels for final-final
(g, x) 7→ (g, g, x) splittings etc. following the ones
derived in Ref. [18].

Table A.1.: New classes which incorporate finite parton masses in the dipole shower.

Class name Description
← inherits from
(light sister class)

DipoleMIOperator

←MatchboxInsertionOperator

(DipoleIOperator)

The insertion operator I, removing all singularities
from the virtual contribution of an arbitrary process.
Takes full account of finite parton masses.

FFMggxDipole,
FFMqgxDipole, FFMqqxDipole

←SubtractionDipole

(FFggxDipole etc.)

The subtraction dipoles for merging of two external
legs gg 7→ g etc.

MatchboxMEllbar2qqbar

←MatchboxMEBase,
MatchboxMEllbarqqbar

The full ll̄ 7→ qq̄ matrix element including Born level
and the virtual contribution. It has been extended to
fully incorporate finite parton masses [48].

MatchboxMEllbar2qqbarg

←MatchboxMEBase,
MatchboxMEllbarqqbarg

The real emission contribution associated with quark
pair production in leptonic events. Modifications in-
clude an adjustment of the phase space and some
book-keeping issues.

FFMassiveTildeKinematics

←TildeKinematics

(FFLightTildeKinematics)

Implements the “tilde” mapping pi,j ≡ pi,j(qi, q, qj).

FFMassiveInvertedTilde=

Kinematics

←InvertedTildeKinematics

(FFLightInvertedTilde=
Kinematics)

Implements the inverted “tilde” mapping
{qi, q, qj} ≡ {qi, q, qj}(pi, pj ; p2

⊥, z, φ) and corre-
sponding phase-space boundaries as used for
automatic POWHEG matching.

Table A.2.: Modified and new classes which incorporate finite parton masses in the cal-
culation of matrix elements.
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cd /Herwig/DipoleShower/Kinematics

create Herwig::FFMassiveKinematics FFcKinematics

create Herwig::FFMassiveKinematics FFbKinematics

The q 7→ qg kernels are then assigned their respective DipoleSplittingKinematics object
depending on the quark flavour,

create Herwig::FFMqx2qgxDipoleKernel FFMqx2qgxDipoleKernel

cp FFMqx2qgxDipoleKernel FFMux2ugxDipoleKernel

set FFMux2ugxDipoleKernel:Flavour /Herwig/Particles/u

set FFMux2ugxDipoleKernel:SplittingKinematics

/Herwig/DipoleShower/Kinematics/FFMassiveKinematics

insert /Herwig/DipoleShower/DipoleShowerHandler:Kernels 0

FFMux2ugxDipoleKernel

[same for d,s]

cp FFMqx2qgxDipoleKernel FFMcx2cgxDipoleKernel

set FFMcx2cgxDipoleKernel:Flavour /Herwig/Particles/c

set FFMcx2cgxDipoleKernel:SplittingKinematics

/Herwig/DipoleShower/Kinematics/FFcKinematics

insert /Herwig/DipoleShower/DipoleShowerHandler:Kernels 0

FFMcx2cgxDipoleKernel

cp FFMqx2qgxDipoleKernel FFMbx2bgxDipoleKernel

set FFMbx2bgxDipoleKernel:Flavour /Herwig/Particles/b

set FFMbx2bgxDipoleKernel:SplittingKinematics

/Herwig/DipoleShower/Kinematics/FFbKinematics

insert /Herwig/DipoleShower/DipoleShowerHandler:Kernels 0

FFMbx2bgxDipoleKernel

The same procedure is to be applied to final-final g 7→ qq̄ splitting kernels as well as the
respective final-initial and initial-final kernels (once made available).

In the main input file, e.g. LEP-Matchbox.in for the LEP experiment, the parameters
obtained by the tune presented in Chapter 8 have to be included,

read DipoleShowerParametersM-LO.in

or

read DipoleShowerParametersM-NLO.in

for matrix element calculations at NLO accuracy, respectively. Switching between the
MC@NLO and POWHEG matching schemes is well-documented in the default .in files.





APPENDIX B

Splitting Kernels and Insertion Operators

This appendix gives a summary of the splitting kernels and insertion operators which were
required for our implementation. They have been presented in Ref. [18] and are recited
in the following, using the notations introduced in the previous chapters. For brevity, we
only give the expressions for the case of no initial-state hadrons, as implemented in the
course of this work.

B.1. Parton-Shower Splitting Kernels

The spin- and/or polarization-averaged splitting kernels as used throughout the parton
shower algorithm are commonly denoted 〈Vik,j〉 for a splitting i′ 7→ (i, k) with a spectator
parton j. For final-final splittings they read

〈VQg,j(y, z)〉 = 8πµ2εαSCF

{
2

1− z(1− y)
− ṽi,j
vik,j

[
1 + z +

2m2
Q

ys̄
+ ε(1− z)

]}
, (B.1)

〈VQQ̄,j(y, z)〉 = 8πµ2εαSTR
1

vik,j

{
1− 2

1− ε

[
z(1− z)− (1− κ)z+z− −

κm2
Q

2m2
Q + s̄y

]}
,

(B.2)

〈Vgg,j(y, z)〉 = 16πµ2εαSCA

{
1

1− z(1− y)
+

1

1− (1− z)(1− y)

+
z(1− z)− (1− κ)z+z− − 2

vik,j

}
. (B.3)

The relative velocity ṽi,j between the parton momenta pi and pj before splitting is given
by

ṽi,j =

√
λ(s,M2

i ,M
2
j )

s−M2
i −M2

j

. (B.4)

After the splitting, the relative velocity vik,j between qi + q and qj reads

vik,j =

√
[2m2

j + s̄(1− y)]2 − 4m2
js

s̄(1− y)
. (B.5)
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κ is a free parameter of the subtraction scheme, where it cancels in final expressions
between the subtraction dipoles and insertion operators. In our implementation we chose
κ = 0. The kinematic variables y and z are defined in Section 5.1 where the phase-space
boundary z± is also given.

B.2. Splitting Functions in the Subtraction Scheme

In the Catani-Seymour dipole subtraction scheme, colour or spin projections of the splitting
functions are required. The final-final dipoles read

〈s|VQg,j(y, z)|s′〉 = 〈VQg,j(y, z)〉δss′ , (B.6)

〈µ|VQQ̄,j(y, z)|ν〉 = 8πµ2εαSTR
1

vik,j

{
−gµν

[
1− 2κ

1− ε

(
z+z− −

m2
Q

(qi + q)2

)]

− 4

(qi + q)2

[
z(m)qµi − z′(m)qν

] [
z(m)qνi − z′(m)qµ

]}
,

(B.7)

〈µ|Vgg,j(y, z)|ν〉 = 16πµ2εαSCA

{
−gµν

[
1

1− z(1− y)
+

1

1− (1− z)(1− y)
− 2− κz+z−

vik,j

]
+

1

vik,j

1− ε
qi ·q

[
z(m)qµi − z′(m)qν

] [
z(m)qνi − z′(m)qµ

]}
,

(B.8)

where the abbreviations

z(m) = z − 1

2
(1− vik,j) , z′(m) = (1− z)− 1

2
(1− vik,j) (B.9)

have been used. All other expressions are given in the previous section and in Section 5.1.

B.3. Insertion Operator

In the case of no identified partons the insertion operator I reads

Im(ε, µ2; qi,mi) = −αS
2π

1

Γ(1− ε)

(
4πµ2

s̄jk

)ε∑
j

1

T2
j

∑
k 6=j

Tj ·Tk

×
[
T2
j

(
Vj(s̄jk,m,mj , {mF }; ε, κ)− π2

3

)
+

(
s̄jk
µ2

)ε
Γj(µ,m, {mF }; ε)

+γj ln
µ2

s̄jk
+ γj +Kj +O(ε)

]
, (B.10)

where s̄jk = 2q ·qj and {mF } denotes the set of masses of those massive quarks that may
appear in the g 7→ qq̄ splitting. The constants γa and Ka read

γq =
3

2
CF , γg =

11

6
CA −

2

3
TRNf , (B.11)

Kq =

(
7

2
− π2

6

)
CF , Kg =

(
67

18
− π2

6

)
CA −

10

9
TRNf , (B.12)
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for quarks and gluons, respectively. The functions Γj depend on the flavour of the parton
j and on the parton masses. They read (with dummy arguments suppressed)

Γg({mF }; ε) =
1

ε
γg −

2

3
TR

NF∑
F=1

ln
m2
F

Q2
aux

, (B.13)

Γq(ε) =
1

ε
γq , (B.14)

ΓQ(µ,mQ; ε) = CF

[
1

ε
+

1

2
ln
m2
Q

µ2
− 2

]
, (B.15)

where the subscript q denotes massless (anti-)quarks and Q denotes massive (anti-)quarks.
Qaux is an auxiliary mass scale which cancels between Eqs. (B.13) and (B.25) in the final
expression. NF denotes the number of heavy flavours.

The kernels Vj depend on the flavour of parton j and on the momenta and masses of both
partons j and k. They are decomposed into one contribution which is symmetric with
respect to the interchange of the indices j and k and exhibits singularities, and another
contribution which is neither symmetric nor singular,

Vj(s̄jk,mj ,mk, {mF }; ε, κ) = V(S)(s̄jk,mj ,mk; ε) + V(NS)
j (s̄jk,mj ,mk, {mF };κ) . (B.16)

The singular terms read
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1
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4
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, (B.17)
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, (B.18)

V(S)(s̄jk, 0, 0; ε) =
1

ε2
, (B.19)

with sjk = s̄jk +m2
j +m2

k and the relative velocity between partons j and k given by

vjk =

√
λ(sjk,m

2
j ,m

2
k)

s̄jk
. (B.20)

The quantities ρ and ρn read

ρ =

√
1− vjk
1 + vjk

, ρn =

√
1− vjk + 2m2

n/s̄

1 + vjk + 2m2
n/s̄

. (B.21)

The non-singular terms depend on the flavours and masses of partons j and k. With
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dummy arguments suppressed, they read

V(NS)
Q (s̄jk,mj > 0,mk > 0) =

γq
T2
q

ln
s̄jk
sjk

+
1

vjk

[
ln ρ2 ln(1 + ρ2) + 2 Li2(ρ2)− Li2(1− ρ2

j )− Li2(1− ρ2
k)−

π2

6

]
+ ln

√
sjk −mk√
sjk

− 2 ln
(
√
sjk −mk)

2 −m2
j

sjk
−

2m2
j

s̄jk
ln

mj√
sjk −mk

− mk√
sjk −mk

+
2mk(2mk −√sjk)

s̄jk
+
π2

2
, (B.22)

V(NS)
Q (s̄jk,mj > 0, 0) =

γq
T2
q

ln
s̄jk
sjk

+
π2

6
− Li2

s̄jk
sjk
− 2 ln

s̄jk
sjk
−
m2
j

s̄jk
ln
m2
j

sjk
, (B.23)

V(NS)
q (s̄jk, 0,mk > 0) =

γq
T2
q

[
ln
s̄jk
sjk
− 2 ln

√
sjk −mk√
sjk

− 2mk√
sjk +mk

]
+
π2

6
− Li2

s̄jk
sjk

,

(B.24)

V(NS)
g (s̄jk, 0,mk > 0, {mF };κ) =

γg
T2
q

[
ln
s̄jk
sjk
− 2 ln

√
sjk −mk√
sjk

− 2mk√
sjk +mk

]

+
π2

6
− Li2

s̄jk
sjk

+
2

3

TR
CA

NF∑
F=1

ln
m2
F

Q2
aux

+
4

3

TR
CA
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sjk

+
mkρ

3
1√

sjk +mk
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2
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3
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1)− 1

2
ln
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F
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]

+
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κ− 2

3

)
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k
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TR
CA

Nf − 1
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ln
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TR
CA
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(
ρ3

2 ln
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− 8ρ1m
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F
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, (B.25)

V(NS)
q (s̄jk, 0, 0) = 0 , (B.26)

V(NS)
g (s̄jk, 0, 0, {mF }) =

4

3

TR
CA

Njk
F∑

F=1

[
ln

1 + ρ1

2
− ρ1

3
(3 + ρ2

1)− 1

2
ln
m2
F

s̄jk

]
+

2

3

TR
CA

NF∑
F=1

ln
m2
F

Q2
aux

. (B.27)

N jk
F is the number of those heavy flavours for which s̄jk > 4mF (mF + mk). Note that

for mF 7→ 0, we can set N jk
F = NF because the region of vanishing s̄jk gives a vanishing

contribution to infrared-safe observables [18]. ρ1,2 appearing in Eq. B.25 are given by

ρ1 =

√
1− 4m2

F

(
√
sjk −mk)2

, ρ2 =

√
1− 4m2

F

sjk −m2
k

. (B.28)
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Herrn Dr. Simon Plätzer danke ich dafür, dass er mir bei offenen Fragen immer zur
Seite stand und mich bei meiner Arbeit sehr unterstützt und vorangebracht hat. Weiter
danke ich ihm dafür, dass er sich für mich Zeit genommen und eine weitere Fahrt ans
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