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Deutsche Zusammenfassung

Das Standardmodell der Teilchenphysik ist eine Theorie, die es in den letzten Jahrzehnten
mit Bravour geschafft hat, eine überwältigende Mehrheit der Beobachtungen auf dem Gebiet
der Elementarteilchenphysik in einer spontan gebrochenen Quantenfeldtheorie zusammenzu-
fassen. Darüber hinaus trifft sie Vorhersagen über noch zu entdeckende Teilchen, basierend
lediglich auf der Annahme, dass die zu Grunde liegende Theorie der Natur Symmetrien
aufweist. So ist es zum Beispiel Makoto Kobayashi and Toshihide Maskawa bereits 1973
gelungen, das Top-Quark vorherzusagen, das 22 Jahre später am Tevatron experimentell
nachgewiesen werden konnte.

Heute wie vor 20 Jahren ist das Standardmodell einer schweren Bewährungsprobe gestellt, da
der 2009 angelaufene Large Hadron Collider (LHC) es sich zum erklärten Ziel gesetzt hat, das
letzte bisher unbeobachtete Teilchen des Standardmodells, das Higgs-Boson, nachzuweisen.
Der LHC und seine Experimente ATLAS und CMS wurden so konzipiert, dass sie die Frage,
ob es ein Higgs-Boson wie es das Standardmodell vorhersagt gibt oder nicht, eindeutig beant-
worten können.

Die am LHC anfangs gesammelten Daten haben sukzessiv den erlaubten Massenbereich für
das Higgs-Boson verkleinert. Obwohl dies ein erwartetes Verhalten war, da die theoretis-
chen und experimentellen Einschränkungen des Standardmodells ein leichtes Higgs-Boson
präferieren, der LHC in diesem Massenbereich jedoch eine geringere Signifikanz aufweist, gab
dies Anlass zu bedenken, denn die gesamte Theorie der elektroschwachen Wechselwirkung,
welche in den vergangenen Jahren ausgiebig in Präzisionstests untersucht und bestätigt wurde,
beruht auf der Existenz eines Higgs-Bosons. Theorien mit erweiterten Higgs-Sektoren bie-
ten für den Fall dass das Standardmodell Higgs-Boson von den LHC-Experimenten aus-
geschlossen werden sollte, eine Lösung der daraus entstehenden Probleme, so dass das Stan-
dardmodell weiterhin als effektive Theorie seine Gültigkeit bewahrt. Das Ziel dieser Arbeit
war es, ein mögliches Szenario, in dem das standardmodellartige Higgs-Boson experimentell
ausgeschlossen werden würde, im Rahmen der Nächst-minimalen Supersymmetrischen Er-
weiterung des Standardmodells (NMSSM) zu diskutieren.

Supersymmetrische Erweiterungen des Standardmodells benötigen per se einen erweiterten
Higgs-Sektor und eignen sich somit, um das eventuelle Nichtvorhandensein des erwarteten
Higgs-Signals zu erklären. Die Grundidee hinter diesen Erweiterungen ist es jedoch, die
Willkür zwischen den bosonischen und fermionischen Teilchen durch eine zusätzliche Sym-
metrie der Natur zu lösen: alle Felder des Standardmodells werden zu Superfeldern erweit-
ert, welche neben den bereits bekannten Teilchen zusätzliche Freiheitsgrade mit komplemen-
tärem Spin aufweisen. So werden in der NMSSM die fermionischen Felder der Leptonen und
Quarks um je zwei1 bosonische Spin-0-Felder der Sleptonen und Squarks, ergänzt, während
die Eichbosonen der starken Wechselwirkung, die Gluonen, jeweils einen fermionischen Spin-
1/2-Superpartner namens Gluino erhalten.

1Eine Ausnahme bilden hier die Neutrinos, die im Rahmen des Standardmodells als masselos behandelt werden,
deswegen einen Freiheitsgrad weniger und damit auch nur ein skalares Superpartner-Feld besitzen.
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Der skalare Higgs-Sektor der NMSSM ist verglichen zum Standardmodell um ein zweites
Higgs-Dublett erweitert, welches allgemein in supersymmetrischen Theorien benötigt wird um
Quarkmassen zu generieren, und um ein drittes Higgs-Feld2, welches ein Singlett unter der
Eichgruppe ist und somit nicht an die Felder des Standardmodells koppelt. Die Superpartner
dieser Higgs-Felder mischen zusammen mit den Superpartnern der elektroschwachen Eich-
bosonen und formen die fermionischen Masseneigenzustände der Neutralinos und Charginos.
Somit umfasst das Teilchenspektrum der NMSSM neben den Teilchen des Standardmodells
zwei weitere skalare, zwei pseudoskalare und zwei geladene Higgs-Bosonen, neun Sleptonen,
zwölf Squarks, acht Gluinos, fünf Neutralinos und zwei Charginos.
Die Tatsache, dass bislang keines dieser supersymmetrischen Partnerteilchen experimentell
nachgewiesen wurde, wird in der Theorie durch eine explizite Brechung der Supersymmetrie
erklärt. Diese sorgt dafür, dass die Massen der Superpartner nicht identisch sind, wie von
exakter Supersymmetrie verlangt wäre.

Der erweiterte Higgs-Sektor der NMSSM ergibt etliche Konsequenzen für die Higgs-Suche am
LHC. Zum Einen führen die Beiträge des Higgs-Singletts in den Higgs-Boson-Masseneigen-
zuständen zu einer Unterdrückung der Kopplungen an Standardmodell Teilchen, wodurch die
Produktions- und Zerfallswirkungsquerschnitte der Higgs-Bosonen verringert werden.
Zum Anderen kann in der NMSSM das leichteste Higgs-Boson pseudoskalar sein, für welches
die Ausschlussgrenzen der direkten Higgs-Suche am LEP nicht anwendbar sind und das dem-
nach dominant in Bottom-, oder gar leichtere, Quarks zerfallen könnte. Szenarien dieser
Art wurden in der Vergangenheit ausgiebig untersucht und zeigten, dass für große Bere-
iche des NMSSM-Parameterraums keines der Higgs-Bosonen durch die gängigen LHC-Higgs-
Entdeckungskanäle gefunden oder ausgeschlossen werden könnte. In dieser Arbeit wird der
Einfluss von Korrekturen der nächst-zur-führenden Ordnung zu dem Zerfall der skalaren
Higgs-Bosonen, hi, in die leichtesten pseudoskalaren, A1, untersucht.

Der herausforderndste Teil dieser Aufgabe war die Renormierung der Higgs-Kopplung, da auf
Ein-Schleifen-Niveau über 2000 Diagramme zu diesem Prozess beitragen, was, zusammen mit
der Komplexität der NMSSM-Kopplungen, eine analytische Behandlung der Renormierungs-
prozedur unmöglich macht. Die Ein-Schleifen-korrigierte Amplitude wurde deswegen in der
Feynman-Graphen-Methode mit den Mathematica-Paketen FeynArts und FormCalc, zusam-
men mit Zuhilfenahme von eigens geschriebenen Bash und Form Routinen aufgestellt. Die
Gesamtamplitude folgte daraus als Summe der im Allgemeinen divergenten Passarino-Veltmann-
Integrale gewichtet mit generischen Vertexfunktionen und weiteren Parametern der NMSSM.
Diese wurden numerisch mit LoopTools und weiteren Mathematica-Routinen ausgewertet.
Um die Renormierung zu vollenden, musste zusätzlich der Counterterm zu der trilinearen
Higgs-Selbstkopplung besimmt werden, der die divergenten Anteile der Ein-Schleifen-Ampli-
tude ausgleicht und, abhängig von dem Renormierungsschema, eventuell zusätzliche endliche
Beiträge zu der Korrektur liefert. Hierzu wurden die von der Arbeitsgruppe von Prof. M. Müh-
lleitner entwickelten Mathematica-Programme zur numerischen Bestimmung der Renormier-
ungskonstanten des NMSSM Higgs-Sektors benutzt, die letztendlich zu einer numerischen
Aufhebung der divergenten Anteile der Ein-Schleifen Amplitude und des zugehörigen Coun-
terterms mit einer Präzision von 10−10 geführt haben. Diese Programme erlauben zusätzlich
eine Einschätzung des theoretischen Fehlers, der durch das Vernachlässigen höherer Ordnun-
gen der Störungsrechnung entsteht, indem das Renormierungsschema für die Bestimmung
der Top- und Bottom-Quarkmassen variiert wird. Die Analyse der gefundenen Szenarien
wurde deswegen sowohl für Pol-Quarkmassen durchgeführt, als auch für laufende DR Top-
und Bottom-Quarkmassen durchgeführt.

2Dieses Higgs-Singlett ist der Grund für die Namensgebung der NMSSM. Wenn man es nicht einführt, bildet der
Feldinhalt eine Minimalmenge von Feldern, die für eine supersymmetrische Erweiterung des Standardmodells
benötigt werden.
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Die hieraus resultierende Ein-Schleifen-korrigierte Higgs-Selbstkopplung wurde auf ihren phä-
nomenologischen Einfluss untersucht, dabei wurde der veränderte Stand der Higgs-Suche
am LHC berücksichtigt. Im Laufe des vergangenen Jahres haben sowohl ATLAS als auch
CMS bestätigt, eine Higgs-Boson Evidenz mit einer lokalen statistischen Signifikanz von 3.5σ,
beziehungsweise 3.1σ im Massenbereich um 125 GeV registriert zu haben. Wenn sich diese
Evidenz nicht zu einer statistischen Schwankung entwickelt, ist damit zu rechnen, dass die
Higgs-Boson Entdeckung bis zum Ende des Jahres 2012 bestätigt werden kann.

Diese Evidenz bildet keine ideale Basis für die ursprünglich angedachte Analyse, weswegen die
Szenariensuche für die Auswertung angepasst werden musste. Betrachtet wurden letztendlich
Parameterpunkte, die ein Signal produzieren, welches mit der gemessenen Signifikanz eines
standardmodellartigen Higgs-Bosons im Massenbereich um 125 GeV übereinstimmen. Da
ein solches Signal nur erzeugt werden kann, wenn die Verzweigungsverhältnisse des standard-
modellartigen Higgs-Bosons nicht durch zusätzliche Zerfallskanäle merklich beeinflusst wer-
den, konzentriert sich die Untersuchung auf die Auswirkungen der korrigierten Selbstkopplung
zwischen den nicht-standardmodellartigen und den leichtesten pseudoskalaren Higgs-Bosonen.

Zu diesem Zweck wurde ein Programm geschrieben, welches den Parameterraum des NMSSM
Higgs-Sektors nach Punkten gescannt hat, die ein leichtes pseudoskalares A1 und ein standard-
modellartiges Higgs-Boson mit einer Masse um 125 GeV aufweisen. Nach diesen Kriterien
wurden über 500000 zufällige Parameterpunkte gescannt und bei den potentiell interessanten
Punkten wurde der Einfluss der korrigierten Selbstkopplung auf die resultierenden Zerfalls-
breiten untersucht.
Die meisten so gefundenen Punkte weisen größtenteils Korrekturen von weniger als 20% auf,
ein repräsentatives Beispiel für solche Szenraien wird in Kapitel 6.3 geschildert. Es wurden
vereinzelt auch Szenarien gefunden, in denen die Korrektur erhebliche Auswirkungen auf die
Phänomenologie hat, wie man dem in Kapitel 6.4 diskutierten Szenario entnehmen kann.
Dieses erfüllt jedoch nicht das erforderliche Kriterium der standardmodellartigen Verzwei-
gungsverhältnisse, zeigt aber dennoch, dass die Ein-Schleifen-Korrekturen zu der Higgs Selb-
stkopplung durchaus nicht zu vernachlässigen sind.

Aus den ausgewerteten Daten lässt sich eine Tendenz ablesen, derzufolge in Szenarien mit
standardmodellartigen Higgs-Bosonen mit einer Masse um 125 GeV die betrachteten Ein-
Schleifen-Korrekturen klein ausfallen, eine eindeutige Aussage bedarf jedoch weiterer Unter-
suchungen. Die in dieser Diplomarbeit erzielten Ergebnisse dienen als Grundlage für weiter-
reichende Projekte, in denen die Korrekturen zu der CP-verletztenden Higgs-Selbstkopplung
bestimmt und diese in eine modifizierte Version von HDECAY eingepflegt werden, die es
dadurch erlaubt, NMSSM-Higgs-Zerfälle auf Ein-Schleifen-Niveau berechnen zu können.

In der nachfolgenden Diplomarbeit wird die hier zusammengefasste Analyse der Ein-Schleifen-
Korrekturen zur Selbstkopplung der NMSSM Higgs-Bosonen ausführlicher diskutiert. In
Kapitel 2 werden Grundlagen der Quantenfeldtheorie präsentiert und benutzt, um die Lagrange-
Dichte des Standardmodells herzuleiten.
Das Kapitel 3 bietet eine kurze Einführung in das Konzept der Supersymmetrie und schildert,
wie supersymmetrische Theorien manche Makel des Standardmodells lösen können. Des Weit-
eren wird in diesem Kapitel das Teilchenspektrum der NMSSM vorgestellt und das damit
einhergehende Higgs-Potential im Detail diskutiert, woraus die für die Higgs-Phänomenologie
erforderlichen Parameter abgeleitet werden.
Die grundsätzlichen Konzepte und technischen Einzelheiten der Renormierung, die man für
die Berechnung der Ein-Schleifen-Korrekturen der Higgs Selbstkopplung benötigt, werden im
Kapitel 4 eingeführt.
Anschließend werden die zuvorgehenden Grundlagen im Kapitel 5 zusammengefügt, um die
Ein-schleifen-korrigierte Zerfallsbreite des skalaren Higgs-Bosons hi in zwei leichte pseudo-
skalare A1 zu berechnen.
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Die phänomenologischen Auswirkungen dieser Korrektur werden an den bereits erwähnten
Beispielen von zwei Szenarien ausführlich in Kapitel 6 präsentiert.
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CHAPTER 1

Introduction

This thesis was written in a very exciting year for the particle physicists community, as
the Large Hadron Collider (LHC) has achieved notable progress in its aim to probe the
fundamental laws of nature beyond the electroweak scale. One of the main design features of
the LHC and its general purpose detector experiments ATLAS and CMS is their discovery
potential [1] for the last heretofore unobserved particle predicted by the Standard Model,
the Higgs boson. This design feature is sometimes referred to as the no-lose theorem, as
according to theoretical constraints of the Standard Model [2], the Higgs boson mass must
lie below 800 GeV and therefore, if the Standard Model is to remain a valid description of
elementary particle physics at the electroweak scale, it is simply a matter of time, until it will
be discovered at the LHC.

Ever since the LHC began operation in the late 2009, experimental data have been continually
accumulated and evaluated, narrowing the allowed mass region for the Standard Model Higgs
increasingly. This trend was not surprising, as the theoretical and experimental constraints on
the Standard Model prefer a light Higgs boson, for which the significance of the LHC exper-
iments is limited, but still the trend has encouraged to investigate the questions, about how
electroweak symmetry breaking, required by the Standard Model, could be achieved, in case
the LHC excludes the Standard Model Higgs boson. The Next-to-Minimal Supersymmetric
Extension of the Standard Model (NMSSM) considered in this thesis, offers a sophisticated
way to resolve such potential issues. The NMSSM Higgs sector introduces two additional
scalar Higgs bosons hi, as well as further two pseudoscalar, Ai, and two charged Higgs bosons
H± and thus yields an enriched Higgs boson phenomenology, to which the Standard Model
no-lose theorem does not apply.
The efforts to formulate a no-lose theorem for the NMSSM Higgs boson search at the LHC up
to now were in vain, as large parameter space regions yield the lightest Higgs boson to be the
pseudoscalar A1 so that the potential Standard Model-like scalar Higgs boson could decay
dominantly into these pseudoscalars, thereby escaping detection in the standard LHC Higgs
search channels. Thus, in the light of these circumstances, it was an interesting question to
ask, what phenomenological impact one-loop corrections to the Higgs boson self-couplings
would yield in scenarios, where no Standard Model-like Higgs is found on the entire mass
range due to the presence of the h1 → A1A1 decay channel.

The initial motivation for the analysis of the one-loop corrected Higgs-to-Higgs decays per-
formed in this thesis, however, had to be reconsidered due to recent development in the LHC
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Higgs search, as in the late 2011 both ATLAS and CMS experiments announced a Higgs
boson evidence with a local statistical significance of 3.5σ and 3.1σ respectively in the mass
region around 125 GeV, predicting that if this evidence is not a mere statistical fluctuation,
the Higgs boson is likely to be discovered with 5σ confidence level in 2012. While this an-
nouncement has no effect on the validity of the actual calculations performed in this thesis, the
phenomenological discussion of the consequences of these calculations had to be rethought.

In the following chapter 2 a few general remarks about quantum field theories are made.
These are then applied to construct the Lagrangian of the Standard Model.
Chapter 3 provides a brief introduction to the concept of Supersymmetry and a discussion
on how supersymmetric extensions can be used to solve certain flaws of the Standard Model.
The particle spectrum of the NMSSM is introduced and resulting the Higgs sector is discussed
in detail, defining quantities and parameters required for calculations of the NMSSM Higgs
phenomenology.
The fundamental concepts and technical aspects of renormalisation required for calculations
of higher order corrections are presented in chapter 4.
All these preliminary remarks are assembled in chapter 5 which provides a description on
how the one-loop corrected amplitude for the decay of a scalar Higgs boson hi into two
pseudoscalar Higgs bosons A1 is calculated in the Feynman diagrammatic approach.
Ultimately, the phenomenological consequences of the inclusion of one-loop corrections to the
Higgs decay widths are examined in chapter 6.



CHAPTER 2

Quantum Field Theory and the Standard Model

2.1. Quantum Field Theory

In the beginning of the 20th century, milestones in physics were set by the formulation of
special relativity and quantum mechanics, which extended the classical laws of physics to
domains, where velocities are comparable with the speed of light, and to length scales com-
parable to the atomic radii respectively. Questions arose subsequently about how to describe
the realm of elementary particle physics, where effects of these both theories have to be taken
into account simultaneously. The answer to these questions was soon after found in quantum
field theory, which ingeniously incorporates the requirements for Poincaré invariance, which
is necessary for conservation of energy and momentum, the uncertainty principle demanded
by quantum mechanics and cluster decomposition which states that spacelike separated events
yield uncorrelated results.
By additionally including the concept of renormalisation - a mathematical statement that a
model is not the ultimate theory describing all of nature’s laws - the physicists of the past
century have managed to construct a quantum field theory called the Standard Model, which
describes the majority of known phenomena of nature1 with remarkable precision.

2.2. The Lagrangian and its Symmetries

The fundamental mathematical framework for describing a quantum field theory is expressed
by the Lagrangian density L(ϕ, ∂µϕ), a local function of fermionic and bosonic quantum fields
and their spacetime derivatives, which is connected with the action S via,

S =

∫

d4xµ L(ϕ, ∂µϕ) .

A reason for this choice can be seen within the established general strategy of expressing
equations of motion in terms of conserved quantities such as momentum, or charge. According
to Noether’s theorem, conserved quantities are associated with the invariance of the action S
under a continuous transformation of the fields or coordinates of L. Apart from symmetries

1Since the effect of gravitation is negligibly small compared to the electroweak and strong interactions, it is not
included in the Standard Model.
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under Lorentz boosts and rotations plus spacetime translations generated by the Poincaré
group, quantum field theories can also be invariant under internal gauge transformations of
the fields. In the most general case such transformations are local SU(N) gauge symmetries
of N fermionic fields ψi(x) arranged to a multiplet Ψ(x),

Ψ(x) → UΨ(x) = eiλ
a(x)Ta

Ψ(x), Ψ(x)=(ψi(x), . . . , ψN (x))T, (2.1)

where T a are the group generators2 and λa(x) are N2 − 1 spacetime functions. The kinetic
part of the Lagrangian is invariant under gauge transformation only when the usual derivative
∂µ is replaced in a covariant form involving N2−1 gauge fields Aa

µ(x). These gauge fields
couple to the fermionic multiplet Ψ(x) with the coupling strength g and transform under the
adjoint representation,

∂µ → Dµ = ∂µ − igAa
µ(x)T a. (2.2)

The kinetic term of the gauge fields is proportional to the square of the field strength tensor
Fµν defined as,

F a
µνT

a =
i

g
[Dµ,Dν ]. (2.3)

Thus, defining the field content in a way that all elemental particles can be described as
excitations of those fields, and demanding renormalisability as well as symmetry of L under
certain transformations due to the conservation of the related quantities leads to the general
form of the Lagrangian.

2.3. The Standard Model Gauge Group

The Standard Model successfully combines all known elementary particles and three of the
four observed forces of nature into a spontaneously broken gauge theory. The Lagrangian
of this quantum field theory is symmetric under transformations of a non-abelian group
represented by the tensor product

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.4)

where SU(3)C is the symmetry group of the strong force between quarks, with gluons as
interaction mediators and associated conservation of the colour charge. The phenomenology
of strongly interacting particles is fully described by quantum chromodynamics. [3, 4]
The remaining SU(2)L ⊗ U(1)Y symmetry is associated with the conservation of the weak
isospin (respectively its component I3) and hypercharge3 Y and builds the fundamentals of
the phenomenology of the electromagnetic and weak interactions unified within the Glashow-
Weinberg-Salam electroweak theory. [5, 6]
All heretofore observed elementary particles can be classified within the Standard Model into
chiral right-handed singlets and left-handed doublets according to their transformation be-
haviour under the symmetry group Eq. (2.4) as stated in Tab. 2.1.

2The generators of the SU(2) and SU(3) groups are proportional to the Pauli matrices σa and to the Gell-Mann
matrices λa respectively.

3In the process of electroweak symmetry breaking these quantities lead to the conservation of electric charge Q
given by the Gell-Mann-Nishijima formula: Q = I3 + Y .
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Field SU(3) SU(2) U(1)

Qi
L (uL, dL)T (cL, sL)T (tL, bL)T 3 2 1/6

uiR uR cR tR 3 1 2/3

d i
R dR sR bR 3 1 −1/3

L i
L (νe,L, eL)T (νµ,L, µL)T (ντ,L, τL)T 1 2 −1/2

l iR eR µR τR 1 1 −1

Φ (φ+, φ0)T 1 2 1/2

Table 2.1.: Matter field content of the Standard Model with corresponding gauge quantum num-
bers. The fermionic quark and lepton fields Qi

L, L
i
L, u

i
R, d

i
R, l

i
r exist in three generations i = 1, 2, 3

distinguished solely by the mass of the particles, whereas only one bosonic Higgs doublet Φ is required.

Right-handed neutrinos, while not forbidden by theoretical arguments, are not included in the
Standard Model, as they transform as singlets under the gauge group Eq. (2.4) and therefore
couple to none of the force mediators.
Additionally to the matter fields, one gauge field for every generator of the symmetry group
has to be included in the theory. These are the 8 gluon fields Ga

µ for the strongly interacting
sector and 4 fields W 1

µ , W 2
µ , W 3

µ , Bµ for the electroweak sector, so that the kinetic part of the
Lagrangian L,

LF
kin = iψD/ψ, ψ = Qi

L, u
i
R, d

i
R, L

i
L, l

i
R (2.5)

with Dµ = ∂µ − igs
λa
2
Ga
µ − ig2

σa
2
W a

µ − ig1Y Bµ

remains invariant under gauge transformations. These fields correspond to the mediator
fields of the interactions. Gauge invariant couplings between matter and mediator fields are
generated dynamically from the kinetic term, whereas eventual self-interactions among the
gauge fields result from the gauge-kinetic part of L

LG
kin = −1

4

(
Ga

µνG
aµν +W a

µνW
aµν +BµνB

µν
)

(2.6)

where Ga
µν , W

a
µν , and Bµν are the field strength tensors defined by Eq. (2.3).

2.4. The Higgs Mechanism

Complications arise, when the particles in a gauge theory are to have a non-zero mass, as
the usual Lorentz invariant mass terms quadratic in the fields are not gauge invariant. In the
Standard Model this problem is solved by the Higgs mechanism [7–10] by adding a complex
scalar doublet field Φ with quantum numbers as presented in the last line of Tab. 2.1. When
the Higgs field potential is constructed as

VHiggs = µ2Φ†Φ +
λ

4

∣
∣Φ†Φ

∣
∣2 (2.7)

with µ2< 0 and λ > 0, it possesses a non-vanishing vacuum expectation value which, in the
special choice of unitary gauge, reads

〈Φ〉 = (0, v/
√

2)T.
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Where v is related to the Fermi constant GF as v = (
√

2GF )−1/2 and thereby experimentally
determined to be v = 246GeV. The electroweak symmetry breaking (EWSB) emerges from
the minimisation of the Higgs field, as its contribution to the kinetic part of the Lagrangian,

LH
kin = (DµΦ)† (DµΦ)

EWSB−−−−→ v2

8

[
g22
(
W 1

µ + iW 2
µ

) (
W 1

µ − iW 2
µ

)
+
(
g2W

3
µ − g1Bµ

)2 ]
, (2.8)

yields mass terms for physical combinations of the gauge fields. These are the neutral photon
Aµ, the massive Z-boson Zµ and the charged W -bosons W±

µ . With the Weinberg angle
cos θW = g2/

√
g1 + g2, these can be written in terms of the gauge fields as

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
, with mW =

g2v

2

Zµ = cos θWW
3
µ − sin θWBµ, with mZ =

v
√

g21 + g22
2

Aµ = sin θWW
3
µ + cos θWBµ, with mγ = 0.

Gauge invariant fermion mass terms can likewise be included in the Lagrangian as Yukawa
couplings between the fermion fields and the Higgs field4,

LF
mass = LF

y + h.c. (2.9)

LF
y = Y e

ij L
i
LΦ l jR + Y u

ij Q
i
LΦc u j

R + Y d
ij Q

i
LΦ d j

R
EWSB−−−−→ v√

2

(

Y e
ij l

i
Ll

j
R + Y u

ij u
i
Lu

j
R + Y d

ij d
i
Ld

j
R

)

where the Yukawa matrices Y e, Y u, Y d are non-diagonal and fermion masses are proportional
to the corresponding eigenvalue. Yukawa couplings for the neutrino fields are not included
in LF

y as in the original formulation of the Standard Model, neutrinos were considered as
massless. Ongoing research in neutrino physics however suggests that neutrinos have a non-
vanishing mass, which could be implemented in the Standard Model by including right-handed
neutrino fields in Tab 2.1.
This brief introduction of the Standard Model can therefore be summarised using Eq. (2.5)-
(2.9) by recapitulating the Standard Model Lagrangian, apart form gauge fixing and ghost
contributions of the strong sector, as

LSM = LF
kin + LG

kin + LH
kin − LF

mass − VHiggs.

2.5. Flaws of the Standard Model

The previously discussed Standard Model describes the phenomenology at the currently ex-
perimentally accessible electroweak scale remarkably well. Yet a few unsatisfactory features
of the Standard Model have already been mentioned alongside:

• Gravitation: As already stated, the Standard Model is constructed completely omitting
gravitation. The Planck scale, at which gravitational effects are no longer negligible, is
separated from the electroweak scale by 16 orders of magnitude. This deficit becomes
crucial due to the necessity of renormalisation, as Quantum Gravitation requires spin
2 gauge bosons and theories involving such are notoriously non-renormalisable.

• Arbitrariness: The Standard Model has 18 free parameters, 25 if nonzero neutrino
masses are allowed, which are arbitrary experimental input. By rather aesthetic argu-
ments this is disturbing, as a fundamental theory is considered to answer the question
why, instead of how, nature works.

4Φc denotes the charge conjugated Higgs doublet field given as: Φc = iσ2 Φ
∗ = ((v +H∗(x))/

√
2, 0)T
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• Baryogenesis: The fact that the universe consists of stable particles like protons is the
consequence of a imbalance between particles we refer to as matter and their charge
conjugated partners. One of the three conditions proposed by A. Sakharov [11] required
for the evolution of the universe is the violation of charge (C) and of the combined
charge and parity (CP) symmetry. Even though the Standard Model incorporates the
violation of C and even the measured simultaneous violation of the CP symmetry can
be described by complex phases of the Standard Model parameters, the amount of
asymmetry generated by these is not sufficient to explain the known asymmetry of the
universe.

• Dark matter: Numerous cosmological observations imply that galaxies are much heavier
than estimated by the contribution from the observable massive objects in them. This
leads to the conclusion, that there has to be a further kind of massive particles which
does not interact by Standard Model interactions.

• Fine-tuning problem: One loop corrections to the Standard Model Higgs boson mass
grow quadratically in the cutoff scale Λ which is why a high amount of fine-tuning
cancellation of the bare parameters and loop contributions is required to keep the Higgs
mass within theoretical bounds when Λ is to be extended far beyond the electroweak
scale.





CHAPTER 3

Supersymmetry and the NMSSM

3.1. The Concept of Supersymmetry

While not claiming to be the desired Theory of Everything, Supersymmetry [12–15] offers
solutions to most of the previously mentioned flaws. Especially the fine-tuning problem is
one of the main motivations for the formulation of Supersymmetry. A complete analysis
of radiative corrections of the Standard Model shows, that not only the Higgs mass has a
cutoff scale dependence: the fermion and weak boson mass corrections also grow with the
cutoff parameter Λ but only logarithmically, while gluons and photons retain zero mass in
all orders of perturbation theory. The cutoff sensitivity of masses is thus correlated with the
symmetry of the Lagrangian: Gauge symmetries ’protect’ photons and gluons form acquiring
mass terms and broken symmetries mitigate the cutoff dependence. Therefore, an additional
symmetry which affects the Higgs field would soothe the scale dependence of the Higgs mass
and the necessity for large fine-tuning can hereby be avoided.
In Supersymmetry this additional symmetry transforms all Standard Model fields into partner
fields with identical quantum numbers, except for the spin being shifted by one half of unit.
The Supersymmetry generators Q therefore have to be fermionic operators which, according to
the Haag–Lopuszanski–Sohnius theorem [16], are the only possible extension of the symmetry
group in four dimensional quantum field theories apart from gauge and Poincaré symmetries.
The generators Q are characterised by their effect on fermionic and bosonic states,

Q|Fermion〉 = |Boson〉, Q|Boson〉 = |Fermion〉, (3.1)

and by the (anti-)commutation relations

{Q,Q} = {Q̄, Q̄} = 0 (3.2)

[Q, Pµ] = [Q̄, Pµ] = 0 (3.3)

{Q, Q̄} = 2P/ (3.4)

with Pµ being the momentum operator. As a direct consequence of these definitions, the
fermionic and bosonic fields connected by Eq. (3.1) can be combined into chiral supermulti-
plets with equal number of degrees of freedom for both spin states. Additionally, multiplying
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Eq. (3.3) with Pµ leads to an equivalent commutation relation with the Poincaré Casimir
operator P 2, yielding

[Q, P 2] = 0 ⇒ QP 2|n〉 − P 2Q|n〉 = m2
n|ñ〉 −m2

ñ|ñ〉 = 0

for an arbitrary state |n〉 and its superpartner |ñ〉. Hence, the superpartners must be of equal
mass when Supersymmetry is exact. As no such ’sparticles’ were observed at the electroweak
scale, Supersymmetry must be a broken symmetry. Soft-breaking terms have to be included
in the theory, which produce a mass splitting between the superpartners.
In the most general form of a supersymmetric Lagrangian for a given superfield content,
Yukawa-like couplings between sfermions, quarks and leptons occur which violate baryon and
lepton number conservation, without contradicting gauge invariance and renormalisability
conditions. Such couplings allow rapid proton decay as illustrated in Fig. 3.1, which dis-
agrees with the experimental bound for the proton lifetime being of the order of 1034 years.
Therefore, an additional Z2 symmetry, the multiplicative R-parity, with

R|n〉 = |n〉 R|ñ〉 = −|ñ〉

has to be introduced in the theory which allows only terms with positive R-parity in the
Lagrangian and thereby rules out the critical couplings. This definition is synonymous to the
statement that only couplings with even number of supersymmetric particles are allowed.

d

u
u

u∗
u

s̃∗, b̃∗
e+

Figure 3.1.: p+→ e+π0 decays via s̃∗ and b̃∗ squark are forbidden by R-parity conservation but not
by gauge invariance and renormalisability.

3.2. Solutions provided by Supersymmetry

To finish this short introduction, let us review the flaws stated in section 2.5 regarding the
features introduced by Supersymmetry:

• Gravitation and its renormalisation remain issues in supersymmetric theories. Although
there are ambitions to incorporate gravitation in supersymmetric string theories in
extra dimensions, these attempts, however, are far from achieving phenomenological
significance.

• The renormalisation group equations of the Minimal Supersymmetric expansion of the
Standard Model enable an unification of the three gauge couplings at a scale ΛGUT ∼
1016 GeV which would allow to summarise all three interactions in a single spontaneously
broken symmetry.

• The form of Higgs potential required for spontaneous symmetry breaking does not have
to be added ad hoc to the model, as it is the case in the Standard Model. It is generated
dynamically by renormalisation group equations.

• Additional complex phases can be included in the Higgs sector of supersymmetric the-
ories which loosen the theoretical bounds for CP violation of the Standard Model and
may help to explain baryogenesis.
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• Supersymmetry offers Dark Matter candidates, as R-parity conservation implies that
a sparticle can not decay into two Standard Model particles. Therefore the lightest
sparticle is stable and, when electrically neutral, can interact only weakly.

• As already stated, the fine-tuning problem is likewise solved by Supersymmetry, since
the Higgs mass is protected by a broken symmetry and radiative corrections are therefore
only logarithmically dependent on the cutoff scale Λ.

3.3. Passing the MSSM

The simplest way to construct a supersymmetric theory is described by the minimal super-
symmetric extension of the Standard Model (MSSM) [17–19]. The field content of the MSSM
follows from the Standard Model by replacing the Standard Model Higgs doublet field Φ
by two Higgs doublets Hu, Hd required to produce mass terms for both up- and down-type
fermions, and by promoting the resulting field content to supermultiplets with equivalent
bosonic and fermionic degrees of freedom (Hu → Ĥu etc.). While being a good starting point
for discussions of the phenomenology of Supersymmetry, theoretical analyses reveal insuffi-
ciencies of the MSSM. For instance, the tree level mass of the lightest MSSM Higgs boson
mMSSM

h1
has to be smaller than the Z boson mass1,

(mMSSM
h1

)2 < m2
Z cos2 2β.

Thus, large radiative corrections are required to avoid experimental exclusion limits set by
LEP [20]. Additionally, the MSSM superpotential contains terms2 proportional to a param-
eter µ with positive mass dimension,

ŴMSSM ⊃ µĤT
u ǫĤd.

This µ-parameter has to be set by hand to the order of the electroweak scale, which is consid-
ered as a problem [21]. By this means, some of the solutions proclaimed by Supersymmetry
are not satisfactory achieved in the MSSM. These insufficiencies can be avoided by extending
the Standard Model in a non-minimal way: The Next-to-Minimal Supersymmetric Extension
of the Standard Model (NMSSM) [22–25] is realised by extending the field content of the
MSSM by one chiral superfield Ŝ which is a gauge singlet and therefore does not couple to
any Standard Model particles. This minor adjustment loosens the constraints in the Higgs
sector, so that the mass of the lightest scalar Higgs boson h1 gets an additional contribution
at tree level

(mNMSSM
h1

)2 < m2
Z

[

cos2 2β +
2λ2 sin2 2β

g21 + g22

]

.

And scenarios of relevance for this thesis, in which the lightest Higgs boson is the pseudoscalar
A1, become possible. The µ-parameter can then be generated dynamically in the NMSSM
from the trilinear coupling

ŴNMSSM ⊃ λŜ(ĤT
u ǫĤd),

when the scalar field S acquires a vacuum expectation value 〈S〉 = vs/
√

2 in the process of
electroweak symmetry breaking,

λS(HT
u ǫHd)

EWSB−−−−→ λvs√
2

︸︷︷︸
µeff

(HT
u ǫHd),

1The involved angle β is given by the ratio of the vacuum expectation values of 〈Hu〉 = vu/
√
2 and 〈Hd〉 = vd/

√
2

as tanβ = vu/vd

2ǫ is the SU(2) metric tensor, ǫ =

(

0 1
−1 0

)

, required to form gauge invariant objects.
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where we have defined µeff as the effective µ parameter. A consequence of this extension
is an enlarged Higgs sector of the NMSSM: As shown later on, the neutral Higgs boson
spectrum consists of three scalar mass eigenstates (compared to two of the MSSM) and
two pseudoscalars (one more than in the MSSM). Likewise, the sector in which the partner
particles of the W, Z and of the five neutral Higgs bosons mix to neutral sfermion mass
eigenstates, the neutralino sector, is extended by one additional mass eigenstate, compared
to the MSSM, to a total of five.
The following chapter introduces the parameters required for the analysis of NMSSM Higgs
sector phenomenology and briefly outlines the general strategy of how to derive Feynman
rules of a supersymmetric theory with a given superfield content.

3.4. The Lagrangian of the NMSSM

Analogously to the Standard Model, the NMSSM field content can be classified by its trans-
formation behaviour under the gauge group as shown in Tab. 3.1. As already mentioned, the
field content can be obtained by including an additional Higgs doublet and a gauge singlet
Higgs field to the Standard Model field content and promoting all of these to superfields.

Name/Superfield Bosonic Fermionic SU(3) SU(2) U(1)

C
h

ir
al

Q̂ Q̃ = (ũL, d̃L)T Q = (uL, dL)T 3 2 1/6

squark/quark û ũ∗R ūR 3 1 -2/3

d̂ d̃∗R d̄R 3 1 1/3

slepton/lepton
L̂ L̃ = (ν̃e,L, ẽL)T L = (νe,L, eL)T 1 2 -1/2

ê ẽ∗R ēR 1 1 1

Ĥu Hu = (H+
u , H

0
u)T H̃u = (H̃+

u , H̃
0
u)T 1 2 1/2

Higgs/Higgsino Ĥd Hd = (H0
d , H

−
d )T H̃d = (H̃0

d , H̃
−
d )T 1 2 -1/2

Ŝ S S̃ 1 1 0

G
au

ge

gluino/gluon g g̃ 8 1 0

W -boson/wino W±, W 0 W̃±, W̃ 0 1 3 0

B-boson/bino B0 B̃0 1 1 0

Table 3.1.: Gauge and chiral supermultiplets of the NMSSM

Thus, compared to the Standard Model, the particle spectrum of the NMSSM is extended by
four neutral (two scalar and two pseudoscalar) and two charged Higgs bosons. Supersymme-
try furthermore yields eight additional fermions: these are the five neutralinos χ̃0

i resulting
from the mixing of the bino and neutral Higgsino interaction eigenstates, two charginos χ̃±

i

which are a mixture of the wino and charged Higgsino interaction eigenstates and the gluino
g̃, which is a separate mass eigenstate, since it cannot mix with the other neutral fields as
these are colour singlets. For each of the Standard Model fermions li, qi two sleptons L̃i1, L̃i2

and squarks q̃i1, q̃i2, repectively, are required in order for the degrees of freedom to be identical
among the superpartners.3

The NMSSM superpotential is constructed as an analytic function of up to three chiral su-
perfields invariant under the Standard Model gauge group defined in Eq. (2.4). With minor

3When the neutrinos are considered massless, they each obtain one sneutrino partner particle ν̃i due to the
missing degree of freedom.
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constraints4 this results in

ŴNMSSM = ûyu(Q̂TǫĤu) − d̂yd(Q̂TǫĤd) − êye(L̂
TǫĤd) + λŜ(ĤT

u ǫĤd) +
κ

3
Ŝ3. (3.5)

Here, yu, yd, ye, λ and κ are dimensionless couplings5 with the generation indices for the
quark and lepton superfields omitted to keep the notation clear. A term cubic in Ŝ is re-
quired, as otherwise the Higgs sector would possess a spontaneously broken Peccei-Quinn
(PQ) symmetry, which, according to the Goldstone theorem, would lead to massless axions,
for which there is no experimental evidence. Despite the explicit PQ symmetry breaking
through the κ-term, the superpotential remains symmetric under discrete Z3 transforma-
tions. This leads to a topological defect known as the domain-wall problem [26] , which
however can be avoided by modifications far beyond the electroweak scale.
The scalar part of the superpotential reads,

WNMSSM ≡W = ũ∗Ryu(Q̃TǫHu)− d̃∗Ryd(Q̃TǫHd)− ẽ∗Rye(L̃
TǫHd) +λS(HT

u ǫHd) +
κ

3
S3. (3.6)

The Lagrangian of the unbroken NMSSM, Lsusy, can be derived from W using the general
strategy described in [25] as,

Lsusy = Lchiral + Lgauge − LYukawa, with (3.7)

Lchiral = −(Dµφi)
†(Dµφi ) − iψ∗

i σ̄
µDµψi +

∣
∣
∣
∣

∂W

∂φi

∣
∣
∣
∣

2

(3.8)

Lgauge = −1

4
F a
µνF

µνa − iλ†aσ̄
µDµλa +

g2a
2

(φ∗iT
aφi )(φ

∗
jT

aφj) (3.9)

LYukawa =
√

2ga((φ∗iT
aψi )λa + λ†a(ψ†

iT
aφi )) + g2a(φ∗iT

aφi )(φ
∗
jT

aφj) , (3.10)

where φi are the scalar components of chiral superfields, ψi the associated Weyl fermions,
λa the gauge boson superpartners and T a, ga is a synoptic notation for the Standard Model
gauge group generators and couplings.
Soft-breaking terms have to be included separately to generate the required mass splitting
between the superpartners. The breaking terms are introduced in the most general way [27]
in terms of the bosonic (fermionic) components of the chiral (gauge) superfields,

Lsoft =m2
Q̃L
Q̃†Q̃+m2

L̃L
L̃†L̃+m2

ũR
|ũR|2 +m2

d̃R
|d̃R|2 +m2

ẽR
|ẽR|2 +m2

Hu
H†

uHu +m2
Hd
H†

dHd+

+m2
S |S|2 +

(

yuAyu ũ
∗
R(Q̃TǫHu) − ydAyd d̃

∗
R(Q̃TǫHd) − yeAye ẽ

∗
R(L̃TǫHd) + c.c.

)

+

+

(
M1

2
B̃0B̃0 +

M2

2
W̃iW̃

i +
M3

2
g̃g̃ + λAλS(HT

u ǫHd) +
κAκ

3
S3 + c.c.

)

, (3.11)

where the squark and slepton sectors are again abbreviated by including only their first
generation. Thus, in the most general case Lsoft introduces 21 soft breaking masses m2

i

and 11 trilinear couplings Ai via which soft Supersymmetry breaking is achieved. Since
the circumstances under which Supersymmetry is broken are nebulous and out of reach of
experimental analysis, the majority of parameters is set to a fixed scale in constrained versions
of the NMSSM. The complete NMSSM Lagrangian can thus be formulated as

LNMSSM = Lchiral + Lgauge − LYukawa − Lsoft. (3.12)

4Terms analogous to the MSSM µ-term and quadratic in Ŝ could be included in general, they are omitted to
keep the superpotential free of dimensionful parameters.

5The parameters yu, yd and ye replace the Standard Model Yukawa matrices, which are considered to be
diagonal for simplicity, i.e. generation mixing is neglected.
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Together with the Higgs field vacuum expectation values vd, vu, vs, and the Standard Model
gauge couplings g1, g2, the parameters of interest for NMSSM Higgs sector phenomenology
can be summarised as

g1, g2, vd, vu, vs, λ, κ, Aλ, Aκ, m
2
Hd
, m2

Hu
, m2

S . (3.13)

In the CP conserving case, these 12 quantities are all real parameters which require renor-
malisation in higher order calculations. Before we determine the renormalisation conditions,
let us examine the NMSSM Higgs potential in detail.

3.5. The Scalar NMSSM Higgs Potential

The Higgs sector offers a good starting point for a detailed discussion of how Feynman rules
can be derived from the superpotential. It involves mixing of interaction fields, which is
ubiquitous in supersymmetric models and the occurring quantities are of the essence for the
calculations performed in this thesis, as well as suitable for the definition of the renormalisa-
tion conditions required for the determination of the counterterms.
The scalar Higgs potential VH can be derived from the scalar superpotential Eq. (3.6) as

VH = Lsoft|Higgs + VF |Higgs + VD|Higgs. (3.14)

The indices meaning, that only terms which depend on Higgs fields are taken into account.
With Lsoft defined in Eq. (3.11) and the VD and VF terms defined as

VD =
1

2

∑

i,j

g2a(φ†iT
aφi )(φ

†
jT

aφj) (3.15)

VF =
∑

i

∣
∣
∣
∣

∂W

∂φi

∣
∣
∣
∣

2

. (3.16)

The scalar Higgs potential reads

VH =m2
Hu
H†

uHu +m2
Hd
H†

dHd +m2
S |S|2 + (λAλ(HT

u ǫHd)S +
κAκ

3
S3 + c.c.)+

+ λ2|S|2(H†
uHu +H†

dHd) + |λ(HT
u ǫHd) + κS2|2+ (3.17)

+
1

2
g22|H†

uHd|2 +
1

8
(g21 + g22)(H†

uHu +H†
dHd).

Parametrising the complex doublets Hu, Hd and the singlet S as

Hd =

(
1√
2
(vd + hd + i ad)

H−
d

)

, Hu =

(

H+
u

1√
2
(vu + hu + i au)

)

, S =
1√
2

(vs + hs + i as)

the potential can be decomposed into products of up to four real scalar fields hu, hd, hs, au, ad,
as and complex scalar fields H+

u , H
−
d , from which Feynman rules can be derived in a straight-

forward way. However, this involves cumbersome long terms, which is why some simplifica-
tions should be done beforehand.
The number of tree level parameters can be decimated by exploiting the stationarity condition
of the potential at its vacuum expectation value, the so called tadpole conditions:

thd
=

〈
∂VH
∂hd

〉

= vdm
2
Hd
− λAλvuvs√

2
+
g21 + g22

8
vd (v2d − v2u) +

λ2vd
2

(v2u + v2s) − λκvuv
2
s

2
= 0

ths=

〈
∂VH
∂hs

〉

= vsm
2
S−

λAλvdvu√
2

+
κAκv

2
s√

2
+
λ2

2
vs(v

2
d + v2u) + κ2v3s − λκvdvuvs = 0 (3.18)

thu=

〈
∂VH
∂hu

〉

= vum
2
Hu

− λAλvdvs√
2

+
g21 + g22

8
vu(v2u − v2d) +

λ2vu
2

(v2d + v2s) − λκvdv
2
s

2
= 0.
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By convention, these conditions are used to eliminate of the soft breaking masses m2
Hi

. In
higher order calculations, the tadpole conditions are associated with a certain type of loop
corrections (which they owe their name to) and in order for the conditions to remain thi = 0
also at higher order, the tadpole counterterms have to cancel the loop contributions entirely.
Furthermore, the vacuum expectation values vu and vd can be replaced by the Standard
Model vacuum expectation value v and the already mentioned angle β defined by the ratio6

tβ =
vu
vd

→ vu = v sβ , vd = v cβ. (3.19)

By this choice, the relations among the vacuum expectation values are fulfilled automatically

v2 = v2d + v2u = v2(c2β + s2β).

The scalar Higgs potential can be rearranged as,

VH =
1

2
Mij

1 φiφj +
1

2
Mab

2 χaχb + Γijk
1 φiφjφk + Γiab

2 φiχaχb+ (3.20)

+∆ijkl
1 φiφjφkφl + ∆ijab

2 φiφjχaχb + ∆abcd
3 χaχbχcχd,

where φi and χa are the components of the interaction bases

φ = (hd, hu, hs, ad, au, as)
T (3.21)

χ = ((H−
d )∗, H+

u )T. (3.22)

The involved quantities M1, M2, Γ1, Γ2, ∆1, ∆2, ∆3 are the mass matrices, trilinear and
quartic couplings, respectively.

3.5.1. Neutral Higgs Boson Mass Matrix

When the coefficients are derived from LNMSSM, one finds that the mass matrix M1 is block
diagonal so that the scalar fields hi and the pseudoscalar fields ai do not mix in the CP
conserving case

M1 =











ms
11 ms

12 ms
13

ms
21 ms

22 ms
23 03×3

ms
31 ms

32 ms
33

mp
11 mp

12 mp
13

03×3 mp
21 mp

22 mp
23

mp
31 mp

32 mp
33











, (3.23)

where the explicit entries are given by:

mp
11 =

(λAλ√
2

+
λκvs

2

)
vstβ mp

13 =
(λAλ√

2
− λκvs

)
vsβ

mp
22 =

(λAλ√
2

+
λκvs

2

)
vstβ mp

12 =
(λAλ√

2
+
λκvs

2

)
vs

mp
33 =

λAλv
2s2β

2
√

2vs
− 3

κAκ√
2
vs + λκv2s2β mp

23 =
(λAλ√

2
− λκvs

)
vcβ

(3.24)

ms
11 =

(λAλ√
2

+
λκvs

2

)
vstβ +

(g21 + g22)v2c2β
4

ms
13 = λ2vsvcβ − (

λAλ√
2

+ λκvs)vsβ

ms
22 =

(λAλ√
2

+
λκvs

2

)vs
tβ

+
(g21 + g22)v2s2β

4
ms

12 =
(
λ2 − g21 + g22

4

)v2s2β
2

−
(λAλ√

2
+
λκvs

2

)
vs

ms
33 =

λAλv
2s2β

2
√

2vs
+
κAκvs√

2
+ 2κ2v2s ms

23 = λ2vsvsβ −
(λAλ√

2
+ λκvs

)
vcβ.

6sx, cx, tx are abbreviations for the trigonometric functions sin(x), cos(x) and tan(x), respectively.
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As the mass matrices are symmetric, the missing elements follow from the second column with
the relation mij = mji. Before M1 is diagonalised, the Goldstone field required to generate
the Z-boson mass can be isolated by a rotation in the pseudoscalar sector

φ →φ′ = RTφ = (hd, hu, hs, G, a, as)
T, (3.25)

RT =







I3×3 03×3

cβB
−sβB

0
03×3 sβB

cβB
0

0 0 1






. (3.26)

The rotation angle βB coincides with the angle β introduced in Eq. (3.19) at tree level,
but attention has to be payed when performing higher order calculations, as by convention
mixing matrix elements do not require renormalisation, whereas tβ being the ratio of the
vacuum expectation values is a model parameter and therefore has to be renormalised. The
transformation Eq. (3.25) thus transforms the lower right entries of M1 and the resulting
mass matrix M′

1 can be diagonalised via the rotation matrix RH ,

φ′TM′
1φ

′ = φ′TRT
HRHM′

1R
T
HRHφ′ = hTMhh = m2

ih
2
i . (3.27)

The two rotations RT , RH can be combined to a single transformation connecting the inter-
action field basis φ and mass field basis h,

R = RHRT (3.28)

h = Rφ = (h1, h2, h3, A1, A2, G) (3.29)

RM1RT= diag(m2
h1
, m2

h2
, m2

h3
, m2

A1
, m2

A2
, 0). (3.30)

The basis h can be chosen such, that the eigenvalues of the scalar and the pseudoscalar block
of M1 in Eq. (3.30) are in ascending order, with the Goldstone mode rotated out and usually
omitted entirely.

3.5.2. Charged Higgs Boson Mass Matrix

The charged Higgs mass matrix M2 can be treated analogously. With respect to the basis χ

it is found to be,

M2 =

(
λvs
2

(κvs +
√

2Aλ) +
s2βv

2

8
(g22 − 2λ2)

)(
tβ 1

1 t−1
β

)

. (3.31)

Just like in the neutral sector, the Goldstone mode required to generate the W -boson mass
can be isolated by a rotation

χ → H = R±χ = (G+, H+)T (3.32)

R± =

(
cβB −sβB
sβB cβB

)

. (3.33)

Using the Standard Model definition mW = g2v/2, the tree level mass squared of the charged
Higgs bosons m2

H± reads

m2
H± = m2

W − λ2v2

2
+
λvs
s2β

(κvs +
√

2Aλ). (3.34)
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It is convenient to replace Aλ with m2
H± as model parameter since, as a mass parameter, it can

be renormalised on-shell. Using the orthogonality relation of the rotation matrices R, R±,
the Higgs potential given in Eq. (3.20) can be rewritten in terms of the mass eigenstates as

VH =
1

2
Mij

1 RαiRβjhαhβ +
1

2
Mij

2 R±
αiR±

βjHαHβ+

+Γijk
1 RαiRβjRγkhαhβhγ + Γijk

2 RαiR±
βjR±

γkhαHβHγ+

+∆ijkl
1 RαiRβjRγkRδlhαhβhγhδ+

+∆ijkl
2 RαiRβjR±

γkR±
δlhαhβHγHδ+

+∆ijkl
3 R±

αiR±
βjR±

γkR±
δlHαHβHγHδ.

Thus, the Feynman rules for the trilinear and quartic Higgs boson couplings can be read off
as i times the coefficient of the mass fields

g3h
αβγ = i Γijk

1 RαiRβjRγk

gh2H
αβγ = i Γijk

2 RαiR±
βjR±

γk

g4hαβγδ = i ∆ijkl
1 RαiRβjRγkRδl (3.35)

g2h2Hαβγδ = i ∆ijkl
2 RαiRβjR±

γkR±
δl

g4Hαβγδ = i ∆ijkl
3 R±

αiR±
βjR±

γkR±
δl.

Since the trilinear neutral Higgs coupling g3h
αβγ is of central importance for this thesis, its

explicit form is included in App. A. The other sectors of the NMSSM can be treated in a
similar way, implying rotation matrices required to determine the Feynman rules, which then
can be expressed in terms of the parameters discussed in this chapter.





CHAPTER 4

Introduction to Renormalisation

The key feature of extensions of the Standard Model such as the NMSSM is that if the model
parameters are chosen correctly, one can not only try to reconstruct known experimental
results of elementary particle physics but also predict so far unobserved phenomena. In order
to validate the parameter choice, respectively the model itself, one has to calculate quantities
related to observables. From the theoreticians’ point of view these calculations involve the
determination of the amplitudes Mfi, which describe the probability of a transition from the
initial state |i〉 to a certain final state |f〉 in a perturbative manner. The square of the abso-
lute value of Mfi weighted with appropriate kinematical terms, corresponds to experimental
observables such as the decay width and the cross section.
The advantage of the Feynman rules technique introduced in [28] is, that one can derive the
amplitude of any process in an intuitive diagrammatic approach:

• Draw propagators of the incoming and outgoing particles and connect them in every
imaginable way1 allowed by the Feynman rules of the model.

• Replace the propagator lines and vertices in each diagram by their mathematical equiv-
alents2.

• Diagrams with enclosed internal lines (so-called loops) depend on the loop-momentum
over which one has to integrate.

• The full amplitude is the sum of all contributing diagrams.

Depending on how blooming the imagination is, the reader might have noticed, that the
number of possibilities to connect the initial and final states is sheer endless. This fact is not
further disturbing when one realises, that in a perturbative theory every vertex is propor-
tional to a small coupling constant. Therefore contributions from diagrams with additional
vertices (which are closely related to diagrams with a higher number of loops) are numerically
suppressed and formally count to higher order corrections of the perturbation expansion.
At this point, one can question the necessity of loop contributions, since they seem to be mere
corrections. Nevertheless, these have vast phenomenological consequences in many cases, as

1It is sufficient to take only fully connected diagrams into account.
2Due to their non-commuting nature, fermionic terms must be multiplied in strict order reverse to the fermion
flow direction. Additionally, each enclosed fermion line produces an overall factor of (-1).
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they can enable processes not present at tree level (to name a prominent example just consider
Higgs production in gluon fusion, the main production channel for the Standard Model Higgs
at the LHC), or modify parameters substantially (cf. the mass of the lightest MSSM Higgs
boson as discussed in the previous chapter), so that good accordance with the experimental
precision tests is only achievable, when higher order contributions are included.

4.1. Of Loops and Infinities

A further flaw of these calculations seems to arise from diagrams involving loops, because
the loop-momentum integration can lead to divergent amplitudes. Let us investigate this by
looking at the example of the top quark one-loop correction to the NMSSM Higgs coupling
between the lightest scalar Higgs boson h1 and two light pseudoscalar Higgs bosons A1.
Following the conventions of the previous chapter (where h4 = A1 etc.), the relevant Feynman
rules for this calculation can be found as

hi

t

t̄

ghtt
i = −yt

2 (Ri2 + iRi4γ5)

t t
p

S t
F (p) =

i
/p−mt+iǫ

Figure 4.1.: Feynman rules for the NMSSM Higgs-boson-top-quark vertex and the top propagator

where γ5 is the product of the four Dirac matrices, γ5 = iγ0γ1γ2γ3, and the non-trivial colour
and spinor index structure of the top quark is omitted for simplicity. Their effect is taken
into account by multiplying the resulting amplitude with a factor of (−3) and by taking the
trace over the gamma matrices. Also notice that in the CP-conserving case either Ri4 or Ri2

equals zero, depending on whether the involved Higgs is scalar (CP even) or pseudoscalar
(CP odd). Because the diagram in Fig. 4.2 contains 3 vertices, we can eliminate 3 of the 6
propagator momenta using momentum conservation at the three vertices. The remaining 3
are chosen to be combinations of the loop momentum3 q and the momenta of the final states
p, p′.

h1

A1

A1

q + p′

q − p

q M t t t
144 = −3

∫

d4q

(2π)4
Tr
[
ghtt
1 S t

F (q − p) ghtt4 S t
F (q) ghtt

4 S t
F (q + p′)

]

Figure 4.2.: Example process for divergent loop diagrams and its amplitude in terms of Fig. 4.1

3By convention, the momentum of initial (final) state fields is chosen to point towards (out of) the vertex. The
momentum of fermionic fields points in the fermion flow direction.
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Using the Feynman rules given above, the amplitude stated in Fig. 4.2 can be written as

M t t t
144 = −3

∫

d4q

(2π)4
Tr
[(
−yt

2 R12

)
i

/q−/p−mt+iǫ

(

− iyt
2 R44γ5

)
i

/q−mt+iǫ

(

− iyt
2 R44γ5

)
i

/q+/p′−mt+iǫ

]

= −3 iR12R2
44

(yt
2

)3
∫

d4q

(2π)4
Tr
[

/q−/p+mt

(q−p)2−m2
t+iǫ

γ5
/q+mt

q2−m2
t+iǫ

γ5
/q+/p′+mt

(q+p′)2−m2
t+iǫ

]

.

Rewriting the propagators, the denominators become scalar quantities and can therefore be
factorised out of the trace, the remaining nominator trace term can then be evaluated with
the help of known identities for Dirac matrices,

Tr
[(

/q − /p+mt

)
γ5
(

/q +mt

)
γ5
(

/q + /p
′ +mt

)]
= −4mt

(
q2 −m2

t + pp′
)

→ M t t t
144 = 12 iR12R2

44

(yt
2

)3
mt

∫

d4q

(2π)4
q2−m2

t+pp′

((q−p)2−m2
t+iǫ)(q2−m2

t+iǫ)((q+p′)2−m2
t+iǫ)

. (4.1)

Next we apply the so-called Feynman trick to bring the integrand I of Eq. (4.1) into a neater
form

I = I1 + I2

= 1

((q−p)2−m2
t+iǫ)((q+p′)2−m2

t+iǫ)
+ pp′

((q−p)2−m2
t+iǫ)(q2−m2

t+iǫ)((q+p′)2−m2
t+iǫ)

(4.2)

=

1∫

0

dx 1

(q21−m1+iǫ)
2 +

1∫

0

dx

1−x∫

0

dy pp′

(q22−m2+iǫ)
3 ,

where the following substitutions have been made:

q1 = q − p+ x
(
p+ p′

)

m1 = x (x− 1)
(
p+ p′

)2
+m2

t

q2 = q − xp+ yp′

m2 = x (x− 1) p2 + y (y − 1) p′2 +m2
t − 2xypp′.

(4.3)

The last step before the integral can be evaluated involves transforming the Minkowski metric
of the integral to Euclidean space by a Wick rotation. For a detailed discussion on how this
is performed, see [29]. Ultimately, since I depends solely on the squares of momenta, this
Euclidean integral is solvable in 4 dimensional polar coordinates.

∫
d4q1

(2π)4
I1 = lim

a→ 0
i

1∫

0

dx

1/a∫

0

dq1
8π2

q31
(
q21 +m1 − iǫ

)2 → divergent (4.4)

∫
d4q2

(2π)4
I2 = lim

a→ 0
i

1∫

0

dx

1−x∫

0

dy

1/a∫

0

dq2
8π2

q32
(
q22 +m2 − iǫ

)3 → finite (4.5)

The integral over I1 diverges logarithmically as the cutoff parameter 1/a is sent to infinity.
Such a behaviour is referred to as ultraviolet (UV) divergence.

4.2. The Concept of Renormalisation

Divergent results similar to that of Eq. (4.4), along with infrared (IR) divergences occurring
in loop diagrams containing massless particles4, have puzzled physicists since the early 1930s.

4Since Higgs bosons couple exclusively to massive particles, we do not have to be concerned about IR divergences
in the scope of this thesis.
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Fortunately, a solution to this problem was found through renormalisation, suggesting that
the ‘bare’ parameters of a theory are not equal to the ones measured in experiments. In fact,
the former are infinite and it is due to a ‘screening effect’ of these UV divergent higher order
processes, that the parameters adopt their experimentally measured finite values. This con-
cept of subtracting infinities might sound disturbing and has led to much scepticism among
physicists throughout the decades - even the creators of quantum field theory5 and quantum
electrodynamics6 were not satisfied with the explanations the renormalisation procedure of-
fers. Nevertheless, the reservations towards this mathematically questionable approach have
settled. From today’s point of view, the Standard Model is considered to be an effective
low energy limits of an eventual ‘theory of everything’ and, as has been shown by ’t Hooft
and Veltman, it can be renormalised in a self-consistent way, yielding results in remarkable
agreement with experimental data.

4.3. General Renormalisation Procedure

Let us take a closer look at how finite next-to-leading order results can be obtained using
renormalisation. The first step is to define a consistent treatment of divergent contributions
from loop integrals and counterterms. For this purpose, an additional parameter, the regulator
λ, is introduced in the theory in such a way, that all divergent integrals become finite, except
for the limit λ = λ0 for which the original divergent theory is restored. Renormalisation
is successfully achieved, when the λ dependence of the loop and counterterm contributions
cancel each other.

4.3.1. Methods of Regularisation

There are several ways to regularise integrals, but some are more suitable because of the
symmetries of the Lagrangian. For instance, we have already encountered the most obvious
regularisation method in Eq. (4.4) where the regulator is the cutoff momentum λ = 1/a and
the original theory is restored in the limit λ→ ∞. While the calculation is vivid for qualita-
tive discussion, one would face difficulties proving Ward identities, which require translational
invariance in momentum space.
A method respecting the symmetries of the Standard Model was introduced in 1972 by ’t Hooft
and Veltman [32] called Dimensional Regularisation. The regulator in this case is the dimen-
sionality of spacetime λ = D, often rearranged to a more convenient form D = 4− 2ε so that
the 4 dimensional threshold is restored for ε→ 0. Since the mass dimension of the differential
dx equals −1 in natural units, the Lagrangian has to be D dimensional for the action S to
remain scalar. Straightforward dimensional analysis then implies that originally dimension-
less parameters would depend on D. For this reason an arbitrary fixed mass scale µ has to be
defined to absorb the dimensional dependence of dimensionless couplings. Therefore, using
the rules of dimensional regularisation, we replace

∫
d4q

(2π)4
→ µ4−D

∫
dDq

(2π)D
.

5“I must say that I am very dissatisfied with the situation, because this so-called ‘good theory’ does involve

neglecting infinities which appear in its equations, neglecting them in an arbitrary way. This is just not

sensible mathematics. Sensible mathematics involves neglecting a quantity when it is small - not neglecting it

just because it is infinitely great and you do not want it!” – P. A. M. Dirac, referring to QED [30].
6“But no matter how clever the word, it is still what I would call a dippy process! Having to resort to such

hocus-pocus has prevented us from proving that the theory of quantum electrodynamics is mathematically self-

consistent. It’s surprising that the theory still hasn’t been proved self-consistent one way or the other by now; I

suspect that renormalisation is not mathematically legitimate.” – R. P. Feynman, referring to renormalisation
[31].



4.3. General Renormalisation Procedure 23

The example discussed in Sec. 4.1 yields

B0 := µ4−D

∫
dDq1

(2π)D
I1 = ΩD

(2πµ)4−D

(2π)4

1∫

0

dx

∞∫

0

dq1
qD−1
1

(
q21 +m1 − iǫ

)2 ,

with ΩD being the surface of the D−1 dimensional unit sphere,

ΩD =
2πD/2

Γ(D/2)
.

The substitution q21 = y (m1 − iǫ) leads to an Euler integral of the first kind:

B0 =

(
2πµ2

) 4−D
2

8π2 Γ
(
D
2

)

1∫

0

dx (m1 − iǫ)
D−4

2

∞∫

0

dy y
D−2

2 (y + 1)−2

︸ ︷︷ ︸

B(D
2
, 4−D

2
)

B0 =
Γ
(
4−D
2

)

8π2

1∫

0

dx

[
m1 − iǫ

2πµ2

]D−4

2

=
Γ(ε)

8π2

1∫

0

dx

[
m1 − iǫ

2πµ2

]−ε

.

Resubstituting m1 according to Eq. (4.3) and taking the limit ε→ 0 results in

B0 =
1

8π2

[
1

ε
− γE + log 4π

]

︸ ︷︷ ︸

=:∆

− 1

8π2

1∫

0

dx log

[

x (x− 1) (p+ p′)2 +m2
t − iǫ

µ2/2

]

+ O (ε) . (4.6)

Even though the remaining integral in Eq. (4.6) is too elaborate to be solved analytically, it
converges so that we have managed to regularise the divergence as a 1/ε pole7. Following this
procedure, one can reduce arbitrary one-loop amplitudes to sums of scalar Passarino-Veltman
integrals defined for example in the LoopTools manual [34].
Dimensional Regularisation is not a suitable regularisation method for supersymmetric the-
ories, as the degrees of freedom of the bosonic and fermionic components of a superfield do
not match in arbitrary dimensions and additional supersymmetry restoring terms have to be
included in order to preserve unitarity. This is why a technique called Dimensional Reduc-
tion [33], has been developed. Unlike in Dimensional Regularisation, only the spacetime and
momentum dimensionality is analytically continued into D dimensions, while fields and the
γ-matrices are kept four dimensional, by which discrepancies in the degrees of freedom are
avoided. In one loop calculations the Dimensional Reduction procedure has been shown [34]
to be equivalent to the method of Constrained Differential Regularisation [35], which is im-
plemented in the programs used for computation in this thesis discussed in Chapter 5.

4.3.2. Counterterm Formalism

As mentioned previously, in next-to-leading order calculations the bare parameters ξ0 of a the-
ory must be replaced by sums of finite renormalised quantities ξR and divergent counterterms
δξ,

ξ0 → ξR + δξ. (4.7)

7Since the pole is always accompanied by the Euler–Mascheroni constant γE and log 4π, these are frequently
abbreviated with ∆ as stated in Eq. (4.6).
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Higher order corrections not only shift the position of a propagator’s pole in the complex
plane but also its residue, thus it is necessary to renormalise the fields as well, hence

φ0 →
√

ZφφR =
√

1 + δZφφR. (4.8)

Applying these substitutions, the Lagrangian can be split into a part the structure of which
is identical to the tree level Lagrangian, except for the bare parameters being replaced by the
physical quantities, and a counterterm part, which yields additional Feynman rules.

L = LP + δL. (4.9)

4.3.3. Renormalisation Conditions

The counterterms can be determined by demanding that the propagators of the renormalised
fields have the same pole structure (position and residue) as the corresponding free field
propagators.
The renormalised propagator ∆s(q) of a scalar field of mass mR is given as a sum of chains
of one-particle-irreducible subgraphs Σ̂s(q

2) connected with corrected propagators

∆s(q) = i
∞∑

n=0

[q2 −m2
R + iǫ]−1

(

Σ̂s(q
2)[q2 −m2

R + iǫ]−1
)n

= i
[

q2 −m2
R − Σ̂s(q

2) + iǫ
]−1

. (4.10)

For the renormalised propagator ∆s(q) to have the same pole structure as the bare one, the
conditions

Re Σ̂s(m
2
R) = 0, 0 = Re

∂Σ̂s(q
2)

∂q2

∣
∣
∣
∣
∣
q2=m2

R

(4.11)

must be fulfilled. Since Σ̂nlo
s (q2) is the sum of the δL counterterm contributions to the

propagator (i.e. all terms quadratic in the field) and the one-loop self-energies,

Σ̂nlo
s (q2) = Σct

s (q2) + Σnlo
s (q2), (4.12)

the counterterms δm2
p and δZφ can be expressed in terms of one-loop propagator corrections.

Similar conditions can be derived for corrections to the gauge boson propagators ∆V
µν where

the one-particle-irreducible subgraphs can be decomposed into Lorentz-covariant longitudinal
and transversal components, leading to the corrected inverse propagators in the ’t Hooft-
Feynman gauge to be of the form:

(∆W
µν)−1 = −igµν(q2 −m2

W ) − i

(

gµν −
qµqν
q2

)

Σ̂W
T (q2) − i

qµqν
q2

Σ̂W
L (q2) (4.13)

for the W boson and

(∆ab
µν)−1 = −igµν(q2 −m2

a)δab− i

(

gµν −
qµqν
q2

)

Σ̂ab
T (q2) − i

qµqν
q2

Σ̂ab
L (q2) (4.14)

for a, b = γ, Z. Since the photon and the Z boson are a mixture of interaction eigenstates. By
contracting the inverse propagator with the polarisation vector ǫν(q), the condition for the
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longitudinal component is automatically fulfilled as demanded by the Ward identity, whereas
the transversal components lead to the conditions:

Re Σ̂W
T (m2

W ) = 0, 0 = Re
∂Σ̂W

T (q2)

∂q2

∣
∣
∣
∣
∣
q2=m2

W

(4.15)

Re Σ̂ZZ
T (m2

Z) = 0, 0 = Re
∂Σ̂ZZ

T (q2)

∂q2

∣
∣
∣
∣
∣
q2=m2

Z

(4.16)

Re Σ̂γZ
T (0) = 0, 0 = Re

∂Σ̂γZ
T (q2)

∂q2

∣
∣
∣
∣
∣
q2=0

(4.17)

Re Σ̂γγ
T (0) = 0, 0 = Re

∂Σ̂γγ
T (q2)

∂q2

∣
∣
∣
∣
∣
q2=0

. (4.18)

In order for the Higgs fields to retain their stationary points at the predefined values vi, the
tadpole conditions defined in Eq. (3.18) must also be fulfilled in higher order calculations.
However, since the fields are shifted by contributions T̂hi from the tadpole diagrams shown in
Fig. 4.3, the counterterms δthi must be chosen such, that both the divergent and finite parts
cancel:

T nlo
hi

+ δthi = 0. (4.19)

Hence, the tadpole diagrams can be omitted in higher order amplitudes, as their contribution
vanishes.

hi
F

hi
S

hi
U

hi
V

Figure 4.3.: Generic next-to-leading order tadpole contributions to the scalar Higgs fields hi.

F, S, U, and V represent arbitrary fermionic, scalar, ghost and vector fields, respectively.

Renormalisation conditions for fermionic propagators can be formulated in a similar way.
They are however more complicated due to their Lorentz structure. In this thesis it is not
necessary to exploit any fermionic renormalisation conditions, as all quantities required for
Higgs phenomenology of the CP conserving NMSSM at next-to-leading order are functions
of the set of independent parameters presented in Eq. (3.13), the counterterms of which can
be determined from corrections to bosonic propagators and tadpole conditions.

4.3.4. Renormalisation Schemes

Note that the conditions given in Eq. (4.11) are more restrictive than generally required to
achieve renormalisation. Whether the finite loop contributions are cancelled completely by
the counterterms, or if they produce a shift in the propagator pole is a matter of definition
referred to as renormalisation scheme.
The frequently used MS scheme demands, that the counterterms solely cancel the loop am-
plitude contributions proportional to the ∆ pole of dimensional regularisation defined in
Eq. (4.6). The same condition is used by the DR scheme, with the difference of regularising
the loop integrals via dimensional reduction.
In contrast, the On-shell scheme additionally demands a cancellation between the finite parts
of the counterterms and self-energies, so that the numerical values of physical quantities are
unaffected by higher order corrections.
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The choice of renormalisation scheme would not affect the results of an exact theory (i.e.
when considering all orders of the perturbation series expansion), but it alters the values
of observables in finite order perturbative calculations. Comparing observables in different
renormalisation schemes therefore gives an estimate for the theoretical error due to unknown
higher order corrections.



CHAPTER 5

Higgs Vertex Renormalisation

Let us now apply the general remarks of the previous chapter to the trilinear NMSSM Higgs
couplings of one scalar to two pseudoscalar Higgs bosons. The results presented in this chapter
were computed using the Mathematica packages FeynArts [36], FormCalc and LoopTools [34]
together with self-written Bash scripts and Form [37] routines.

5.1. Loop Diagrams

With the exception of the gluino, the masses of all NMSSM particles are generated due to
couplings with the Higgs fields and eventual soft-breaking terms1. Therefore one can expect
a plethora of diagrams contributing to the one-loop correction of the Higgs self-couplings.
Indeed, the most general CP conserving case yields 2102 diagrams when particles are in-
serted explicitly, which is why the systematical approach of an amplitude generator, such as
FeynArts , is crucial.
Supplied with a model file, FeynArts determines all contributions to the desired process and,
furthermore, can group the individual diagrams to generic field insertions, in which all di-
agrams have the same Lorentz structure. This abbreviates the calculation to nine distinct
sub-processes listed in Fig. 5.1.

Using a model file automatically generated with SARAH [38], which contains information on the
NMSSM particle content and couplings, the one-loop amplitude for the hα → hβhγ decay was
successfully generated. However, the subsequent regularisation and algebraic simplification
could not be performed by FormCalc, because the explicit coupling terms of the model are
too long for the program to handle. In order to solve this problem, all relevant couplings had
to be substituted by generic vertex functions, which only need to reflect the index structure of
the respective vertex. By giving appropriate names to the functions, it is easier to keep track
of the particular contributions, as the amplitude reduces to index sums over products of two
or three vertex functions weighted with a Passarino-Veltman integral and eventual constant
terms.

Further problems arose, as the calculated amplitude contained partly ambiguous index struc-
tures. These implied summing twice over the same index, although the involved terms were

1Gluino masses are completely due to the soft supersymmetry breaking terms.
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Figure 5.1.: Generic next-to-leading order contributions to the hαhβhγ vertex for α ∈ {1, 2, 3},
β, γ ∈ {4, 5}. F, S, U, and V represent arbitrary fermionic, scalar, ghost and vector fields, respec-
tively.

not invariant under index permutations. Since the available FeynArts and FormCalc docu-
mentation did not suggest an internal solution to this bug, the simplified amplitude had to
be modified manually by a Bash script, which replaced the ill-defined structures and passed
the expression through Form where the index summations were carried out. Ultimately, the
resulting term was evaluated numerically by computing the involved one-loop integrals with
LoopTools and by assigning numerical values to the explicit vertex function elements. The
complete numerical evaluation was performed using Mathematica routines written by Kathrin
Walz in the scope of her diploma thesis [39].

Despite of the abbreviative approach by generic vertex functions, the explicit computations
required for the determination of the one-loop amplitude are tedious and do not yield new
insights in the topic. To summarise this discussion for further calculations, we define the am-
plitude of the one-loop corrections displayed in Fig. 5.1 weighted with appropriate symmetry
factors as

G3h
αβγ =

∑

{Fig. 5.1} (5.1)

In the following, expressions indexed with Greek letters α, β and γ yield for all combinations
of the five Higgs boson mass eigenstates hα defined in Eq. (3.21). However, since the CP
conserving NMSSM model file incorporates an alternative convention, in which the scalar
and the pseudoscalar Higgs sector are treated separately, additional one-loop processes would
have to be calculated for the scalar-to-scalar Higgs decays. Due to the elaborate manual
index structure fixing, these contributions exceed the scope of this thesis, therefore we limit
the calculations to the case

α ∈ {1, 2, 3}, β, γ = {4, 5}
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5.1.1. Crosschecks

By convention, LoopTools cuts off the divergent parts of loop integrals by setting ∆ = 0,
so that the previously discussed procedure should result in the finite part of the one-loop
contribution to the renormalised vertex, but it would be reckless to rely on the result of such
a delicate calculation without internal crosschecks. For this reason an alternative approach
to the Bash workaround-script was developed, in which the model file vertex rules were re-
substituted into the simplified amplitude, so that the index sums and numerical substitutions
could be performed in terms of the original model parameters.
A further reliable strategy to verify the results is to compare the omitted divergent part of the
amplitude with the corresponding counterterm divergence. For this purpose the FormCalc

function UVDivergentPart can be used to isolate the contributions of the amplitude propor-
tional to ∆, which can thereafter be numerically evaluated using the same procedure as for
the finite part of the one-loop amplitude. When renormalisation was successfully achieved,
the divergent next-to-leading order and counterterm parts cancelled with a precision of 10−10.
Ultimately, the results of the renormalisation procedure were crosschecked with independent
calculations performed by Thi Nhung Dao and Kathrin Walz.

5.2. Counterterms

We have seen in Sec. 4.3.2, how the counterterm Feynman rules can formally be derived
from the Lagrangian. However, for practical calculations it is more convenient to derive the
counterterm in an alternative approach, in which the vertex and field renormalisation contri-
butions are treated separately. Before these are discussed, let us define the parameter basis
and specify renormalisation conditions used to determine the counterterms. The framework
required for the numerical analysis at next-to-leading order described in the following section
was developed by the authors of [40].

5.2.1. Parameter Basis

According to the introduction presented in Chapter ??, the Higgs sector of the CP conserv-
ing NMSSM is described by the 12 Lagrangian parameters summarised in Eq. (3.13). The
subsequent analysis of the scalar Higgs potential however introduces possibilities to express
these parameters in terms of quantities more convenient for phenomenological purpose:

The dependence on the soft supersymmetry breaking massesmHd
, mHu , mS can be eliminated

by the tadpole conditions thu , thd
, ths introduced in Eq. (3.18), yielding

m2
Hd

=
thd

vd
+
λAλvuvs√

2vd
− g21 + g22

8
(v2d − v2u) − λ2

2
(v2u + v2s) +

λκvuv
2
s

2vd

m2
Hu

=
thu

vu
+
λAλvdvs√

2vu
− g21 + g22

8
(v2u − v2d) − λ2

2
(v2d + v2s) +

λκvdv
2
s

2vu
(5.2)

m2
S =

ths

vs
+
λAλvdvu√

2vs
− κAκvs√

2
− λ2

2
(v2d + v2u) − κ2v2s + λκvdvu.

The vacuum expectation values vu, vd can be replaced by the Standard Model Higgs vacuum
expectation value v and the angle tβ as

vu =
tβ v

√

1 + t2β

, vd =
v

√

1 + t2β

. (5.3)

The trilinear soft supersymmetry breaking parameter Aλ can be expressed in terms of the
charged Higgs mass

Aλ =

√
2sβ cβ
λvs

(
m2

H±

(cβB
cβ + sβB

sβ)2
+
λ2v2√

2
−m2

W

)

−
√

2(s2βB
sβ thd

+ c2βB
cβ thu)

λvvs(cβB
cβ + sβB

sβ)2
− κvs√

2
. (5.4)
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And ultimately, the Standard Model gauge couplings g1, g2 and the vacuum expectation value
v introduced in the above substitutions can be replaced by the electric charge e and the weak
gauge boson masses mW , mZ

g1 =
emZ

mW
, g2 =

emZ
√

m2
Z −m2

W

, v =
2mW

emZ

√

m2
Z −m2

W . (5.5)

Remember that in the substitution rule for Aλ it is necessary to distinguish between the
mixing angles βB and β, although they coincide at tree level, as βB originates from isolating
the Goldstone modes in the Higgs sector and is therefore treated as a rotation matrix ele-
ment, which does not have to be renormalised. Likewise, the tadpole dependence cannot be
eliminated by using the tree level relations thi= 0 because these parameters require renor-
malisation.
Together with the original NMSSM potential parameters λ, κ, Aκ and vs already introduced
in Eq. (3.13), these quantities form a new parameter basis of the CP conserving NMSSM
Higgs sector,

e, m2
Z , m

2
W , m

2
H± , thu , thd

, ths , tβ, λ, κ, vs, Aκ. (5.6)

The advantage of this parameter choice compared to the set originating from the Lagrangian
is that the counterterms of the first seven parameters can be defined by on-shell conditions,2

allowing evaluation of one-loop observables in a mixed on-shell-DR renormalisation scheme,
forth on referred to as mixed scheme. Alternatively, the renormalisation conditions can
be formulated in the pure DR scheme by simply omitting the final parts of the derived
counterterms. The comparison of these both schemes gives a measure for the theoretical
error.

5.2.2. Renormalisation Conditions

After the substitutions Eqs. (5.2)-(5.5) have been applied to the Lagrangian, the counterterm
Lagrangian can be derived by replacing the bare parameters ξ0 by the renormalised ones ξR
and their counterterms δξ as already stated in Eq. (4.7),

ξ0 → ξR + δξ, with ξ ∈ {Eq. (5.6)}. (5.7)

And likewise, the field renormalisation is realised by replacing the Higgs doublet and singlet
fields by the renormalised fields according to Eq. (4.8),

φi →
√

Zφi φi, with φi ∈ {Hu, Hd, S}. (5.8)

The field renormalisation constants δZφi = Zφi −1 are determined by demanding that the
residues of the renormalised propagator poles equal one. But as the mass eigenstates, to
which the propagators refer, are a mixture of the interaction eigenstates, in which basis the
field renormalisation constants are defined, the residue condition stated in Eq. (4.11) has to
be modified by a rotation to the mass eigenstate basis,

R2
jiδZφi = −

∂Σhjhj (q
2)

∂q2

∣
∣
∣
∣
∣

div

q2=m2

hj

with i, j ∈ {1, 2, 3}, (5.9)

which, due to the summation over i, is a linear system of three equations for the three
constants δZφi , depending on the rotation matrix elements Rij defined in Eq. (3.28). The

2The tadpole parameters are not on-shell parameters in strict sense of the word, but their renormalisation
conditions also define the finite counterterm part.
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expression is to be evaluated at the corresponding tree level propagators mass. The identity
yields for the divergent part, so that the field counterterms are defined via DR conditions.

The renormalisation conditions for the gauge boson masses mW , mZ and the electric charge
e are defined analogously to the Standard Model as discussed in numerous textbooks and
other publications, e.g. [41]. Since the gauge group is not affected by the supersymmetric
extension, the only difference to the Standard Model calculation lies within the additional
loop contributions from the particles introduced through the NMSSM.
For the gauge boson masses, the counterterms are given by

δm2
Z = Re ΣZZ

T (m2
Z), δm2

W = Re ΣW
T (m2

W ). (5.10)

Whereas the electric charge renormalisation condition demands the corrections to vanish in
the Thomson limit, i.e. in the limit of elastic electron-photon scattering, leading to the
counterterm3 δe being related to the transverse self-energies of the photon and the Z boson
defined in Eq. (4.14) as

δe = e
sW
cW

ΣγZ
T (0)

m2
Z

+
e

2

∂Σγγ
T (q2)

∂q2

∣
∣
∣
∣
q2=0

, (5.11)

where sW , cW are trigonometric functions of the Weinberg angle introduced in Sec. 2.4.

The charged Higgs boson mass counterterm can likewise be determined through the on-shell
condition

δm2
H± = Re ΣH±H∓(m2

H±). (5.12)

The remaining three on-shell-like tadpole renormalisation conditions demand the one-loop
contributions from diagrams shown in Fig. 4.3 to vanish entirely. As the tadpole condi-
tions are defined in the interaction basis, whereas the diagram contributions come from mass
eigenstates, it is again necessary to transform the condition into the same basis, yielding

δthi = RjiT
nlo
hj
, i ∈ {d, u, s}, j ∈ {1, 2, 3}. (5.13)

The renormalisation of tβ is performed in the DR scheme. As tβ is defined by the ratio of vu
and vd, its renormalisation condition can be connected with the counterterms of the up- and
down-type Higgs fields,

δtβ = tβ

[
1

2
(δZHu − δZHd

) +

(
δvu
vu

− δvd
vd

)]

div

.

The one-loop analysis of the MSSM has shown [42] that the divergent behaviour of δvu/vu
and δvd/vd is equal, so that these terms cancel in the above equation, yielding

δtβ =
tβ
2

(δZHu − δZHd
) . (5.14)

So far we have managed to define renormalisation conditions for eight of the twelve Higgs
sector parameters, without having to use a single condition based on the position of the Higgs
propagator poles. These can now be used to determine the remaining four counterterms. The
DR renormalisation condition for scalar propagators reads

RijRik (δM1)jk = Re Σhihi
(m2

hi
)
∣
∣
div
, i, j, k ∈ {1, . . . , 6}

3The electric charge counterterm is alternatively introduced as e0 → eR + δZe. Both conventions are connected
by the relation: δe = e δZe.
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where the varied interaction basis mass matrix δM1 is a function of the bare parameters and
the counterterms and therefore also involves the four unknown counterterms δλ, δκ, δvs and
δAκ. These can be determined by solving a linear system of equations set up by conditions
for four of the five mass eigenstates

RijRik (δM1)jk = Re Σhihi
(m2

hi
)
∣
∣
div

i ∈ {1, . . . , 4}, (5.15)

yielding complicated analytic relations for the counterterms, which, however, can easily be
solved with numerical routines.

5.2.3. Vertex Renormalisation Contributions

The starting point for the derivation of the vertex counterterm contributions is the tree level
trilinear vertex function g3h

αβγ defined in Eq. (3.35). As the vertex function has been derived
directly from the Lagrangian, the substitutions Eqs. (5.2)-(5.5) must be applied to express
the vertex function in terms of the previously discussed parameter set

g3h
αβγ

(5.2)−(5.5)−−−−−−−−→ g̃3h
αβγ . (5.16)

Since formally only the δL contributions linear in the counterterms δξi cancel the divergences
of the next-to-leading order diagrams, the vertex counterterm can be obtained by varying the
tree level vertex function with respect to the model parameters defined in Eq. (5.7),

δg̃3hαβγ =
∑

i

∂g̃3hαβγ
∂ξi

δξi. (5.17)

Thus, in the mixed renormalisation scheme, the vertex counterterm contributes to both the
divergent and the finite part of the one-loop amplitude, formally

δg̃3hαβγ = δg̃3hαβγ

∣
∣
∣
div

+ δg̃3hαβγ

∣
∣
∣
fin
. (5.18)

5.2.4. Field Renormalisation Contributions

The counterterm contributions from field renormalisation cannot be included according to
Eq. (5.17), as the vertex function is not explicitly dependent on the fields and defined in
the mass eigenstate basis, whereas the field renormalisation counterterms are included for the
interaction fields. The field renormalisation contributions δG3h

αβγ can be derived from the field
counterterm contributions (Eq. (5.8)) of the scalar Higgs potential introduced in Eq. (3.20)
as

1

2
Γijk
1

(

δZφiφiφjφk + φiδZφjφjφk + φiφjδZφk
φk

)

∈ VH,ct.

Note that the fields φi are defined as components of the six dimensional interaction field
multipl et, therefore we must expand the definition of δZφi to i ∈ {4, . . . 6}. Since according
to Eq. (5.8) the field renormalisation constants are defined for the respective Higgs doublet
fields, they must be identical for the scalar and the pseudoscalar components of a doublet,
yielding

δZφi = δZφi−3
i ∈ {4, . . . , 6} (5.19)

Hence, rotating to the mass eigenstate basis results in

δG3h
αβγ =

1

2

6∑

i=1

(

δZαi g
3h
iβγ + δZβi g

3h
αiγ + δZγi g

3h
αβi

)

, (5.20)
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Figure 5.2.: Generic Feynman diagrams for the Z and Goldstone boson transition contributions to
the one-loop hα → hβhγ decay.

where δZ is the field renormalisation matrix in the mass eigenstate basis,

δZαβ =
∑

i

RαiRβiδZφi . (5.21)

Since field renormalisation constants are be defined in the DR scheme, their contribution to
the vertex counterterm is pure divergent.

In conclusion, the vertex renormalisation contributions g
3h,nlo
αβγ to the one-loop corrected am-

plitude of the hα → hβhγ decay can be summarised as the sum of the one-loop diagrams
introduced in Eq. (5.1) and the vertex and field renormalisation counterterms defined in
Eq. (5.17) and Eq. (5.20), respectively,

g
3h,nlo
αβγ = G3h

αβγ + δg̃3hαβγ + δG3h
αβγ . (5.22)

5.3. Z and Goldstone Boson Transitions

So far we have only considered one-loop corrections to the Higgs vertex. However, there
are additional one-loop contributions to the hα → hβhγ decay due to the possibility of loop
induced transition between the Z boson and the pseudoscalar Higgs bosons hγ , half of which4

is seen in Fig. 5.2. For reasons of gauge invariance, the Goldstone mode G ≡ h6 has to be
treated equally. Both amplitudes can be written as products of the corresponding vertex gX

with the free propagator SX and the renormalised transition amplitude Σ̂X ,

T X
αβγ = 2ghhX

αβ × SX(k2) × (Σct
Xhγ

(k2) + Σnlo
Xhγ

(k2))
︸ ︷︷ ︸

Σ̂X

, X = G,Z. (5.23)

The counterterm for the Z boson transition is derived from the kinetic part of the Lagrangian,
yielding

Lct
Zhγ

=
√

g21 + g22 (R4γvd −R5γvu)Zµ∂µhγ
(5.2)−(5.5),(5.16)−−−−−−−−−−−−→ Σct

Zhγ
= kµΣ̊ct

Zhγ
(5.24)

4The other half has the same structure with the transition correction connected to the propagator of Aβ . These
graphs are taken into account by the overall factor 2 in Eq.(5.23)
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where the dependence from the momentum of the final state Higgs boson, kµ, has been
factorised out. Contracting the counterterm with the Higgs-Z-vertex via the Z boson propa-
gator in the ’t Hooft-Feynman gauge and eliminating the momentum dependence by on-shell
conditions for the external particles, results in the full counterterm being of the form5

T Z,ct
αβγ = 2i ghhZαβ

m2
hα
−m2

Aβ′

m2
Aγ′

−m2
Z

Σ̊ct
Zhγ

. (5.25)

The Goldstone transition originates from the variation of the Higgs boson mass matrix. With
δZ defined in Eq. (5.21) and δM1 being the variation of the Higgs mass matrix in the
interaction basis introduced in Eq. (3.20), the counterterm reads

Σct
Ghγ

= k2δZ6γ −
1

2
m2

Aγ′
δZ6γ − (RδM1RT)6γ , (5.26)

where k2 is the momentum squared of the final state Higgs boson. The momentum dependence
can likewise be eliminated by the on-shell condition6, yielding

T G,ct
αβγ =

2i ghhhαβ6

m2
Aγ′

−m2
Z

(
m2

Aγ′
δZ6γ −

1

2
m2

Aγ′
δZ6γ − (RδM1RT)6γ

)
(5.27)

Thus, together with the divergent one-loop contributions calculated in analogy to the vertex
contributions in Eq. (5.1), the complete transition contributions T G

αβγ , T Z
αβγ can be deter-

mined.

5.4. Mass Corrections

As shown in [40,43], one-loop corrections can have a considerable impact on the Higgs boson
masses and thereby also on the Higgs-to-Higgs decays. The kinematic constraint for on-shell
hα → hβhγ decays,

mhα > mAβ′
+mAγ′

, (5.28)

can either be violated or fulfilled due to one-loop effects, depending on how large the cor-
rections for the particular masses turn out. For this reason, it is sensible to abandon the
strict one-loop treatment of the process and incorporate additional mass corrections to the
initial and final state Higgs bosons, whereas the masses occurring in the internal propagators
retain their tree level values. The external masses can be set to their one-loop values with
the FeynArts function OffShell,

m2
hα
, m2

Aβ′
, m2

Aγ′

OffShell−−−−−→ m2
h1l
α
, m2

A1l

β′
, m2

A1l

γ′
. (5.29)

Additionally, it is necessary to replace the rotation matrix R defined in Eq. (3.28) with its
one-loop equivalent R1l,

R OffShell−−−−−→ R1l, (5.30)

which transforms the interaction eigenstates directly into the one-loop corrected mass eigen-
states,

h1l = R1lφ = (h1l1 , h
1l
2 , h

1l
3 , A

1l
1 , A

1l
2 , G), (5.31)

R1lM1(R1l)T = diag(m2
h1l
1

, m2
h1l
2

, m2
h1l
3

, m2
A1l

1

, m2
A1l

2

, 0). (5.32)

5To retain consistent index structures for the pseudoscalar Higgs masses, we define primed indices for the masses
as β′ = β − 3, γ′ = γ − 3.

6The terms proportional to m2

Aγ′
are not simplified on purpose, as they are treated separately in the subsequent

chapter. Only the mass term originating from the squared momentum is replaced with the one-loop mass.
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By applying the mass substitutions to the previously introduced tree level vertex Eq. (3.35),
the one-loop corrected amplitude Eq. (5.22) and to the transition contributions7 Eq. (5.23),

g3hαβγ
(5.30)−−−−−−−−−→ ḡ3hαβγ (5.33)

g
3h,nlo
αβγ

T G/Z
αβγ







(5.29),(5.30)−−−−−−−−−→







ḡ
3h,nlo
αβγ

T̄ G/Z
αβγ

(5.34)

the complete computation of the mass corrected, renormalised hα → hβhγ decay amplitude
Anlo

αβγ can be summarised as,

Anlo
αβγ = ḡ3h

αβγ + ḡ
3h,nlo
αβγ + T̄ G/Z

αβγ . (5.35)

7According to the remarks in the previous footnote, prudence is called for in substituting the pseudoscalar
masses in the counterterm, as only the mass dependence originating from the on-shell condition k2 = m2 is to
be substituted by the one-loop corrected values, whereas the contributions originating from the mass matrix
entries are kept at their tree level value.





CHAPTER 6

Numerical Analysis

6.1. Scenario Search

The original motivation for the analysis developed in this thesis were the known complications
in establishing a no-lose theorem for the NMSSM Higgs boson discovery at the LHC [44–46],
for which scenarios with allowed hα → A1A1 decays are one of the main reasons. It is therefore
an interesting, yet up to now an uninvestigated, question, in which way the inclusion of one-
loop corrections to the Higgs self-coupling would affect the predictions for the detection
potential of the LHC.
Recent ATLAS [47] and CMS [48] Higgs search results, however, imply a Standard Model-like
Higgs signal in the mass region of ∼124−126 GeV with a local statistical significance of 3.5σ
and 3.1σ, respectively. If the signal does not turn out to be a statistical fluctuation, this
would resolve the no-lose theorem difficulties instantaneously, which is why we have decided
to redirect our attention to phenomenological consequences of the hα → A1A1 corrections in
scenarios with a Standard Model-like Higgs boson of mass around 125 GeV. Note that this
choice scenario implies several constraints, as it requires

• The Standard Model-like Higgs boson hSM should be one of the scalar NMSSM Higgs
bosons with 120GeV ≤ mhSM

≤ 130GeV.

• To ensure Standard Model-like production and decay rates, the couplings of hSM to the
Z and W bosons and the top and bottom quarks should differ by no more than 2̃5%
from the corresponding Standard Model Higgs coupling.

• In order to retain the Standard Model signal, hSM must additionally have Standard
Model-like branching ratios, which means that hSM should not be able to decay into
any particles introduced through the supersymmetric extension, or, respectively, these
decay channels should be suppressed. Otherwise the branching ratios of the standard
Higgs search channels might be significantly modified.

• Apart from the previous Standard Model Higgs criteria, we require the hα → A1A1

channel to be of relevance for the scenario. This means that at least the next-to-
lightest scalar Higgs boson h2 should be able to decay into two light pseudoscalar Higgs
bosons A1, yielding mh2

≥ 2mA1
.
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These criteria are highly restrictive, as on the one hand, we require the Higgs spectrum to
have a light pseudoscalar A1 allowing h2 → A1A1 decays, on the other hand, the branching
ratios of hSM should not be affected by the presence of the light A1. Desired scenarios, thus,
involve mass hierarchies1:

• mh1
= mhSM

< 2mA1
≤ mh2

, where the decay width Γh2→A1A1
receives notable correc-

tions through the one-loop corrected coupling.

• 2mA1
≤mh1

< mh2
=mhSM

, where the one-loop corrections to the Γh1→A1A1
have an

impact on the detection potential for h1.

The second kind of scenarios involves difficulties, due to the presence of the hSM → A1A1

decay channel, which, in general, can modify the branching ratios of hSM significantly.

6.2. Parameter Scan Procedure

The starting point for the search of an appropriate scenario was a random scan over the Higgs
sector parameters λ, κ, Aλ, Aκ, tβ and µeff

2 within the ranges,

λ ∈ [ 10−4, 0.75 ] Aλ ∈ [−1000 GeV, 1000 GeV ]

κ ∈ [−0.65, 0.65 ] Aκ ∈ [−1000 GeV, 1000 GeV ] (6.1)

tβ ∈ [ 1.6, 50 ] µeff ∈ [ 150 GeV, 200 GeV ].

In order to for the perturbation theory to be valid up to the GUT scale, λ and κ must not
be chosen too large. In the subsequently analysed scenarios, attention was paid that the
constraints on these parameters given explicitly in [49] were fulfilled. The scan points were
assigned using the Bash function $random which generates a random integer between 0 and
23767. Therefore each of the intervals in (6.1) was divided into 23768 equidistant values, from
which one was picked by the $random function. Mathematically this procedure is described
by,

ρ = ρmin + [ρmax − ρmin] pρ with ρ = λ, κ, Aλ, Aκ, µeff,

where pρ is the normalised random number. During the scan procedure the results showed
that small values of tβ were preferable3. Therefore the generator formula was adjusted to
prefer small values, by using

tβ = tβmin + [tβmax − tβmin] p3tβ .

The tadpole parameters thd
, thu , ths were set to zero, whereas the Standard Model parameters

e, mW , mZ were determined4, according to the SUSY Les Houches Accord (SLHA) conven-
tions [50, 51], from the Fermi constant GF , the value of the electromagnetic fine-structure
constant αem at the electroweak scale and the Z boson mass mZ .

SLHA:

GF = 1.16637 10−5 GeV−2

mZ = 91.1876 GeV

α−1
em = 127.934

→

(5.6) :

mW = 79.829 GeV

mZ = 91.1876 GeV

e = 0.313409

1In our scenarios, the decays of h3 into A1A1 turned out not to lead to relevant effects.
2By convention, µeff replaces the singlet vacuum expectation value vs to ensure the effective µ-coupling to below
200 GeV, as required by tree-level naturalness arguments. Both are connected via vs =

√
2µeff/λ.

3This is because small values of tβ maximise the tree-level mass of the lightest Higgs boson.
4The conversion rules between these parameter sets can be derived from Eqs. (5.5) together with the relations
v = (

√
2GF )

−1/2 and e =
√
4πα
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The remaining parameters were set to fixed values. The masses of the Standard Model
fermions are given in Tab. 6.1. The soft supersymmetry breaking squark masses and trilinear
couplings defined in Eq. (3.11) were set to universal values for the first two generations

mq̃ = Msusy = 103 GeV

Aq̃ = A0 = 2 · 103 GeV.

The masses of the squarks of the first two generations are hence of the order of 1 TeV in
order to satisfy present LHC search limits for these particles [52,53]. The masses of the third
generation squarks are still allowed to be as low as about 300 GeV - 400 GeV. In order to
avoid finetuning, we choose the soft supersymmetry breaking masses and trilinear couplings
according to [49] to the values,

mt̃R
= mt̃L

= mb̃L
= 650 GeV mb̃R

= Msusy At̃ = Ab̃ = A0.

Finally, for simplicity the soft breaking masses and trilinear couplings in the slepton sector
are set to

mẽ=Msusy, Aẽ =A0.

The last missing parameters are the gaugino soft breaking masses,

M1= 2M2 = 500/3 GeV, M3 = 600 GeV,

as well as the renormalisation scale µren, which has been set to,

µren = 300 GeV.

mf in GeV
Gen 1 2 3

u 0.0025 1.27 173.3
d 0.0050 0.101 4.19
e 0.5110 · 10−3 0.1057 1.7768

Table 6.1.: Numerical values of the fermion masses used in the analysis.

Given these input values, the program for the scanning procedure numerically diagonalised
the tree-level mass matrices. If the parameter point did not yield unphysical results, such as
negative eigenvalues of the Higgs boson mass matrix, the one-loop mass spectrum and coun-
terterms were calculated using the conditions given in Sec. 5.2.2. The results were checked
whether the one-loop mass spectrum involves a Standard Model-like Higgs boson and a light
pseudoscalar Higgs according to the criteria described in the previous section. If these re-
quirements were fulfilled, the program continued to calculate the one-loop corrected decay
width, as well as improved tree-level decay width, as defined in App. B, and printed these
out together with the input values.
This procedure was repeated for approximately 500’000 random parameter points, producing
a handful of results, two of which we shall analyse in the following sections. Unfortunately,
most of the points turn out to have insignificant one-loop corrections. This may be a conse-
quence of the high amount of constraints set on the scenario, but reliable statements would
demand a detailed analysis which, in views of the large number of parameters involved, is
beyond the scope of this thesis. Nevertheless a few of the points which were found show inter-
esting effects due to the one-loop corrections, two of which we shall inspect in the following
sections.

The results of the above procedure were reviewed and points with promising next-to-leading
order corrections were furthermore processed by a slightly modified version of the previously
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introduced script, which systematically evaluated parameter points in a region around the
given starting point. The complete set of information about the mass spectrum, couplings and
rotation matrix elements for each step was printed out as SLHA input files, in which the tree-
level decay widths Γhα→A1A1

were replaced by the improved tree-level and the full one-loop
decay width, respectively. The input files were subsequently passed through a modified version
of HDECAY [54, 55] developed by the group of Prof. M. Mühlleitner. HDECAY calculated
the decay spectrum of the remaining channels of the parameter point and ultimately, the
HDECAY output was analysed using HiggsBounds [56], which checked, whether the scenario
complies with experimental constraints from LEP, Tevatron and LHC data.
In the following analysis, we estimate the theoretical error due to unknown higher order
contributions by performing all calculations in two differing definitions of the third generation
quark masses. In the pole quark mass scheme, the one-loop corrected NMSSM Higgs sector is
evaluated with the quark masses summarised in Tab. 6.1. Alternatively, we use the running
DR top and bottom quark masses, which are determined by converting the pole masses
into the corresponding DR masses and by evolving these to the renormalisation scale µren
according to the Standard Model renormalisation group equations. Finally, the gluino self-
energy corrections are added to the DR masses at the scale µren.

6.3. Scenario 1

The starting point for the first scenario with promising one-loop coupling corrections is de-
scribed by the parameter set,

λ = 0.55, κ = 0.25, µeff = 171 GeV

tβ = 1.4, Aλ = 244,GeV Aκ = 30 GeV.
(6.2)

The Higgs mass spectrum of this scenario is shown in Fig. 6.1 as a function of the ratio tβ of
the Higgs vacuum expectation values. As can be inferred from the figure, the mass of lightest
scalar Higgs boson h1 = h1 in the region of approximately5 115 GeV to 125 GeV, whereas
the mass of the light pseudoscalar Higgs A1 varies between 60 GeV and 85 GeV, thereby
excluding the h1 → A1A1 decay channel. Thus, the aim of this analysis is the discussion of
one-loop contributions to the decay of the next-to-lightest scalar Higgs h2. The masses of the
heavy scalar and pseudoscalar Higgs bosons lie in the region around 340 GeV and are not
shown separately here.
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Figure 6.1.: One-loop masses of the Standard Model-like scalar Higgs boson mh1
(solid), the next-

to-lightest scalar Higgs boson mh2
(dashed) and of the light pseudoscalar Higgs boson mA1

(dotted)
as functions of tβ with the running DR top and bottom quark masses (left) and with the top and
bottom quark pole masses (right)

5The fact that this mass lies slightly under the required value is not further disturbing. We will see in the
following, that when theoretical uncertainties for the mass are taken into account, the required value fairly
within the mass span.
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In order to estimate the theoretical error due to neglected higher-order contributions, the
complete analysis was performed for pole quark masses, as described in the previous section,
and for running DR top and bottom quark masses, respectively. The theoretical uncertainty
on the mass of h1 due to the quark mass renormalisation scheme turns out to be of up to
6%, whereas the uncertainties for h2 and A1 lie below 1%. This dependence is not further
surprising when we recall that h1 is required to have couplings comparable to the Standard
Model Higgs couplings, which lead to a notable quark mass dependence of mh1

due to the
one-loop contributions from the heavy quarks and the corresponding squarks. We define the
ratio RX of the hi couplings to gauge bosons and the up and down type quarks with respect
to the corresponding Standard Model coupling as,

RX(hi) =

∣
∣
∣
∣
∣

gNMSSM
hiXX

gSMhXX

∣
∣
∣
∣
∣

2

, X = W/Z, t, b, (6.3)

which, when the couplings are inserted explicitly and the notations of the previous chapters
are used, yield

Rd(hi) = |Ri1/cβ |2 , Ru(hi) = |Ri2/sβ |2 , RZ/W (hi) = |cβRi1 + sβRi2|2 . (6.4)

The resulting ratios RX(h1) are displayed in the left plot of Fig. 6.2 for the running DS top
and bottom masses and yield good agreement with the constraints, as they differ by less than
25% on a broad range of tβ values. The adequate plot for the pole top and bottom mass
scheme yields similar examples, in which the deviation between the respective couplings does
not exceed the 25% mark in a slightly smaller interval of 1.25 ≤ tβ ≤ 2.1.
On the other hand, the small deviations of mA1

and mh2
due to the quark mass renormalisa-

tion scheme indicate potential high singlet contributions in the mass eigenstates, which lead
to suppressed quark couplings and therefore mitigate the dependence from the quark masses.
This assumption is verified in the right plot of Fig. 6.2 by the visualisation of the squared
mixing matrix elements |R23|2, |R46|2 which are a measure for the contribution of the singlet
fields φ3 = hs, φ6 = as to the mass eigenstates h2 = h2, h4 = A1. Thus, as the effect of the
quark mass renormalisation scheme on the h2 → A1A1 channel is of negligible order, we will
restrict the following discussion to the DR quark mass renormalisation scheme.
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Figure 6.2.: Left: The ratio of the h1 couplings to gauge bosons and up and down type quarks with
the corresponding Standard Model couplings RX = |gNMSSM

h1XX /gSMhXX |2 as a function of tβ . Right: The
squares of the Higgs boson mixing matrix elements R23, R46 plotted likewise over the Higgs boson
vacuum expectation value ratio tβ .

Let us now analyse the h2 → A1A1 decay. As already said, the starting point parameters
Eq. (6.2) yielded promising one-loop corrections to the Higgs self-coupling. Unfortunately, the
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comparison of the improved tree-level and one-loop decay widths in Fig. 6.3 shows, that this
relatively high correction of ∼ 17% is only given for small values of tβ, where the decay widths
are both small. The left diagram of Fig. 6.4 shows in detail, how the deviation between the
improved tree-level and the one-loop corrected decay widths tends to zero for higher values
of tβ.
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Figure 6.3.: Improved tree-level (dashed/blue) and the one-loop corrected (full/red) decay width
of the next-to-lightest scalar Higgs h2 into the light pseudoscalar Higgs bosons A1. The comparison
yields, that the improved tree-level coupling is a good approximation for this parameter point.

Additionally, Fig. 6.5 endorses the lack of significance of the one-loop corrections, as in the low
tβ region the branching ratio of the h2 → A1A1 decay is suppressed due to the kinematically
allowed decay into W bosons. Even though the gauge boson couplings of h2 are weaker
compared to a Standard Model Higgs of the same mass due to the high singlet contributions,
the channel still yields the highest decay width. The A1 channel starts to dominate in the tβ
region, in which the singlet contribution to h2 rises over 92%, which leads to a high suppression
of the coupling to vector bosons, as can be seen in the right diagram of Fig. 6.4.
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butions normalised to the improved tree-level decay width as a function of tβ . Right: h2 coupling
normalised to the Standard Model Higgs coupling according to Eq. 6.3.
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Figure 6.5.: Branching ratios of the next-to-lightest scalar Higgs boson h2 using the one-loop corrected
h2A1A1 coupling plotted logarithmically over tβ . The W decay channel is highly suppressed in the
region where the singlet contributions to the h2 mass eigenstate reach ∼ 95% (cf. Fig 6.2).

In conclusion, the first scenario turned out to be rather disappointing, as no noteworthy effects
were introduced through the one-loop corrected Higgs self-coupling. As the vast majority of
the points found through our scans yielded similarly small corrections, one might tend to
expect systematics behind this trend.
A possible attempt to explain this behaviour could base on the role of the singlet contribu-
tions to the mass eigenstates involved in the coupling: Singlet-like Higgs boson couplings to
quarks and gauge bosons are suppressed, which could explain, why the one-loop contributions
turn out to be small. This statement, however, would require further elaborate analysis.
Nevertheless, this parameter point shows that the NMSSM still complies with the present ex-
perimental constraints on the Higgs sector and furthermore is in accordance with requirements
from finetuning and perturbativity. Finally, the results of our scans show that this parameter
point can be considered as being fairly representative for scenarios with a Standard Model-like
h1 and possible h2 → A1A1 decays, which suggests that the improved tree-level coupling is a
good approximation in such cases.

6.4. Scenario 2

The second scenario can be considered contrary to the one discussed previously. The starting
point parameters were found as

λ = 0.64, κ = 0.02, µeff = 185.52 GeV

tβ = 4.46, Aλ = 778.1,GeV Aκ = 17.1 GeV.
(6.5)

The starting point lies in an experimentally excluded region due to the small mass of the
lightest scalar Higgs bosons h1 and the presence of a light neutralino χ̃0

1 in the spectrum, as
the signatures of such scenarios have been analysed by the OPAL collaboration [57]. However,
as we will see, when the one-loop Higgs coupling corrections are included, the scenario is not
excluded in a shifted region of λ.
In Fig 6.6 the Higgs boson masses are displayed in the λ range from 0.55 to 0.62. In analogy
to the first scenario, the analysis is performed with both the pole quark masses and the DR



44 6. Numerical Analysis

running quark masses, yielding theoretical uncertainties of under 1% for the mass of the light
pseudoscalar Higgs mA1

and of approximately 2% and up to 3.5% for the scalar Higgs masses
mh1

, mh2
, respectively. The masses of the heavy Higgs bosons h3 and A2 lie above 800 GeV

and are therefore not of concern for this analysis. As already mentioned, the spectrum also
involves a light neutralino χ̃0

1, the mass of which lies around 19 GeV.
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Figure 6.6.: One-loop masses of the lightest scalar Higgs boson mh1
(solid), the Standard Model-

like candidate Higgs boson mh2
(dashed) and of the light pseudoscalar Higgs boson mA1

(dotted) as
functions of λ with the running DR top and bottom quark masses (left) and with the top and bottom
quark pole masses (right).

The Standard Model-like candidate of this scenario is the next-to-lightest scalar Higgs boson
h2, the mass of which lies near the desired 125 GeV when theoretical uncertainties are taken
into account. We can again verify that the couplings of h2 are comparable to the couplings of
a Standard Model Higgs of the same mass according to Eq. (6.3). As can be seen in the left
diagram of Fig. 6.7 for the case where the DR running quark mass was used in the calculation
of the one-loop Higgs boson masses6, the h2 couplings to Standard Model particles differ by
no more than 20% over the whole range of λ.

0.8

0.9

1.0

1.1

1.2

0.56 0.58 0.6 0.62

R
X
(h

2
)

λ

Rd Ru RW/Z
0.0

0.2

0.4

0.6

0.8

1.0

0.56 0.58 0.6 0.62

|R
ij
|2

λ

|R11|2 |R12|2 |R13|2

Figure 6.7.: Left: Couplings of h2 to vector bosons and up and down type quarks normalised to
the corresponding coupling of a Standard Model Higgs with the same mass. Right: Contributions
of the interaction fields φd, φu, φs to the lightest scalar Higgs boson h1 according to the R matrix
convention defined in Eq. (3.28). Both plots are shown for the case where DR top and bottom quark
masses are used in the calculation of the one-loop Higgs masses..

In spite of these acceptable properties of h2, this scenario can most certainly not be used to
reconstruct a Standard Model-like signal, as the spectrum involves three additional supersym-

6The pole quark mass scheme yields similar results.
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metric particles, into which h2 can decay. This suspicion is confirmed in Fig. 6.8, where the
dominant decay channels are identified as the ones into the lightest neutralinos χ̃0

1 and into
a pair of light pseudoscalar Higgs bosons A1. The branching ratios calculated with the pole
quark masses and with the improved tree-level Higgs coupling show comparable behaviour.
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Figure 6.8.: Branching ratios of h2 for the case where running DR top and bottom quark masses
were used in the calculation of the one-loop Higgs boson masses, using the one-loop corrected h2A1A1

coupling. Despite the appropriate mass and couplings, h2 is not a suitable Standard Model-like can-
didate, because of the strongly differing branching ratios compared to the Standard Model. Channels
with BR < 10−3 are omitted.

The interesting feature of this scenario for our discussion is the fact, that even though all
points of the parameter variation are excluded at tree-level due to the h1 → χ̃0

1χ̃
0
1 decay

channel, when the improved tree-level coupling is replaced by the one-loop corrected cou-
pling, the scenario is not excluded at the whole λ range. This is due to a high suppression
of the h1A1A1 improved tree-level coupling, which is compensated when the fully corrected
one-loop coupling is applied. This effect is visualised in the first plot of Fig. 6.9 where we
can see how, for the running DR top and bottom quark mass used in the calculation of the
one-loop corrected Higgs masses, the improved tree-level decay width sinks below numerical
significance for values of λ around 0.57, whereas the one-loop decay width and the improved
tree-level decay width calculated using the pole quark masses, indicates no peculiar behaviour
over the parameter range of λ < 0.62. The origin of the improved tree-level behaviour is diffi-
cult to determine, as the trilinear Higgs coupling is a complicated function of all Higgs sector
parameters. Additionally, the rotation matrix elements Rij also depend on λ, and in our
approach, they are calculated numerically, as the analytical forms are already at tree-level
too elaborate to determine.
Even though the suppression does not seem to be caused solely by the rotation matrix ele-
ments, as, according to the right plot of Fig. 6.7, these show minimal λ dependence, they still
have an effect on the suppression. This can be seen when the variation λ is expanded into the
higher region, in which the scenario is forbidden even for the one-loop corrected decay width.
As can be seen in the lower diagram of Fig. 6.9, the pole quark mass renormalisation scheme
shows a very similar behaviour to the DR running quark mass renormalisation scheme in the
region of λ ≈ 0.71. Thus, the position of this cancellation effect depends on the top and
bottom quark masses, which affect the Higgs self-couplings only indirectly by the one-loop
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rotation matrix used to calculate the improved tree coupling. On the other hand, the one-loop
corrected decay width has an additional quark mass dependence through the loop diagrams
involving quarks and squarks, this dependence however leads only to a 20% deviation of the
decay widths between the two quark mass renormalisation schemes used in the calculation of
the one-loop Higgs masses.
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Figure 6.9.: Top: The h1 → A1A1 decay width in comparison for the improved tree-level and the
one-loop corrected coupling evaluated in both pole quark masses and DR running quark masses used
in the calculation of the one-loop Higgs boson masses. Bottom: Same plot continued to the region
λ > 0.62, in which the scenario is experimentally excluded even for the one-loop corrected decay width.

Finally, let us investigate how this vast deviation of decay widths affects the exclusion limits
for this scenario. Recall that the OPAL analysis discussed in [57] is based on the production of
h1 in Higgs-strahlung and a subsequent invisible χ̃0

1 decay, resulting in a detector signature of
a single Z boson and missing transverse momentum, due to the neutralinos escaping detection.
When we compare the branching ratios of h1 calculated with the improved tree-level and the
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one-loop corrected Higgs coupling (cf. Fig. 6.10), we can clearly see the impact of the coupling
correction on the branching ratios: For the improved tree-level coupling, the branching ratio
into χ̃0

1 yields over 90%, due to the singlet nature of h1 (cf. Fig. 6.7, right plot), with which the
Standard Model decay channels cannot compare. The situation changes considerably, when
the one-loop corrected Higgs coupling is applied, the branching ratio into the pseudoscalar
Higgs bosons A1 is dominant, resulting in a reduced χ̃0

1 signal, for which the OPAL exclusion
criteria do not suffice.
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Figure 6.10.: Branching ratios of the lightest scalar Higgs boson h1 for the improved tree-level (top
plot) and the one-loop corrected (bottom plot) coupling in the DR running quark mass renormalisation
scheme.

The last unsettled question of this discussion is, why the one-loop corrected decay width
scenario is experimentally excluded for λ > 0.62, even though the branching ratios displayed
in the bottom plot of Fig. 6.10 do not suggest any crucial alteration in that region. According
to the HiggsBounds analysis, the reason for this is a gradual increase of the decay width of
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the light pseudoscalar A1 into bottom quarks, which at λ = 0.62 reaches sufficient significance
for the application of the LEP exclusion limits on Higgs cascade decay described in [58].

In conclusion, the second scenario was also not fully satisfactory, as the potential Standard
Model Higgs candidate h2 cannot be used to produce a Standard Model-like Higgs signal
due to the additional decay modes into light supersymmetric particles. Nevertheless, this
scenario yields interesting consequences for the theoretical uncertainty estimate, as the one-
loop Higgs self-coupling corrections help to avoid the λ dependent numerical cancellation
of the improved tree-level h1 → A1A1 decay width. Additionally, the inclusion of the one-
loop corrections leads to a significant modification in the phenomenological analysis, as, even
though the scenario will most likely be excluded by future LHC data, the currently available
exclusion limits set up by the LEP data do not suffice to exclude the scenario in the region
0.55 < λ < 0.62.



CHAPTER 7

Conclusion

Based on the previous studies of the one-loop corrections to the NMSSM Higgs sector by the
group of Prof. M. Mühlleitner, the available framework was expanded to include one-loop
corrections to the CP-conserving trilinear Higgs self-coupling hαAβAγ .

In spite of initial problems caused by the large number of diagrams contributing to the one-
loop amplitude, renormalisation was successfully achieved in the Feynman diagram approach
using FeynArts for the determination of all one-loop contributions, yielding numerical cancel-
lation for the divergent counterterm and next-to-leading order contributions up to the order
of 10−10 for numerous random parameter points.

For subsequent phenomenological analyses a scan procedure was written, which randomly
searched through the parameter space for points with allowed hα → AβAγ decays, that addi-
tionally involve a scalar Higgs boson in the mass region of 125 GeV with Standard Model-like
couplings, in order to produce scenarios in agreement with the currently present LHC Higgs
signal evidence. The scan over more than 500’000 randomly chosen points yielded several pa-
rameter points which fulfil the constraints, out of which the vast majority, however, receives
insignificant corrections from the one-loop corrected self-coupling. The improved tree-level
coupling shows results comparable to the one-loop corrected coupling in the most found
scenarios. A representative parameter point for this sort of scenario has been discussed in
section 6.3.
In contrast, the parameter point discussed in section 6.4 shows a significant change of the par-
tial width hα → AβAγ due to the inclusion of one-loop corrections to the Higgs self-couplings
and thereby proves, that higher order corrections can have a significant phenomenological
impact and reduce the theoretical error due to unknown higher order corrections.

Going beyond the limited analysis of this thesis, further phenomenological investigations
could evaluate, whether there is a systematical reason for the observed trend, that one-loop
corrections to the h2 → A1A1 decay are insignificant in scenarios with a Standard Model-like
Higgs boson h1 and light pseudoscalar Higgs bosons A1.
Ultimately, the calculation performed in the scope of this thesis serve as a source of cross-
check for further projects, the aim of which is the implementation of the complete one-loop
corrections to the CP-violating NMSSM trilinear Higgs self-couplings into a modified version
of HDECAY, allowing predictions for NMSSM Higgs phenomenology with one-loop precision.





APPENDIX A

Trilinear Higgs Self-Coupling

The tree-level trilinear Higgs self-coupling has been derived in chapter 4 and was of central
importance throughout the thesis, thus we present here its explicit form,

ghhhαβγ = − i (
√

2Aλ λ− 2λκ vS) cβ P321
αβγ/2 − i (

√
2Aλ λ− 2λκ vS)P421

αβγ sβ/2+

+ i v (g21 + g22 − 4λ2)P433
αβγ sβ/8 + i v (g21 + g22 − 4λ2) cβ P344

αβγ/8+
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αβγ sβ/8−

− iP511
αβγ (2 vS λ

2 + (
√

2Aλ λ+ 2κλ vS) s2β)/2+

+ i v cβ (−2λ2 + (g21 + g22 − 2λ2) c2β)P311
αβγ/8−

− i vS λ
2 P544

αβγ/2 − i vS λ
2 P533

αβγ/2+

+ i (λκ) vP521
αβγ .

Where P is an abbreviation for the permutations of the Higgs rotation matrix elements, which
are defined in Eq. 3.28

P lmn
αβδ = + RαnRβmRδl + RαmRβnRδl + RαnRβlRδm+

+ RαlRβnRδm + RαmRβlRδn + RαlRβmRδn.





APPENDIXB

The Decay Width

In Eq. (5.35), we have derived the amplitude Anlo
αβγ of the one-loop corrected hα → hβhγ

decay for the special case of α ∈ {1, 2, 3}, β, γ ∈ {4, 5}. For the phenomenological discussion,
the decay amplitude is used to determine the partial decay width Γi→f, which, on the other
hand, can also be derived from the in principle experimentally observable branching ratios
and total width. The partial decay width of a particle of mass m decaying into n final state
particles can be expressed in the rest frame of the decaying particle as,

dΓ =
(2π)2

2m
|A|2dΦn(P ; p1, . . . , pn). (B.1)

Where P is the four-momentum of the decaying particle, P = (m, 0), and dΦn is the diffe-
rential of the n particle phase space,

dΦn(P ; pi, . . . , pn) = δ4(P −
n∑

i=1

pi)
n∏

i=1

d3pi
(2π)32Ei

. (B.2)

In our special case of a 1 → 2 decay, the phase space can be integrated resulting in the specific
form,

Γnlo
hα→hβhγ

=
λ1/2(m2

hα
, m2

hβ
, m2

hγ
)

16πm3
hα

|Anlo
αβγ |2, (B.3)

with λ1/2(x.y.z) =
√

x2 − 2xy − 2xz − 2yz + y2 + z2. (B.4)

In addition to the one-loop corrected decay width, for reasons of comparison we define the
improved tree-level width, in which the matrix element A is replaced by the mass corrected
trilinear Higgs self-coupling ḡ3hαβγ according to Eq. (5.33)

Γimp.tree
hα→hβhγ

=
λ1/2(m2

hα
, m2

hβ
, m2

hγ
)

16πm3
hα

|ḡ3h
αβγ |2 (B.5)
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