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1. Introduction

Besides the standard separation of natural sciences into theory and experiment, the sim-
ulation of physical processes came up as a third mainstay during the last decades. For
instance, Monte Carlo event generators play an essential role in collider physics. By sim-
ulating the final states of particle collisions they are used to compare theoretical models
with data measurements in experiments such as the Large Electron Positron Collider
(LEP).

The theory of strong interactions is called Quantum Chromodynamics (QCD) and is
formulated in terms of quarks, antiquarks and gluons, collectively referred to as partons.
The event generation starts by generating scattering processes on a probabilistic basis by
calculating the corresponding amplitude with perturbation theory. The partons remaining
after the hard process often radiate additional gluons, so-called bremsstrahlung gluons, or
undergo other branching processes. This radiation is calculated with a careful treatment
of perturbation theory during the parton shower. Nature tells us, that partons are never
observed as free states. Therefore the partons have to be transferred into collimated sprays
of hadrons, so-called jets, at non-perturbative scales.

The processes of QCD are very dominant in the high-energy collisions described before.
In the course of searches for new particles, such as the Higgs boson, or searches for be-
yond the Standard Model physics the QCD effects should be controlled on a very high
level. Thereby the QCD background is subtracted from the total signal leaving a pre-
cise signal for the process of interest. Besides the importance for special searches, the
properties of QCD are interesting by themselves. Events with underlying QCD processes
are usually multi-jet events, containing two or more jets initiated by quarks and gluons
that are either produced during the hard process or originate in additional emissions.
That is why the modelling of QCD jets is very important for multi-purpose Monte Carlo
event generators for high-energy collisions, such as Herwig++ [1] or Pythia8 [2]. The
characteristics of jets are determined by the implementation of the parton shower al-
gorithm. Properties such as QCD colour coherence, the destructive interference effect
between colour-connected partons, or the emissions of soft jets are implemented in dif-
ferent ways. Therefore the comparison of different models for the shower algorithm with
data measurements can give some indication of QCD properties.
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Chapter 2 provides a short overview of the theory of strong interactions and the Standard
Model whereas Chapter 4 aims at giving the most important physical features that are
used to build up a shower algorithm. The basics of current hadronization models are
described as well. Chapter 5 continues with details on how the formulas presented be-
fore are implemented in the different Monte Carlo generators and presents the main free
parameters of the theoretical models.

In Chapter 6 the analysis used for measuring shower properties is described, including
information about how events are selected in order to be sensitive to the parton shower
and which observables can be used to compare the different shower implementations. In
order to ensure a fair comparison of the latter Chapter 7 deals with constraining the
free parameters of the theoretical models by using existing data, which is referred to as
generator tuning.

For the validation of Monte Carlo event generators it is crucial to compare its predic-
tions to real data. Therefore Chapter 8 deals with the analysis of LEP data and provides
information about the event selection, reconstruction and correction procedure and sys-
tematical errors of the data. The comparison to the event generators is presented in
Chapter 9 and finally Chapter 10 rounds up with a summary and some conclusions.



2. Quantum Chromodynamics and
Standard Model

The Standard Model of Particle Physics (SM) is a combination of two relativistic quantum
field theories, Quantum Chromodynamics (QCD) and the electroweak theory, and its
underlying gauge group is therefore the

SU(3)C × SU(2)L × U(1)Y . (2.1)

The SM is able to describe all known fundamental particles and forces (except for gravity)
in nature.

Since this thesis deals with QCD coherence the basic properties of QCD are outlined in
this chapter followed by a description of the SM. A more detailed discussion of QCD and
the SM can be found in many textbooks, for example in Refs. [3–5].

2.1 The QCD Lagrangian
The theory of strong interaction is described by a non-abelian gauge theory based on the
SU(3)C gauge group where C stands for colour. The classical QCD Lagrangian with the
massive quark fields Ψf of flavour f is

LQCD =
∑

f=u,d,...
Ψ̄f (iγµDµ −mf )Ψf −

1
4G

aµνGa
µν (2.2)

with the covariant derivative

Dµ = ∂µ − igsT aGa
µ . (2.3)

The eight massless gluon fields in the adjoint representation of the SU(3)C gauge group
are Ga

µ with Gµ = Ga
µT

a and the field strength tensors are

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gSf
abcGb

µG
c
ν

Gµν = DµGν −DνGµ = i

gs
[Dµ, Dν ] (2.4)
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with the strong coupling constant gs. The eight gauge fields correspond to the eight
SU(3)C generators T a. The Lie algebra[

T a, T b
]

= ifabcT c (2.5)

defines the structure constants fabc. The generators are the Gell-Mann matrices in the
fundamental representation for the SU(3)C gauge group: T aij = 1

2λ
a
ij .

The last term of Eq. (2.2) leads to the self-coupling of the gluon:

Lg = −1
4G

aµνGa
µν = −1

2Tr (GµνGµν)

= −1
2Tr

(
(∂µGν − ∂νGµ)2

)
+ 1

2g
2
sTr

(
[Gµ, Gν ]2

)
+ igsTr

(
((∂µGν − ∂νGµ) [Gµ, Gν ])2

)
(2.6)

The second and third term represent the three-point and four-point gluon self-interaction
respectively.

The quarks are colour triplets Ψf ≡ Ψc
f with c = red, blue, green since they transform

according to the fundamental representation. For simplicity the colour indices are sup-
pressed from now on whenever unmistakeable. The QCD Lagrangian is invariant under
infinitesimal local SU(3)C gauge transformations described by the infinitesimal real pa-
rameters Θa(x). The fields transform as

Ψf (x) → [1 + igsΘa(x)T a] Ψf (x)
DµΨf (x) → [1 + igsΘa(x)T a]DµΨf (x)

Ga
µ(x) → Ga

µ(x) + ∂µΘa(x)− gsfabcΘb(x)Gc
µ(x) . (2.7)

Quantization of the gluon fields can be performed with the introduction of an additional
gauge-fixing term Lgauge in LQCD. It is necessary to get rid of unphysical degrees of
freedom with the help of Fadeev-Popov ghost fields causing a second additional term
Lghost in LQCD. In special cases for the gauge-fixing this last term Lghost can be zero
causing a more complicated structure of the propagators.

Since QCD is treated here as a separate theory the mass terms mΨ̄fΨf in Eq. (2.2) could
be introduced. But these terms break the weak isospin and hypercharge symmetries and
can thus not be used as mass terms in the SM.

2.2 Asymptotic Freedom and Confinement
The QCD coupling αS = g2

s/4π is not a constant, it becomes small at high energies or
short distances. This scale dependence is known as asymptotic freedom [6, 7] and can be
described with the beta function

β(αS) = Q2 ∂αS
∂Q2 = ∂αS

∂ lnQ2 (2.8)

where Q is the energy scale where the coupling is measured. The beta function, derived
from higher-order calculations, can be expanded in powers of αS

β(αS) = −α2
S

(
b0 + b1αS +O

(
α2
S

))
(2.9)
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with the leading order (LO) and next-to-leading order (NLO) coefficients

b0 = 33− 2Nf

12π and b1 = 153− 19Nf

24π2 (2.10)

where Nf is the number of quark flavours with masses smaller than ∼ Q. Since the number
of observed quark flavours is Nf = 6 the beta function is of negative sign and therefore the
resulting running coupling αS(Q2) decreases with increasing energy and becomes small for
short distance interactions. For the cancellation of ultra-violet divergences it is necessary
to choose a specific reference scale Q2 = µ2 during the the renormalization process. A
typical choice for this scale is the mass of the Z0 boson where the coupling has been
measured to be αS(M2

Z) ≈ 0.12. To calculate the strong coupling at a certain energy scale
the value of the coupling at the reference scale µ is used, from which the value at any
other scale can be obtained by solving Eq. (2.8)

αS(Q2) = αS(µ2)
1 + b0αS(µ2) ln (Q2/µ2) +O (α2

S) . (2.11)

When considering the coupling at sufficiently small energies Eq. (2.11) can be rewritten
as

αS(Q2) = 1
b0 ln (Q2/Λ2) (2.12)

where Λ ≈ 200 MeV specifies the energy scale at which the perturbative coupling nomi-
nally becomes infinite and perturbation theory therefore breaks down.

Another important property of QCD is the (colour) confinement which describes the
phenomenon that quarks and gluons are not observed as free states and can therefore not
propagate over macroscopic distances. If the QCD coupling is sufficiently strong the only
observed states are SU(3)C singlet states, namely mesons and baryons.

2.3 Standard Model
The combination of QCD and the theory of weak and electromagnetic interactions is
the Standard Model (SM). Its underlying gauge group, see Eq. (2.1), contains the gauge
groups SU(3)C of QCD and SU(2)L × U(1)Y of the electroweak theory where L denotes
left-handed and Y stands for hypercharge. The particle content of the SM includes the
leptons and quarks (

νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
and

(
u
d

)
,

(
c
s

)
,

(
t
b

)
,

in each case arranged in three generations. The bosons for QCD are the eight gluons and
for the electroweak theory the photon, W and Z bosons:

g1, ..., g8 and γ, W+, W−, Z0 .

Tab. 2.1 shows the representations of the first generation fermion fields in the three gauge
groups. The fundamental representation of the SU(2)L gauge group are the left-chiral
projections of the fields, ΨL = 1

2(1 − γ5)Ψ, namely the doublets QL = (uL, dL)T for the
quarks and L = (νL, eL)T for the leptons. Right-chiral projections, ΨR = 1

2(1 + γ5)Ψ, are



6 2. Quantum Chromodynamics and Standard Model

Field Ψ Qem SU(3)C Is SU(2)L Iw I3
w Y = Qem − I3

w

QL =
(
uL
dL

)
2/3
−1/3 Triplet 1/2 Doublet 1/2 1/2

−1/2 1/6

uR 2/3 Triplet 1/2 Singlet 0 0 2/3
dR −1/3 Triplet 1/2 Singlet 0 0 −1/3

L =
(
νeL
eL

)
0
−1 Singlet 0 Doublet 1/2 1/2

−1/2 −1/2

R = eR −1 Singlet 0 Singlet 0 0 −1

Table 2.1: Representations of the first generation fermions with electromagnetic charge
Qem, representation in the SU(3)C gauge group, eigenvalues to the strong isospin Is,
representation in the SU(2)L gauge group, eigenvalues of the weak isospin Iw, its third
component I3

w and eigenvalues of the hypercharge operator Y = Qem − I3
w.

singlets under SU(2)L. Note that neutrinos do not appear righthanded1 and are assumed
to be massless here. The Lagrangian of the SM is

LSM =Lboson + Lfermion + LHiggs + LYukawa

=− 1
4G

aµνGa
µν −

1
4B

µνBµν −
1
4W

iµνW i
µν

+
∑

ΨL/R

Ψ̄L/Riγ
µ
(
∂µ − igsIsλaGa

µ − ig′Y Bµ − igIwσiW i
µ

)
ΨL/R

+
∣∣∣∣(∂µ − i

2g
′Bµ −

i

2gσ
iW i

µ

)
Φ
∣∣∣∣2 − µ2Φ†Φ− λ

(
Φ†Φ

)2

−
∑

ΨL/R

Ge

(
Ψ̄LΦΨR + Ψ̄RΦ†ΨL

)
(2.13)

with the kinetic part of the gauge fields Lboson with the gauge field Bµ of the U(1)Y
gauge group, the three gauge fields W i

µ (i = 1, 2, 3) of the SU(2)L and the eight gluon
fields Ga

µ (a = 1 .. 8) of the SU(3)C. The kinetic part of the fermions and their couplings
to the gauge fields appear in Lfermion with the dimensionless coupling constants g and
g′. The coupling to the U(1)Y gauge field goes proportional with the according quantum
number, the hypercharge Y , and analogously for the coupling to SU(2)L and SU(3)C gauge
fields. The fermion fields and their eigenvalues to the corresponding operators for the first
generation can be found in Tab. 2.1. The kinetic part of the Higgs doublet, its coupling to
the gauge fields and its potential is LHiggs. The last term, LYukawa, contains the coupling
of the fermions to the Higgs doublet, the Yukawa coupling, with a dimensionless coupling
constant Ge.

1The Goldhaber experiment (1957) showed that neutrinos only appear lefthanded in nature.



3. The Experiment

Since part of this thesis deals with the analysis of data the collider and the experiment
the data was taken from are shortly described in the following sections.

3.1 The LEP Collider
The Large Electron Positron Collider (LEP) with its 27-kilometer circumference was the
largest electron-positron accelerator ever built. In the first phase of the LEP operation
(1989-1995), called LEP1, the center of mass energy was chosen to be at the mass of the Z0

boson, around 91 GeV. In this way around 7 million of events producing Z0 bosons were
accumulated for high precision measurements. Therewith the Z0 boson was discovered
at CERN in 1983. In 1995 LEP was upgraded for the second operation phase, LEP2,
where the center of mass energy was increased up to 209 GeV. During this second phase
(1996-2000) the colliding energy was high enough to produce W+W− boson pairs and to
search for possible new particles or physical effects.

The detectors at LEP provided a detailed study of the SM, especially of the electroweak
interaction, and proved that there are exactly three generations of particles of matter.
After closing LEP in the end of 2000 the Large Hadron Collider (LHC) was built in the
same tunnel.

3.2 The OPAL Experiment
The OPAL detector (Omni-Purpose Apparatus at LEP) was one of four enormous detec-
tors observing the collisions at LEP. The data taking started in August 1989 and finally
ended in November 2000.

The detector components, as shown in Fig. 3.1, were arranged around the beam pipe, in a
layered structure like that of an onion. The following information about the components
are taken from Ref. [8] where a more detailed description of the detector parts can be
found.

The tracking system of the OPAL detector consisted of a silicon microvertex detector, a
vertex detector, a jet chamber, and so-called Z-chambers (from the beam pipe out).
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Figure 3.1: Schematic picture the OPAL detector which was about 12 m long, 12m high
and 12m wide. Its different components such as vertex chambers or muon detectors are
shown. Taken from Ref. [8].

Decay vertices of short-lived particles were detected by the silicon microvertex detector
and the vertex chamber. They also worked together to improve the momentum resolu-
tion. The fact that different particles produce different amounts of ionization and get
discriminatively far diffracted in magnetic fields was used by the central jet chamber to
identify the particles. Tracks in the plane perpendicular to the beam axis were well iden-
tified by the combination of these chambers. The last chambers, the Z-chambers located
at the outside edge of the jet chamber, led to precise measurements of the perpendicular
coordinates of the tracks.

The calorimeter system of OPAL contained the electromagnetic calorimeter in order to
detect electrons and photons and the hadron calorimeter for identifying hadrons. The
third part of this system was the forward calorimeter placed close to the beam at the two
ends of the detector in order to detect forward flying particles. At the end caps muons
were identified by the muon detectors.



4. Physics of Event Generators

A highly non-trivial task is to understand the final states at high-energy collisions con-
taining a large number of particles with momenta ranging over many orders of magnitude.
Due to factorization it is possible to treat the different processes separately: First a sub-
process at the highest energy scale of the event can be computed in perturbation theory
with its matrix element. During the parton shower additional emissions occur and the
scale evolves down to low scales at which perturbation theory breaks down. Now the
hadronization forms hadrons out of the partons and finally the unstable hadrons decay
into the observed particles. All these steps are very well suited to computer simulations
using Monte Carlo techniques. The aim of this chapter is to give a basic overview of the
physics behind these processes.

4.1 Hard Processes
The first step to be calculated is the hard subprocess. The differential cross section for
an observable O taking all orders of the strong coupling αS into account is

dσn
dO = F

∞∑
k=0

∫
dΦn+k

∣∣∣∣∣
∞∑
l=0
M(l)

n+k

∣∣∣∣∣
2

δ (O −O(Φn+k)) (4.1)

with flux factor F . The final state contains n plus k additional particles and Φn(+k)
denotes the according phase space. The first sum runs over all additional external legs k
and the second over all additional loops l. Therefore M (l)

n+k is the amplitude for a system
containing n particles plus k external legs and l loops. M (0)

n is the LO contribution
for producing the n-particle final state and higher terms correspond to real and virtual
corrections. Considering perturbative QCD, the order of the perturbative series can be
obtained as follows [9]:

k = 0, l = 0 =⇒ LO for the production of n particles
k = m, l = 0 =⇒ LO for n particles plus m additional jets
k + l ≤ m =⇒ NmLO for n particles (includes Nm−1LO for n+ 1 jet,

Nm−2LO for n+ 2 jet, ... LO for n+m jets)



10 4. Physics of Event Generators

Figure 4.1: Relevant splittings in the QCD parton shower: g → gg, g → qq̄ and q → qg.

For example the NLO cross section for the production of only one particle, meaning
k + l ≤ 1 and n = 1, is

σNLO
1 = F

∫
dΦ1

∣∣∣M(0)
1

∣∣∣2 + F
∫

dΦ2

∣∣∣M(0)
2

∣∣∣2 + F
∫

dΦ12Re
[
M(1)

1 M
(0)∗
1

]
= σ

(0)
0 + σ

(0)
1 + σ

(1)
0 (4.2)

with the Born cross section σ(0)
0 , real correction M (0)

2 and virtual correction M (1)
1 . Note

that the term σ
(1)
1 = F

∫
dΦ1

∣∣∣M(1)
1

∣∣∣2 does not appear since this term contains higher
orders of the strong coupling constant, and therefore belongs to the NNLO contribution.
Integrating over the whole phase space dΦn+k in Eq. (4.1) would lead to divergences in
the real and virtual corrections. By adding the contributions these singularities cancel
each other order by order.

4.2 Parton Shower
The hard processes are usually generated according to lowest-order matrix elements. To
get higher accuracy it is possible to include higher orders of the strong coupling constant
αS in perturbation theory. But these corrections get more difficult to calculate with
increasing order of αS and in some cases the cross section for certain phase space regions
of the final state is enhanced in higher orders [5]. Therefore a shower algorithm is used to
resum the effect of higher orders. This approach is typically formulated as an evolution
in momentum transfer down from the higher scales associated with the hard process to
low scales [10].

QCD matrix elements have enhancements for two kinematic configurations:

1. The emission of a soft gluon (E → 0, soft singularity).

2. The splitting into two collinear partons i and j (θij → 0, collinear singularity).

The cross section σn+1 for a hard configuration accompanied by an additional emission
can be calculated from the cross section σn of the hard process due to the fact that gauge
theory amplitudes factorize in the soft and collinear limit. This is used in parton shower
algorithms to generate emissions iteratively.

4.2.1 Parton Branching in the Collinear Limit

Consider the splitting of an outgoing parton a into two partons b and c: a → bc. The
relevant branchings in QCD, namely g → gg, g → qq̄ and q → qg, are shown in Fig. 4.1.
After the splitting parton b carries the energy fraction z of the mother parton a, Eb = zEa,
and due to energy conservation the energy of parton c is Ec = (1− z)Ea.
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Process a→ bc Splitting Function Pa→bc(z)

g → gg Pg→gg = NC

[
z

1− z + 1− z
z

+ z(1− z)
]

g → qq̄ Pg→qq̄ = TR [z2 + (1− z)2]

q → qg Pq→qg = CF
1 + z2

1− z

q → gq Pq→gq = CF
1 + (1− z)2

z

Table 4.1: The Altarelli-Parisi splitting functions Pa→bc(z) for the relevant splitting pro-
cesses a → bc in QCD. Equations taken from Ref. [10]. Recap that parton b carries the
momentum fraction z and hence parton c carries z − 1. The colour factors are TR = 1

2 ,
NC = CA = 3 and CF = 4

3 .

As mentioned above, the amplitude factorizes for small opening angles θbc between the
partons b and c, hence in the collinear limit, and can therefore be written as

|Mn+1(.., b, c, ...)|2 b||c−→ 4παS
Pa→bc(z)
sbc

|Mn(.., b+ c, ...)|2 (4.3)

with the Altarelli-Parisi splitting kernels Pa→bc(z), which contain a colour factor Ca→bc for
the considered branching a → bc, and the universal singularity containing the invariants
sbc which are defined as

sbc ≡ 2pb · pc = (pb + pc)2 −m2
b −m2

c = 2EbEc(1− cos θbc) . (4.4)

In the massless limit sbc is equal to the virtuality of parton a,

sbc = (pb + pc)2 = p2
a ≡ Q2 . (4.5)

In the collinear limit, sbc → 0, the propagator of the parent a, 1/Q2, goes on shell. Thus
the singularity of the propagator is the origin of the collinear singularity.

The relation between the cross section for the hard process σn and the cross section for
the same process accompanied by an additional parton with momentum fraction z in the
collinear limit is given by

dσn+1
b||c−→ dσn

∑
b,c

αS
2π

dQ2

Q2 dzPa→bc(z) (4.6)

with the appropriate splitting function Pa→bc(z) listed in Tab. 4.1 for the relevant split-
tings. Instead of the virtuality Q2 of the parent parton a it is also possible to use any
other variable proportional to θ2

bc, for example the transverse momentum of parton b with
respect to the parent parton’s direction, k2

⊥ = z2(1− z)2E2
aθ

2
bc, since

dk2
⊥

k2
⊥

= dθ2
bc

θ2
bc

= dp2
a

p2
a

= dQ2

Q2 ≡ dt = d lnQ2 . (4.7)

Each variable gives the same result in the collinear limit, but different extrapolations away
from it.
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4.2.2 Coherent Branching and Angular Ordering
Besides the collinear singularities there are enhancements associated with soft gluon emis-
sion for any emission angle and any velocity of the emitting parton [5]. Consider a soft
gluon with momentum pj emitted by a colour-connected pair of partons with momenta
pI and pK . Since gauge theory amplitudes factorize in the soft limit, the matrix element
squared can be written as

|Mn+1(.., i, j, k, ...)|2 Ej→0−→ 4παS CIK→ijk
(

2sik
sijsjk

− m2
i

s2
ij

−
m2
j

s2
jk

)
|Mn(.., I,K, ...)|2

(4.8)

with the universal soft eikonal factor (term in parenthesis), colour factor CIK→ijk for the
specific splitting IK → ijk and the invariants sab as defined in Eq. (4.5). In the limit
where the emitted gluon is soft, the propagators of both partons i and j go on shell. Thus
the soft singularity 2sik/(sijsjk) is generated by the singularities of the propagators of
both parent partons.

Following Eq. (4.8) the cross section for the soft emission contains the dipole radiation
term

WIK(j) ≡ 1
2E

2
j

(
2sik
sijsjk

− m2
i

s2
ij

−
m2
j

s2
jk

)
(4.9)

with gluon energy Ej. In the massless limit (βI,K = vI,K/c → 1) the radiation function
in Eq. (4.9) has enhancements for either θij → 0 or θjk → 0. Thus it can be written as

WIK(j) ≡ W
(I)
IK (j) +W

(K)
IK (j)

= 1
2E

2
j

(
1
sij
− m2

i

s2
ij

+ sik − sij
sijsjk

)
+ 1

2E
2
j

(
1
sjk
−
m2
j

s2
jk

+ sik − sjk
sijsjk

)
(4.10)

where W (I)
IK (j) only contains the singularity for the gluon being collinear to parton i and

is finite if the gluon and parton k are collinear. Hence it may naturally be associated
with emission off parton i. The radiation function W (I)

IK (j) is everywhere positive-definite
for angles θij < θIK , whereas the function goes to negative values for θij > θIK [11].
Azimuthal averaging gives

〈W (I)
IK 〉φi

= H
(I)
IK(θij)

EIEjβI
sij

⇒ Θ(θIK − θij)
1

1− cos θij
for βI,K → 1 , (4.11)

where H(I)
IK is a function depending on θij and θIK . After azimuthal averaging the con-

tribution from W
(I)
IK is limited to a cone around parton I with opening angle 2θIK in the

massless limit βI,K → 1. Similarly, the contribution fromW
(K)
IK is limited to a cone around

parton K with opening angle 2θIK .

For massive emitting partons I andK the Heaviside step function of the radiation function
H

(I)
IK(θij) is softened. The emission at small opening angles is suppressed since the masses

shield the collinear enhancement. Hence there is a so-called dead cone for θij < mI/EI ,
namely for emissions near to the direction of the massive particle I.

By using the emission angle as the shower ordering variable the coherence property of
QCD can be described. Fig. 4.2 shows the QCD colour coherence for soft gluon emissions
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Figure 4.2: Illustration of QCD coherence, the destructive interference effects between
colour-connected partons, in this case gluons.

from a pair of colour-connected gluons. The two Feynman diagrams where the additional
gluon is attached to any of the external gluons interfere destructivly. Hence the coherent
sum of these diagrams is equal to the emission off a single gluon with the total momentum
and colour of the two external gluons. This is, as if it were emitted before the smaller-
angle harder gluon. The angular ordering property of soft emission is an example of a
coherence effect common to all gauge theories [5]. In Quantum Electrodynamics (QED)
soft wide-angle bremsstrahlung from e−e+ pairs is suppressed, which is called Chudakov
effect. The coherent parton branching formalism, whose basis is the angular ordering, can
be used to calculate the soft gluon enhancements to all orders.
The cross section of a hard process with a n-particle final state, accompanied by one
additional radiation can be written in terms of the radiation function,

dσn+1
Ej→0−→ −dσn

αS
2π

∑
i 6=k
Ci · Ck

{
Θ(θIK − θij)W (I)

IK (φi)
dφi
2π dsij + (i↔ k)

}
dEj
Ej

(4.12)

for massless particles with colour factors Ci and Cj.

4.2.3 The Colour Dipole Model
The basis of this model is the neglection of 1/NC contributions in QCD diagrams in the
limit of large number of colours NC . Therewith the colour structure of an arbitrarily
complicated parton system can be decomposed as a colour flow. The colour flow is repre-
sented by a set of colour lines, each connecting two partons. In the limit of soft gluons and
large-NC the colour lines emit independently. For each configuration the probabilities of
the possible colour flows can be calculated and one specific colour flow can be chosen since
in the large-NC limit the contribution of the overlap of different colour flows is neglected.
Colour dipoles are formed by colour-connected parton pairs as they can appear after the
hard process or during the parton shower. The dipoles are characterized by their colour
line and each of these lines emits independently.
Naturally dipole showers are ordered in transverse momentum since the dipole approxi-
mation is the limit in which the scales involved in the production of the colour lines are
much larger than the transverse momentum of the emitted gluon. Transverse means here
relative to the axis defined by the colour line from which the gluon is emitted [10].
Beginning with, for example, a quark-antiquark pair going out of the hard process, one
colour dipole is formed out of the qq̄ pair and one colour flow is chosen. The following
dipole evolution makes use of this unique initial condition. After emissions off the dipole
their number increases as the number of colour lines increases. Thereby each colour line
connecting a pair of partons effectively forms a colour-anticolour dipole. Emissions with
finite transverse momentum lead to recoils, which, if experienced by a gluon, may lead
to effects on the neighbouring dipoles since gluons carry two colour lines. The emission
with the highest transverse momentum appears first and its transverse momentum gives
the upper limit for the following evolution of the dipoles.
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Process IK → ijk AIK→ijk(yij, yjk; sIK , αS)

qq̄ → qgq̄ Aqq̄→qgq̄ = 4παS
2CF
sIK

(
2

yijyjk
− 2
yij
− 2
yjk

+ yij
yjk

+ yjk
yij

)

qg → qgg Aqg→qgg = 4παS
2CF
sIK

(
2

yijyjk
− 2
yij
− 2
yjk

+ yij
yjk

+ yjk
yij
−
y2
ij

yjk

)

gg → ggg Agg→ggg = 4παS
NC

sIK

(
2

yijyjk
− 2
yij
− 2
yjk

+ yij
yjk

+ yjk
yij
−
y2
ij

yjk
−
y2
jk

yij

)

qg → qq̄′q′ Aqg→qq̄′q′ = 4παS
1
sIK

(
1

2yjk
− yij
yjk

+
y2
ij

yjk

)

gg → gq′q̄′ Agg→gq′q̄′ = Aqg→qq̄′q′

Table 4.2: The Gehrmann-Gehrmann-de-Ridder-Glover antenna functions
AIK→ijk(yij, yjk; sIK , αS), with finite terms subtracted, for different processes IK → ijk.
Taken from Ref. [12].

4.2.4 Antenna Functions

As shown in Eqs. (4.3) and (4.8) the amplitude factorizes in the collinear and soft limit.
The different approaches for the shower algorithm combine the two limits into one univer-
sal set of functions to achieve a correct behaviour for both limits. One of these approaches
uses antenna functions. For example the antenna function for the gluon emission from a
colour-connected qq̄ pair can be derived from the matrix elements squared for the process
Z → qq̄ → qgq̄ [9],

|M(Z → qigj q̄k)|2

|M(Z → qI q̄K)|2
= 4παS2CF

[ 2sik
sijsjk︸ ︷︷ ︸
eikonal

+ 1
sIK

(
sjk
sik

+ sik
sjk

)
︸ ︷︷ ︸

collinear

]
. (4.13)

This expression contains the same eikonal factor as in Eq. (4.8) and holds only for massless
partons. However, massive generalizations do exist. In general a process-dependent addi-
tive finite factor occurs, which is zero for the process in Eq. (4.13). Since the singularity
structure is universal, the antenna function for a splitting of type IK → ijk moving the
system of n to n+ 1 partons can in general be written as

|Mn+1|2 = 4παS CIK→ijk
(

2sik
sijsjk

+ 1
sIK

(
sjk
sij

+ sij
sjk

)
−
s2
ij

sjk
−
s2
jk

sij
+ finite

)
︸ ︷︷ ︸

Antenna Function

|Mn|2 .

(4.14)

Since this equation is process-independent the cross section dσn+1 can approximately be
expressed in terms of dσn and the antenna function,

dσn+1 −→ dσn
∑
i,j,k

dyikdykj
16π2 AIK→ijk(yij, yjk; sIK , αS) , (4.15)
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with the scaled branching invariants yij = sij/s, where s = sIK = sijk. The most general
form of the antenna function for the massless splitting IK → ijk is given by a double
Laurent series in the two branching invariants,

aIK→ijk(yij, yjk; sIK , αS) = 1
sIK

∞∑
α,β=−1

Cα,β (yij)α (yjk)β , (4.16)

with AIK→ijk(yij, yjk; sIK , αS) = 4παS C aIK→ijk(yik, yjk; sIK) . (4.17)

The most singular term contains the double (soft) singularity (the “double log” term)
and its strength is controlled via the coefficient C−1,−1. The single (collinear) singularities
(the “single log” terms) appear with the coefficients C−1,β≥0 and Cα≥0,−1. These “leading
log” terms are universal, as mentioned above, and the coefficients Cα≥0,β≥0 are arbitrary.
Different sets of antenna functions distinguishable by the values of the coefficients Cα,β
exist, [12].
The Gehrmann-Gehrmann-de-Ridder-Glover antenna functions for different processes IK →
ijk without the finite part are listed in Tab. 4.2.

4.2.5 Sudakov Form Factors and the Shower Chain
The so-called Sudakov form factor defines the probability that there is no resolvable
splitting or emission between two scales tin and tend (tin > tend),

∆(tin, tend) = exp
{
−
∫ tin

tend
dtP (t)

}
, (4.18)

where P (t) is the total parton evolution or splitting probability density. Considering a
specific system of n partons with phase space Φn, the Sudakov form factor is

∆(tn, tend) = exp
{
−
∫ tn

tend
dtn+1

∑
r

∫ dΦr
n+1

dΦn

δ(tn+1 − trn+1)P (n→ n+ 1)
}

(4.19)

with the branching phase space dΦr
n+1/dΦn. The sum runs over all possible branchings

r that transfers the system with n partons to a system with n + 1 partons. To prevent
double-counting the scale of the parton produced in the next branching has to be smaller
than the one generated before, and so on, which is imposed by the integral over tn+1
together with the δ-function.

Since ∆ describes the probability that there is no branching between two scales, 1 − ∆
is the integrated branching probability Pbranch and its rate of change gives the branching
probability

dPbranch(tn, tn+1)
dtn+1

= d
dtn+1

(1−∆(tn, tn+1))

=
∑
r

∫ dΦr
n+1

dΦn

δ(tn+1 − trn+1)P (n→ n+ 1)∆(tn, tn+1) . (4.20)

Following Eq. (4.1) the Born cross section for a hard process with n outgoing particles,
differential in an observable O, is

dσ(0)
n

dO =
∫

dΦn

∣∣∣M(0)
n

∣∣∣2 δ (O −O(Φn)) . (4.21)
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To take the parton shower into account an evolution operator S acting on the final state
before evaluating the observable is introduced:

dσn
dO =

∫
dΦn

∣∣∣M(0)
n

∣∣∣2 S(Φn,O) . (4.22)

This evolution operator can be computed iteratively for an event between the two scales
t1 > t2 via

S(Φn, t1, t2,O) = ∆(t1, t2)δ (O −O(Φn))︸ ︷︷ ︸
n+0 exclusive above t2

+
∑
r

∫ dΦr
n+1

dΦn

δ(tn+1 − trn+1)P (n→ n+ 1)∆(t1, tn+1)S(Φn+1, tn+1, t2,O)︸ ︷︷ ︸
n+1 inclusive above t2

(4.23)

with the Sudakov form factors ∆(t1, t2). The first term of the right side of Eq. (4.23) is
the probability that no branching occurs during the evolution from t1 down to t2. The
second part contains the probability that an emission occurs at the scale tn+1, for which
t1 > tn+1 > t2 holds. Then the system is evolved further from this scale tn+1 down to t2
via S(Φn, tn+1, t2,O). For this expression Eq. (4.23) can be inserted again leading to an
iterative algorithm for the parton shower.

4.3 Hadronization Models
Due to confinement partons are never observed as physically free states in nature. Thus an
important step in the generation of a whole event is hadronization. It models the conver-
sion from colour-charged particles into bound states, the hadrons. Since this happens at
low momentum transfer and long distances, respectively, perturbation theory is not valid
anymore and non-perturbative effects become important. Fortunately there are models
which allow to shape the hadronization process. The three most important ones [5, 11]
are shortly described in the following sections.

4.3.1 Independent Fragmentation
The oldest and simplest hadronization model is the independent fragmentation, which
supposes, as the name implies, that each parton fragments independently. In this ap-
proach, originally formulated by Field and Feynman [13, 14], the occurring gluons are
split into quark-antiquark pairs. Quark-antiquark or diquark-antidiquark pairs are cre-
ated out of the vacuum with a Gaussian distributed transverse momentum. These created
particles combine with the fragmenting quark in order to form hadrons. After each step
a quark or diquark respectively with less energy is left over. The process stops until the
remaining energy falls below some cut-off which leads to the great weakness of the model.
The termination of the hadronization leads to a colour charged quark in each jet. Due to
colour confinement these quarks have to be removed. Another disadvantage is the viola-
tion of momentum conservation due to the assumption that the quarks are on massshell.
Beside the momentum the residual colour and flavour of the left over parton has to be
corrected as well. Despite these simple basic assumption the independent fragmentation
is quite successful in describing the broad features of two-jet and three-jet final states in
e+e− annihilation at moderate energies [5].
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Figure 4.3: The left sketch shows a string which breaks due to the quark antiquark pair
produced in the string. On the right side the fragmentation of a string is shown. Taken
from Ref. [9].

4.3.2 String Model
Among several other hadronization models based on strings the so-called Lund model
[15, 16] is most widely used. The model will be illustrated on the basis of a quark-
antiquark event, as shown in Fig. 4.4. The two quarks build a colour dipole field whose
energy increases linearly with the distance of the charges due to the potential V (r) = κr
with tension (energy per unit length) κ. Thereby the short-distance Coulomb term is
neglected. As the partons move apart, a colour flux tube is being stretched between the
quark and the antiquark and the kinetic energy of the partons is converted to potential
energy stored in the growing string. Fluctuations of quark-antiquark pairs inside the field
of the string provide the formation of the observed hadrons by absorbing energy from the
string and break it into two separate colour-singlet pieces, see left side of Fig. 4.3. In this
picture gluons build “kinks” on the strings, which leads to the absorbance of very soft
gluons. Due to the gluons modifications of the fragmentation model have to be included.

String fragmentation is carried out iteratively from both string ends inwards to the center
of the string. Thereby the fragmentation off the two different sides is alternated randomly,
see right side of Fig. 4.3, where a single on-shell hadron can be split off in each step.

4.3.3 Cluster Model
Cluster-like structures have a long history in models of non-perturbative physics [11].
They are best know from the cluster hadronization model in Herwig, implemented by
Webber [17]. After the splitting of gluons into quark-antiquark pairs quark lines with the
same colour index build clusters due to colour preconfinement, as illustrated on the right
hand side of Fig. 4.4. The mass distributions of the clusters are thereby independent of
the energy scale of the hard process. They have a maximum at low masses of some GeV
and fall fast for higher masses. If the mass of a cluster is too high, it is first decayed into
lighter clusters. Then the resulting clusters are decayed into hadrons, where two-body
decays are assumed for the majority of clusters. For the decay into hadrons or lighter
cluster, a quark-antiquark pair created out of the vacuum.



18 4. Physics of Event Generators

Figure 4.4: The hadronization of a γ∗ → qq̄ event into hadrons, as pictured in the string
model, left, and cluster model, right. During the parton shower a perturbative g → qq̄
vertex occurs and causes two strings to form. The gluons build “kinks” on the two strings.
In the cluster model the final state gluons are split into qq̄ pairs. Taken from Ref. [11].



5. Monte Carlo Event Generators
and Analysis Tools

Herwig++ and Pythia8 are multi-purpose Monte Carlo event generators for the simu-
lation of lepton-lepton, lepton-hadron and hadron-hadron collisions at high energies. The
simulation contains all parts of the scattering including the hard subprocess, based on
perturbation theory, a shower algorithm, hadronization and decays of unstable particles.
Despite both are based on perturbation theory, the hard process and the shower algo-
rithm are examined in two complementary approximations. The matrix-element based
generation of the hard process is described in Sec. 5.1 whereas Sec. 5.2 deals with the
implementation of the resummation of emissions to all orders. The hadronization models
of Herwig++ and Pythia8 are described in Sec. 5.4. At last the tools for generator
validation and tuning are presented.

5.1 Hard Process
The first step in an event generator is the interaction of the incoming particles with high
transverse momentum via matrix elements. Most of these matrix elements are imple-
mented at LO but NLO corrections are available for some processes. If the particles of
the beams are hadrons the flavour and momenta of the colliding partons are sampled
according to parton distribution functions. An important initial condition for the parton
showers is the colour flow of the external partons. The user specifies the subprocesses
which will be taken into account. To generate the hard processes with the correct fraction
according to the cross sections the latter are calculated before the event simulation.

The Les Houches Accord interface [18, 19] specifies a standard format for the exchange
of data between multi-purpose event generators like Herwig++, Pythia8 or Sherpa
[20] and matrix element generators such as MadEvent/MadGraph [21] or dedicated
generators like Vbfnlo [22]. Therefore it is possible to use hard processes generated by
external matrix element generators to enlarge the variety of parton-level matrix elements.

In this work the matrix element e+e− → qq̄ for electron positron annihilation via Z boson
or γ production to a quark antiquark pair is used.
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Figure 5.1: Dipole or antenna phase-space for a massless branching IK → ijk with its
triangular shape due to the relation yij+yjk+yik = 1. The sketches illustrate the different
phase-space regions. The hardest point in phase-space is marked with a dot. The soft
singularities occur for yij → 0 and yjk → 0, hence in the origin of the plot. The collinear
singularities are located along the axes, for either yij → 0 or yjk → 0

5.2 Shower Algorithm
After the weight of an event is calculated according to the hard process, as outlined in
the previous section, the remaining coloured partons have to be evolved from the hard
scale down to hadronic scales. The parton shower produces these secondary partons via
successive parton emissions which re-sum effectively higher orders of perturbation theory.
If the incoming particles are hadrons the initial state partons undergo showering as well.
The initial state shower is described with a backward evolution. Since this work deals
with electron-positron annihilation this is not further discussed. For the theoretical basics
of the shower algorithms see Sec. 4.2.

A shower algorithm has to specify the following items [23], see also Sec. 4.2.5 and especially
Eqs. (4.19) and (4.23):

1. The perturbative evolution variable.

2. The phase-space mapping dΦn+1/dΦn.

3. The radiation functions as a function of the phase-space variables.

4. The renormalization scale µR.

5. Starting and ending scales.

Some of these points will be discussed in the following sections.

The phase-space region (triangle) of a colour dipole is shown in Fig. 5.1 in terms of scaled
branching invariants (see Eq. (4.5))

yab = sab
s
≤ 1 (5.1)
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where s is the invariant mass squared of the dipole. The sketches of the qq̄ → qq̄g
branchings illustrate the different phase-space regions. The soft singularities occur close
to the origin and the collinear branchings take place close to one of the axis. The hardest
point in phase-space where the emitted gluon takes most of the energy is marked with a
point.

The main difference between the shower models is the type of branching: For parton
showers as the angular-ordered shower of Herwig++ 1 → 2 branchings occur whereas
the basis of the antenna shower algorithm in Vincia and the dipole shower of Herwig++
is a 2→ 3 branching.

5.2.1 Herwig++ Shower Algorithms
Two different models for the parton shower are implemented in Herwig++, namely the
angular-ordered shower [24], which is used by default, and the dipole shower [25, 26]. As
ordering variable for the latter the transverse momentum squared p2

⊥dip or the virtuality
q2

dip can be chosen.

Angular-Ordered Shower

A major success of Herwig [27], the predecessor to Herwig++, was the treatment
of soft gluon interference effects enabled by the angular ordering of emissions in the
parton shower [1]. Herwig++ uses the coherent branching algorithm (see Sec. 4.2.2)
from Ref. [24], which generalizes the one used in Herwig. Among other advantages
and improvements this algorithm preserves the angular ordering property and provides
invariance under boosts along the jet axis. The evolution scale from Eqs. 4.6 and 4.18 is
here the variable q̃, defined as

q̃2 = 2E2
a(1− cos θbc)(1 + cos θa)2

(1 + cos θb)(1 + cos θc)
(5.2)

for time-like branchings a→ bc where θa, θb and θc respectively denote the angle between
the according parton and the shower progenitor. For small angles the evolution variable
reduces to

q̃ ≈ Eaθbc. (5.3)

The starting scales of the daughter partons b and c with momentum fractions z and 1− z
are then zq̃ ≈ Ebθbc and (1 − z)q̃ ≈ Ecθbc. The angular ordering property is thereby
automatically implemented since the maximum opening angle of a following branching is
θbc. The use of collinear splitting functions together with the angular ordering property
gives a good approximation of the coherent dipole radiation pattern.

To simulate possible radiation from a hard process the initial condition q̃h, determined
by the colour flow in the hard process, has to be chosen propabilisticly. Therefore colour
partners are formed from the particles involved in the hard process. This choice is unique
as long as no gluons enter the system. If gluons are involved a random choice is made
between the two possibilities of the colour flow. As shown in Eq. 4.11 the direction of the
colour partner gives the maximum emission angle for QCD radiation and therefore the
initial condition for the angular-ordered shower.

The right most diagram in Fig. 5.2 shows the phase-space contours of constant values of
the radiation function for the angular-ordered shower. Since this shower is not a dipole-
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Figure 5.2: The dipole or antenna phase-space with different shower evolution variables
of Herwig++, represented as contours of constant values of the radiation function.

or antenna-based shower two different contours for each of the two emitting partons exist.
Note that there are dead regions in the phase-space, indicated with the gray background
colour.
Since the parton shower algorithm generates the emission from each particle independently
the equation

∆(q̃h, q̃) = R (5.4)

with random number R ∈ [0, 1] is solved for each particle. This gives the probability
that the parton evolves from the initial scale q̃h down to a scale q̃ without any resolvable
branching. In order to solve Eq. (5.4) analytically a crude Sudakov form factor with
an overestimated branching probability is used. To get the exact distribution a vetoing
procedure is implied. The Sudakov form factor for a branching a→ b+ c

∆over(q̃h, q̃) = exp
{
−
∫ q̃h

q̃
dPover

a

}
= exp

{
−
∫ q̃h

q̃

dq̃′
q̃′

∫
dzα

over
S

2π P over
a→b+c(z)

}
(5.5)

contains the overestimated quasi-collinear splitting functions P over
a→b+c(z) ≥ Pa→b+c(z, q̃′)

and coupling constant αover
S ≥ αS(z, q̃′). The splitting functions Pa→b+c(z, q̃′) can be

found in Ref. [1]. The equation ∆over(q̃h, q̃) = R can be solved for q̃ as

q̃2 = q̃2
hR1/r with r = dPover

a

d ln q̃2 . (5.6)

After obtaining a value for q̃ an associated z value is generated and these values are
rejected if [1]

• the value of z lies outside the true phase-space limits: p2
⊥ < 0

• αS(z, q̃′)/αover
S < R1

• Pa→b+c(z, q̃′)/P over
a→b+c(z) < R2

with random numbers Ri ∈ [0, 1]. If the value of q̃ gets rejected, the whole procedure is
repeated where the hard scale q̃h is replaced by the new scale q̃. The evolution terminates
when there is no phase-space for any further resolvable branching left. This infrared cutoff
is expressed in terms of the transverse momentum. At the end of the shower all partons
are set on their constituent mass-shell by reshuffeling momenta.
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Parameter Description
αMZ

AlphaMZ Strong coupling at the Z0 boson mass
p

min(f)
T pTmin Shower cutoff for the angular-ordered shower
µIR,FF IRCutoff Infrared cutoff for final-final dipoles for the dipole shower
µ

(f)
soft,FF ScreeningScale Soft scale for final-final dipoles for the dipole shower

Table 5.1: The main free parameters of the angular-ordered and the dipole shower of
Herwig++ are listed. (f) indicates that the parameter exists in different copies for
different splitting processes.

Dipole Shower

The dipole shower is based on Catani-Seymor subtraction kernels [28], which have orig-
inally been derived in the context of the subtraction formalism for NLO calculations.
Since the 2→ 3 splittings include a spectator parton, all partons are on their constituent
mass-shell during the shower evolution. The dipole shower includes the effects of soft
gluon coherence, as discussed in Sec. 4.2.2, if the emissions are ordered in transverse
momentum.

The evolution of this shower works in principle the same as for the angular-ordered one
since the dipoles are partitioned into two dipoles, each corresponding to one of the partons
forming the original dipole. The total emission is hence the sum of the two splitting
functions, each associated with one leg. From now on a dipole in the context of the
Herwig++ dipole shower is meant to be a partitioned dipole whereas in the general
case, a dipole describes the same object as an antenna.

After the hard subprocess the partons are sorted in colour singlets which are now evolved
independently. For each dipole I,K any possible splitting I,K → i, j, k is taken into
account where parton I acts as emitter and parton K as spectator. Both possible emitter-
spectator assignments are included, meaning that K, I → k, j, i with emitter K and
spectator parton I is also considered. The two different assignments correspond to the
two partitioned dipoles of each original dipole. The ordering variable for the emission off
parton I can be expressed as

p2
⊥dip = sIK

yijyjk 1− yjk
1− yij

− 4
(
yijyjk
1− yij

)2
 (5.7)

and the dimensionless and normalized form is 4 p2
⊥dip/sIK . The outgoing partons initiate

a parton branching where the Sudakov form factor

∆(p2
⊥max, p

2
⊥dip) = exp

{
−
∫ p2

⊥max

p2
⊥dip

dp2
⊥

p2
⊥

∫
dzPI,K→i,j,k(p2

⊥, z)
}

(5.8)

with the hard scale p2
⊥max associated to the current emitter and the appropriate splitting

probabilities PI,K→i,j,k(p2
⊥, z). The shower terminates when the evolution variable falls

below the infrared cutoff µ2
IR which is a free parameter of the dipole shower. For a

reasonable choice of this variable it is important to keep the fact in mind that perturbative
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Figure 5.3: The dipole or antenna phase-space with different shower evolution variables
of Vincia and Pythia8, represented as contours of constant values of the radiation
function.

QCD should still be valid at this energy scale. As a non-coherent alternative of the dipole
shower the evolution variable can be chosen to be the virtuality q2

dip.

The two left plots in Fig. 5.2 show the phase-space contours of constant values of the
radiation function for the two possible evolution variables of the dipole shower. Since this
shower uses partitioned dipoles the evolution of only one of the parent partons is shown.

The main free parameters of the Herwig++ shower algorithms are listed in Tab. 5.1.
The strong coupling constant controls the amount of QCD radiation during the shower
and the scale at which the perturbative evolution terminates is the shower cutoff.

5.2.2 Vincia Shower Algorithm

Vincia [23] is a plugin to the Pythia8 event generator which replaces the Pythia8
parton shower with a shower model based on antenna functions, see Sec. 4.2.4. The
Altarelli-Parisi splitting functions in the collinear limit and the eikonal factor in the soft
limit are reproduced by these antenna functions. As evolution variable yE two different
choices are implemented, namely the transverse momentum and the mass of the antenna,

yE =


type α, p2

⊥A-ordering : y2
α = 4sijsjk

s2
IK

= 4yijyjk = 4p
2
⊥A
sIK

type β, m2
A-ordering : y2

β = 2min(sij, sjk)
sIK

= 2min(yij, yjk) = 2m2
A

sIK

(5.9)

for a branching IK → ijk. The prefactors, 4 for type α and 2 for type β, make the
maximal value of the evolution variable equal to the dipole invariant mass. The maximal
value is reached when the two parents are collinear and back-to-back with the emitted
parton, which carries half the total energy. The angular ordering is not explicit included
since coherence is an intrinsic property of the antenna functions, hence no additional
requirement is needed to enforce it.

Fig. 5.3 shows the dipole phase-space and some evolution variables as contours. The p2
⊥A-

ordered dipole shower tends to first produce a hard-collinear branching, a soft branching
would occur “later” and vice versa for the mass-ordered shower since the area that has
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to be filled in order to get to a hard collinear splitting and therefore the “time” to get to
this splitting is larger for the p2

⊥A-ordered than for the m2
A-ordered shower.

As radiation functions different antenna sets are implemented, for instance the Gehrmann-
Gehrmann-de-Ridder-Glover ones listed in Tab. 4.2. Generally, the differences between
different sets can be used to estimate uncertainties. A trial branching for each antenna
dipole is found by generating a random number R ∈ [0, 1] and solving the equation

∆̂(ystart, ytrial) = R (5.10)

for ytrial. The trial Sudakov form factor

∆̂(ystart, ytrial) = exp
{
−
∫ ystart

ytrial
dytrial

∫ 1

0
dyij

∫ 1

0
dyjkδ (yE − yE(yij, yjk))

Â(yij, yjk)
16π2

}
(5.11)

contains an overestimate of the antenna function

Â(yij, yjk) ≡ sIKÂ(yij, yjk; sIK , α̂S(yE)) > sIKA(yij, yjk; sIK , αS(yE)) (5.12)

with the overestimated first-order running trial α̂S(yE) > αS(yE) depending on the evo-
lution variable yE. After computing the full kinematics of the trial branching it can be
vetoed with the probability 1 − A/Â. The trial scale becomes the new starting scale if
the branching generated from it is not vetoed by the algorithm. The shower terminates
when the evolution variable falls below an infrared cutoff, when there is no perturbative
evolution space left.

In a strongly-ordered shower the evolution variable yE of a branching is always smaller
than the one of the previous branching: yn+1 < yn. Therefore the ordering condition acts
like a step function in phase-space Θ(yn − yn+1). Vincia includes also smooth ordering
where a dampening factor

Θ(ỹ2
E − y2

E) → Pimp = ỹ2
E

ỹ2
E + y2

E

(5.13)

is used instead of a sharp cutoff at the ordering scale, allowing unordered branchings
with a suppressed probability. yE denotes the scale of the next branching and ỹE is the
evolution scale evaluated on the pre-branching configuration. If more than one branching
history is possible ỹE is chosen to be the smallest of the corresponding evolution scales.
In the strongly-ordered limit, y2

E � ỹ2
E, Pimp tends to unity, whereas for highly unordered

branchings, y2
E � ỹ2

E, Pimp tends to zero. In the ordering threshold, y2
E ∼ ỹ2

E, Pimp is
about 1/2, thus allowing weakly unordered branchings to occur.

5.2.3 Pythia8 Shower Algorithm
The shower algorithm used by Pythia8 was first introduced in Pythia6 [29], [30] and is a
hybrid between the parton shower and the dipole approach. The emissions are associated
with the evolution of a single parton, but recoil effects occur inside dipoles. The shower is
ordered approximately in the p2

⊥ of a branching where p⊥ is the transverse momentum for
each of the two partons remaining after a branching with respect to the direction of the
parent parton, in the rest frame of the dipole [29]. The formal definition of the evolution
variable is

p2
⊥evol = z(1− z)Q2 = z(1− z)(m2 −m2

0) (5.14)
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Parameter Description
αS alphaS Strong coupling at the Z0 boson mass
p2 min
⊥ cutoffScale Shower cutoff

Table 5.2: The table lists the parameters for the shower model of Vincia and Pythia8.

with energy sharing z, off- and on-shell mass m and m0 and virtuality Q2 of the branching
parton. The dimensionless and normalized ordering variable can be expressed in terms of
the branching invariants,

4 p
2
⊥evol
sIK

= 4 1− yjk
1− yij

(
1− 1− yjk

1− yij

)
yij , (5.15)

for a process IK → ijk. The starting scale p2
⊥max is thereby defined either by the hard

process or by the proceeding shower branchings [30]. The evolution equation

dPa = dp2
⊥evol

p2
⊥evol

αs(p2
⊥evol)

2π Pa→bc(z)dz∆(p2
⊥max, p

2
⊥evol) (5.16)

is used to find trial branchings a→ bc. The parton with the largest transverse momentum
undergoes the first branching. The shower continues by iterating towards lower p2

⊥evol until
the cutoff scale p2

⊥min is reached.

The right most diagram of Fig. 5.3 shows the phase-space contours of constant values of
the radiation function for the Pythia8 parton shower. Since this shower is not a dipole-
or antenna-based shower the evolution of only one of the parent partons is shown.

The main free parameters of the shower model of Vincia and Pythia8, the strong
coupling constant and the infrared shower cutoff, are listed in Tab. 5.2.

5.3 Matching
Matching describes the improvement in the description of the shower by combining fixed
order calculations with the shower approximation. Different strategies for the matching
procedure exist, such as phase space slicing, subtraction and universality. Fig. 5.4 shows
the coefficients of the perturbative series, see Sec. 4.1, represented as boxes for specific
numbers of additional legs k and loops l. Thus the Born cross section for the hard process
is represented by the coefficient σ(0)

0 . Green boxes indicate that the exact matrix element
is used for this coefficient and yellow denotes the use of the shower approximation. The
upper left plot in Fig. 5.4 shows the accuracy of the coefficients when no matching is used.
Thus LO accuracy for the Born cross section is obtained and the shower approximation
resums all higher orders.

In the slicing approach the phase space is separated by the matching scale into two regions,
one that is mainly described by the matrix element and the other one by the shower. This
approach was first used in Herwig to include higher order corrections for the first emission
after the hard process [31, 32]. The shower is set to zero above a certain matching scale,
either by vetoing any emissions above that scale or due to dead zones in the shower, as
in Herwig and Herwig++. The result is shown in the upper right diagram in Fig. 5.4.
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Figure 5.4: Coefficients of the perturbative series, see Sec. 4.1. The upper left diagram
shows the coverage when no matching is used, the upper right plot for the matching
that will be used in the angular-ordered shower of Herwig++. The lower left diagrams
shows the coverage for the NLO dipole shower of Herwig++ and default Pythia8.
When referred to Vincia with additional matching the accuracy shown in the lower right
diagram is obtained.

Above the matching scale the accuracy of the exact matrix element can be obtained. The
angular-ordered shower of Herwig++ includes correction by default and is used solely
with this accuracy.

In the subtraction scheme, used to obtain NLO accuracy with the dipole shower of
Herwig++, see Ref. [26], the shower approximation is subtracted from the NLO calcula-
tion and this is added to shower approximation. This approach is also used by strategies
like Mc@nlo [33,34] and was implemented in Herwig++ [35]. The lower left diagram in
Fig. 5.4 shows the resulting accuracy, NLO for the hard process and LO for the first emis-
sion. When referring to the NLO Herwig++ dipole shower this accuracy is obtained.
The dipole shower is used with LO accuracy, as illustrated in the upper left diagram, by
default in this work, unless otherwise indicated.

Pythia8 with default settings uses matrix-element corrections. Starting with the Born
level process the shower generates the first emission which is correct to the exact matrix
element by using a multiplicative factor given by the ratio of the matrix element to the
shower approximation. The correction for the σ(1)

0 coefficient is included as well since, for
the process e+e− → Z0 → qq̄, this corresponds a factor 1 + αS/π correcting the total
Z0 decay rate. When normalizing to the total rate, this factor just drops out. Therefore
default Pythia8 includes NLO accuracy for the hard process and LO for the first emission,
as sketched in the lower left diagramm of Fig. 5.4.
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Since the matching in Pythia8 is included in the default settings, Vincia inherits this
as well. If not otherwise indicated, this accuracy is used for Vincia. To include LO
accuracy for the fourth jet as well, the first emission after the hard process is corrected to
the exact matrix element, as described for Pythia8. The first virtual correction is obtain
by using unitarity1 of the shower and also corrected to the matrix element. The procedure
is repeated by correcting the second shower emission to the exact matrix element leading
to the accuracy shown in the lower right diagram of Fig. 5.4. The hard process results
in NLO accuracy and the first and second additional emissions are obtained with LO
accuracy.

5.4 Hadronization
In order to transfer the partons produced the shower, into the observed hadrons a non-
perturbative hadronization model has to be implemented. For the different approaches see
Sec. 4.3. Depending on the Monte Carlo generator a different model is used: Herwig++
applies the cluster hadronization model described in Sec. 4.3.3 that groups the remaining
partons together into clusters. The hadronization model of Pythia8 is based solely on
the Lund string fragmentation framework, see Sec. 4.3.2.

5.4.1 Cluster Model in Herwig++
The gluons at the end of the parton shower have to split non-perturbativly into quark-
antiquark pairs which is why a constituent mass is given to them. After the decays of the
gluon, only colour connected (di)quarks and anti-(di)quarks exist, which colour singlets.
Then clusters are formed by the colour singlets with the momentum given by the sum
of the momenta of the constituent partons. Heavy clusters first have to split into lighter
clusters before they decay into hadrons, since the cluster mass spectrum is peaked at low
masses and clusters can be regarded as excited hadron resonances. A heavy cluster of
mass M splits into two lighter clusters if the condition

MClpow ≥ ClClpow
max + (m1 +m2)Clpow (5.17)

holds, where m1,2 are the masses of the constituent partons of the heavy cluster. Clmax
is the maximum cluster mass above which clusters containing light, charm or bottom
quarks2 respectively undergo cluster fission. The exponent Clpow controls whether these
clusters undergo cluster fission or not. If a cluster is needed to be splitt, a qq̄ pair is
popped from the vacuum with the probability Pwt for the different flavours. The mass
distributions of the two new clusters are given by

M1 = m1 + (M −m1 −mq)R
1/Psplit
1 and (5.18)

M2 = m2 + (M −m2 −mq)R
1/Psplit
2 (5.19)

with the mass mq of the parton popped from the vacuum and random numbers R. At
last the cluster are decayed into pairs of hadrons whose momenta are smeared through an
angle according to a Gaussian distribution

cos θsmear = 1 + Clsmr logR . (5.20)
1The virtual correction plus the integral of the real emission have to add up to a finite factor due to

probability conservation.
2Clmax exists, as Clpow, Clsmr and Psplit, in three different copies for the different flavours: (f) =

(u, d, s), c, b.
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Parameter Description
mg,c ConsituentMass Gluon mass
Cl(f)

max ClMaxLight, ClMaxCharm, ClMaxBottom Maximum cluster mass
Cl(f)

pow ClPowLight, ClPowCharm, ClPowBottom Cluster mass exponent
Cl(f)

smr ClSmrLight, ClSmrCharm, ClSmrBottom Smearing parameter
P

(f)
split PSplitLight, PSplitCharm, PSplitBottom Mass exponent for daughter clusters

Table 5.3: The table lists the main free parameters for the Herwig++ cluster hadroniza-
tion model. The ones indicated by the superscript (f) exist in three copies for the different
flavours: (f) = (u, d, s), c, b.

The relative weights for producing singlet and decuplet baryons respectively in the decay
process are given by Wsng and Wdec. Due to a small fraction of clusters that are too light
to decay into two hadrons clusters containing charm or bottom quarks are allowed to
produce two hadrons which decay into a single hadron with the mass

M < Mlimit = (1 + SHL)Mthreshold (5.21)

Therefore the single hadron limits (SHL) for charm and bottom quarks control the limit
on the production of single clusters for charm and bottom clusters respectively.

To provide an overview of the main free parameters of the cluster hadronization model,
that will be used in following chapters, Tab. 5.3 lists these parameters.

5.4.2 Lund String Model in Pythia8
As mentioned above the hadronization model implemented in Pythia8 is based solely
on the Lund string fragmentation framework. The online documentation of Pythia8
provides detailed information about the parameters of the string model. Thus additional
information to the following recap can be found there.

Fragmentation functions

The fraction z of the longitudinal momentum of the quark at the endpoint of the strings
carried by the created hadron has to be chosen with the help of fragmentation functions.
The so-called Lund symmetric fragmentation function is

f(z) = 1
z

(1− z)aL exp
(
−bLm

2
T

z

)
(5.22)

with transverse mass mT and the two main free parameters aL and bL where in principle
aL can be flavour-dependent and bL is universal, meaning common for all flavours. For

heavy quarks an extra factor
(1
z

)rQbLm
2
Q

with the multiplicative factor rQ for quark type
Q is introduced which leads to a fragmentation function of

f(z) =
(1
z

)1+rQbLm
2
Q

(1− z)aL exp
(
−bLm

2
T

z

)
. (5.23)
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Parameter Description
aL aLund Parameter of the Lund symmetric fragmentation function
bL bLund Parameter of the Lund symmetric fragmentation function
aED aExtraDiquark a parameter for diquarks, with total a = aL + aED

σ PTsigma Total width of the fragmentation p⊥

Table 5.4: The table lists the main free parameters for the Pythia8 Lund string
hadronization model.

Although bL is universal, it is possible to set both parameters flavour-dependent (aL,Q and
bL,Q) leading to a general expression of Eq. (5.23). For diquarks relative to normal quarks
the shape

f(z) = 1
z
zaL,i

(1− z
z

)aL,j

exp
(
−bLm

2
T

z

)
(5.24)

for going from an old flavour i to a new one j is implemented. This allows a larger a
parameter for diquarks, with total a = aL + aED where ED stands for ExtraDiquark.

Fragmentation pT

If a string breaks, the according quark and antiquark receive opposite and compensating
pT kicks. Thereby px and py are distributed separately via a Gaussian distribution with
width σq:

d(Prob) = exp
(
−
p2
x + p2

y

2σ2
q

)
. (5.25)

Then the total squared width is

〈p2
T 〉 = 〈p2

x〉+ 〈p2
y〉 = 2σ2

q = σ2 (5.26)

with parameter σ for the width in the fragmentation process. Since hadrons receive pT
contributions from one string break on each side, they therefore have 〈p2

x〉had = 〈p2
y〉had =

σ2, and thus 〈p2
T 〉had = 2σ2.

Flavour Selection

During the fragmentation process new flavours have to be chosen and depending on the
flavour of the quarks specific hadrons are produced. These choices are made by a separate
Pythia8 class with a large number of additional parameters for the relative production
rate of different particle species.

To provide an overview of the main free parameters of the string hadronization model of
Pythia8, that will be used in following chapters, Tab. 5.3 lists these parameters. Many
flavour dependent parameters exist in addition, but they are not listed here since they
will not be used throughout this thesis.
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5.5 The Rivet Analysis Tool
Rivet [36] is a generator validation system which provides the tools for analyzing simu-
lations of collisions at high energies. Rivet is generator independent since it makes use
of the data format HepMC [37], which contains all information of an event except the
used generator. For the validation of an event generator it is crucial to compare its pre-
dictions to real data. Therefore Rivet includes a library with published and unpublished
data stored in histograms which have the exact same properties as the histograms used
to analyze the generator events. In the course of this work Rivet was used to write new
analyses and some of the included analyses were used in the tuning process.

5.6 The Professor Tuning System
Professor [38] is a tuning tool for Monte Carlo event generators which is used to tune
model parameters to experimental data. The simulation results are thereby obtained by
using Rivet which was described in the previous section.

The aim of the tuning process is to define a goodness of fit function between the generated
predictions and reference data, and then to minimize that function [39]. The first step is to
generate multiple generator runs at different parameter-space points where the randomly
distributed parameter points are created with prof-sampleparams. Then a general parame-
terization function for the Monte Carlo generator response has to be chosen: Professor
has polynomials of different orders to choose from. The output of prof-interpolate is a set
of functions f (b)(~p), which model the true Monte Carlo response, MCb, of each observable
bin b to changes in the P -element parameter vector ~p [39]. For example a polynomial of
second order looks like

MCb(~p) ≈ f (b)(~p) = α
(b)
0 +

∑
i

β
(b)
i p′i +

∑
i≥j

γ
(b)
ij p

′
ip
′
j (5.27)

with the shifted parameter vector ~p′ ≡ ~p− ~p0. The actual choice of ~p0 is irrelevant, since
the function remains the same and only the coefficients are redefined.

For a polynomial of order n with P parameters the number of coefficients to be calculated
is

N (P )
n =

n∑
i=0

1
i!

i−1∏
j=0

(P + j) . (5.28)

The number of generator runs is determined by the number of coefficients to be calculated.
Theoretically the two numbers could be exactly the same but in order to get reasonable
and robust results for the coefficients one should oversample with at least a factor 2. The
interpolation is performed for a certain run combination which acts as anchor point for the
polynomial parameterization of the Monte Carlo response function. A run combination
contains an amount of the Monte Carlos runs and the total number of these combinations
should be about

Nrc = 4
3N

(P )
n . (5.29)

After the interpolation Professor provides various methods to plot the sensitivity of
the model parameters to the observables.
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The next step is to calculate the GoF with the definition

χ2(~p) =
∑
O
wO

∑
b∈O

(f (b)(~p)−R(b))2

∆(b)2 (5.30)

with the reference value R(b) and the total error ∆(b)2 of the data per bin b and observable
O. In order to give for example observables with only one bin higher importance weights
wO are used for each observable. These weights also used for the calculation of the number
of degrees of freedom,

Ndof =
∑
O
wO|b ∈ O| . (5.31)

In the final stage prof-tune minimizes the GoF in Eq. (5.30) numerical and provides the
corresponding parameter values. The minimization is performed for the run combinations
used in the interpolation step.
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To investigate properties such as QCD colour coherence or the emission of soft jets, observ-
ables reflecting these properties are required. The way how colour coherence is included
in the shower approximation depends on the generator that is used. Therefore observables
that tell the different shower models apart, can be used to validate the shower properties.
As described in the previous chapter six different models will be examined: The default
angular-ordered parton shower and the dipole shower of Herwig++, of which the latter
is used with ordering in transverse momentum p2

⊥dip as well as with ordering in virtuality
q2

dip, the p2
⊥evol-ordered parton shower of Pythia8 with angular vetos and the antenna-

based shower of Vincia, used with ordering in transverse momentum p2
⊥A of the antenna

or in antenna mass m2
A. The events are generated with the matrix element

e+e− → qq̄ for 5 flavours (u, d, c, s, b) (6.1)

at the Z0 pole, with a center-of-mass energy of 91.2 GeV. In order to focus on the
pure shower properties and make the models more directly no higher order matching1 is
included and Vincia is used with strong ordering. The events are analyzed using the
Rivet framework, described in Sec. 5.5.
In the first section some basic ingredients for the analyses are described. The adjoining
sections dwell on the analyses themselves and reveal some results.

6.1 Basics: Jet Algorithms
This section gives a short overview on the way how the hadrons of the final states are
formed into jets. FastJet [40], a C++ package for jet finding in pp- and e+e−-collisions,
provides two algorithms for the latter: The kt [41] and the generalized kt algorithm that
will be described in the following.

kt Algorithm for e+e− Collisions

The kt algorithm has only the single distance measure

dij = 2 ·min
(
E2
i , E

2
j

)
(1− cos θij) . (6.2)

1Correction of the first real emission in the angular-ordered shower, LO accuracy for the dipole shower
of Herwig++ and the default matching in Pythia8 for Vincia and Pythia8.
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Exclusive algorithm. The following steps are conducted in order to obtain exclusive
jets [42]:

1. Calculate all the distances dij according to Eq. (6.2).

2. Find the minimum dmin of the distances dij.

3. If dmin is below some cutoff dcut, recombine i and j and return to step 1.

4. Otherwise, all remaining particles are declared to be jets and the iteration stops.

The corresponding dimensionless cutoff ycut is defined as

ycut = dcut

Q2 (6.3)

with the center-of-mass energy Q. The n → n + 1 clustering scale yn→n+1 is the ymin
corresponding to the recombination that went from n+ 1 to n jets.

Generalized kt Algorithm for e+e− Collisions

The generalized kt algorithm has two distances

dij =


min

(
E2p
i , E

2p
j

) 1− cos θij
1− cosR for 0 ≤ R < π

min
(
E2p
i , E

2p
j

) 1− cos θij
3 + cosR for π ≤ R < 3π

(6.4)

diB = E2p
i (6.5)

with energy Ei of particle i, angle θij between the particles i and j and the two free
parameters p and R. For π ≤ R < 3π the distance diB does not contribute since there is
always a dij which is smaller than the beam distance diB.

Inclusive algorithm. The following steps are conducted in order to obtain inclusive
jets [42]:

1. Calculate all the distances dij and diB according to Eqs. (6.4) and (6.5).

2. Find the minimum of the distances dij and diB.

3. If a dij is smallest, recombine i and j and return to step 1.

4. If a diB is smallest, call i a (final-state) jet and remove it from the particle list.

5. Stop if all particles are clustered.

Thus all particles are part of a final-state jet and there is neither a beam-jet nor a cutoff
parameter. This algorithm is only used in the inclusive sense here.

Recombination schemes

The recombination scheme used for the following analyses is the E-scheme which is also
the most widespread one. Since the 4-vectors of two particles are added in order to
combine them, the scheme is called 4-vector recombination scheme as well.
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Figure 6.1: The sketch on the left shows the event topology resulting from the cuts and
the one on the right shows the observable α∗.

6.2 Analysis on Parton Level
As a starting point the analysis described in Ref. [25] for investigating coherence properties
is used. In order to obtain partonic final states2 hadronization and hadronic decays in
Herwig++ are switched off. Events with exactly four partons are chosen and these
partons are then ordered in energy with the first parton referring to the hardest. However,
to select exactly four partons is not physical in the sense that this cannot be reproduced
in an experiment. To obtain special event topologies the angles between the partons are
constrained. The second and third parton are supposed to form a collinear pair, thus a
cut on the angle between these partons,

α23 < π/8, (6.6)

is implied. Due to energy-momentum conservation the collinear parton pair is balanced
by a very hard first parton, see left sketch of Fig. 6.1. From this three-parton system the
emission of a soft fourth parton, where the softness is ensured with the cut

E4 < Etot/10 , (6.7)

is investigated. In order to be sensitive to colour coherence the fourth parton is required
to be emitted by the second parton:

α24 < π/2 . (6.8)

The observable α∗ is the difference in opening angles and defined as

α∗ = α24 − α23 . (6.9)

On the right-hand side of Fig. 6.1 the observable α∗ is sketched. To illustrate its geomet-
rical meaning, cones of the third and fourth parton around the second parton are drawn
to reflect the angles α24 and α23. The difference between the opening angles of these two
cones is expressed by α∗. Thus if the observable is smaller than zero the fourth parton
lies within the cone formed by the third around the second parton and outside the cone
if the value of α∗ is greater than zero.

Fig. 6.2 shows the normalized distribution of α∗ for the Herwig++ shower models; the
left plot is taken from Ref. [25] to confirm the result found there. The shapes of all shower
models clearly coincide in the two plots. An enhancement at about α∗ & 0, where the
third and fourth parton are emitted off parton two at nearly the same angle, shows up for
the p2

⊥dip- and for the angular-ordered shower. The enhancement is not exactly at α∗ = 0
2Parton level is the final state in the generated events consisting of quarks and gluons after the

termination of the parton shower.
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Figure 6.2: Normalized distributions of the observable α∗ on parton level for the different
showers of Herwig++: Herwig++ q̃2 and angular ordering refer to the angular-ordered
default shower and Herwig++ p2

⊥dip or q2
dip shower and p2

⊥ or q2
dip ordering refer to the

p2
⊥dip- or q2

dip-ordered dipole shower respectively. The left plot is taken from Ref. [25].

since the singularity is screened by the Sudakov form factor. For emissions at large angles,
the soft parton cannot resolve the colour sub structure of the collinear parton pair. Hence
the soft parton is emitted as if there were only two hard partons. If α23 is very small,
the angle between the soft parton and its emitter is α∗, explaining the drop down from
α∗ = 3π/8 until α∗ = π/2. The prediction of the q2

dip-ordered shower looks different in
shape, compared to the two other shower models. Since this shower is non-coherent a
different behaviour was expected.

6.3 Influence of Hadronization
To compare the simulation results with data, events on hadron level3 are necessary. In-
stead of partons, jets on hadron level are selected now, since can be done in experiment
and leads to proper observables. By clustering the final states into jets the hadron level
events are mapped back to the partonic system after the shower termination. This section
aims at finding a suitable jet algorithm and cuts for the event selection to define the map-
ping as precise as possible. The same analysis applies for events on hadron and parton
level to investigate the influence of hadronization. Since other disruptive effects can be
evoked by B decays the comparison with events where all hadrons containing a b quark
are set stable, is performed as well. In order to take statistical uncertainties into account,
samples of 5 · 105 events are used.

6.3.1 Observables
The events are clustered into either two or four jets using the kt jet algorithm. Events
with four jets are investigated with angular observables, whereas the masses of jets or
hemispheres are used as observables for events with two jets. A first selection of events is
made with a cut for the jet algorithm. The jets are ordered in energy, thus the first jet
refers to the hardest. For some of the observables additional cuts are used:

3In OPAL particles with a lifetime smaller than 300 ps are decaying. This is compatible with the
default values for the lifetimes of both Monte Carlo generators, Herwig++ and Pythia8, verified by
explicitly checking the lifetimes of unstable particles.
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Figure 6.3: The sketch on the left shows the observable α∗ and the one on the right shows
the angle between the first and fourth jet α14.

Observable Jets Cuts
α14 4 Jet Algorithm Cut and α12/13 > 2π/3, α23 < π/6

or E4 < Etot/10, α23 < π/8
α∗ 4 Jet Algorithm Cut and α12/13 > 2π/3, α23 < π/6, α24 < π/2

or E4 < Etot/10, α23 < π/8, α24 < π/2
M2

L/M
2
H 2 Jet Algorithm Cut and y3→4 > y2→3/2

Table 6.1: The table denotes the different observables, the number of jets the events are
clustered in and the associated cuts used in the analyses.

• α12 > 2π/3 and α13 > 2π/3 to achieve that the first and second jet and the first and
third jet respectively are back-to-back. Since the values for the two cuts are always
the same it will be referred to as α12/13 in the following.
• α23 < π/8 or π/6 to achieve that the second and third jet are collinear.
• α24 < π/2 to achieve that the fourth jet is emitted by the second jet.
• E4 < Etot/10 to achieve that the fourth jet is soft.
• y3→4 > y2→3/2 with the 3→ 4 and 2→ 3 clustering scales y3→4 and y2→3 to force a

“compressed” scale hierarchy to be more sensitive to the ordering condition.

The starting points are the observables α∗ proposed in Ref. [25], α14 andM2
L/M

2
H proposed

in Sec. 11.3 of Ref. [43]. The former two, α∗ and α14, are designed to be sensitive to the
coherent emission of a soft fourth jet from a three-parton state. The difference in opening
angles α∗ was already introduced in Sec. 6.2. For this observable and for the angle between
the first and fourth jet, α14, as well, the events are clustered into exclusive or inclusive4

four-jet states. Similar cuts as for α∗ are used for α14 as well, except that no restriction
on the angle of the fourth jet is implied. This results in event topologies as sketched on
the right side of Fig. 6.3. The ratio of jet or hemisphere masses M2

L/M
2
H , defined as the

invariant mass squared of the lighter jet divided by the invariant mass squared of the
heavier jet, is sensitive to the effective description of 1→ 3 splittings, as will be discussed
in Sec. 6.4.
For all observables the percentage of events, also referred to as event rates, which passed
the cuts for this observable is investigated as well. Tab. 6.1 provides an overview of the
observables and associated cuts. Two different choices for the cuts on angles and energy
are included whereof one will be chosen in the following analyses.

4Exclusive means exactly this and only this state, defined at a certain resolution scale.
Inclusive means this state, plus “everything else”, defined at a certain resolution scale.
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Analysis 1 Analysis 2 Analysis 3 Cuts for all Analysis
ycut y3→4,cut pmin

t in GeV
0.0035 0.0035 1.6 α12/13 > 2π/3 α23 < π/6
0.0035 0.0035 1.6 E4 < Etot/10 α23 < π/8
0.0040 0.0040 1.8 α12/13 > 2π/3 α23 < π/6
0.0040 0.0040 1.8 E4 < Etot/10 α23 < π/8
0.0045 0.0045 2.0 α12/13 > 2π/3 α23 < π/6
0.0045 0.0045 2.0 E4 < Etot/10 α23 < π/8
0.0050 0.0050 2.2 α12/13 > 2π/3 α23 < π/6
0.0050 0.0050 2.2 E4 < Etot/10 α23 < π/8
0.0055 0.0055 2.4 α12/13 > 2π/3 α23 < π/6
0.0055 0.0055 2.4 E4 < Etot/10 α23 < π/8
0.0060 0.0060 2.6 α12/13 > 2π/3 α23 < π/6
0.0060 0.0060 2.6 E4 < Etot/10 α23 < π/8
0.0065 0.0065 2.8 α12/13 > 2π/3 α23 < π/6
0.0065 0.0065 2.8 E4 < Etot/10 α23 < π/8

Table 6.2: Definition of the different sets of cuts for analysis 1, 2 and 3. The first three
columns list the cutoff scales for the jet algorithms used in the respective analysis.

6.3.2 Analysis 1: kt Algorithm with ycut

For this analysis the kt algorithm for e+e− collisions with different dimensionless cutoff
distances ycut is used. The events are clustered into jets for a specific scale ycut and rejected
if the number of jets in the event is not four, leading to exclusive four-jet states at the
resolution scale ycut. For calculating the mass ratio the chosen events are clustered back
into two jets. Tab. 6.2 lists the different cutoff distances together with the two choices of
cuts on angles and energy for the angular observables. Since the results of this analysis
are similar to the ones of the second analysis, the discussion can be found in the next
section.

6.3.3 Analysis 2: kt Algorithm with y3→4,cut

This analysis follows the analysis in Sec. 11.3 of Ref. [43] and uses the kt algorithm for e+e−

collisions. The 3 → 4 clustering scale y3→4 is required to be higher than a specific value
y3→4,cut where the latter is varied in the analysis. Events not rejected by this criterion
are clustered either into four jets for the angular observables or into two jets for the mass
ratio. The same cuts as for the first analysis are used, they can be found in Tab. 6.2.
On the basis of this procedure inclusive two-jet and four-jet states are obtained at the
resolution scale y3→4,cut.

The only noteworthy difference between the analysis in Sec. 6.3.2, using exclusive four-jet
states, and the analysis of this section is the number of events passing the resolution cut
of the jet algorithm. Since this number is slightly higher for the second analysis with
the resolution cut y3→4,cut, this analysis is chosen. Therefore only the plots obtained by
the second analysis are shown here since no appreciable differences in the distributions of
the observables appear. An important issue due to the limited amount of data that will
be analyzed, is the remaining statistics of the event samples after applying all cuts. The



6.3. Influence of Hadronization 39

0

0.5

1

1.5

2

α14 with y3→4 > 0.0045, α23 < π/6, α12/13 > 2π/3

σ
−

1
d

σ
/

d
(α

1
4
/

π
)

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

α14/π

R
a

ti
o

10−2

Events passing cuts: α23 < π/6, α12/13 > 2π/3

F
ra

ct
io

n
o

f
ev

en
ts

0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065

0.6

0.8

1

1.2

1.4

y3→4

R
a

ti
o

0

1

2

3

4

5

α∗ with y3→4 > 0.0045, α23 < π/6, α12/13 > 2π/3, α24 < π
2

σ
−

1
d

σ
/

d
(α

∗ /
π
)

0 0.1 0.2 0.3 0.4

0.6

0.8

1

1.2

1.4

α∗/π = (α24 − α23)/π

R
a

ti
o

10−3

10−2

Events passing cuts: α23 < π/6, α12/13 > 2π/3, α24 < π/2

F
ra

ct
io

n
o

f
ev

en
ts

0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065

0.6

0.8

1

1.2

1.4

y3→4

R
a

ti
o

Vincia p2
⊥A

parton level

B hadrons stable

0

0.5

1

1.5

2

M2
L/M2

H with y3→4 > 0.0045, y3→4 = y2→3/2

σ
−

1
d

σ
/

d
(M

2 L
/

M
2 H
)

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

M2
L/M2

H

R
a

ti
o

Events passing cuts: y3→4 = y2→3/2

F
ra

ct
io

n
o

f
ev

en
ts

0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065

0.6

0.8

1

1.2

1.4

y3→4

R
a

ti
o

Figure 6.4: Results of analysis 2 for the p2
⊥A-ordered shower of Vincia: The left plots

show the normalized distributions of the angular observables, α14 and α∗, and the mass
ratio, M2

L/M
2
H . On the right the fraction of events that passed the cuts, used to obtain

the observable, are plotted for different y3→4,cut. A comparison between the observables
on hadron level (red), parton level (blue) and without decays of B hadrons (green) is
shown. The ratio plots show the deviation with respect to the observable on hadron level
and the error bars are the statistical Monte Carlo errors.
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Figure 6.5: Results of analysis 2 for the p2
⊥dip-ordered dipole shower of Herwig++: The

left plots show the normalized distributions of the angular observables, α14 and α∗, and
the mass ratio, M2

L/M
2
H . On the right the fraction of events that passed the cuts, used

to obtain the observable, are plotted for different y3→4,cut. A comparison between the
observables on hadron level (red), parton level (blue) and without decays of B hadrons
(green) is shown. The ratio plots show the deviation with respect to the observable on
hadron level and the error bars are the statistical Monte Carlo errors.



6.3. Influence of Hadronization 41

tighter cuts, E4 < Etot/10 and α23 < π/8, reject about four to five times more events than
the looser cuts, α12/13 > 2π/3 and α23 < π/6. Hence the latter ones are the appropriate
choice to gain more statistics and will be used for all further investigations.

As an example for the Pythia8 / Vincia event generator group, Fig. 6.4 shows the
result of the analysis for the p⊥A-ordered shower of Vincia. On the left the normalized
distributions of the angular observables and the mass ratio M2

L/M
2
H are shown. The plots

on the right show the fraction of events that passed the cuts for the observable. The same
plots can be found in Fig. 6.5 for the p⊥dip-ordered dipole shower of Herwig++. The
results presented in the following can be generalized to the other shower models.

For Vincia small corrections due to hadronization and B decays show up in the event rates
with a maximum amount of about 20%. The possibility to minimize hadronization effects
on the mass ratio are limited due to the massless partons at the end of the shower. If a jet
consists of only one massless parton its invariant mass is zero leading to the enhancement
at small values for the mass ratio. Therefore, a correction with about a factor 1/2 due
to hadronization occurs for the first bin in the normalized distribution of the mass ratio.
For the angular observables the hadronization correction gets smaller when increasing the
value of y3→4,cut. The event rates on the other hand decrease when using a higher cutoff.
Hence, picking a specific value for y3→4,cut is a compromise between the need for enough
statistics and minimizing the non-perturbative influences. The resolution scale of the jet
algorithm is chosen to be y3→4 > 0.0045, corresponding to about 6 GeV.

For Herwig++ higher effects due to the hadronization show up in the event rates of the
angular observables. These effects range from about 20% up to 50%. In order to decrease
these disruptive influences a very high cut on y3→4 would be required. Since this would
reject too many events it is not possible to get only small effects of hadronization and B
decays for Herwig++ on the event rates. As for Vincia, a large hadronization correction
occurs in the first bin in the normalized distribution of the mass ratio. Furthermore the
normalized distribution of α14 shows a very large hadronization effect for small values,
common to both Herwig++ showers, the angular-ordered parton shower and the dipole
shower with both ordering variables. The power of this enhancement depends on the
values of the parameters of the cluster hadronization model. Since these parameters are
going to be changed within the tuning process, this analysis is repeated after the tuning
and the main changes in the results are presented in Sec. 7.2.1.

6.3.4 Analysis 3: Anti-kt Algorithm
For this analysis the generalized kt algorithm for e+e− collisions is used for inclusive jets
where the parameters of the algorithm are chosen to be p = −1 and R = π/16. Thus the
distance measures are

dij = min
(
E−2
i , E−2

j

) 1− cos θij
1− cos(π/16) (6.10)

diB = E−2
i . (6.11)

Due to the negative energy exponent this algorithm is also called anti-kt jet algorithm. All
particle pairs i and j with an opening angle θij smaller than π/16 are recombined and the
opening half-angle of the resulting jets is π/16. As resolution criterion for this algorithm
a cut on the transverse momentum of the jets is used. Hence jets with a transverse
momentum higher than pmin

t are taken into account. Events that do not consist of exactly
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Figure 6.6: Results of analysis 3 for the p2
⊥dip-ordered dipole shower of Herwig++:

The plots show the normalized distributions of the angular observables α14 and α∗, A
comparison between the observables on hadron level (red), parton level (blue) and without
decays of B hadrons (green) is shown. The ratio plots show the deviation with respect to
the observable on hadron level and the error bars are the statistical Monte Carlo errors.

four jets are rejected. Tab. 6.2 lists the cutoffs pmin
t together with the two choices of cuts

on angles and energy for the observables.
Fig. 6.6 shows the normalized distributions of the angular observables α14 and α∗ for
the p⊥dip-ordered dipole shower of Herwig++. For both distributions large differences
between the results on hadron and parton level show up. This hadronization influence
does not depend on the cuts and hence can not be minimized for this jet algorithm. The
conclusions drawn for the generalized kt algorithm with p = −1 hold for the other shower
models as well. Thus this algorithm will not be used for further analysis due to the
smearing after hadronization and decays.

6.3.5 Conclusions
The aim of this section was a precise mapping of the hadronic final state to the partonic
system after the shower termination. By using the kt jet algorithm with a resolution
criterion of y3→4 > 0.0045 a compromise between the need for enough statistics for the data
analysis and minimizing disruptive effects of hadronization and B decays was found. For
Vincia and Pythia8 this value for the jet algorithm cutoff works very well for the angular
observables, leaving only small effects due to hadronization. For Herwig++ slightly
larger hadronization effects show up in the event rates for all observables. Furthermore
an enhancement for small values of α14 occurs which can be reduced partly throughout
the tuning process. Thus, Sec. 7.2.1 deals with the influence of hadronization as well.
For all shower models a large correction due to hadronization shows up in the first bin
of the mass ratio. Massless partons at the end of the shower can lead to massless jets
and therefore to the population of very small values of the mass ratio. To conclude,
the observables, especially the ratio of jet masses, show sensitivity to non-perturbative
effects which cannot be reduced completely. As cuts on the angles between the jets for
the angular observables the looser ones, α12/13 > 2π/3 and α23 < π/6, will be used since
much more events are rejected when using the tighter cuts.
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Observable Jets Cuts
α∗ 4 y3→4 > 0.0045, α12/13 > 2π/3, α23 < π/6, α24 < π/2
α14 4 y3→4 > 0.0045, α12/13 > 2π/3, α23 < π/6
M2

L/M
2
H 2 y3→4 > 0.0045, y3→4 > y2→3/2

Table 6.3: Observables, number of jets the event is clustered in and associated cuts used
in the analysis.

6.4 Asymmetries
After settling the resolution criterion for the jet algorithm and the cuts used to obtain
the observables in the last section, this analysis compares the different shower models in
terms of the observables listed in Tab. 6.3. An important aim is to find ways to compare
the shower models efficiently, for instance by reducing the observables to easier variables
allowing clear statements about the emission properties of the shower. As in the previous
section 5 · 105 hadronic events are used to take statistical uncertainties into account.

To get a clear and simple observable discriminating between the showers the asymmetry
of the histograms with respect to a vertical axis x0 through a certain observable value is
used. The asymmetry is used for all observables and here defined as

Nleft

Nright
=

∑
x<x0

y(x)∑
x>x0

y(x) (6.12)

with the observable x and the histogram entries y(x). The axis x0 is defined around the
intersection of the curves for the different showers. In analogy other ratios are build for
the angle α14, where two different regions of a histogram are divided by each other:

AS(x) =

∑
x1<x<x2

y(x)∑
x3<x<x4

y(x) . (6.13)

The asymmetries can simply be calculated by summing and dividing the histogram entries
of the normalized distribution. The statistical errors are calculated with sums in quadra-
ture. In the following the six shower models, introduced in Sec. 5.2, will be compared
in terms of the observables listed in Tab. 6.3. A more detailed comparison of the Monte
Carlo event generators with OPAL data will follow in Chap. 9.

Difference in Opening Angles: α∗

The normalized distribution of the difference in opening angles α∗ and the corresponding
asymmetry are shown in Fig. 6.7. Due to the additional cut on the angle between the
second and fourth jet, α24, the event rate decreases, for instance in comparison with α14,
and as a result the statistical errors grow. Therefore the power to tell the different models
apart is limited for this observable. The asymmetry of α∗, as shown on the right in Fig. 6.7,
suggests that a marginal possibility to distinguish the shower models exists. However it
is not possible to tell the two different ordering variables of Vincia apart since they lead
to nearly the exact same values for the asymmetry. Therefore it is more appropriate to
use an observable for which less cuts are necessary to tell the theory models apart.
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Figure 6.7: The left plot shows the normalized distribution of the difference in opening
angles α∗ and its asymmetry according to Eq. (6.12) for different axis is shown in the right
plot. The following description of line style and colour holds from now on for all plots
in this section. The solid curves refer to the Herwig++ showers, the angular-ordered
default shower in blue, the p2

⊥dip-ordered in green and the q2
dip-ordered dipole shower in

red respectively. The dashed lines refer to the Vincia shower with mass-ordering in violet
and p2

⊥A-ordering in pink and to the Pythia8 shower in teal. The ratio plots show the
deviation of the showers with respect to the Herwig++ angular-ordered default shower.
The error bars are the statistical Monte Carlo errors.
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Figure 6.8: The left plot shows the normalized distribution of the mass ratioM2
L/M

2
H and

its asymmetry according to Eq. (6.12) for different axes is shown in the right plot. The
sketch illustrates the meaning of the asymmetry in terms of the amount of different event
topologies.



6.4. Asymmetries 45

Central/Towards Central/Away Towards/Away

# Central Region Towards Region Away Region Towards region
1 0.4 < α14/π < 0.6 α14/π < 0.3 α14/π > 0.6 α14/π < 0.3
2 0.4 < α14/π < 0.6 α14/π < 0.2 α14/π > 0.7 α14/π < 0.3
3 0.4 < α14/π < 0.6 α14/π < 0.4 α14/π > 0.8 α14/π < 0.3
4 0.45 < α14/π < 0.55 α14/π < 0.3 α14/π > 0.6 α14/π < 0.2
5 0.45 < α14/π < 0.55 α14/π < 0.2 α14/π > 0.7 α14/π < 0.2
6 0.45 < α14/π < 0.55 α14/π < 0.4 α14/π > 0.8 α14/π < 0.2
7 0.35 < α14/π < 0.65 α14/π < 0.3 α14/π > 0.6 α14/π < 0.4
8 0.35 < α14/π < 0.65 α14/π < 0.2 α14/π > 0.7 α14/π < 0.4
9 0.35 < α14/π < 0.65 α14/π < 0.4 α14/π > 0.8 α14/π < 0.4

Table 6.4: Definition of the different regions for the asymmetry of α14. Columns two to
five specific the limits for the regions and the first column contains the numbering. The
ratio of the central to towards region is build with the second and third column, central to
away with the second and fourth and towards to away uses the fourth and fifth column.

Mass Ratio: M 2
L/M

2
H

The normalized distribution of the mass ratioM2
L/M

2
H is shown on the left side in Fig. 6.8.

The ratio plot for the normalized distribution on the left, showing the deviation of the
shower models with respect to Herwig++ with angular ordering, confirms that the
different theory models give different predictions for this observable. On the right the
asymmetry is shown where the different shower models give again different results for the
ratio of small to high values of the mass ratio.

The sketch below the plots illustrate the event topologies resulting in small and high
ratio of jet masses. If the masses are distributed very asymmetrically, leading to one very
high and one very small mass, the clustering of the next jets happens within the same
hemisphere. To sketch this the heavier jet in the original topology is coloured gray. If
the event gets clustered with a smaller resolution the heavier jet would be clustered into
more jets, coloured in black. For higher values of the mass ratio the events are more
symmetric and the clustering of the next jets would happen on opposite sides. Therefore
the asymmetry shown on the right side in Fig. 6.8 corresponds to the relative amount of
same-side to opposite-side events. The virtuality-ordered shower of Herwig++ produces
much less events with small mass ratios compared to the angular-ordered shower. A less
strong effect is visible for Vincia with p⊥A-ordering. Pythia8 tends to do the opposite,
produce more events where the clustering happens inside one jet, compared to the angular-
ordered shower of Herwig++.

Angle between first and fourth Jet: α14

In order to predict the amounts of a specific kind of radiation, for instance collinear or
wide-angle emission, the values of the angle between the first and fourth jet, α14, are
divided into three different regions. The so-called towards region includes small values of
α14 and thus events where the fourth jet is collinear to the first jet. The central region
is defined in a way that it contains events where the fourth jet origins in a wide-angle
emission and is hence about perpendicular to the first jet. The last region is the so-called
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Figure 6.9: The upper left plot shows the normalized distribution of the angle α14 and
the upper right plot the ratio of the central to towards region according to Eq. (6.13).
The lower plots show the central over away and towards over away region. The different
definitions used for these asymmetries can be found in Tab. 6.4. The sketches below the
plots illustrate the meaning of the regions.
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away region and characterizes events where the fourth jet lies back-to-back to the first
jet. The various limits of these regions are defined in Tab. 6.4. These regions are used to
build several asymmetries according to Eq. (6.13).

The upper left plot in Fig. 6.9 shows the normalized distribution of α14. The ratio plot,
showing the deviation of the shower models with respect to the angular-ordered shower of
Herwig++, confirms that the different theory models give different predictions for this
observable. This is verified by the additional plots in Fig. 6.9, showing the different ratios
according to Eq. (6.13). All asymmetries show a high sensitivity to the shower model
used for the prediction. The sketches below the plots of the asymmetries illustrate their
meaning, for instance the central over towards region predicts the amount of wide-angle
radiation with respect to the emissions where the fourth jet is collinear to the first jet.
This asymmetry states that all Herwig++ showers produce a smaller ratio of wide-angle
to collinear emission compared with Pythia8 and Vincia. The differences between the
showers reach up to a factor 2 for the different ratios. Since the enhancement for small
values of α14 due to hadronization effects showed up for the Herwig++ showers the
central over away region can be used to not take the enhancement into account. This
ratio is shown in the lower right plot in Fig. 6.9. The mass-ordered shower of Vincia and
the virtuality-ordered shower of Herwig++ produce about the same amount of radiation
here and also Pythia8 and the p⊥dip-ordered dipole shower of Herwig++ give similar
predictions. In total about up to 30% deviation between the different shower models can
be found for this asymmetry. The summarized result of the plots for α14 includes the
possibility to tell the different shower models apart within the statistical errors.

6.5 Experimental Resolution
In order to take the experimental detector resolution for measuring angles of jets into
account a resolution of δφ for the azimuth and polar angles of the jets is supposed. The
analysis is performed exemplarily for the angle between the first and fourth jet, α14, which
can be expressed in terms of azimuth and polar angles θi and ϕi of the first and fourth
jet as

cosα14 = ~p1 · ~p4

|~p1| · |~p4|
with ~pi = |~pi|

sin θi cosϕi
sin θi sinϕi

cos θi

 (6.14)

⇒ α14 = arccos (sin θ1 sin θ4 cos(ϕ1 − ϕ4) + cos θ1 cos θ2) . (6.15)

α14 is smeared with a Gaussian distribution for different values of the resolution δφ where
the uncertainty for α14 is calculated via propagation of uncertainty. In order to rather
overestimate the effect of the experimental resolution the uncertainties on azimuth and
polar angles are not summed in quadrature, but summed with the absolute value,

δα14 =
∑
i=1,4

(∣∣∣∣∣∂α14

∂θi

∣∣∣∣∣+
∣∣∣∣∣∂α14

∂ϕi

∣∣∣∣∣
)
δφ (6.16)

= δφ

sinα14
( |cos θ1 sin θ4 cos(ϕ1 − ϕ4)− sin θ1 cos θ2|

+ |sin θ1 cos θ4 cos(ϕ1 − ϕ4)− cos θ1 sin θ2|
+ |sin θ1 sin θ4 sin(ϕ1 − ϕ4) + cos θ1 cos θ2|
+ |− sin θ1 sin θ4 sin(ϕ1 − ϕ4) + cos θ1 cos θ2| ) . (6.17)
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Figure 6.10: The plot shows the asymmetry of α14 for the second definition of the regions
(see Tab. 6.4) with respect to the resolution δφ. To obtain this plot α14 is smeared with
a Gaussian distribution with resolution δφ.

Fig. 6.10 shows the results: The asymmetry of α14 according to Eq. (6.13) for the second
definition of the regions (see Tab. 6.4) is shown with respect to the resolution δφ. Even
for a value of 0.1 for the resolution5 it is still possible to distinguish between the showers
within the limits of the statistical Monte Carlo errors.

6.6 Conclusions
In the previous sections the influence of hadronization and B decays has been narrowed as
well as possible by choosing the right resolution scale for the jet algorithm and applying
different cuts. At the same time it was necessary to choose scales and cuts not too tight
in order to remain with enough statistics. Despite the observables are designed to be
sensitive to the parton shower, there is still some sensitivity to non-perturbative effects
left. Especially the ratio of jet masses show a large correction due to hadronization for
very small values in the predictions of all shower models.

With the help of observables like the angle between jets, α14, and the ratio of jet masses,
M2

L/M
2
H , the possibility of telling the different shower models apart within the statistical

errors exists. Since the aim is a comparison of predictions of the theory models with
OPAL data the experimental resolution for the measurement of angles has to be taken
into account.

5δφ = 0.1 is more than the actual experimental resolution for the OPAL detector.
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The observables proposed in the last chapter provide power in telling the different shower
models apart. In order to ensure a fair comparison of the models this chapter aims at a
description of existing LEP measurements on the same input level by all theory models.
Therefore the parameters of the shower algorithm and the non-perturbative hadronization
model have to be readjusted. Constraining the free parameters of theoretical models by
using existing experimental data is referred to as generator tuning. The same LEP data
set for all shower models will be used here. Thus, it is possible to make a statement if
each shower model is able to describe the data with the same quality.

As in the previous chapter the focus lies on the pure shower properties and on com-
paring the shower models as directly as possible. Hence higher order matching1 is used
throughout the tuning and Vincia is used solely with strong ordering.

In order to tune Herwig++ or Pythia8 and Vincia respectively the Professor Monte
Carlo tuning system is used, see Sec. 5.6 for a short description of the program and the
basic tuning process. In the following Sec. 7.1 the different parameters and the observables
used in the tuning are described. The results of the tuning process are presented in Sec. 7.2.

7.1 Input for the Tuning
This section deals with the basic elements for the tuning. The free parameters of the
shower and hadronization models that will be readjusted are briefly described, followed
by the set of observables used for the readjustment. At last an overview of the tuning
process is given.

7.1.1 Parameters

The free parameters of the shower models can be found in Tab. 5.1 for the Herwig++
shower algorithms and in Tab. 5.2 for Pythia8 and Vincia. Vincia offers the possibility
to use other types of variables for the shower cutoff, such as a cutoff in the evolution

1Correction of the first real emission in the angular-ordered shower, LO accuracy for the dipole shower
of Herwig++ and the default matching in Pythia8 for Vincia and Pythia8.
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variable of the Pythia8 shower p2
⊥evol, but here for the p2

⊥A- as well as for the mass-
ordered shower a cutoff in the transverse momentum p2

⊥A is chosen.

The main free parameters of the Herwig++ cluster hadronization model are listed
Tab. 5.3. A more detailed discussion of these parameters can be found there. The param-
eters of the Lund string model of Pythia8, that will be used in the tuning, are denoted
in Tab. 5.4. For a more detailed discussion of the parameters see the respective section.

7.1.2 Observables
To include a wide range of observables different groups are used: Event shapes, identified
particle spectra, jet rates, mean particle multiplicities and b quark fragmentation func-
tions, provided by the ALEPH [44, 45], DELPHI [46] and OPAL [47] experiments and
by the Particle Data Group PDG [48]. The observables and their weights can be found
in Tabs. A.1-A.5 in Appendix A. Observables, such as mean multiplicities, with only one
bin are given a higher weight to increase the possibility of a good description.

Two tunes with different observable weights are performed of which the first2 uses all
observables and is hence very extensive. In order to put the emphasis on event shapes
and jet rates, the most important observables in the context of studies of the structure
of multi-jet events, a second tune3 was performed. Multiplicities are given zero weight in
this tune and event shapes and jet rates are significantly weighted up.

7.1.3 Tuning Procedure
The amount of coefficients for the interpolation polynomial, which defines the minimal
number of Monte Carlo runs that has to be performed for the tuning, increases strongly
with the number of parameters, see Eq. (5.28) and Sec. 5.6. Therefore the parameters of
Herwig++ that exist in copies for the different flavours are varied with the same value
for all flavours in order to save time and computing capacity. In the context of a study of
coherence properties the contributions of specific flavours are also only of minor interest.

The goodness of fit, see Sec. 5.6, for real Monte Carlo runs is defined as

χ2

Ndof
=

∑
O
wO

∑
b∈O

(
MC(b)(~p)−R(b)

)2
/∆(b)2

∑
O
wO|b ∈ O|

(7.1)

and provides information about how well data measurements are described by the predic-
tions of Monte Carlo event generators. Considering an observable with only a single bin,
a value smaller than unity corresponds to predictions that lie within the error band of the
data.

The default parameter values of the Monte Carlo generators are usually obtained by
previous tunes. Vincia uses a tune called jeppsson5, see Ref. [49], and the parameters
of the Herwig++ dipole shower were obtained in the tune of Ref. [26]. Pythia8 uses
by default a tune to a wide selection of LEP data within the Rivet and Professor
framework. After performing a first tune with Herwig++ flat distributions in χ2 are
obtained for two parameters, the soft scale µsoft,FF and the smearing parameter Clsmr.

2From now on referred to as Tune 1.
3From now on referred to as Tune 2.
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Therefore Clsmr is kept at its default value and µsoft,FF is set to zero to increase the value
of the shower cutoff. This approach leads to slightly smaller values in the goodness of fit
values since the minimization works better due to the reduction of the dimensionality of
the parameter space.

To get a good description of the Monte Carlo response by the interpolation with Pro-
fessor, a fourth order polynomial is used. Due to fixing the parameters with flat dis-
tributions in χ2, as explained above, six parameters for each combination of shower and
hadronization model are left. The number of coefficients for the polynomial according
to Eq. (5.28) is 210, defining the minimal possible number of Monte Carlo runs needed
for the tuning. To get reasonable results oversampling of about a factor 3 is performed,
leading to 650 Monte Carlo runs with different randomly selected values of the parameters
that are tuned. 500 randomly selected runs are then used 300 times to interpolate the
generator response. The quality of the interpolation was checked by comparing the χ2 of
the interpolation response with real Monte Carlo runs at certain parameter values. The
quality is increased by removing parameter regions where the interpolation did not work
sufficiently well. Unfortunately not all bad regions are removed for Herwig++ since
the values of some observables are not a smooth function of the gluon mass in the region
where the Monte Carlo predictions fit the data well. This is backed by the possibility of
new splitting processes for higher gluon masses. 300 run combinations are used again in
the tuning step where the goodness of fit is minimized in order to obtain the parameters
that describe the observables best. Afterwards real Monte Carlo runs are performed for
these slightly different parameter sets and the one that leads to the smallest χ2/Ndof value
is used for further work.

7.2 Results
This section presents the results of the tuning process, starting with a short overview in
terms of the total χ2/Ndof values for the different shower models. In order to validate
the results of the tuning different analysis tools have been applied. The results for the
p2
⊥dip-ordered dipole shower are presented as an example for Herwig++ and for the
p2
⊥A-ordered shower as an example for Vincia.

Quality of the Overall Description

The goodness of fit function per degree of freedom, χ2/Ndof, is listed in Tab. 7.1 for the
different shower models. The previous tunes of Vincia and Pythia8 already describe the
existing LEP measurements very well. The description of the LEP data by the angular-
ordered shower of Herwig++ without a new tune is fine as well. Therefore only small
improvements in the quality of the description of LEP data is achieved. It is noteworthy
that this shower model is the only one that describes the mean particle multiplicities bet-
ter than the other observables. This leads to a smaller value of χ2/Ndof for the tune to all
observables compared to the tune with emphasis on event shapes and jet rates. For the
Herwig++ dipole shower, for ordering in transverse momentum as well as for ordering
in virtuality, a great improvement in fitting the LEP data was achieved by the tuning.
The goodness of fit values are reduced by factors 3 up to 17. Here, the theory models can
be told apart in terms of how well they are able to describe existing LEP measurements.
Vincia with ordering in transverse momentum fits the data the best for both tunes, fol-
lowed by Pythia8 standalone and Vincia with mass-ordering. All LEP measurements
use Pythia6 [50] or Jetset [50] to generate Monte Carlo event samples for the detector
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Default Parameters Tuned Parameters
Tune 1 Tune 2 Tune 1 Tune 2

Herwig++ q̃2-Ordered Shower 20.2 26.2 16.9 21.4
Herwig++ p2

⊥dip-Ordered Dipole Shower 348.5 59.4 23.0 21.9
Herwig++ q2

dip-Ordered Dipole Shower 358.2 109.5 25.3 17.4
Vincia p2

⊥A-Ordered Shower 9.1 8.0 7.0 4.4
Vincia m2

A-Ordered Shower 14.6 17.1 9.3 8.5
Pythia8 p2

⊥evol Shower 8.0 6.3 7.4 5.7

Table 7.1: The total χ2/Ndof values for the different shower models, for the default values
values and the best tunes. The first tune uses all observables and the second tune puts
the emphasis on the event shapes and jet rates.

correction. Herwig event samples are used as well as a contribution to the systematic
uncertainty. Therefore, the experiments claim that the observable distributions are in-
dependent of the underlying Monte Carlo generator for the detector corrections within
the experimental systematics. Nevertheless, the use of a generator similar to Pythia6
would lead to a better performance and smaller χ2/Ndof value than the use of Herwig, if
Pythia6 predicts exactly the values of the data and the predictions of Herwig lie within
the error bars of the data. Since all three Monte Carlo programs, Pythia6, Pythia8 and
Vincia, use the Lund string hadronization model, these generators might gain advantage
over Herwig++ in fitting the LEP measurements.

Goodness of Fit per Observable

To gain knowledge about the quality of the description of the single observables, Tabs. A.7 -
A.18 in Appendix A list the χ2/Ndof values for all observables for the shower used with
the default parameter values and with the two new tunes. Since Vincia and Pythia8
already fit the data very well before the tuning, there are no significant changes in the
description of the single observables. The jet rates are described best by these two Monte
Carlo programs compared to the other observable. Particle spectra and event shapes are
also described well. For the latter some observables come with a very small and some
with a rather high χ2/Ndof value. Herwig++ with angular ordering describes particle
multiplicities and particle spectra best of all observables leading to a higher compatibil-
ity with existing LEP measurements for the tune to all observables. The dipole shower
describes, for both evolution variables, jet rates best of all observables and the b quark
fragmentation functions worst. To describe the latter more precisely it would be necessary
to take mass effects of b quarks into account.

By using specific observables the Herwig++ showers can be told apart from the other
shower models due to high differences in χ2/Ndof. A more difficult task is discriminating
Pythia8 from Vincia and also Vincia with ordering in mass and transverse momentum
since the distribution of the observables used in the tuning look very much alike. Therefore
the discriminating power of the observables proposed in Sec. 6.3.1 is a useful tool for this
task.

As an example for the improvement in describing LEP data Fig. 7.1 shows the planarity
P for the default value and the best tune to all observables. The distributions for the
p2
⊥dip-ordered dipole shower of Herwig++ and the p2

⊥A-ordered shower of Vincia are
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Figure 7.1: The planarity P is plotted for the p2
⊥dip-ordered dipole shower of Herwig++

on the right and for the p2
⊥A-ordered shower of Vincia on the left. To compare the results

of the Monte Carlo generators before and after the tuning, the predictions with the default
values of the parameters (red) and the best tune (blue) are shown. The values for the
latter are obtained by the tune to all observables.

included. For both examples an improvement in the description of the data is clearly
visible in the ratio plot.

Parameter Values

The parameter values obtained by the best tune for the two different tuning processes are
listed in Tab. A.6 in the appendix. In addition, the default values and the scanned range
are shown for the different parameters. The parameter values for the two tunes do not
differ significantly from each other besides the following exceptions for the q2

dip-ordered
dipole shower of Herwig++. The cluster mass exponent Clpow changes with a factor
5 due to a rather flat distribution in χ2/Ndof. The constituent mass of the gluon, mg,
also changes with more than a factor 2 since the small value is driven mostly by mean
multiplicities and particle spectra. Event shapes prefer a higher value that will be chosen
when this group of observables is significantly weighted up.

When comparing the values of the strong coupling αMZ
for the q2

dip- and p2
⊥dip-ordered

dipole shower of Herwig++ it transpires that the value for ordering in p2
⊥dip is more

physical4. This matches to the fact that the q2
dip-ordered shower is non-coherent and

therefore ordering in p2
⊥dip is the more physical choice.

Validation

The distribution of the 300 tunes based on 500 randomly selected runs at different pa-
rameter points are plotted in Figs. 7.2 and 7.3 for two parameters for the Herwig++
p2
⊥dip-ordered dipole shower and for Vincia with ordering in p⊥A. Narrow distributions

indicate that the observables are very sensitive to this parameter. Broader distributions
are obtained if either the observables are less sensitive to a parameter or, as for the Lund
parameters aL and bL, if two parameters are highly correlated.
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Figure 7.2: Scatterplots for AlphaMZ and PSplit with real Monte Carlo runs for the
Herwig++ p2

⊥dip-ordered dipole shower. The plots show the χ2/Ndof values with respect
to the parameter value. The crosses mark the results of the 300 different run combinations,
as obtained in the tune to all observables. The vertical line indicates the parameter value
of the best tune and the plot boundaries are chosen to be equal to the scanned range of
the parameter.
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Figure 7.3: Scatterplots for AlphaMZ and PSplit with real Monte Carlo runs for the Vincia
p⊥A-ordered shower. The plots show the χ2/Ndof values with respect to the parameter
value. The crosses mark the results of the 300 different run combinations, as obtained in
the tune to all observables. The vertical line indicates the parameter value of the best tune
and the plot boundaries are chosen to be equal to the scanned range of the parameter.
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Figure 7.4: A scan of AlphaMZ and PSplit with real Monte Carlo runs and interpolation
result of Professor for the Herwig++ p2

⊥dip-ordered dipole shower. The other param-
eters are fixed at their new tuned value determined by the tune to all observables. The
vertical line indicates the value of the scanned parameter Professor that was found in
the minimization step. The curves show the χ2/Ndof for the different types of observables
and the blue curve the combination of all observables. Points correspond to the real Monte
Carlo and lines to the interpolation result.
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Figure 7.5: A scan of aLund and PTsigma with real Monte Carlo runs and interpolation
result of Professor for the Vincia p⊥A-ordered shower. The other parameters are
fixed at their new tuned value determined by the tune to all observables. The vertical
line indicates the value of the scanned parameter Professor that was found in the
minimization step. The curves show the χ2/Ndof for the different types of observables and
the blue curve the combination of all observables. Points correspond to the real Monte
Carlo and lines to the interpolation result.
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Figure 7.6: A comparison between hadron level (red solid) and parton level (blue dashed)
for the normalized distribution of α14 for the Herwig++ angular-ordered shower. The
right plot corresponds to keeping Psplit fixed during the tuning and the left one to the
result when no constraints are put on that parameter during the tuning. To obtain these
plots the parameter values of the tune to all observables are used.

In order to verify the result of the generator tuning with Professor real Monte Carlo
runs are performed where only one parameter is changed with randomly distributed values
and the other parameters are set to their new tuned value. The histograms are reproduced
at the same parameter points again by using the interpolation function Professor cal-
culated. The distribution of the goodness of fit is shown with respect to two parameters
for the Herwig++ p2

⊥dip-ordered dipole shower and for Vincia with ordering in p2
⊥A in

Figs. 7.4 and 7.5. The χ2/Ndof value is split for the different groups of observables where
the lines correspond to the interpolation result and the points to the real Monte Carlo
runs. Therefore it is possible to evaluate the quality of the interpolation functions. Fig. 7.4
shows that the parameter values of the best tunes, marked by vertical line, are clearly
favoured, mostly driven by event shapes. As mentioned above, not all regions where the
interpolation did not work sufficiently well are removed leading to the different χ2/Ndof
values for interpolation and Monte Carlo runs. Since the quality of the interpolation is
disrupted by the possibility for new splitting process for higher gluon masses, especially
identified particle spectra and mean multiplicities can not be described very well. This
affects of course also the other parameters. The interpolation worked better for Vincia,
shown in 7.5 where interpolation and generator response agree perfectly.

Some parameters show flat distributions in χ2/Ndof and others prefer to be at the limit
of the scanned range as occurring for example for αS within the tuning of Pythia8 and
Vincia. This is consistent with using only LO accuracy for the hard process and the
shower approximation for resumming all higher orders.

7.2.1 Hadronization Effects
The influence of hadronization and B decays on the new observables was investigated in
Sec. 6.3.3. The normalized distribution of the angular observable α14 in Fig. 6.4 showed
an enhancement for small values due to hadronization for the Herwig++ shower models
when used with their default parameter values. This enhancement reduced mostly for
the dipole shower due to changing the values of the hadronization parameters throughout

4The strong coupling has been measured to be about 0.12 at the Z0-pole.
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the tuning, but unfortunately did not for the angular-ordered shower. By checking the
influence of the hadronization parameters on the shape of the distribution of α14, the
mass exponent for daughter clusters Psplit is identified as the cause of the enhancement.
By keeping it fixed at a value of 0.6 during the tuning a better agreement between hadron
level and parton level for the normalized distributions of α14 is achieved. Fig. 7.6 shows
these distribution for keeping Psplit fixed on the right and for no constraints on the left.
The histograms that the influence of hadronization is reduced strongly by keeping the
parameter fixed, but still leaving corrections due to non-perturbative effects.

7.2.2 Eigentunes
In order to predict the uncertainty in the Monte Carlo predictions in connection with
changing the parameter values during the tuning, so-called eigentunes are performed. The
parameters are varied along the eigenvectors in parameter space where the eigenvectors are
obtained by certain changes, ∆χ2/Ndof, in χ2/Ndof. For each parameter two eigenvectors,
one in + and one in − direction, exist. If the goodness of fit is supposed to be distributed
as a true χ2 function ∆χ2/Ndof = 1 would correspond to a one sigma deviation and
∆χ2/Ndof = 4 to a two sigma deviation.
Unfortunately it was not possible to construct all eigenvectors with Professor for each
shower and tune, hence in most cases only ten instead of twelve eigenvectors are used.
Since this might slightly underestimate the tuning error the two sigma deviation will be
used.

7.2.3 New Observables and Experimental Resolution
To validate that the new observables can tell the shower models apart when the Monte
Carlo generators are used with tuned shower and hadronization parameters, the normal-
ized distribution of the angle α14 and the ratio of jet massesM2

L/M
2
H are shown in Fig. 7.7

with the tuned parameters. In order to take the tuning error into account the envelopes
for a two sigma deviation at 100% confidence level are included. The lower left plot of
Fig. 7.7, showing the asymmetry of α14, validates that this observables can still distinguish
between some of the shower models within the limits of the tuning error and between all
shower models within only the statistical.
To check the experimental detector resolution for measuring angles of jets, the same plot
as on the right side in Fig. 6.10 is shown here again in the lower right side of Fig. 7.7. The
tuning error is again taken into account by using the envelopes for a two sigma deviation
at 100% confidence level. The plot confirms mostly the result of Sec. 6.5: Even for a value
of 0.1 for the resolution, which is more than the actual experimental resolution, it is still
possible to tell the showers apart.

7.3 Conclusions
Due to the tuning effort the main parameters of hadronization and shower model have
been readjusted in a way that the different shower models describe existing LEP data
as effectively as possible. Even with taking the detector resolution and the tuning error
into account it is still possible to use the new observables for telling the different shower
models apart. Although Herwig++ and Pythia8 or Vincia respectively can already
be told apart by using existing measurements the discriminating power of the observables
proposed in Sec. 6.3.1 is still of great value concerning the differentiation of Pythia8 and
Vincia. Therefore the next step is the measurement of these observables with LEP data
in order to make a statement about how well the shower models fit to real measurements.



58 7. Tuning

0

0.5

1

1.5

2

Angle between 1st and 4th jet, α14

σ
−

1
d

σ
/

d
(α

1
4
/

π
)

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

α14/π

R
a

ti
o

Herwig++ q̃2

Herwig++ p2
⊥dip

Herwig++ q2
dip

Vincia p2
⊥A

Vincia m2
A

Pythia8 p2
⊥evol

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ratio of jet masses, M2
L/M2

H

σ
−

1
d

σ
/

d
(M

2 L
/

M
2 H
)

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

M2
L/M2

H

R
a

ti
o

1

Central/Towards for α14

c/
t

1 2 3 4 5 6 7 8 9
0.9
1.0
1.1
1.2
1.3
1.4
1.5

definition of region

R
a

ti
o

1

1.5

2

2.5

3
Central/Towards for def. 2 for α14 wrt resolution

c
/

t

0.01 0.03 0.05 0.07 0.09
0.9
1.0
1.1
1.2
1.3
1.4
1.5

δφ

R
a

ti
o

Figure 7.7: The upper plots show the normalized distributions of the angle α14 and the
mass ratio M2

L/M
2
H . The asymmetry for different definitions according to Eq. (6.13) for

α14 is shown in the lower left plot whereas the lower right plot shows the asymmetry for
the second definition of the regions (see Tab. 6.4) with respect to the resolution δφ. The
ratio plot shows the deviation of the showers with respect to the Herwig++ angular-
ordered default shower. The error bars are the statistical Monte Carlo errors and the
error bands show the envelopes for 100% confidence level for ∆χ2/Ndof = 4 (two sigma
deviation).



8. Data Analysis

In the last chapter the different shower models have got a similar and fair treatment by
readjusting the main parameters of hadronization and shower model. Thus they now
describe existing LEP measurement in the best possible way. To validate which shower
approach and therefore which shower characteristics and properties are able to describe
nature best, LEP data will be analyzed in terms of the observables proposed in Sec. 6.3.1.

For this purpose an already existing framework for the reconstruction, correction and
analysis of OPAL data, as for example used and described in Ref. [51], was applied. Sec. 8.1
describes how the event samples are selected. The following sections provide a more
detailed discussion of certain aspects of the measurement using the angular observables,
α∗ and α14, and the ratio of jet masses, M2

L/M
2
H .

8.1 Selection of Events
The data set used in Ref. [51] covers the whole data recorded with the OPAL detector
within the LEP2 run, see Sec. 3.1 and 3.2. During this high energy run, calibration
runs were taken at the Z0-peak, at a center-of-mass energy of 91.2 GeV. The data used
for measuring the observables proposed in Sec. 6.3.1, corresponds to the calibration runs,
providing about 400 000 event at the Z0-peak. Therefore only details of the reconstruction
and cuts on the events that are important for this specific center-of-mass energy are
described.

To select hadronic decays of the Z0 boson, different criteria on the energy clusters in the
electromagnetic calorimeter and the charged track multiplicity are imposed. A detailed
documentation of these cuts can be found in Ref. [52]. In order to take only events into
account that hit the detector acceptance, the so-called containment cut is used. This cut
on the angle of the thrust axis with respect to the beam axis, | cos θT | < 0.9, removes
events with lots of activity centered around the beam axis.

8.2 Reconstruction and Correction
To correct observables calculated with the LEP data from detector level down to hadron
level, event samples generated with the Monte Carlo event generator Pythia6 are used.
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Figure 8.1: The plots show the detector
correction factor for the angular observ-
ables, α∗ and α14, and the mass ratio,
M2

L/M
2
H . The solid lines correspond to

the ratios obtained with Pythia6 and the
dotted lines with Herwig event samples
plus a full simulation of the OPAL de-
tector. The horizontal lines indicate the
±25% variance of the corrections factors
to being unity.
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The Monte Carlo events are processed through a full simulation of the OPAL detector
[53] and then reconstructed in the same way as the real data, by using the energy flow
algorithm. This algorithm matches the tracks of charged particles emerging in the track
chambers with the energy clusters of the electromagnetic calorimeter of the detector.
Since the tracks provide the more reliable measured information all tracks and only the
clusters that are not matched with tracks are used for the calculation of the observables.
A detector correction factor for each bin and observable is calculated by building the
ratio of the observable on hadron level to the corresponding value on detector level for
the Monte Carlo event samples. This ratio is multiplied to the real data to correct the
observables down to hadron level.

Fig. 8.1 shows the detector correction factors for the angle between the first and fourth
jet, α14, the difference in opening angles, α∗, and the mass ratio M2

L/M
2
H . In order to

obtain a reliable measurement the detector correction factor should be of the order one.
Therefore the vertical lines in Fig. 8.1 mark the ±25% variance. For the mass ratio this
criteria is fulfilled for all except the first bin, which is the bin where a hadronization effect
showed up for all shower models. For the angular observable α14 large correction factors
appear for small values and small factors for high values of this observable leading to
a more unreliable measurement for small and high values of α14. Therefore, statements
concerning these regions have to be done with caution and with keeping in mind that
these regions are not measured very reliable. The part with small values of α14 is as well
the region where hadronization effects show up for Herwig++. The detector correction
factors for α∗ fulfill mostly the ±25% criterion. Only for very small and very large values
of α∗ the correction factor gets very small. This example also shows that the systematic
uncertainties scale with statistics since the difference in the correction factors for Herwig
and Pythia6 contributes to the systematic error, as will be discussed in the next section.
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Figure 8.2: The plots show different contri-
butions to the systematic uncertainties for
α14, α∗ and M2

L/M
2
H . The solid blue line

corresponds to the standard procedure for
reconstruction and correction. The solid
red line is obtained by using Herwig in-
stead of Pythia6 for the detector correc-
tion. The dashed green line corresponds
to a tightening of the containment cut and
the dashed magenta line to using all tracks
and calorimeter clusters during the recon-
struction. The error bars show the statis-
tical errors for the different contributions
and the blue band the total, statistic and
systematic, error. The ratio plot shows the
deviation to the standard procedure.

For α∗ only about half as many events, compared to α14, enter and hence higher deviations
between the two curves in the upper right plot in Fig. 8.1 occur.

8.3 Systematic Uncertainties
The systematic errors are calculated by repeating the analysis with varied cuts for the
selection of events and varied reconstruction procedures. For a center-of-mass energy of
91.2 GeV the contributions to the systematic uncertainties are the following:

• Variation of the cut on the polar angle of the thrust axis: | cos θT | < 0.7

• The detector correction is calculated using Herwig instead of Pythia6.

• Variation of the reconstruction procedure: All tracks and clusters are taken into
account. In this case the detector correction takes care of the double counting.
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The systematic error is calculated with the sum of quadrature of the different contributions
above. The total error of the data is obtained by the sum of quadrature of the systematic
error and the statistical error of the standard event selection and reconstruction procedure.

The effect of the different contributions to the systematic uncertainty for the angles α14
and α∗ and the mass ratio M2

L/M
2
H can be found in Fig. 8.2. For all observables the

largest effect on the systematic error is obtained by using Herwig instead of Pythia6
whereas the variation of the containment cut has the smallest influence. These statements
are correct for the plots as total, but of course the effect of the different contributions to
the systematic errors changes for each bin.



9. Comparison of LEP Data with
Monte Carlo Event Generators

As described in the previous chapter, all observables listed in Tab. 9.1 are measured with
OPAL data in this work. A comparison between the different theory models for the shower
and LEP data is now possible. In Sec. 6.4, a comparison among the Monte Carlos with
their default parameter values1 can be found for the angular variables, α14 and α∗, and
the ratio of jet masses,M2

L/M
2
H . An overview of the observables, that were not introduced

in the previous chapters is given in Sec. 9.1. In the following, Sec. 9.2 deals with a general
comparison of the different shower models with OPAL data. All Monte Carlo generators
are used with the values for the parameters obtained by the best tune to all observables
in the previous chapter. However, a short section, dealing with the results of both tunes,
is included. For these comparisons all of the observables, described in Sec. 9.1, will be
used. For the sections hereafter only a few observables will be used to support the main
statements, which will be only of qualitative nature. A comparison between the two
ordering conditions in Vincia, strong and smooth ordering, is applied in Sec. 9.3 and
Sec. 9.4 brings the NLO dipole shower of Herwig++ and Vincia with matrix-element
correction into focus.

9.1 Observables
All observables used for the comparison between OPAL data and the Monte Carlo event
generators are listed in Tab. 6.3 together with the event selection cuts. The angular
variables, α14 and α∗, and the ratio of jet masses, M2

L/M
2
H were already introduced in

Sec. 6.3.1.

In order to get a wider range of observables, different ratios of energy correlations, as
proposed in Ref. [54], are used. The N -point energy correlation function (ECF), as defined
in Ref. [54], is

ECF(N, β) =
∑

i1<i2<...<iN

(
N∏
a=1

Eia

)N−1∏
b=1

N∏
c=b+1

θibic

β , (9.1)

1or previous tunes
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Observable Jets Cuts
α∗ 4 y3→4 > 0.0045, α12/13 > 2π/3, α23 < π/6, α24 < π/2
α14 4 y3→4 > 0.0045, α12/13 > 2π/3, α23 < π/6
C(2, 0.2) 4 y3→4 > 0.0045, α12/13 > 2π/3, α23 < π/6
C(2, 2.0) 4 y3→4 > 0.0045, α12/13 > 2π/3, α23 < π/6
M2

L/M
2
H 2 y3→4 > 0.0045, y3→4 > y2→3/2

Cs(1, 0.2)/Ch(1, 0.2) 2 y3→4 > 0.0045, y3→4 > y2→3/2
Cs(1, 2.0)/Ch(1, 2.0) 2 y3→4 > 0.0045, y3→4 > y2→3/2

Table 9.1: Observables, number of jets the event in clustered in and associated cuts used
in the analysis.

where the sum runs either over all jets in events with four jets or over the particles of a
jet in two-jet events. Thus θi1i2 denotes the angle between either jets or particles i1 and
i2 . These correlation functions are used to build double ratios

C(N, β) = ECF(N + 1, β)ECF(N − 1, β)
(ECF(N, β))2 . (9.2)

For the analysis values of β = 0.2 and β = 2.0 are chosen to be sensitive to either soft
or collinear configurations. For events with two jets, selected with the same cuts as the
events for the mass ratio, the 1-point double ratio

C(1, β) =

∑
i<j∈J

EiEjθ
β
ij( ∑

i∈J
Ei

)2 (9.3)

is calculated for both jets. In order to get information about the relative amount of
radiation in the two hemispheres, a ratio is build by dividing the double ratio with the
smaller value by the one with the higher value,

Cs(1, β)
Ch(1, β) =

∑
i<j∈Js

EiEjθ
β
ij( ∑

i∈Js

Ei

)2 ·

( ∑
i∈Jh

Ei

)2

∑
i<j∈Jh

EiEjθ
β
ij

. (9.4)

For β = 2.0 Eq. (9.4) is approximately the second order expansion of the mass ratio since
the invariant mass squared of a particle pair is defined as

M2
ij = EiEj(1− cos θij) ≈ EiEjθ

2
ij/2 (9.5)

with cos θij ≈ 1− θ2
ij/2 . (9.6)

Small values of C(1, 2.0) refer to collinear emissions inside the jet whereas soft wide-
angle emissions lead to higher values. When building the ratio of the double ratios of
the two jets, small values refer to asymmetric events where one hemisphere is dominated
by collinear and the other by soft wide-angle emissions. Events with same amounts of
emission in both hemispheres lead to high values of Cs(1, 2.0)/Ch(1, 2.0). For β = 0.2



9.2. General Comparison 65

all angles are weighted relatively equal. Hence C(1, 0.2) is small for jets containing very
asymmetric particles, for example one very soft and one very hard particle. A jet that
contains many soft particles leads to high values. Building the ratio of two double ratios
C(1, 2.0) and obtaining high values, means that both hemispheres are dominated by the
same type of emission.

For event topologies which underlie for instance the measurement of the angle α14, the
2-point double ratio

C(2, β) =

∑
j1<j2<j3

Ej1Ej2Ej3(θj1j2θj1j3θj2j3)β( ∑
j1<j2

Ej1Ej2θ
β
j1j2

)2 · Evis (9.7)

is used, where the sum runs over the four jets. The events for this observable are selected
with the same cuts as for the angle between the first and fourth jet, α14, leading to the
same event topologies. The second and third jet build a collinear pair due to the cut on
their opening angle. Therefore, these events look like three-jet systems to the observables.
The three-jet event contains two hard jets, jet 1 and jet 232, lying back-to-back and a
third soft jet, jet 4. With this notation Eq. (9.7) can approximately be written as

C(2, β) ≈ E1E23E4(θ1 23θ14θ23 4)β

(E1E23θ
β
1 23 + E1E4θ

β
14 + E23E4θ

β
23 4)2

· Evis . (9.8)

Since the fourth jet is soft, its energy E4 is small compared to the other energies in the
event. The angle between jet 1 and jet 23 is large, θ1 23 > 2π/3, due to the event selection
cuts. Therefore, the denominator in Eq. (9.8) can be reduced to its first term, leading to

C(2, β) ≈ E4(θ14θ23 4)β

E1E23θ
β
1 23

· Evis . (9.9)

The angle θ1 23 is about fixed due to the cuts on opening angles. This leaves only the
angles relative to the fourth jet and the energies as free parameters. For β = 2.0, where
wide angles are given greater weight, C(2, 2.0) is small, if the fourth jet is either collinear
to the first jet or to the pair of the second and third jet. Higher values for the double
ratio C(2, 2.0) are obtained for jet configurations where the fourth jet is approximately
perpendicular to the other jets. For β = 0.2 all angles are weighted relatively equal and
hence C(2, 0.2) is proportional to the energy of the fourth jet, relative to the remaining
energy of the event.

9.2 General Comparison
This section presents the comparison between the Monte Carlo predictions and the LEP
data, starting with a general qualitative comparison for the different observables. All
shower models with the different evolution variables are used with the parameter values
that are obtained by the tune to all observables. At the end, a shape compatibility test
is performed for all observables to compare the shower models quantitatively. The plots
for the observables, which are not shown here, can be found in Appendix B.

2The combination of the second and third jet.
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Angle between first and fourth Jet: α14

The normalized distribution of α14 and the ratio of the central to towards region are shown
in Fig. 9.1. The distributions are separated for Herwig++ and the Pythia8 / Vincia
Monte Carlo group for reasons of clarity and comprehensibility. The histograms for the
normalized distribution contain the χ2/Ndof value as additional information. All shower
models are able to describe this distribution very well, leading to χ2/Ndof values smaller
than one, except for the q2

dip-ordered dipole shower of Herwig++. However, the value
for the latter is still very small. Due to the large error bars of the data the ratio plots
for the normalized distribution show at most about up to one sigma deviations for the
individual bins. Only few exceptions give rise to effects of about two sigma.

Below the histograms for the ratio of the central to towards region a sketch illustrates the
meaning of the ratio. The regions of α14 correspond to specific types of emissions and event
topologies. This ratio reflects the relative amount of wide-angle to collinear emissions.
The limits for the regions that lead to the different definitions are listed in Tab. 6.4. As for
the normalized distribution the ratio plots show only small deviations. Most notably are
the effects for the q2

dip-ordered dipole shower of Herwig++ and the mass-ordered shower
of Vincia. The predictions of the latter are too high. When the antenna mass is used as
evolution variable, soft wide-angle emissions are preferred over collinear ones, as shown in
the contour plot of the phase-space in Fig. 5.3. This leads to higher values for the relative
amount of wide-angle to collinear emissions. For Herwig++ α14 showed enhancements
for small values due to influences of hadronization and B decays. This effect has been
reduced throughout the tuning. However, the non-perturbative effects are still visible in
the towards region, leading to undersized values for the ratio of the central to towards for
the q2

dip-ordered dipole shower. For the angular-ordered shower of Herwig++, similar
effects are only visible, if the limits of the towards region are very tight. However, these
effects are not significant. The predictions for the ratio of the central to towards region
of all other shower models agree with the data very well.

The other ratios of α14 are shown in Fig. 9.1 together with a sketch of their meaning.
The histograms with the ratio of the towards to away region confirm that the amount of
events, where the fourth jet is collinear to the first jet, is overestimated by the q2

dip-ordered
dipole shower and the angular-ordered shower of Herwig++. The ratio of the central to
away region provides the best information about the perturbative effects due to leaving
out the towards region, which is influenced by non-perturbative effects. Most notably is
the deviation between the q2

dip-ordered dipole shower of Herwig++ and the OPAL data.
This shower model predicts too many events where the fourth jet origins in a wide-angle
emission, compared to events where the first jet lies back-to-back to all other jets. The
dipole shower with p2

⊥dip-ordering and Pythia8 tend to predict the ratio of the central
to away and towards to away region too small, although this effect is not significant. The
predictions of Vincia, for ordering in transverse momentum as well as for ordering in
antenna mass, lie within the error bars for both of these ratios.

To take the cross section of α14 into account, Fig. 9.6 shows the distribution of α14, scaled
with the fraction of events that passed the event selection cuts for this observable. The
result is the cross section, differentially in the observable, times the same arbitrary factor
for all shower models, with respect to the observable. For Herwig++ the quality of the
overall description remains about the same, compared to the normalized distribution. No
significant differences are visible for the angular- and the p2

⊥dip-ordered shower since the
prediction of the fraction of events that passed the selection cuts agrees with the data.
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Figure 9.1: The plots show the normalized distribution of the angle α14 and the ratio
of the central to towards region. The plots on the left hand side show the results for
the Herwig++ shower models, the angular-ordered shower (blue) and the dipole shower
with ordering in p2

⊥dip (green) and q2
dip (red). The predictions of Pythia8 (teal) and

Vincia with ordering in p2
⊥A (pink) and antenna mass (violet) are shown on the right.

The ratio plot shows the deviation of the Monte Carlos with respect to the data.
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Figure 9.2: The plots show the ratios of the towards to away and the central to away region
for the angle α14. The plots on the left hand side show the results for the Herwig++
shower models, the angular-ordered shower (blue) and the dipole shower with ordering in
p2
⊥dip (green) and q2

dip (red). The predictions of Pythia8 (teal) and Vincia with ordering
in p2

⊥A (pink) and antenna mass (violet) are shown on the right. The ratio plot shows the
deviation of the Monte Carlos with respect to the data.
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Figure 9.3: The plots show the distribution of the angle α14, normalized to the cross section
times the same arbitrary factor for each theory model. The plots on the left hand side
show the results for the Herwig++ shower models, the angular-ordered shower (blue)
and the dipole shower with ordering in p2

⊥dip (green) and q2
dip (red). The predictions of

Pythia8 (teal) and Vincia with ordering in p2
⊥A (pink) and antenna mass (violet) are

shown on the right. The ratio plot shows the deviation of the Monte Carlos with respect
to the data.

For the q2
dip-ordered shower the description of the towards region improves, whereas up

to two sigma deviations are visible in the away region. The only noteworthy conclusion,
following the comparison of the normalized and scaled distributions of α14 for Pythia8
and Vincia, is the change in χ2/Ndof for the p2

⊥A-ordered shower of Vincia. The value
increased by more than a factor 2, best visible in the region α14 ∈ (0.15, 0.35). This
shower model predicts the event rate for α14 too high, leading to the difference between
the scaled and the normalized distribution.

In summary the Monte Carlo generators provide a mostly good and consistent description
of the data with only small deviations. Non-perturbative effects are visible in the region
where the fourth jet is collinear to the first jet. By using only the central and away
regions the focus lies on the perturbative effects. The q2

dip-ordered shower of Herwig++
shows the trend to underestimate the away region leading to predictions containing too
few effective 1 → 3 splittings instead of two 1 → 2 splittings each. A converse, but not
significant effect shows of for Pythia8 and the p2

⊥dip-ordered dipole shower.

As mentioned in Sec. 8.2, the towards and away region of α14 have to be treated carefully
due to very small and very large detector correction factors. Therefore the results of
observables like the mass ratio are more reliable.
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2-Point Double Ratio: C(2, 0.2)
The normalized distribution of the 2-point double ratio C(2, 0.2) and the asymmetry are
plotted in Fig. 9.4. The plots again separated for Herwig++ and Pythia8 / Vincia.
Small values for the double ratio are obtained by a very soft fourth jet, if the angles are
weighted relatively equal as they are for the chosen value β = 0.2. If the fourth jet carries
more energy, the value for the double ratio increases. Therefore, the asymmetry of the
2-point double ratio gives the amount of events, where the fourth jet is very soft, with
respect to the events with a fourth jet carrying more energy.

The histograms for the normalized distribution contain the χ2/Ndof value as additional
information. As for the angle α14, all shower models are able to describe this distribution
very well, leading to χ2/Ndof values of order one. Only small deviations between Monte
Carlo predictions and LEP data are visible.

The differences are worked out with the help of the asymmetry. The q2
dip-ordered dipole

shower tends to underestimate the the asymmetry, hence predicting too few events with a
very soft fourth jet. In contrast, Vincia with mass ordering predicts too many very soft
emissions, which can again be explained with the phase-space population of this shower.
The preference of soft wide-angle emissions over harder collinear ones leads to higher
values for the ratio of the 2-point double ratio C(2, 0.2).

Since the same event selection cuts are applied to this observable and to the angle α14,
the conclusions for both variables are similar, as expected.

Mass Ratio: M 2
L/M

2
H

The normalized distribution of the ratio of hemisphere masses, the according asymmetry
and a sketch of the illustration of the asymmetry are shown in Fig. 9.5. The values
of χ2/Ndof, added in the legend of the normalized distribution, confirm that the event
generators provide good descriptions of this observable. The predictions of all theory
models lead to goodness of fit values close to unity or even less.

The ratio plots of the normalized distribution show that the prediction of high values of
the mass ratio lies within the error bars for all shower models. In the region of small mass
ratios, deviations between the Monte Carlos and the data are visible. The asymmetry
can be used to bring the difference between the regions for small and high mass ratios to
mind. As discussed in Sec. 6.3, a large correction due to hadronization shows up in the
first bin of the normalized distribution. The correction factor of the data for this bin is
small, see Sec. 8.2, which means that the measurement is not reliable. Therefore, this bin
is excluded for the for the calculation of the asymmetry in order to decrease the influence
of non-perturbative effects and increase the reliability of the measurement at the same
time. Excluding this bin is equivalent to a cut in phase-space along a contour of constant
mass ratios. As indicated by the sketch in Fig. 9.5, the asymmetry divides the amount
of events, where the clustering of the next jets happens within one hemisphere, by the
amount of opposite-side events. In the latter the clustering of the next jets happens inside
both hemispheres.

The histograms containing the asymmetry for the mass ratio with respect to different
asymmetry axes show that the p2

⊥dip-ordered shower of Herwig++ produces too many
same-side events and too few events where the next clustering of the next jets happens
in both hemisphere. For Herwig++ with q2

dip-ordering, the results are reversed. Here,
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Figure 9.4: The plots show the normalized distribution of the 2-point double ratio and
the according asymmetry for sensitivity to the energy of the fourth jet. The plots on the
left hand side show the results for the Herwig++ shower models, the angular-ordered
shower (blue) and the dipole shower with ordering in p2

⊥dip (green) and q2
dip (red). The

predictions of Pythia8 (teal) and Vincia with ordering in p2
⊥A (pink) and antenna mass

(violet) are shown on the right. The ratio plot shows the deviation of the Monte Carlos
with respect to the data.
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Figure 9.5: The plots show the normalized distribution of the mass ratio and the according
asymmetry, where the first bin is excluded. The plots on the left hand side show the
results for the Herwig++ shower models, the angular-ordered shower (blue) and the
dipole shower with ordering in p2

⊥dip (green) and q2
dip (red). The predictions of Pythia8

(teal) and Vincia with ordering in p2
⊥A (pink) and antenna mass (violet) are shown on

the right. The ratio plot shows the deviation of the Monte Carlos with respect to the
data.
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the shower produces too many opposite-side and too few same-side events. An interesting
feature in Herwig++ is the preservation of the order of the shower models. Compared
to the other shower models, the p2

⊥dip-ordered shower predicts the highest values for the
asymmetry of the mass ratio on hadron level as well as on parton level. Corresponding to
that, the shower with q2

dip-ordering always predicts the smallest values. Of special interest
is the fact that the deviation between the two different evolution variables of the dipole
shower is the same for the asymmetry on hadron and on parton level. Therefore, the cluster
hadronization model changes the asymmetry of the mass ratio for both ordering variables
with the same amount. The predictions of the angular-ordered shower of Herwig++ for
the asymmetry of the ratio of hemisphere masses agree with the data perfectly.

The shower of Pythia8 tends to produce too many events with effective 1→ 3 splittings.
Thus the value of the asymmetry of the ratio of hemisphere masses is high, compared to
the data. However, this effect is very small. The predictions of Vincia lie within the
error bars of the data.

The result of the rate of events with effective 1 → 3 splittings compared to two 1 → 2
splittings each agree for the angular observable α14 and for the ratio of jet masses. For both
observables non-perturbative effects are visible. The influence of hadronization has been
reduced and the reliability of the measurement improved for the mass ratio by excluding
the first bin for the calculation of the asymmetry.

Statistical Tests
To compare the Monte Carlo predictions quantitatively with the OPAL measurements,
the Kolmogorov test, a statistical test of compatibility in shape between two histograms,
is performed in ROOT [55] for all observables in Tab. 9.1. In addition, the χ2 test was
performed, leading to similar trends as the Kolmogorov test. In this case the p-value can
be interpreted as the probability that the prediction of the Monte Carlo generators are
in conformity with the data. Tab. 9.2 lists the p-value for the different shower models
for all observables, including both tunes. As discussed in the last section, the effect
of hadronization can be reduced and the reliability of the measurement improved by
excluding the first bin of the normalized distribution of the mass ratio. Therefore two
columns are included for this observable.

The angular-ordered shower of Herwig++ provides for most parts very good descriptions
of the LEP measurements. As discussed before, a parameter of the cluster hadronization
model had to be kept fixed throughout the tuning in order to decrease the enhancement for
small angles α14. These hadronization effects lead to smaller p-values for the observables
α14, C(2, 0.2) and C(2, 2.0), especially for the tune with emphasis on event shapes and
jet rates. The ratio of jet masses is described perfectly by this Herwig++ shower,
if the first bin is excluded and thus hadronization effects decreased. The p-values for
the p2

⊥dip-ordered Herwig++ dipole shower for the two tunes differ from each other for
some observables, but there is no clear trend that one tune is able to describe the LEP
measurements better. The angular observables, α∗ and α14, and 2-point double ratios,
which describe the same event topologies as the angular observables, are described well.
In contrast, the predictions of the other observables, as for instance the mass ratio, are less
compatible with the data. For the q2

dip-ordered Herwig++ dipole shower the p-values
of all observables increase when the parameter values of the tune with emphasis on event
shapes and jet rates are used. This is consistent with the result of the tuning where the
goodness of fit for the event shapes improved considerably for the second tune, compared
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M2
L/M

2
H

α∗ α14 C(2,0.2) C(2,2.0) all bins w/o bin1 Cs(1,0.2)
Ch(1,0.2)

Cs(1,2.0)
Ch(1,2.0)

H++ q̃2 T 1 0.85 0.55 0.30 0.53 0.38 1.00 0.55 0.85
T 2 0.89 0.26 0.19 0.29 0.52 1.00 0.68 0.86

H++ p2
⊥dip T 1 1.00 0.22 0.54 1.00 0.00 0.01 0.00 0.00

T 2 1.00 0.73 1.00 0.68 0.00 0.06 0.01 0.00
H++ q2

dip T 1 0.26 0.12 0.02 0.21 0.02 0.02 0.00 0.18
T 2 0.54 0.95 0.16 0.51 0.04 0.08 0.01 0.35

V p2
⊥A T 1 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

T 2 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00
V m2

A T 1 0.97 0.24 0.15 1.00 0.95 0.98 0.34 0.82
T 2 0.96 0.37 0.21 1.00 0.97 0.96 0.56 0.87

Pythia8 T 1 1.00 0.59 0.63 1.00 0.52 0.82 0.08 0.55
T 2 1.00 0.75 0.68 1.00 0.41 0.72 0.09 0.44

Table 9.2: The table lists the p-value of the Kolmogorov test. Herwig++ is abbreviated
with H++, Vincia with V. The first lines correspond to the result of the tunes to all
observables and the second correspond to the tune with emphasis on event shapes and
jet rates. For the mass ratio two columns are included, one where all bins are taken into
account and for the other the first bin is excluded.

to the tune to all observables. This groups of observables reflects the structure of multi-
jet events, as do the observables investigated here. The p-values indicate that the shower
with q2

dip-ordering provides good predictions for some observables.

For the p2
⊥A-ordered shower of Vincia all p-values are unity or very close to unity. Thus,

the predictions of this shower model are perfectly compatible with the LEP measurements
for all observables. The mass-ordered shower of Vincia describes the LEP measurements
for the majority of observables very well, whereas the predictions of other observables
are less compatible with the LEP measurements. The p-values of the two tunes do not
significantly differ and there is no clear trend that one tune provides a better descrip-
tion of the data. The p-values for Pythia8 do not significantly differ between the two
tunes. This shower models provides good predictions for all observables, except the ratio
Cs(1, 0.2)/Ch(1, 0.2). The description of the mass ratio is improved when the first bin is
excluded.

As an example for the comparison of the two different tunes, the normalized distribution
and the ratio of the central to away region of α14 are plotted in Fig. 9.6 for Pythia8 and
the angular-ordered shower of Herwig++ for both tunes obtained in the last chapter.
The plots show that there are no significant changes in the predictions of the two tunes.
The enhancement at small angles α14 for the angular-ordered shower is more distinct for
the tunes with emphasis on event shapes and jet rates, leading to lower values for the
ratio of the central to towards region. However, for the ratio where the towards region is
not taken into account, the results for both tunes are nearly the same.
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Figure 9.6: The normalized distribution of α14 and the ratio of the central to away region
are plotted here. The plots on the left hand side show the results for the Herwig++
angular-ordered shower, used with parameter values obtained by the tune to all observ-
ables (dark blue) and by the tune with emphasis on event shapes and jet rates (light
blue). On the right hand side the predictions of Pythia8 are shown, for the tune to all
observables (dark teal) and for the tune with emphasis on event shapes and jet rates (light
teal). The ratio plot shows the deviation of the Monte Carlos with respect to the data.
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Conclusions

For both observables, α14 and M2
L/M

2
H , non-perturbative effects occur for small values,

especially for Herwig++. To focus on the shower properties, the ratio of the central
to away region of α14 is used, since the region with small values is excluded. The ratio
reproduces the rate of events with effective 1 → 3 splittings, leading to events populat-
ing the away region of α14. The p2

⊥dip-ordered shower of Herwig++ tends to slightly
overestimate this rate, as does Pythia8. However, these effects are small and not very
significant. The q2

dip-ordered shower shows a deviation of about two sigma in underesti-
mating the amount of events in the away region. The asymmetry of the ratio of hemisphere
masses reflects the relative amount of events with effective 1→ 3 splittings, compared to
the event rate with two 1→ 2 splittings each. The conclusions for this observable confirm
the results of the angular observable α14.

In conclusion, observables like the mass ratio and its asymmetry can be used to tell the
shower models apart. This was revealed by the different predictions for these observables,
as seen for instance in Fig. 9.5, as well as by the compatibility test.

9.3 Strong and Smooth Ordering in Vincia
In order to compare the ordering condition in Vincia, see Sec. 5.2.2, additional tunes for
Vincia with smooth ordering for both evolution variables, antenna transverse momen-
tum and antenna mass, are performed. The resulting parameter values can be found in
Tab. A.19 in the appendix. In this section, the shower models are used with the parameter
values obtained by the tune to all observables.

Fig. 9.7 shows a comparison between strong and smooth ordering for the p2
⊥A-ordered

shower of Vincia. The χ2-values for the normalized distributions for both observables,
α14 andM2

L/M
2
H , indicate that the sensitivity of the observables to the ordering condition

is vanishingly low. The asymmetries, especially the one for the mass ratio, show slightly
different results. The strongly-ordered shower produces more events where the clustering
of the next jets happens on opposite sides, which leads to smaller values for the asymmetry.
Despite the differences, the results of both ordering conditions lie within the error bars of
the data.

The same histograms are shown in Fig. 9.8 to compare the effect of strong and smooth
ordering within the mass-ordered Vincia shower. As for the shower with ordering in
transverse momentum the ordering condition has only vanishingly low influence on the
distribution of the mass ratio. Both results of the Monte Carlo predictions lie either inside
or just outside of the error band of the data. However the angle between the first and
fourth jet shows higher sensitivity to the ordering condition for the mass-ordered shower.
The strongly-ordered shower describes the normalized distribution of this observable bet-
ter than the shower with smooth ordering, as indicated by the χ2-values. The same holds
for the central over towards region due to the population of the phase space by the mass-
ordered shower. This can be seen in the diagram in the middle of Fig. 5.3. The shower
prefers soft wide-angle emissions over collinear ones. If the shower is smoothly-ordered,
slightly unordered emissions are possible. Thus the smoothly-ordered shower does not
get “as far” in phase space as the strongly-ordered shower and the relative amount of
wide-angle emissions to collinear ones increases.
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Figure 9.7: The plots show a comparison between strong (pink dashed line) and smooth
(purple solid line) ordering for the p2

⊥A-ordered shower of Vincia with OPAL data: The
upper plots show the normalized distribution of α14 on the left as well as the central over
towards region on the right, as an example for the ratios. The normalized distribution of
the mass ratio M2

L/M
2
H and the asymmetry are shown in the lower plots.
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Figure 9.8: The plots show a comparison between strong (darker dashed line) and smooth
(lighter solid line) ordering for the mass-ordered shower of Vincia with OPAL data: The
upper plots show the normalized distribution of α14 on the left as well as the central over
towards region on the right, as an example for the ratios. The normalized distribution of
the mass ratio M2

L/M
2
H and the asymmetry are shown in the lower plots.



9.4. Matching 79

9.4 Matching
To check the effect of including higher orders in the Monte Carlo event generators, ad-
ditional tunes for Vincia and the dipole shower of Herwig++ were performed. The
terminology of the matching procedure is given in Sec. 5.3. The parameter values ob-
tained by the additional tunes can be found in Tab. A.20 for Vincia and Tab. A.21 for
Herwig++ in the appendix. Note that the matrix-element correction in Vincia only
works correct when used with smooth ordering. In this section the shower models are
used with the parameter values obtained by the tunes to all observables.

Fig. 9.9 compares the use of the Vincia p2
⊥A-ordered shower with the default matching

of Pythia8 to the same shower model with additional matrix-element corrections. The
latter leads to LO accuracy for the fourth jet. The plots for the normalized distributions
of α14 and M2

L/M
2
H show that there is no overall improvement when additional matching

is used. The angle α14 gets slightly better described with additional matrix-element
corrections whereas the mass ratio M2

L/M
2
H gets slightly worse. The asymmetries, shown

on the right side of Fig. 9.9, agree with that. For the shower with additional matching as
well as for the shower with the default matching of Pythia8, the prediction of the Monte
Carlo lies within the error bars of the data.

The same plots are shown again in Fig. 9.10 for the p2
⊥dip-ordered dipole shower of

Herwig++. They lead basically to the same conclusions as for Vincia. The normalized
distribution of α14 gets slightly better described with the NLO version of the shower and
the mass ratio M2

L/M
2
H gets slightly worse. The same holds for the asymmetries. For

the central over towards region both predictions lie within the error bands of the data,
whereas the asymmetry of the mass ratio both do not.

It is well known that the influence of matching in e+e−-collisions is small. For instance,
the NLO corrections to the Herwig++ dipole shower are small and the dipole splitting
functions already coincide with the real emission matrix element very well. Nevertheless,
the Monte Carlo event generators gain an improvement from matching in e+e−-collisions
in the sense that the parameter values of the shower model get more physical. The strong
coupling at the Z0-pole gets closer to the measured value and the shower cutoff reaches
a higher value when higher order corrections are implemented. This can be verified by
checking the corresponding values in Tab. A.6 for the LO p2

⊥dip-ordered dipole shower of
Herwig++ and Tab. A.21 for NLO version.
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Figure 9.9: The plots show a comparison for the p2
⊥A-ordered shower of Vincia with

OPAL data when used with additional matrix-element correction for LO accuracy for the
fourth jet (pink dashed line) and with the default Pythia8 matching (purple solid line):
The upper plots show the normalized distribution of α14 on the left together with the
central over towards region on the right, as an example for the ratios. The normalized
distribution of the mass ratio M2

L/M
2
H and the asymmetry are shown in the lower plots.
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Figure 9.10: The plots show a comparison for the p2
⊥dip-ordered shower of Vincia with

OPAL data when used with NLO (darker dashed line) and LO (lighter solid line) accuracy:
The upper plots show the normalized distribution of α14 on the left together with the
central over towards region on the right, as an example for the ratios. The normalized
distribution of the mass ratio M2

L/M
2
H and the asymmetry are shown in the lower plots.
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10. Summary and Conclusions

The aim of this work was to analyze QCD properties, such as colour coherence or the
emission of soft jets. Since these properties manifest themselves in the implementation
of the shower algorithm in Monte Carlo event generators, different shower models are
investigated and compared. On the one hand, the traditional parton shower approach has
been used for decades. This algorithm is based on 1 → 2 splittings and is implemented
for instance in Herwig++ with angular ordering or in Pythia8 with angular vetos. On
the other hand, new approaches with 2→ 3 splittings become established, using Catani-
Seymour partitioned dipoles like the Herwig++ dipole shower or antenna functions like
Vincia. The choice of radiation function differs from model to model. Furthermore, the
choice of evolution variable, such as transverse momentum or virtuality, depends on the
model, as does the phase-space mapping, also known as recoil strategy.

The observables, which are used in this thesis to investigate shower properties, are sensi-
tive to QCD colour coherence and angular ordering or to effective 1→ 3 splitting kernels
and jet substructure. Event selection cuts are defined in a way to minimize disruptive
influences of hadronization and B decays. For Herwig++ large enhancements in the ob-
servable α14 showed up due to these disruptive effects. They were taken care of throughout
the tuning. However, they were not be reduced completely. For all shower models, non-
perturbative effects are visible for small values of the ratio of jet masses since massless
partons after the termination of the parton shower exist on parton level. In addition to the
normalized distributions of the observables, different definitions of the asymmetry for the
variables are used. These asymmetries provide clear and easy tools that allow statements
concerning the relative amounts of different types of emissions or event configurations.

To ensure a fair comparison of the different shower models, the main free parameters of the
theoretical models are constrained by using existing LEP measurements. This procedure
is referred to as generator tuning. In this work the parameters of the different shower
models, the strong coupling and the shower cutoff, are tuned together with the main
parameters of either the cluster hadronization model in Herwig++ or the Lund string
model in Pythia8. For all shower models the same set of LEP data is used, including
event shapes, jet rates, identified particle spectra, b quark fragmentation functions and
mean particle multiplicities. The main result of the generator tuning is the goodness of fit
function. Since all LEP measurements use event samples of either Pythia6 or Jetset for
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the detector correction, the shower models of Pythia8 and Vincia might gain advantage
over Herwig++, although the experiments claim to be independent of the underlying
Monte Carlo generator for the detector corrections within the experimental systematics.
Under the given conditions, Vincia with ordering in transverse momentum provides the
best description of experimental LEP data.

After measuring the new observables with OPAL data, the results are compared with the
predictions of the Monte Carlo event generators. Besides a few exceptions, the simulations
provide good and consistent descriptions. The deviation between experimental data and
Monte Carlo predictions are small with two sigma effects at most. The results of both
observables, the angle between jets, α14, and the ratio of hemisphere masses, M2

L/M
2
H ,

agree with each other. The rate of events with effective 1→ 3 splittings, leading to high
values for α14 and small values forM2

L/M
2
H , is slightly overestimated by Pythia8 and the

p2
⊥dip-ordered shower of Herwig++. In contrast, the q2

dip-ordered shower shows about a
two sigma deviation in underestimating the amount of effective 1→ 3 splittings. However,
the visible effects are small and both observables show sensitivity to non-perturbative
effects, especially for small values of the variables.

A special feature in Vincia is the possibility of using strong and smooth ordering for
the same evolution variable. The effect of this ordering condition was investigated with
the new observables. The latter did not provide enough information to draw a clear
statement, if strong or smooth ordering for the shower is the more physical choice. For
the dipole shower of Herwig++ the pure shower and the shower matched to higher order
matrix elements was compared as well. As expected the influence of matching in e+e−-
collisions is small since the NLO corrections are small and the dipole splitting functions in
Herwig++ already coincide with the real emission matrix element very well. However,
the Monte Carlo event generator gains an improvement from matching in the sense that
the parameter values of the shower model get more physical, as shown for the dipole
shower of Herwig++ with ordering in p2

⊥dip. The influence of the additional tree-level
matching in Vincia for LO accuracy for the fourth jet is small as well.

It was not possible to tell the shower models of Vincia and Pythia8 apart with the
help of former LEP measurements. This task was accomplished with the new observables.
The two ordering variables of Vincia, transverse momentum and antenna mass, provide
different predictions for the ratio of different regions of the angular observable α14. The
asymmetry of the ratio of hemisphere masses can be used to tell Vincia and Pythia8
apart. These conclusions are additionally verified with the Kolmogorov test, a statistical
test of compatibility in shape, performed within this work to check the compatibility
between the new LEP measurements and the Monte Carlo predictions.

As mentioned above, Pythia8 and Vincia might gain advantage over Herwig++, for
both, tuning and the description of the new measurements. To ensure a completely fair
treatment for Herwig++ as well, the tuning procedure and the comparison between
the Monte Carlo generators and LEP data in terms of the new observables should be
repeated. The same LEP data set has to be used in the tuning process, but for the
detector correction in all measurements Herwig has to be applied instead of Pythia6.
Following this, Herwig should be used for the central value of the new measurements and
the deviation to Pythia6 will then contribute to the systematical error. By comparing
the outcome of the described procedure with the results in this thesis, a clear statement
can be issued about how well the different theory models are able to describe existing
LEP measurements and QCD properties, tested with the new observables.
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Tuning Observables
The following Tabs. A.1-A.5 list the observables and the according weights for the complete
tune to all observables (column T 1) and for the tunes with emphasis on event shapes and
jet rates (column T 2) used during the tuning process.

Observable Weight
T 1 T 2

K∗±(892) spectrum 1.0 1.0
ρ spectrum 1.0 1.0
ω(782) spectrum 1.0 1.0
Ξ− spectrum 1.0 1.0
K∗0 spectrum 1.0 1.0
φ spectrum 1.0 1.0
Σ± spectrum 1.0 1.0
γ spectrum 1.0 1.0
K± spectrum 1.0 1.0

Observable Weight
T 1 T 2

Λ0 spectrum 1.0 1.0
π0 spectrum 1.0 1.0
p spectrum 1.0 1.0
η′ spectrum 1.0 1.0
Ξ0(1530) spectrum 1.0 1.0
π± spectrum 1.0 1.0
η spectrum 1.0 1.0
K0 spectrum 1.0 1.0

Table A.1: Identified particle spectra and the associated weights, taken from Ref. [46].

Observable Weight
T 1 T 2

Differential 2-jet rate 2.0 10.0
Differential 3-jet rate 2.0 10.0

Observable Weight
T 1 T 2

Differential 4-jet rate 2.0 10.0
Differential 5-jet rate 2.0 10.0

Table A.2: Jet rates and the associated weights, taken from Ref. [47].
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Observable Weight
T 1 T 2

Mean ρ0(770) multiplicity 10.0 0.0
Mean ∆++(1232) multiplicity 10.0 0.0
Mean K∗+(892) multiplicity 10.0 0.0
Mean Σ0 multiplicity 10.0 0.0
Mean Λ0

b multiplicity 10.0 0.0
Mean K+ multiplicity 10.0 0.0
Mean Ξ0(1530) multiplicity 10.0 0.0
Mean Λ(1520) multiplicity 10.0 0.0
Mean D∗+s (2112) multiplicity 10.0 0.0
Mean Σ−(1385) multiplicity 10.0 0.0
Mean f1(1420) multiplicity 10.0 0.0
Mean φ(1020) multiplicity 10.0 0.0
Mean K∗02 multiplicity 10.0 0.0
Mean Ω− multiplicity 10.0 0.0
Mean Σ±(1385) multiplicity 10.0 0.0
Mean ψ(2S) multiplicity 10.0 0.0
Mean D∗+ multiplicity 10.0 0.0
Mean B∗ multiplicity 10.0 0.0
Mean π0 multiplicity 10.0 0.0
Mean η multiplicity 10.0 0.0
Mean a+

0 (980) multiplicity 10.0 0.0
Mean D+

s1 multiplicity 10.0 0.0
Mean ρ+(770) multiplicity 10.0 0.0
Mean Ξ− multiplicity 10.0 0.0
Mean ω(782) multiplicity 10.0 0.0
Mean Υ(1S) multiplicity 10.0 0.0

Observable Weight
T 1 T 2

Mean χc1(3510) multiplicity 10.0 0.0
Mean D+ multiplicity 10.0 0.0
Mean Σ+ multiplicity 10.0 0.0
Mean f1(1285) multiplicity 10.0 0.0
Mean f2(1270) multiplicity 10.0 0.0
Mean J/ψ(1S) multiplicity 10.0 0.0
Mean B+

u multiplicity 10.0 0.0
Mean B∗∗ multiplicity 10.0 0.0
Mean Λ+

c multiplicity 10.0 0.0
Mean D0 multiplicity 10.0 0.0
Mean f ′2(1525) multiplicity 10.0 0.0
Mean Σ± multiplicity 10.0 0.0
Mean D+

s2 multiplicity 10.0 0.0
Mean K∗0(892) multiplicity 10.0 0.0
Mean Σ− multiplicity 10.0 0.0
Mean π+ multiplicity 10.0 0.0
Mean f0(980) multiplicity 10.0 0.0
Mean Σ+(1385) multiplicity 10.0 0.0
Mean D+

s multiplicity 10.0 0.0
Mean p multiplicity 10.0 0.0
Mean B0

s multiplicity 10.0 0.0
Mean K0 multiplicity 10.0 0.0
Mean B+, B0

d multiplicity 10.0 0.0
Mean Λ multiplicity 10.0 0.0
Mean η′(958) multiplicity 10.0 0.0

Table A.3: Multiplicities and the associated weights, taken from Ref. [48].

Observable Weight
T 1 T 2

b quark fragmentation function f(xweak
B ) 7.0 35.0

Mean of b quark fragmentation function f(xweak
B ) 3.0 15.0

Table A.4: Observables for b quarks and the associated weights, taken from Ref. [45].
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Observable Weight
T 1 T 2

In-plane p⊥ in GeV w.r.t. sphericity axes 1.0 5.0
In-plane p⊥ in GeV w.r.t. thrust axes 1.0 5.0
Out-of-plane p⊥ in GeV w.r.t. sphericity axes 1.0 5.0
Out-of-plane p⊥ in GeV w.r.t. thrust axes 1.0 5.0
Mean out-of-plane p⊥ in GeV w.r.t. thrust axis vs. xp 1.0 5.0
Mean p⊥ in GeV vs. xp 1.0 5.0
Scaled momentum xp = |p|/|pbeam| 1.0 5.0
Log of scaled momentum, log(1/xp) 1.0 5.0
Energy-energy correlation, EEC 1.0 5.0
Sphericity, S 1.0 5.0
Aplanarity, A 2.0 10.0
Planarity, P 1.0 5.0
D parameter 1.0 5.0
C parameter 1.0 5.0
1-Thrust 1.0 5.0
Thrust major, M 1.0 5.0
Thrust minor, m 2.0 10.0
Oblatness, O = M −m 1.0 5.0
Charged multiplicity distribution 2.0 10.0
Mean charged multiplicity 150.0 750.0

Table A.5: Observables and the associated weights, taken from Ref. [46] and [44].
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Parameter Values

Herwig++ q̃2

Default Range Tune 1 Tune 2
αMZ

0.120 0.100− 0.125 0.123 0.123
pmin

T 1.00 GeV (0.50− 1.50) GeV 1.39 GeV 1.50 GeV
mg,c 0.95 GeV (0.67− 3.00) GeV 0.70 GeV 0.70 GeV
Clmax 3.25 GeV (2.00− 4.50) GeV 3.59 GeV 3.73 GeV
Clpow 1.28 2.00− 10.00 2.59 3.74
Psplit 1.14 fixed 0.60 0.60

Herwig++ p2
⊥dip Herwig++ q2

dip
Default Range Tune 1 Tune 2 Tune 1 Tune 2

αMZ
0.113 0.100− 0.138 0.128 0.128 0.138 0.133

µIR,FF 1.41 GeV (0.50− 2.00) GeV 0.78 GeV 0.95 GeV 0.72 GeV 0.98 GeV
µsoft,FF 0.24 GeV fixed 0.00 GeV 0.00 GeV 0.00 GeV 0.00 GeV
mg,c 1.08 GeV (0.67− 3.00) GeV 0.70 GeV 0.70 GeV 0.96 GeV 2.30 GeV
Clmax 4.17 GeV (2.00− 4.50) GeV 3.12 GeV 3.36 GeV 2.73 GeV 2.98 GeV
Clpow 5.73 2.00− 10.00 5.72 4.91 2.00 10.0
Psplit 0.77 0.00− 1.40 0.74 0.76 1.33 0.73

Vincia p2
⊥A Vincia m2

A
Default Range Tune 1 Tune 2 Tune 1 Tune 2

αS 0.129 0.120− 0.132 0.132 0.132 0.132 0.132
p2 min
⊥A 0.60 0.46− 1.00 0.65 0.54 0.84 0.64
aL 0.38 0.20− 0.70 0.26 0.20 0.47 0.33
bL 0.90 0.50− 1.50 0.74 0.71 0.82 0.76
aED 1.00 0.50− 0.10 0.93 0.92 0.50 0.50
σ 0.275 0.200− 0.400 0.270 0.268 0.294 0.292

Pythia8 p2
⊥evol p

2
⊥evol

Default Range Tune 1 Tune 2
αS 0.138 0.120− 0.139 0.139 0.139
p2 min
⊥evol 0.40 0.40− 1.00 0.41 0.40
aL 0.30 0.20− 0.70 0.35 0.42
bL 0.80 0.50− 1.50 0.94 1.05
aED 0.50 0.50− 0.10 0.95 0.83
σ 0.304 0.200− 0.400 0.284 0.285

Table A.6: The tables list the parameters with their default value and the scanned range
for the tuning. The last columns contain the values of the parameters obtained by the
best tunes for either the first tune to all observables or the second tune with emphasis on
the event shapes and jet rates.
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χ2/Ndof Values for Each Observable

The following Tabs. A.7-A.18 list the values of the goodness of fit function per degree of freedom χ2/Ndof for each of the observables used
during the tuning process. After the first two columns denoting the weights five columns for each shower follow: The χ2/Ndof values for
the shower with its default parameters and for the shower with tuned parameters for the four different tunes.

Weight Herwig++ q̃2 Herwig++ p2
⊥dip Herwig++ q2

dip
Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
K∗±(892) spectrum 1.0 1.0 0.6 0.6 0.6 2.9 0.6 0.9 2.3 1.2 6.3
ρ spectrum 1.0 1.0 4.9 4.4 4.5 9.3 5.7 6.8 9.1 5.4 8.6
ω(782) spectrum 1.0 1.0 0.3 1.6 1.7 5.5 2.2 2.4 5.7 1.4 5.2
Ξ− spectrum 1.0 1.0 10.4 7.4 8.1 1157.3 22.5 20.1 1089.5 84.1 26.8
K∗0 spectrum 1.0 1.0 1.1 1.4 1.4 4.2 2.1 2.1 3.2 1.4 5.9
φ spectrum 1.0 1.0 4.2 4.0 3.6 6.4 3.2 3.3 5.7 3.7 12.5
Σ± spectrum 1.0 1.0 4.7 4.1 3.8 253.0 16.3 46.8 247.8 7.0 20.2
γ spectrum 1.0 1.0 1.8 1.7 1.8 10.3 2.9 4.5 10.7 2.6 6.4
K± spectrum 1.0 1.0 10.1 8.1 10.1 153.3 55.3 63.2 122.0 60.2 242.4
Λ0 spectrum 1.0 1.0 113.7 47.9 52.8 3230.3 73.0 310.4 3118.4 66.7 140.0
π0 spectrum 1.0 1.0 1.1 2.1 2.2 3.7 1.1 1.7 3.4 1.2 2.1
p spectrum 1.0 1.0 10.2 9.1 6.8 268.6 13.1 59.2 216.8 9.7 8.1
η′ spectrum 1.0 1.0 4.6 3.3 3.3 4.0 3.3 3.7 3.7 4.1 3.3
Ξ0(1530) spectrum 1.0 1.0 10.1 8.1 10.1 153.3 55.3 63.2 122.0 60.2 242.4
π± spectrum 1.0 1.0 25.9 30.5 30.0 134.1 36.5 55.0 164.2 29.0 91.9
η spectrum 1.0 1.0 9.4 5.4 5.7 10.1 4.4 6.6 8.3 6.0 3.8
K0 spectrum 1.0 1.0 7.9 7.2 9.2 112.1 38.2 44.1 86.9 48.5 293.7

Table A.7: χ2/Ndof values for identified particle spectra for the Herwig++ showers.
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Weight Vincia p2
⊥A Vincia m2

A Pythia8 p2
⊥evol

Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
K∗±(892) spectrum 1.0 1.0 0.6 0.7 0.7 0.8 0.7 0.7 0.5 0.6 0.6
ρ spectrum 1.0 1.0 2.9 3.2 3.2 2.7 2.9 3.1 1.1 1.1 1.1
ω(782) spectrum 1.0 1.0 1.3 0.9 0.8 2.4 1.7 1.5 4.5 4.7 4.5
Ξ− spectrum 1.0 1.0 1.9 1.4 1.4 2.9 2.0 2.0 9.2 8.7 9.4
K∗0 spectrum 1.0 1.0 1.6 1.5 1.5 2.5 2.2 2.1 2.0 2.1 2.1
φ spectrum 1.0 1.0 6.3 5.4 5.9 9.9 6.7 7.2 4.9 5.2 5.5
Σ± spectrum 1.0 1.0 1.0 0.9 0.9 1.1 1.0 1.0 2.2 2.2 2.1
γ spectrum 1.0 1.0 0.6 0.6 0.6 0.8 0.6 0.6 1.8 1.6 1.7
K± spectrum 1.0 1.0 3.1 4.9 5.0 5.6 5.6 5.8 2.9 3.3 3.2
Λ0 spectrum 1.0 1.0 4.7 2.8 2.9 9.1 7.1 6.8 17.3 15.0 16.2
π0 spectrum 1.0 1.0 0.5 0.4 0.3 1.4 0.9 0.8 1.3 1.0 0.9
p spectrum 1.0 1.0 2.8 4.7 3.8 7.8 8.9 8.2 5.0 7.2 6.3
η′ spectrum 1.0 1.0 2.3 2.3 2.3 1.9 2.0 2.1 2.3 2.3 2.4
Ξ0(1530) spectrum 1.0 1.0 3.1 4.9 5.0 5.6 5.6 5.8 2.9 3.3 3.2
π± spectrum 1.0 1.0 49.2 28.5 29.8 45.2 31.7 33.7 27.4 17.0 17.1
η spectrum 1.0 1.0 2.5 2.5 2.4 2.8 2.8 2.5 3.8 3.9 3.9
K0 spectrum 1.0 1.0 4.4 6.8 7.6 9.2 8.0 8.5 4.4 4.9 4.9

Table A.8: χ2/Ndof values for identified particle spectra for the Vincia and Pythia8 p2
⊥evol showers.
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Weight Herwig++ q̃2 Herwig++ p2
⊥dip Herwig++ q2

dip
Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
In-plane p⊥ w.r.t. sphericity axes 1.0 5.0 39.5 37.9 40.2 243.0 28.1 38.6 973.9 308.2 42.6
In-plane p⊥ w.r.t. thrust axes 1.0 5.0 6.2 3.8 3.7 33.6 2.6 4.3 159.3 41.7 6.7
Out-of-plane p⊥ w.r.t. sphericity axes 1.0 5.0 34.0 31.7 25.0 174.6 14.8 20.0 278.1 28.5 24.8
Out-of-plane p⊥ w.r.t. thrust axes 1.0 5.0 9.2 8.9 7.0 42.7 4.1 5.7 67.1 8.9 5.8
Mean out-of-plane p⊥ w.r.t. thrust axis vs. xp 1.0 5.0 21.6 25.7 29.0 147.3 66.5 62.4 494.4 168.6 41.0
Mean p⊥ in GeV vs. xp 1.0 5.0 59.1 54.8 44.9 146.4 38.4 35.3 257.6 31.4 21.4
Scaled momentum xp = |p|/|pbeam| 1.0 5.0 41.0 18.9 20.3 27.0 31.1 28.6 43.0 22.1 14.4
Log of scaled momentum, log(1/xp) 1.0 5.0 43.7 17.8 18.8 28.9 30.8 29.0 46.0 22.4 13.2
Energy-energy correlation, EEC 1.0 5.0 22.0 8.5 7.2 7.0 5.4 3.9 36.9 4.9 5.3
Sphericity, S 1.0 5.0 46.2 38.2 33.3 40.7 22.5 14.4 111.0 13.7 11.8
Aplanarity, A 2.0 10.0 59.4 26.9 23.2 17.1 40.7 29.8 159.2 23.0 11.7
Planarity, P 1.0 5.0 27.6 24.1 21.9 76.0 4.0 4.0 120.7 13.6 5.0
D parameter 1.0 5.0 109.5 46.7 39.6 23.7 39.3 25.0 174.6 9.9 9.4
C parameter 1.0 5.0 34.5 15.9 14.2 28.5 7.6 6.1 73.2 5.7 13.4
1-Thrust 1.0 5.0 110.7 71.8 66.6 29.0 22.1 17.1 79.1 11.5 21.7
Thrust major, M 1.0 5.0 71.2 132.3 127.6 130.2 131.2 94.4 239.5 76.1 43.7
Thrust minor, m 2.0 10.0 68.2 39.5 36.5 30.5 60.2 44.0 190.4 28.9 22.6
Oblatness, O = M −m 1.0 5.0 42.3 72.3 65.5 86.8 4.1 3.7 105.7 49.7 10.5
Mean charged multiplicity 150.0 750.0 8.4 1.6 0.9 1.4 2.5 2.7 4.5 0.0 0.0
Charged multiplicity distribution 2.0 10.0 2.1 1.0 1.1 3.1 1.6 1.7 3.0 0.5 1.0

Table A.9: χ2/Ndof values for event shapes for the Herwig++ showers.
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Weight Vincia p2
⊥A Vincia m2

A Pythia8 p2
⊥evol

Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
In-plane p⊥ w.r.t. sphericity axes 1.0 5.0 41.7 18.2 17.2 97.8 37.8 37.6 33.4 26.7 26.7
In-plane p⊥ w.r.t. thrust axes 1.0 5.0 14.7 9.4 8.9 28.8 17.6 17.9 9.8 10.5 10.7
Out-of-plane p⊥ w.r.t. sphericity axes 1.0 5.0 23.5 19.0 18.9 41.6 28.2 27.8 16.9 16.9 16.3
Out-of-plane p⊥ w.r.t. thrust axes 1.0 5.0 8.9 6.6 6.7 14.5 10.4 10.3 5.7 6.0 5.9
Mean out-of-plane p⊥ w.r.t. thrust axis vs. xp 1.0 5.0 34.7 18.0 16.7 83.2 39.7 40.4 23.0 23.9 24.7
Mean p⊥ in GeV vs. xp 1.0 5.0 33.8 20.0 20.0 75.5 50.6 53.1 24.5 24.6 25.2
Scaled momentum xp = |p|/|pbeam| 1.0 5.0 7.6 6.2 5.5 28.7 18.0 16.7 13.8 13.6 13.3
Log of scaled momentum, log(1/xp) 1.0 5.0 9.5 6.3 5.9 29.6 17.6 16.6 14.1 13.1 12.9
Energy-energy correlation, EEC 1.0 5.0 1.7 0.3 0.3 6.0 3.0 3.0 1.4 1.6 1.6
Sphericity, S 1.0 5.0 7.2 1.0 1.1 27.7 4.4 5.0 2.1 2.2 2.3
Aplanarity, A 2.0 10.0 6.6 8.7 8.6 17.8 6.1 6.2 6.0 5.0 4.9
Planarity, P 1.0 5.0 8.7 2.9 3.0 27.2 11.0 11.2 7.1 6.1 6.2
D parameter 1.0 5.0 8.1 8.3 7.6 6.9 10.8 10.5 9.2 9.0 8.7
C parameter 1.0 5.0 2.9 0.8 0.9 2.5 3.9 3.3 4.6 4.1 3.9
1-Thrust 1.0 5.0 5.4 2.3 2.2 4.6 6.8 5.9 4.9 4.7 4.6
Thrust major, M 1.0 5.0 47.3 15.3 14.2 111.5 18.8 21.5 7.1 11.3 11.6
Thrust minor, m 2.0 10.0 10.1 11.9 11.1 17.7 13.6 12.8 12.2 10.0 9.3
Oblatness, O = M −m 1.0 5.0 5.5 1.8 1.8 19.3 6.9 7.3 3.7 2.3 2.4
Mean charged multiplicity 150.0 750.0 5.5 0.9 1.1 6.4 1.5 1.9 2.9 0.5 0.6
Charged multiplicity distribution 2.0 10.0 0.7 0.4 0.4 0.8 0.4 0.5 0.5 0.3 0.3

Table A.10: χ2/Ndof values for event shapes for the Vincia and Pythia8 p2
⊥evol showers.
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Weight Herwig++ q̃2 Herwig++ p2
⊥dip Herwig++ q2

dip
Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
Mean ρ0(770) multiplicity 10.0 0.0 3.7 0.1 0.0 9.3 0.3 1.0 11.9 0.5 10.1
Mean ∆++(1232) multiplicity 10.0 0.0 1.3 0.2 0.3 50.7 11.9 31.2 41.7 3.9 2.1
Mean K∗+(892) multiplicity 10.0 0.0 0.5 0.3 0.6 12.6 0.9 2.2 9.6 2.7 28.0
Mean Σ0 multiplicity 10.0 0.0 15.7 8.8 13.2 152.4 1.8 17.4 138.5 0.0 15.4
Mean Λ0

b multiplicity 10.0 0.0 0.4 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Mean K+ multiplicity 10.0 0.0 1.8 0.0 0.4 107.4 22.4 27.9 84.2 38.5 384.0
Mean Ξ0(1530) multiplicity 10.0 0.0 4.6 2.4 16.6 7446.6 0.4 261.3 7083.6 77.6 9.0
Mean Λ(1520) multiplicity 10.0 0.0 59.8 63.7 63.9 60.9 66.3 64.9 61.3 65.5 66.5
Mean D∗+s (2112) multiplicity 10.0 0.0 0.8 0.7 0.7 0.4 0.6 0.4 0.5 0.5 0.9
Mean Σ−(1385) multiplicity 10.0 0.0 1.2 0.0 1.5 2742.0 65.7 352.4 2564.2 0.1 206.3
Mean f1(1420) multiplicity 10.0 0.0 14.5 15.0 14.5 8.0 16.5 14.8 8.2 17.1 13.4
Mean φ(1020) multiplicity 10.0 0.0 1.1 0.0 0.1 291.8 50.1 86.9 244.5 66.1 430.9
Mean K∗02 multiplicity 10.0 0.0 0.3 0.0 0.3 3.3 1.5 0.3 2.9 1.9 0.1
Mean Ω− multiplicity 10.0 0.0 3.6 2.2 8.0 6744.8 0.2 50.5 6597.7 2.2 1.2
Mean Σ±(1385) multiplicity 10.0 0.0 9.2 1.7 7.5 4339.4 126.3 598.2 4065.4 3.1 366.7
Mean ψ(2S) multiplicity 10.0 0.0 10.1 8.4 8.8 7.8 6.0 6.3 8.9 7.5 7.6
Mean D∗+ multiplicity 10.0 0.0 48.9 64.1 67.6 57.8 14.0 17.0 80.0 24.7 107.7
Mean B∗ multiplicity 10.0 0.0 14.1 75.9 78.3 26.6 16.3 20.0 29.3 19.7 27.0
Mean π0 multiplicity 10.0 0.0 1.5 0.1 0.1 3.8 0.0 0.2 8.6 0.3 4.4
Mean η multiplicity 10.0 0.0 0.8 2.0 2.3 11.0 1.2 2.8 13.4 1.3 5.2
Mean a+

0 (980) multiplicity 10.0 0.0 0.2 0.5 0.6 1.6 0.7 0.8 1.8 0.7 1.6
Mean D+

s1 multiplicity 10.0 0.0 22.3 21.2 19.8 41.1 16.1 24.5 33.5 20.1 6.1
Mean ρ+(770) multiplicity 10.0 0.0 1.6 0.3 0.2 0.9 0.1 0.0 1.3 0.0 1.0
Mean Ξ− multiplicity 10.0 0.0 9.7 1.0 20.9 5680.3 36.7 106.2 5278.2 271.3 61.5
Mean ω(782) multiplicity 10.0 0.0 4.0 0.0 0.1 20.9 1.4 2.9 25.8 1.8 21.2
Mean Υ(1S) multiplicity 10.0 0.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Table A.11: χ2/Ndof values for particle multiplicities for the Herwig++ showers.
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Weight Vincia p2
⊥A Vincia m2

A Pythia8 p2
⊥evol

Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
Mean ρ0(770) multiplicity 10.0 0.0 0.5 0.3 0.3 0.5 0.3 0.3 1.7 2.2 2.2
Mean ∆++(1232) multiplicity 10.0 0.0 13.9 15.2 14.0 14.1 15.8 15.3 8.6 9.3 9.1
Mean K∗+(892) multiplicity 10.0 0.0 0.4 0.8 0.8 0.4 0.5 0.6 0.1 0.1 0.1
Mean Σ0 multiplicity 10.0 0.0 8.1 8.7 8.4 7.9 9.3 8.8 5.1 5.7 5.5
Mean Λ0

b multiplicity 10.0 0.0 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7
Mean K+ multiplicity 10.0 0.0 0.1 0.3 0.5 0.1 0.0 0.0 6.8 5.4 5.6
Mean Ξ0(1530) multiplicity 10.0 0.0 1.6 1.1 1.0 1.4 1.0 1.0 10.6 10.2 10.4
Mean Λ(1520) multiplicity 10.0 0.0 67.6 67.6 67.6 67.6 67.6 67.6 67.6 67.6 67.6
Mean D∗+s (2112) multiplicity 10.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Mean Σ−(1385) multiplicity 10.0 0.0 0.1 0.3 0.2 0.1 0.5 0.3 3.7 3.5 3.5
Mean f1(1420) multiplicity 10.0 0.0 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8
Mean φ(1020) multiplicity 10.0 0.0 43.9 58.5 67.4 48.7 47.2 53.5 16.9 19.1 18.7
Mean K∗02 multiplicity 10.0 0.0 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
Mean Ω− multiplicity 10.0 0.0 3.5 3.7 3.7 3.5 3.6 3.5 8.1 8.3 8.3
Mean Σ±(1385) multiplicity 10.0 0.0 5.5 7.2 6.2 5.4 7.8 7.1 0.1 0.0 0.0
Mean ψ(2S) multiplicity 10.0 0.0 7.3 6.6 6.6 6.6 6.5 6.4 6.5 6.7 7.0
Mean D∗+ multiplicity 10.0 0.0 3.0 1.3 1.4 2.3 1.7 1.7 7.2 7.3 7.0
Mean B∗ multiplicity 10.0 0.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Mean π0 multiplicity 10.0 0.0 0.3 1.0 0.9 0.2 0.8 0.7 0.3 0.8 0.7
Mean η multiplicity 10.0 0.0 2.9 3.6 3.5 2.7 3.5 3.4 0.6 0.4 0.5
Mean a+

0 (980) multiplicity 10.0 0.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
Mean D+

s1 multiplicity 10.0 0.0 1.4 1.4 1.4 1.5 1.4 1.4 1.5 1.3 1.2
Mean ρ+(770) multiplicity 10.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.3 0.3 0.3
Mean Ξ− multiplicity 10.0 0.0 6.5 9.4 9.2 6.3 9.2 9.2 2.1 1.6 2.0
Mean ω(782) multiplicity 10.0 0.0 2.3 2.9 2.7 2.0 2.9 2.7 21.5 24.0 23.8
Mean Υ(1S) multiplicity 10.0 0.0 3.7 3.6 3.6 3.4 3.3 3.4 3.6 3.6 3.7

Table A.12: χ2/Ndof values for particle multiplicities for the Vincia and Pythia8 p2
⊥evol showers.
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Weight Herwig++ q̃2 Herwig++ p2
⊥dip Herwig++ q2

dip
Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
Mean χc1(3510) multiplicity 10.0 0.0 11.3 10.8 10.9 10.6 10.6 10.4 10.8 10.7 10.5
Mean D+ multiplicity 10.0 0.0 12.4 16.0 16.2 17.1 63.5 47.2 12.0 35.2 32.1
Mean Σ+ multiplicity 10.0 0.0 0.1 0.5 0.0 86.2 3.6 0.5 76.6 9.1 1.6
Mean f1(1285) multiplicity 10.0 0.0 2.2 2.9 2.9 4.8 4.6 4.2 5.0 4.7 5.9
Mean f2(1270) multiplicity 10.0 0.0 14.8 6.1 8.6 1.2 3.2 0.6 0.5 4.9 9.6
Mean J/ψ(1S) multiplicity 10.0 0.0 33.7 25.1 24.1 20.0 11.9 13.4 24.0 18.2 2.7
Mean B+

u multiplicity 10.0 0.0 1.9 0.0 0.0 8.9 63.1 41.9 2.3 25.3 7.5
Mean B∗∗ multiplicity 10.0 0.0 11.8 23.0 23.3 23.1 22.6 22.7 23.1 22.5 23.1
Mean Λ+

c multiplicity 10.0 0.0 0.1 6.1 6.6 0.8 15.2 9.9 1.2 11.5 15.9
Mean D0 multiplicity 10.0 0.0 0.3 0.3 0.3 0.1 8.0 4.4 1.1 1.8 0.0
Mean f ′2(1525) multiplicity 10.0 0.0 0.0 0.0 0.0 6.6 0.5 0.0 6.0 0.9 0.0
Mean Σ± multiplicity 10.0 0.0 14.6 2.9 9.6 624.9 0.9 27.1 564.0 14.2 41.0
Mean D+

s2 multiplicity 10.0 0.0 3.1 2.9 3.1 2.1 4.5 3.5 2.2 3.8 4.9
Mean K∗0(892) multiplicity 10.0 0.0 0.2 0.1 0.6 54.6 1.3 6.1 39.4 7.5 133.7
Mean Σ− multiplicity 10.0 0.0 3.0 0.8 2.4 118.5 0.0 6.1 107.1 2.2 8.8
Mean π+ multiplicity 10.0 0.0 11.5 1.0 0.9 31.2 0.1 2.5 73.2 5.1 34.8
Mean f0(980) multiplicity 10.0 0.0 32.7 42.6 44.1 55.9 38.5 41.6 59.3 37.7 48.9
Mean Σ+(1385) multiplicity 10.0 0.0 10.9 1.8 6.8 3904.3 113.6 540.4 3659.8 3.5 336.2
Mean D+

s multiplicity 10.0 0.0 0.0 1.4 1.4 3.9 10.6 8.6 2.7 5.2 8.6
Mean p multiplicity 10.0 0.0 28.6 0.1 0.9 640.1 27.9 166.6 525.8 11.2 10.9
Mean B0

s multiplicity 10.0 0.0 0.0 3.7 3.7 3.7 2.5 3.5 2.9 1.5 4.0
Mean K0 multiplicity 10.0 0.0 2.9 24.1 37.4 694.9 223.7 254.1 564.3 331.9 2291.9
Mean B+, B/d0 multiplicity 10.0 0.0 0.0 0.3 0.3 1.3 5.3 3.8 0.7 2.6 1.2
Mean Λ multiplicity 10.0 0.0 25.0 6.9 4.1 12938.6 5.9 766.7 11816.3 98.8 475.5
Mean η′(958) multiplicity 10.0 0.0 9.9 10.2 10.3 7.1 5.9 6.1 8.2 6.5 4.8

Table A.13: χ2/Ndof values for particle multiplicities for the Herwig++ showers.
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Weight Vincia p2
⊥A Vincia m2

A Pythia8 p2
⊥evol

Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
Mean χc1(3510) multiplicity 10.0 0.0 10.9 10.8 10.9 10.9 10.9 10.9 10.9 10.9 10.9
Mean D+ multiplicity 10.0 0.0 19.6 22.6 22.6 20.7 21.6 21.5 18.2 18.1 18.0
Mean Σ+ multiplicity 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4 0.4
Mean f1(1285) multiplicity 10.0 0.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
Mean f2(1270) multiplicity 10.0 0.0 68.6 68.6 68.6 68.6 68.6 68.6 68.6 68.6 68.6
Mean J/ψ(1S) multiplicity 10.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.5 0.8 0.6
Mean B+

u multiplicity 10.0 0.0 3.4 3.5 3.3 3.5 3.5 3.6 5.3 5.4 5.2
Mean B∗∗ multiplicity 10.0 0.0 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2
Mean Λ+

c multiplicity 10.0 0.0 5.7 5.5 5.6 5.7 5.5 5.6 4.8 4.8 4.8
Mean D0 multiplicity 10.0 0.0 1.3 2.2 2.2 1.7 1.9 1.8 4.9 5.0 4.9
Mean f ′2(1525) multiplicity 10.0 0.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Mean Σ± multiplicity 10.0 0.0 10.2 12.5 11.1 10.3 13.8 12.6 2.6 3.4 3.1
Mean D+

s2 multiplicity 10.0 0.0 5.9 5.9 5.9 5.9 5.9 6.0 6.1 6.0 6.0
Mean K∗0(892) multiplicity 10.0 0.0 1.6 3.6 4.4 1.6 2.4 2.7 0.1 0.4 0.4
Mean Σ− multiplicity 10.0 0.0 2.6 3.0 2.7 2.5 3.4 3.1 0.7 0.9 0.8
Mean π+ multiplicity 10.0 0.0 6.0 1.4 1.8 7.2 1.9 2.4 0.9 0.0 0.0
Mean f0(980) multiplicity 10.0 0.0 145.2 145.2 145.2 145.2 145.2 145.2 145.3 145.4 145.4
Mean Σ+(1385) multiplicity 10.0 0.0 8.6 10.5 9.4 8.3 10.8 10.2 0.3 0.4 0.4
Mean D+

s multiplicity 10.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.2 0.2 0.3
Mean p multiplicity 10.0 0.0 2.1 3.8 2.7 2.0 4.6 3.7 1.3 2.4 2.0
Mean B0

s multiplicity 10.0 0.0 1.5 1.4 1.3 1.4 1.4 1.4 2.2 2.2 2.2
Mean K0 multiplicity 10.0 0.0 21.5 39.8 46.4 22.1 27.5 31.8 0.9 0.1 0.1
Mean B+, B/d0 multiplicity 10.0 0.0 0.9 0.9 0.8 0.9 0.9 0.9 1.1 1.1 1.1
Mean Λ multiplicity 10.0 0.0 19.4 12.5 13.9 20.6 11.9 13.4 67.8 59.2 62.4
Mean η′(958) multiplicity 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1

Table A.14: χ2/Ndof values for particle multiplicities for the Vincia and Pythia8 p2
⊥evol showers.
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Weight Herwig++ q̃2 Herwig++ p2
⊥dip Herwig++ q2

dip
Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
Differential 2-jet rate 2.0 10.0 6.2 8.2 8.9 4.2 2.5 1.8 6.1 2.0 1.4
Differential 3-jet rate 2.0 10.0 4.9 17.0 20.8 10.6 5.1 3.6 15.3 0.4 2.2
Differential 4-jet rate 2.0 10.0 10.5 24.0 27.7 15.5 8.1 6.1 20.9 1.2 5.5
Differential 5-jet rate 2.0 10.0 2.4 27.5 33.4 28.3 11.2 9.2 35.6 1.7 11.0

Table A.15: χ2 values for jet rates for the Herwig++ showers.

Weight Vincia p2
⊥A Vincia m2

A Pythia8 p2
⊥evol

Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
Differential 2-jet rate 2.0 10.0 0.2 0.4 0.4 0.5 0.1 0.2 0.5 0.5 0.5
Differential 3-jet rate 2.0 10.0 0.3 0.7 0.7 0.3 0.5 0.4 0.6 0.5 0.6
Differential 4-jet rate 2.0 10.0 0.6 0.9 0.9 0.6 0.8 0.8 0.8 0.7 0.7
Differential 5-jet rate 2.0 10.0 0.4 0.6 0.6 0.7 0.7 0.7 0.8 0.6 0.7

Table A.16: χ2 values for jet rates for the Vincia and Pythia8 p2
⊥evol showers.
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Weight Herwig++ q̃2 Herwig++ p2
⊥dip Herwig++ q2

dip
Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
b quark fragmentation function f(xweak

B ) 7.0 35.0 35.3 28.4 33.2 228.1 449.1 387.0 137.3 311.9 232.3
Mean of b quark fragmentation function f(xweak

B ) 3.0 15.0 12.9 12.5 14.6 42.9 53.9 50.3 32.1 40.6 41.5

Table A.17: χ2 values for observables for b quarks for the Herwig++ showers.

Weight Vincia p2
⊥A Vincia m2

A Pythia8 p2
⊥evol

Observable T1 T2 Def. T1 T2 Def. T1 T2 Def. T1 T2
b quark fragmentation function f(xweak

B ) 7.0 35.0 2.7 0.0 0.0 3.6 0.6 0.3 0.6 1.1 1.5
Mean of b quark fragmentation function f(xweak

B ) 3.0 15.0 5.2 2.6 2.0 4.8 2.5 1.7 3.5 4.3 4.4

Table A.18: χ2 values for observables for b quarks for the Vincia and Pythia8 p2
⊥evol showers.
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Parameters of Additional Tunes
The following Tabs. A.19-A.21 list the parameter values that result from tuning Herwig++
and Vincia with different configurations.

Vincia p2
⊥A Vincia m2

A
Default Range Tune 1 Tune 2 Tune 1 Tune 2

αS 0.129 0.120− 0.132 0.129 0.129 0.132 0.132
p2 min
⊥A 0.60 0.46− 1.00 0.50 0.46 0.76 0.67
aL 0.38 0.20− 0.70 0.38 0.25 0.39 0.37
bL 0.90 0.50− 1.50 0.86 0.72 0.71 0.71
aED 1.00 0.50− 0.10 0.60 0.87 0.55 0.51
σ 0.275 0.200− 0.400 0.264 0.263 0.291 0.292

Table A.19: The tables list the parameters with their default value and the scanned range
for tuning Vincia with smooth ordering. The last columns contain the values of the best
tunes for the first tune to all observables and for the second tune with emphasis on the
event shapes and jet rates.

Vincia p2
⊥A

Default Range Tune 1 Tune 2
αS 0.129 0.120− 0.132 0.131 0.130
p2 min
⊥A 0.60 0.46− 1.00 0.60 0.46
aL 0.38 0.20− 0.70 0.44 0.24
bL 0.90 0.50− 1.50 0.97 0.74
aED 1.00 0.50− 0.10 0.55 0.64
σ 0.275 0.200− 0.400 0.260 0.260

Table A.20: The tables list the parameters with their default value and the scanned range
for tuning Vincia with matching and smooth ordering. The last columns contain the
values of the best tunes for the first tune to all observables and for the second tune with
emphasis on the event shapes and jet rates.
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Herwig++ p2
⊥dip

Default Range Tune 1 Tune 2
αMZ

0.118 0.100− 0.138 0.127 0.127
µIR,FF 1.25 GeV (0.50− 2.00) GeV 0.81 GeV 1.01 GeV
µsoft,FF 0.00 GeV fixed 0.00 GeV 0.00 GeV
mg,c 1.01 GeV (0.67− 3.00) GeV 0.70 GeV 0.79 GeV
Clmax 3.66 GeV (2.00− 4.50) GeV 3.11 GeV 3.27 GeV
Clpow 5.68 2.00− 10.00 7.90 10.00
Psplit 0.77 0.00− 1.40 0.70 0.72

Table A.21: The tables list the parameters with their default value and the scanned range
for tuning the Herwig++ dipole shower with matching. The last columns contain the
values of the best tunes for the first tune to all observables and for the second tune with
emphasis on the event shapes and jet rates.
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Difference in Opening Angles: α∗
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Figure B.1: The plots show the normalized distribution of the difference in opening angles.
The plots on the left hand side show the results for the Herwig++ shower models, the
angular-ordered shower (blue) and the dipole shower with ordering in p2

⊥dip (green) and
q2

dip (red). The predictions of Pythia8 (teal) and Vincia with ordering in p2
⊥A (pink)

and antenna mass (violet) are shown on the right. The ratio plot shows the deviation of
the Monte Carlos with respect to the data. The description of line style and colour holds
for all plots in this section.
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Double Ratios: C(2, 2.0), Cs(1, 0.2)/Ch(1, 0.2) and Cs(1, 2.0)/Ch(1, 2.0)
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Figure B.2: The plots show the normalized distribution of the 2-point double ratio
C(2, 2.0) and the 1-point double ratios Cs(1, 0.2)/Ch(1, 0.2) and Cs(1, 2.0)/Ch(1, 2.0).
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