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CHAPTER 1
Introduction

There is nothing new to be discovered in physics now.
All that remains is more and more precise measurement.

(Lord Kelvin, 1900)

Finding the fundamental building blocks of nature and the interactions among these has
posed a challenge for physicists practically ever since physics existed. In the course of the
last century vast progress has been made in describing these constituents at ever growing
granularity. Beginning with the discovery of the substructure of atoms via Rutherford
scattering in 1911, scattering experiments of higher and higher energies have continued
to give insights on the structure of natures building blocks. This field of research, par-
ticle physics, still represents a very active field of science. Only the experiments have
grown largely from using decay products of radioactive materials and gold-foils to building
kilometer long devices for accelerating and colliding particles. The highest energetic and
largest collider ever built and still under use is the Large Hadron Collider (LHC) at CERN
in Geneva, Switzerland.

The first continuous running period of the LHC has finished about a year ago. With the
discovery of a Standard Model-like Higgs boson [1, 2], this run already marked a big step
for particle physics in this century. Still, physicists are hoping for more to come in the
upcoming runs which are just about to start. The discovery of other new particles has
been absent so far. Therefore a lot of interest is drawn by the study of effects that might
indirectly yield signs of ”New Physics“.

One of today’s areas of interest is the mechanism of electroweak symmetry breaking
(EWSB). This mechanism describes the interactions and masses of vector bosons in terms
of a small number of parameters. From the theory side, an elegant and complete de-
scription of this part of physics is available, but due to the challenging nature of the
associated measurements, there is a lot of room for deviations from the predictions on the
experimental side.

This thesis is dedicated to vector boson selfcouplings. With the vector boson 4-vertices not
accurately measured so far, this particular subject serves as an appealing playing ground
for theorists and experimentalists alike. Already in Run 1 of the LHC, first experimental
data on same sign W -boson scattering has been collected [3], but with the center of mass
energy going up to 13 TeV and a luminosity of up to 100 fb−1 in Run 2 [4], a lot more
results are expected to arrive in the near future.
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2 1. Introduction

One way of modeling new physics effects in the electroweak sector is the approach of ef-
fective field theories, or in this case often called anomalous couplings. These serve as an
open-minded way of describing low energy effects of new physics at much higher energy
scales Λ. In typical analyses of vector boson scattering at hadron colliders, observables
like the invariant mass of a vector boson pair often can not be limited to a narrow energy
range [5]. Working in broad energy ranges, one might already include energies so close to
the scale Λ, that the effective field theory approximation breaks down and the anomalous
couplings start showing unphysically large scattering probabilities. When theoretical pre-
dictions are compared to experimental data, this would naively imply that the anomalous
couplings need to be zero.

A full theory with new particle resonances should be used to describe these high energy
ranges. Without knowing this theory, different methods can be used to get meaningful
physical results. A way to treat this problem is the so called unitarisation of anomalous
couplings. This means suppressing the anomalous couplings at energies larger than a
certain energy scale, such that their low energy behavior is kept and the unphysical high
energy behavior is suppressed. The choice for this scale depends on the method used.
One of these methods is the introduction of form factors. These are functions resembling
propagators of resonances with two input parameters: an exponent controlling the power
of suppression and a mass scale at which the suppression sets in. The structure of the form
factor and the choice for the input parameter lack a strong physical motivation, which is
why some consider them as rather unattractive.

The approach under consideration in this thesis is called K-matrix unitarisation [5, 6, 7].
Based on a partial wave analysis of the scattering amplitudes resulting from anomalous
couplings, unitarity bounds are derived and used to control the cut-off of the amplitudes.
No input parameters are needed to control the behavior in contrast to form factors.

After a quick introduction into the theoretical framework, a derivation of the K-matrix
formalism is given. This is in turn used for an implementation into the parton level Monte
Carlo program VBFNLO [8]. In the analysis part a comparison to a similar program also using
the K-matrix formalism, WHIZARD [9], is given in order to check the implementation.
Not all anomalous couplings can be unitarized in the K-matrix formalism, which is why
in the unitarisation section a new K-matrix-like approach is proposed for those.
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CHAPTER 2
Theoretical Provisions

This chapter is a short introduction into the subjects and definitions that represent the
foundation of quantum field theoretical frameworks, rather than a complete mathematical
description. It is based on the findings in [10, 11].

2.1. The Standard Model of Particle Physics

In order to describe the fundamental forces and properties of nature at the smallest scales,
the theory that evolved in the last century and so far endured every experimental challenge
is the Standard Model of particle physics (SM). It is based in the framework of quantum
field theories, i.e. the treatment of particles as discrete excitations of an underlying field.

The particle content of the SM consists of six quarks, six leptons, four types of force
mediators, i.e. the gauge bosons and, as has been consolidated in the past two years, the
Higgs boson. Quarks and leptons are grouped into three families, all carrying an identical
structure. The interactions between these particles are described based on the concept of
local gauge invariance. This means that the theory is invariant under transformations that
are elements of certain groups, analogous to the gauge freedom that was already known in
classical electrodynamics and with local meaning that these transformations are space-time
dependent. The combination of groups that describes the symmetries of the SM is

GSM = SU(3)C × SU(2)L × U(1)Y , (2.1)

standing for unitary (U) respectively special unitary (SU) groups, i.e. unitary transforma-
tions with determinant +1. The indices indicate the nature of the interaction.

C stands for “color” referring to the color-charge of strongly interacting particles, the
quarks. With dim[SU(3)] = 3 we know that this group, or rather the corresponding Lie-
Algebra is formed by 32 − 1 = 8 generators. These correspond to the eight gluons that
serve as massless force mediators of the strong interaction with Spin = 1.

The index L refers to the interesting fact that the weak force is maximally parity violating,
i.e. only left-chiral fermions and right-chiral antifermions interact weakly. Y stands for the
weak hypercharge of a particle that is defined as

Y = 2(Q− T3), (2.2)

where Q is the electric charge and T3 the third component of the weak isospin of a particle.
The combination of the electric and weak charge into Y gives a hint at one of the great
successes of the SM: the unification of the weak and the electromagnetic force into the
electroweak force.

Another ingredient to the SM that is not directly visible from the gauge groups, is the
Higgs-mechanism. It cures the inconvenience that adding mass terms to the Lagrangian of

3



4 2. Theoretical Provisions

the SM, which describes all interactions among the particles, spoils the gauge invariance
that the theory was constructed from in the first place. Including the Higgs-field into the
theory dynamically generates mass terms for the massive vector bosons and also fermion
masses can be included via the so called Yukawa couplings to the Higgs.

Although the SM is extraordinarily successful in the description of experimental results of
particle physics it does not describe all fundamental forces of nature, with the gravitational
force being the one left out. Due to the non-renormalizability of gravity in a quantum field
theoretical framework [12], it so far has not been possible to extend the SM to also contain
the last fundamental force that we know of. This and a number of other facts show there
is reason to believe that physics beyond the Standard Model (BSM) exist.

Note that throughout this thesis we will work in natural units as it is typically done in
particle physics. Effectively this mean setting

~ = c = 1. (2.3)

The result is that the units of length, time and mass are all just different powers of the
unit of energy, i.e.

[length] = [time] = [mass]−1 = [energy]−1. (2.4)

2.2. Interactions in a Quantum Field Theory Framework

The starting point of most quantum field theoretical frameworks is the dimensionless1

quantity S, called the action. Classically it is expressed as the time integral over a La-
grangian L, but with time and spatial dimensions being treated equally in a relativistic
framework, we rather want to look at the Lagrangian density L in terms of one ore more
fields φ(x), i.e.

S =

∫
dtL(φ, ∂µφ) =

∫
d4xL(φ, ∂µφ). (2.5)

As we know from classical mechanics, with the help of the Lagrangian formalism and
the principle of least action, we can derive classical paths of particles in some configura-
tion space between two points in time t1 and t2. This is done by finding the stationary
points (typically the minima) of S by demanding that the variation δS along the field
configurations vanishes.

0 = δS =

∫
d4 x

{
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

}
(2.6)

From this we can derive the Euler-Lagrange equation of motion for a field, i.e.

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0, (2.7)

which directly corresponds to the equation of motion we know from classical mechanics.
Historically the equations of motions for fields like the Dirac-equation for fermions of Spin
1/2 and the Klein-Gordon-equation for massless scalar fields have been known before the
introduction of this formalism. They give us the hint of how to construct Lagrangian
densities, namely by defining them such that the equations of motions are reproduced by
plugging them into 2.7. For the case of a single scalar field φ(x) the right choice for L is

LKG = ∂µφ∂
µφ− 1

2
m2φ2, (2.8)

1S carries the dimension [energy]× [time]. Therefore we can treat it as dimensionless in natural units.
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2.2. Interactions in a Quantum Field Theory Framework 5

yielding the aforementioned Klein-Gordon-equation

�φ(x) +m2φ(x) = 0. (2.9)

Note that from now on we will call Lagrangian densities L just Lagrangians. The equations
of motion are exactly soluble if we insert the fields in the form of Fourier-expansions. These
do not need to be classical anymore in the sense that we interpret the Fourier-coefficients in
the expansion as creation/annihilation operators and impose the right (anti-)commutator
relations among these, a step often called second quantization.

At this point we are now able to define the so called Feynman propagator ∆F (x− y). For
the case of a scalar field we denote it by

i∆F (x− y) = 〈0|T [φ(x)φ†(y)] |0〉 , (2.10)

where T [. . . ] stands for time ordering, which is bringing the products of the fields respec-
tively their operators in the order with the latest to the left. This propagator is a solution
to the Klein-Gordon equation and can be interpreted as the probability amplitude of a
freely propagating field that is created at some space-time coordinate y and annihilated
at x (if x0 > y0).

So far we have only considered free propagation described by quadratic terms of the fields
in the Lagrangian. We can now include interactions among the fields by adding terms
with three or more fields. It is then convenient to split the Lagrangian in a kinetic part
LK and an interaction part LI , i.e.

L = LK + LI . (2.11)

A well known example is the interaction of fermion fields ψ(x) and the photon field Aµ(x)
in quantum electrodynamics (QED), i.e.

LI,QED = −eψγµψAµ. (2.12)

In general the equations of motions will then not be exactly soluble anymore, which is
why we need to rely on perturbation theory. The expansion parameters will then be the
coupling constants (e in the example above) that come with the interaction terms of the
Lagrangian2. This method becomes clear if we take a look at the time evolution of some
initial state |i〉 at t = −∞. In the interaction picture, the time evolution is determined by
the interaction Hamiltonian HI by

i∂t |φ〉 = HI |φ〉 . (2.13)

We can reformulate this equation in an integral form and iteratively insert it into itself,
finally arriving at

|φ(∞)〉 = T [exp{−i

∞∫
−∞

dtHI(t)}] |i〉 . (2.14)

This tells us that we can get the transition amplitude of some initial state |i〉 at t = −∞
to some final state |f〉 at t =∞ by

〈f |T [exp{−i

∞∫
−∞

dtHI(t)}] |i〉 . (2.15)

2We need to assume that the coupling constants are small enough, so that the perturbative expansion
converges.
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6 2. Theoretical Provisions

Now we insert the relation between the interaction Hamiltonian and the corresponding
interaction Lagrangian and expand this transition amplitude to get

〈f |T [exp{−i

∫
d4xLI(x)}] |i〉 (2.16)

= 〈f | 1 + i

∫
d4xT [LI ] +

i2

2

∫
d4x

∫
d4yT [LI(x)LI(y)] + . . . |i〉 . (2.17)

Taking the QED interaction Lagrangian as an example, we see that we end up at a per-
turbative expansion in terms of the coupling constants and the time ordered products
of the fields of our interaction Lagrangian. The question is how to evaluate those time
ordered products between initial and final state. For this we need Wick’s theorem which
tells us that all products of fields can be decomposed to sums of products of the Feynman
propagators that we have seen before. Luckily Richard Feynman came up with the idea to
diagrammatically represent these products of Feynman propagators, which makes the in-
terpretation and computation of those transition amplitudes far more accessible. For every
LI , i.e. for every physical theory in that form, we are now able to derive a set of Feynman
rules which tell us how to translate the diagrammatic representations to mathematical
expressions. These rules are just explicit expressions for the Feynman propagators and the
vertices appearing in the theory, i.e. the way different propagators can be connected.

The diagrams now merely represent the transition amplitudes from above for some specific
field configuration. These amplitudes are also called matrix elements, denoted byM. With
this notation we are ready to define a measure for the probability of some process, called
differential cross section dσ. Let us restrict ourselves to the case of |i〉 representing a two-
particle state with definite momentum |pApB〉. Then we can define the differential cross
section of this state going to any final state |f〉 by

dσ =
1

2EA2EB|vA − vB|
|M(pA, pB → {pf})|2dΦ, (2.18)

dΦ =
∏
f

d3pf
2Ef (2π)3

(2π)4δ(4)
(
pa + pb −

∑
pf

)
. (2.19)

Here |vA−vB| denotes the relative velocity of the two initial state particles in the laboratory
reference frame. We can get a little more insight on the meaning of this definition, by
considering a two-particle final state with all in- and outgoing particles having the same
mass and by working in the center of mass frame of the incoming particles. The expression
above then reduces to

dσ =
|M|2

64π2E2
CM

dΩ. (2.20)

From this we see that all dynamics of the reaction is incorporated in M. This is already
an experimentally accessible observable, which tells us how probable it is to find the final
state particles in some solid angle dΩ. By integrating over this solid angle we arrive at the
total cross section σtot representing the final quantity of the calculations in this framework.
It yields the overall probability of finding final state particles of some process described
by M.

2.3. Glashow-Weinberg-Salam Theory of Weak Interactions

The theory of weak interactions within the Standard Model is the so called Glashow-
Weinberg-Salam theory (GWS). It was developed in 1967 by the three eponyms and ex-
perimentally confirmed indirectly with the detection of neutral currents in the Gargamelle

6



2.3. Glashow-Weinberg-Salam Theory of Weak Interactions 7

detector at CERN in 1973 and directly in 1983 by the detection of W±- and Z- bosons
with the UA1 and UA2 detectors in proton-antiproton collisions.

In order to understand the basics of the theory behind this, let us consider a doublet field
Ψ that transforms under a local unitary transformation U ∈ SU(2) as

Ψ→ UΨ, Ψ† → Ψ†U †. (2.21)

When we treat this field in a QFT framework, we need to include a kinetic term of the
field into the Lagrangian, i.e.

Lkin = iΨ̄γµ∂µΨ. (2.22)

As it turns out, terms of this structure are not invariant under the transformation men-
tioned before. We can cure this by replacing the partial derivative ∂µ by the corresponding
covariant derivative Dµ that transforms just like the fields:

DµΨ→ U(DµΨ). (2.23)

These covariant derivatives have the form

Dµ = ∂µ + igAaµT
a. (2.24)

The T a represent the generators of the underlying symmetry group, Aaµ are called gauge
fields and g is a coupling constant of these gauge fields to Ψ. In the case of SU(2) we
have the three Pauli matrices as generators T a = σa/2 and the gauge fields are W a

µ with
a ∈ {1, 2, 3}. Moreover we need the structure constants fabc of SU(2). These are

fabc = iεabc. (2.25)

With the introduction of the gauge fields in our theory, we also need to include kinetic terms
for those fields. This can be done in a Lorentz and gauge invariant way by introducing

Lkin,SU(2) = −1

4
WµνW

µν , (2.26)

where Wµν is the field strength tensor

Wµν = − i

gw
[Dµ, Dν ] = igw

σa

2
(∂µW

a
ν − ∂νW a

µ + gwεabcW
b
µW

c
ν ). (2.27)

Compared to the field strength tensor we know from electrodynamics, this tensor also
contains a so called non-abelian part, the last term in 2.27. This term leads to cubic
and quartic terms in the fields when inserted into the Lagrangian 2.26. Therefore, self
interactions among the vector bosons arise by including their kinetic terms in a gauge
invariant way.

Transferring the systematics from above to the weak interaction, we arrive at the so called
Glashow-Weinberg-Salam theory. The field Ψ now represents fermion doublets and the
correct symmetry group for them is SU(2)L × U(1)Y . As it turns out, only left-chiral
fermions interact weakly. Thus the right-chiral fermions have 0 charge under SU(2)L.
With this knowledge we can define the covariant derivative by

DµΨL/R = (∂µ + igw,L/RW
a
µ

σa

2
+ ig

1

2
Bµ)ΨL/R, (2.28)

with gw,L 6= 0 and gw,R = 0. The kinetic terms as well as the electroweak interactions
among all the fields can now be written as

LGWS = Lgauge + Lfermions

= −1

4
W a
µνW

a,µν − 1

4
BµνB

µν +
∑

fermions

(iΨ̄Lγ
µDµΨL + iΨ̄Rγ

µDµΨR). (2.29)

7



8 2. Theoretical Provisions

The only thing missing are the mass terms of the fields. Including them into the Lagrangian
above by adding quadratic terms in the fields breaks gauge invariance. The solution is to
include another doublet under SU(2), the scalar Higgs field Φ and a potential for this field.
This potential reads

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2. (2.30)

The special feature of the potential is that it leads to a non-vanishing vacuum expectation
value if we choose µ2 > 0

Φ0 = 〈0|Φ |0〉 =
1√
2

(
0
v

)
, v = 246.22 GeV. (2.31)

After removing the unphysical degrees of freedom, the doublet can be expressed as

Φ =
1√
2

(
0

v + h

)
. (2.32)

Adding the Higgs-Lagrangian

LHiggs = (DµΦ)†DµΦ + V (Φ) (2.33)

to the theory dynamically generates mass terms for the vector bosons. We see this by
inserting the definition of the covariant derivative and Φ into the Higgs Lagrangian and
by rearranging the interaction eigenstates W 1,W 2,W 3 and B into the mass eigenstates
W+,W−, Z and A, via

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ), (2.34a)

Zµ =
1√

g2
w + g2

(gwW
3
µ − gBµ), (2.34b)

Aµ =
1√

g2
w + g2

(gW 3
µ + gwBµ). (2.34c)

As expected, there is no quadratic term in Aµ leaving the photon massless. For the other
fields we find their masses in terms of the vacuum expectation value v and the couplings
constants gw and g, i.e.

mW =
gwv

2
, mZ =

√
g2
w + g2v

2
. (2.35)

This completes the discussion of the electroweak sector of the SM. Other interactions like
the Higgs-selfcouplings exist, but as they do not contribute to vector boson scattering,
they will not be discussed any further here. For a more detailed descritption see [10, 11]
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CHAPTER 3
Effective Field Theories

There are at least two ways of searching for new physics from the theory side. One of them
is the prediction of new particles in connection to new symmetries like in Supersymmetry.
Another approach is to look for alterations of interactions of SM particles while keeping
the SM particle content. Effective field theories (“EFTs”) belong to the latter case. The
main idea behind any kind of EFT is to find the simplest possible framework to describe
interesting physics in a certain physical region (not necessarily an energy scale) while being
able to correct the results to arbitrary precision in some expansion (see e.g. [13]). Two
main approaches can be distinguished regarding EFTs:

1. “top-down”: A high-energy theory is known, but a simpler theory at lower energy
is useful by lowering the degrees of freedom and making computations more afford-
able. The desired precision is kept by going to a certain expansion order (e.g. Soft
Collinear Effective Theory [14])

2. “bottom-up”: A fundamental physical theory is unknown, but one tries to get hints
towards unknown effects or new physics by using the known symmetries, particles
etc. of a theory and extrapolating by constructing operators with negligible effects
at small scales and increasing importance at higher scales, thus showing the desired
effects.

The SM itself belongs to the group of bottom-up EFTs in the sense that it is the most
general theory incorporating quark and lepton fields with a single Higgs-doublet field, with
operators of mass-dimension 4, solely constructed from products of the fields and their
derivatives. Moreover they respect Lorentz invariance and SU(3)C × SU(2)L × U(1)Y
gauge symmetries. It is considered by many as an incomplete theory that, despite the
tremendous precision in comparisons of predictions vs. measurements achieved so far, will
not describe nature up to arbitrary energy scales Λ. Still, it is completely unclear at which
scale new effects will appear, but the hope persists that they will be measurable at the
Large Hadron Collider (LHC) or future particle colliders.

The EFT studied throughout this thesis also belongs to the bottom-up group and concen-
trates on alterations of the vector boson couplings compared to the SM. The desirable
features of such an EFT can be summarized with the following statements [15]:

• The S-matrix should respect unitarity in the extended model.

• Lorentz invariance and the SU(3)C × SU(2)L × U(1)Y gauge symmetries of the SM
need to be respected.

• The theory should be model-independent in order to capture any beyond the SM
physics, while still giving some guidance as to where new effects will appear and
where they are arising from.

• Radiative corrections need to be calculable at any order in the SM- and the new
interactions of the extended theory.

9



10 3. Effective Field Theories

The framework considered in this thesis adds operators constructed from the Higgs-
doublet, the covariant derivative and field strength tensors of the vector boson fields to
the SM Lagrangian LSM, fulfilling the aforementioned features. These are represented in
the form

LEFT = LSM +
∑
n>2

∑
i

fi
Λ2n−4

Oi. (3.1)

Only even dimensions are considered because otherwise baryon and lepton number conser-
vation is not guaranteed [16]. The focus in this work will lie on the dimension 8 operators
that affect vector boson couplings, i.e. products of the covariant derivative, the Higgs dou-
blet and the field strength tensors of the vector boson fields. The full list of dimension 8
operators can be found in section 3.2, the dimension 6 operators are listed in appendix F.

3.1. Anomalous Couplings

There are two formalisms to describe anomalous couplings: the Lagrangian and the vertex
function approach. In the following we will concentrate on the former and show the
relations to the EFT approach.

As a first example we take the Lagrangian affecting the three-vector-boson-vertices [15]:

LWWV /gWWV = igV1
(
W+
µνW

−µ −W+µW−µν
)
V ν + iκVW

+
µ W

−
ν V

µν

+ i
λV
m2
W

W+ν
µ W−ρν V µ

ρ + igV4 W
+
µ W

−
ν (∂µV ν + ∂νV µ)

− igV5 ε
µνρσ(W+

µ ∂ρW
−
ν − ∂ρW+

µ W
−
ν )Vσ

+ iκ̃VW
+
µ W

−
ν Ṽ

µν + i
λ̃V
m2
W

W+ν
µ W−ρν Ṽ µ

ρ , (3.2)

where Vµ is either the Z-boson field Z or the photon field γ, W±µν = ∂µW
±
ν −∂νW±µ , Ṽµν =

1
2εµνρσV

ρσ and the overall coupling constants gWWW = −e and gWWZ = e cos θW / sin θW .
The Lagrangian is constructed in a way that it contains all possible Lorentz structures,
only neglecting the scalar component

∂µV
µ = 0, ∂µW

±µ = 0, (3.3)

which is automatically fulfilled in the on-shell case [17]. The last four terms in equa-
tion (3.2) violate either C- or P-invariance, while the first three keep both. Furthermore
U(1) gauge invariance implies that gγ1 = 1 and gγ4 = gγ5 = 0 [15]. We are therefore left
with five independent CP-conserving parameters: gZ1 , κγ , κZ , λγ , λZ and six either C- or
P-violating ones gZ4 , g

Z
5 , κ̃γ , κ̃Z , λ̃γ , λ̃Z . Within the SM at tree level, we know the values

of all these couplings. We have gZ1 = κZ = κγ = 1 and all other parameters equal to zero.
Deviations from the SM can now in principle be measured in terms of deviations from
those parameters.

Even though the Lagrangian approach can describe all trilinear vector boson couplings in
a general way, it misses the convenient features of an EFT. First of all with the SU(2)L×
U(1)Y gauge symmetry being consistent with all experimental data, we need to incorporate
it in a general approach of modeling BSM physics. It is known that the Lagrangian (3.2)
can be interpreted as the unitary gauge expression of an effective Lagrangian respecting
the gauge symmetries. Still, direct inspection of (3.2) shows that this feature is not present
in an intuitive way [18]. Even more hurting is the fact that one could add an arbitrary
number of terms of derivatives ∂µ of the fields to the Lagrangian. In order to keep the
dimensions right, every factor of ∂µ would be accompanied by m−1

W , which is the only mass

10



3.1. Anomalous Couplings 11

scale available in this setting. With mW being the only energy scale inherent in the theory,
terms of higher order are not suppressed at energies above mW and therefore shouldn’t
be neglected [15]. This comes in contrast to the EFTs where every Dµ is accompanied by
a factor of Λ−1 which is independent of the SM scales and will therefore suppress higher
order terms in the energy scales of interest.

With good reasons to stick to the approach of EFTs, we can still make use of the Lagrangian
approach from above, because the two need not be complementary. If one is working in
a well defined and complete set of operators it is a relatively easy task to express the
anomalous couplings from above in terms of the effective couplings accompanying the
operators. This is done by choosing a certain gauge and expanding the set of operators in
terms of the fields. Then one can bring the result into the form of (3.2) and compare the
coefficients multiplied to the fields. Working in the set of dimension 6 operators found in
appendix F, the relations read

gZ1 = 1 +
fW
Λ2

m2
Z

2
, (3.4)

κγ = 1 +

(
fW
Λ2

+
fB
Λ2

)
m2
Z

2
, (3.5)

κZ = 1 +

(
fW
Λ2
− fB

Λ2
tan2 θW

)
m2
Z

2
, (3.6)

λγ = λZ =
fWWW

Λ2

3g2m2
W

2
, (3.7)

gV4 = gV5 = 0, (3.8)

κ̃γ =
fW̃
Λ2

m2
W

2
. (3.9)

κ̃Z = −
fW̃
Λ2

tan2 θW
m2
W

2
, (3.10)

λ̃γ = λ̃Z =
fW̃WW

Λ2

3g2m2
W

2
. (3.11)

In analogous way we are able to define a Lagrangian affecting the 4-vertices of the massive
vector bosons. 1 Following the definitions of [19] we define this Lagrangian as

LV V V ′V ′ = cWW
0 W+

µ W
−µW+

ν W
−ν + cWW

1 W+
µ W

+µW−ν W
−ν

+ cWZ
0 W+

µ Z
µW−ν Z

ν + cWZ
1 W+

µ W
−µZνZ

ν

+ cZZ (ZµZ
µ)2 . (3.12)

The SM values of the couplings in this Lagrangian are

cWW
0,SM = −cWW

1,SM =
2

cos2 θW
cWZ

0,SM = − 2

cos2 θW
cWZ

0,SM = g2, cZZSM = 0, (3.13)

where g is the electroweak coupling constant. Again we want to study deviations from
these values and therefore define alterations ∆cV V

′
i from these parameters by

cV V
′

i = cV V
′

i,SM + g2∆cV V
′

i . (3.14)

We interpret the origin of these deviations as higher dimension operators representing the
low energy effects of new physics at a higher scale. There are already dimension 6 operators

1 the same is of course possible including the photon, but due to the complexity of the operator set
affecting also those vertices, we leave them out at this point.

11



12 3. Effective Field Theories

that affect the vector boson 4-vertices (see table F.1), but as we have seen before, these
also affect the trilinear couplings. In order to model the 4-vertices in an independent way
we need to add other operators. Moreover we can generally find stronger experimental
constraints on dimension 6 operators via trilinear couplings, which need not constrain the
4-vertices. With the dimension 8 operators listed in the following section we are able to
manage this independent description. Focusing on the effects of the two operators most
relevant to this thesis (3.20), we list the relations between their coupling constants and
the ∆cV V

′
i [19]:

∆cWW
i =

g2v4

8

fS,i
Λ4

,

∆cWZ
i =

g2v4

16 cos2 θW

fS,i
Λ4

,

∆cZZ =
g2v4

32 cos4 θW

fS,0 + fS,1
Λ4

. (3.15)

3.2. Dimension 8 Operators

The choice of a set of independent dimension 8 operators is not unique. A set that respects
the SU(2)L × U(1)Y gauge symmetry can be realized in different ways depending on the
particle content of the effective Lagrangian. Including the Higgs Boson, one can find a
linear realization, otherwise a non-linear realization is needed. The former is referred to
as “decoupling physics”, because the scale of new physics can be arbitrarily large in this
setting [18].

The set that is being used throughout this thesis is the linear realization and follows the
definitions by Eboli et. al. [19]. They are expressed in terms of the Standard Model Higgs
doublet Φ, the covariant derivative Dµ in a given representation of SU(2)×U(1) and the
field strength tensors Wµν for the SU(2)L and Bµν for the U(1)Y gauge fields. In unitary
gauge they are defined as follows

Φ =
1√
2

(
0

v + h

)
, (3.16)

Dµ ≡ ∂µ + i
g

2
Bµ + igwW

i
µ

σi

2
, (3.17)

Wµν ≡ igw
σi

2

(
∂µW

i
ν − ∂νW i

µ + gwεijkW
i
µW

j
ν

)
, (3.18)

Bµν ≡ i
g

2
(∂µBν − ∂νBµ), (3.19)

where σi/2 are the generators of the SU(2)L.

In this work we will concentrate on the effects of dimension 8 operators, the reason being
that these only affect the quartic gauge couplings other than the dimension 6 operators,
that also give rise to anomalous triple gauge couplings (ATGC) so the effects on anomalous
quartic gauge couplings (AQGC) and ATGCs can not be treated separately (see table F.1).
Another reason is that with the latter a full study of every possible gauge boson coupling
is not possible, because they do not contain AQGCs among the neutral gauge bosons [16].
Therefore the dimension 8 operators serve as a tool to genuinely model potential deviations
of all possible quartic gauge couplings from the SM without having a prejudice on their size

12



3.2. Dimension 8 Operators 13

or origin in the first place. For completeness a complete list of the dimension 6 operators
can be found in the appendix F. The set of dimension 8 operators can be divided into
three classes:

1. Operators built solely from the Higgs doublet and the covariant derivative:

OS,0 =
[
(DµΦ)†DνΦ

]
×
[
(DµΦ)†DνΦ

]
(3.20a)

OS,1 =
[
(DµΦ)†DµΦ

]
×
[
(DνΦ)†DνΦ

]
(3.20b)

This class of operators leads to AQGCs for the massive vector bosons only (the
WWWW , WWZZ and ZZZZ vertices). Moreover the amplitudes arising from
LS,0 and LS,1 only contain polarization vectors and no momenta. This leads to a
great importance of longitudinally polarized particles which will be further discussed
in chapter 4.

2. Operators built from field strength tensors, the Higgs doublet and the covariant
derivative:

OM,0 = Tr
[
WµνW

µν
]
×
[
(DβΦ)†DβΦ

]
(3.21a)

OM,1 = Tr
[
WµνW

νβ
]
×
[
(DβΦ)†DµΦ

]
(3.21b)

OM,2 =
[
BµνB

µν
]
×
[
(DβΦ)†DβΦ

]
(3.21c)

OM,3 =
[
BµνB

νβ
]
×
[
(DβΦ)†DµΦ

]
(3.21d)

OM,4 =
[
(DµΦ)†WβνD

µΦ
]
×Bβν (3.21e)

OM,5 =
[
(DµΦ)†WβνD

νΦ
]
×Bβµ (3.21f)

OM,6 =
[
(DµΦ)†WβνW

βνDµΦ
]

(3.21g)

OM,7 =
[
(DµΦ)†WβνW

βµDνΦ
]

(3.21h)

The structure of these operators leads to amplitudes where a mixture of transverse
and longitudinal polarizations plays the most important role.

3. Operators containing only field strength tensors:

OT,0 = Tr
[
WµνW

µν
]
× Tr

[
WαβW

αβ
]

(3.22a)

OT,1 = Tr
[
WανW

µβ
]
× Tr

[
WµβW

αν
]

(3.22b)

OT,2 = Tr
[
WαµW

µβ
]
× Tr

[
WβνW

να
]

(3.22c)

OT,5 = Tr
[
WµνW

µν
]
×BαβBαβ (3.22d)

OT,6 = Tr
[
WανW

µβ
]
×BµβBαν (3.22e)

OT,7 = Tr
[
WαµW

µβ
]
×BβνBνα (3.22f)

OT,8 = BµνB
µνBαβB

αβ (3.22g)

OT,9 = BαµB
µβBβνB

να (3.22h)

In this class only transverse polarizations are of importance. One also can see that
the first three operators of this class affect all vector bosons, while the last two only
lead to AQGC’s for the neutral electroweak gauge bosons [16].
The contributions of the whole set of operators to the various 4-vertices are listed in
table 3.1.

All of the operators listed above are fully implemented in VBFNLO, where their effects on
processes containing QGC’s like p p → Z Z j j → e+ e− µ+ µ− j j can be studied in the
form of distributions or in calculating the total cross section for a specific c.o.m. energy√
s to high accuracy.
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14 3. Effective Field Theories

WWWW WWZZ ZZZZ WWAZ WWAA ZZZA ZZAA ZAAA AAAA

OS,0, OS,1 X X X

OM,0, OM,1,OM,6,OM,7 X X X X X X X

OM,2, OM,3,OM,4,OM,5 X X X X X X

OT,0, OT,1,OT,2 X X X X X X X X X

OT,5, OT,6,OT,7 X X X X X X X X

OT,8, OT,9 X X X X X

Table 3.1.: This table shows which operators affect which QGC for the various vector bosons.

3.3. Redefinition of LS,0
Aside from the operator definitions used by Eboli et. al. there is another set of opera-
tors commonly used for studying AQGC-effects on the massive electroweak gauge bosons.
These are part of the non-linear realization, which means that only would-be Goldstone
bosons are included in the theory. With no Higgs boson included one can in contrast to
the linear realization find a scale at which new physics should appear. This would roughly
be around the scale Λ . 4πv [18].

A set of operators of the non-linear realization is implemented in the WHIZARD event
generator [9, 6] and reads

L4 = α4

[
Tr(VµVν)

]2
(3.23)

L5 = α5

[
Tr(VµV

µ)
]2

with Vµ = ΣDµΣ . (3.24)

There is no one-to-one correspondence of L4 and L5 to the operators of Eboli et. al., but
a vertex specific conversion of the couplings is possible and reads [16]:

• WWWW - Vertex:

α4 =
fS,0
Λ4

v4

8
; α4 + 2α5 =

fS,1
Λ4

v4

8
(3.25)

• WWZZ - Vertex:

α4 =
fS,0
Λ4

v4

16
; α5 =

fS,1
Λ4

v4

16
(3.26)

• ZZZZ - Vertex:

α4 + α5 =

(
fS,0
Λ4

+
fS,1
Λ4

)
v4

16
(3.27)

The difference in the two sets of operators lies in the structure of L4 and LS,0. The former
is symmetric in the Lorentz-indices µ and ν while the latter is not. Strictly speaking, LS,0
is not self-adjoint which it should be in order to guarantee the reality of the interaction
Lagrangian. This problem can be easily cured by symmetrizing the operator:

L′S,0 =
1

2

[
(DµΦ)†DνΦ

]
×

(
f ′S,0
Λ4

[
(DµΦ)†DνΦ

]
+
f ′∗S,0
Λ4

[
(DνΦ)†DµΦ

])
(3.28)

By choosing f ′S,0 ∈ R one gets an operator completely equivalent to L4 in terms of the
AQGC-contributions of the electroweak gauge bosons. Now the conversion of the couplings
for all vertices reads:

α4 =
f ′S,0
Λ4

v4

16
; α5 =

fS,1
Λ4

v4

16
. (3.29)
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3.3. Redefinition of LS,0 15

Throughout this thesis it will be convenient in some places to work with a different set of
operators. This other set consists of the well known LS,0 and LS,1 plus another operator
that facilitates the comparison to L4 and L5. The extra operator is

LS,2 =
fS,2
Λ4

[
(DµΦ)†DνΦ

]
×
[
(DνΦ)†DµΦ

]
, (3.30)

which has the same structure as LS,0, only with the last two Lorentz-indices interchanged.
Using the new set LS,0 + LS,1 + LS,2 it is easier to compare to L4 + L5 and keeping
the possibility to recover the original operator list of Eboli et. al. Note that this set is
equivalent to L′S,0 + LS,1 when choosing fS,0 = 2f ′S,0 and fS,2 = f ′∗S,0.
In order to compare the results using this new set to the result one gets from L4 +L5, one
simply needs to choose

fS,2 = fS,0, (3.31)

where the couplings are treated as real numbers, and use the replacement

fS,0 = 8α4
Λ4

v4
; fS,1 = 16α5

Λ4

v4
. (3.32)

Note that the relative factor of 2 between the two replacements is resulting from taking
the sum of the three operators in this case, instead of introducing a factor 1/2 as in the
case of L′S,0. If one wants to return to the results from the original set of Eboli et.al. it is
sufficient to set fS,2 = 0.

The symmetrized form of LS,0 could make the two Monte-Carlo event generators VBFNLO

and WHIZARD more easily comparable in terms of corrections to the electroweak 4-
vertices. Not least is this an important fact for experimentalists in order to have an
easy cross-check for bounds on anomalous couplings when comparing data to theoretical
predictions. Still, in the implementation to be explained in chapter 6 the original set of
operators from Eboli et.al. has been used, as they have already been part of VBFNLO
and so that confusion about yet another set of operators can be avoided. The comparison
to WHIZARD is still possible, because the conversion (3.25, 3.26, 3.27) has been used.
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CHAPTER 4
Unitarisation

4.1. Motivation
The term unitarisation describes different procedures that are applied to effective field
theories in order to suppress their unphysical behavior at high center of mass energies.
All dimension 8 operators, especially the ones considered in this thesis, break tree-level
unitarity at different energy scales. This does not necessarily mean that the EFT approach
itself is unphysical, but rather that the effective theory is incomplete. Not knowing a self
consistent theory of new physics, one can still get relevant hints for new physics from these
dimension 8 operators by suppressing their unphysical high energy behavior by hand.

The values for the electroweak 4-vertices are well known within the SM but have not
been accurately measured so far, which will change in the upcoming runs of the LHC.
This means that there is some room for deviations that could well be modeled by the
dimension 8 operators, say if there was an unexpected enhancement in the production of
Z-boson pairs. Without unitarisation any fit of AGCs to that kind of data would effectively
yield that the anomalous couplings need to be zero, because even for small values of the
couplings the high energy tails e.g. in invariant mass distributions would give far too high
results. Figure 4.1 makes this point clearer. It exemplarily shows anomalous contributions
of different operator types in the process W+W+ → W+W+ in an energy range that is
well within the reach e.g. of the Large Hadron Collider. The large contributions in the
high energy regime would also force the constraints on the couplings to zero. Therefore
this behavior needs to be suppressed while keeping the low energy effects arising from
the dimension 8 operators that could describe the aforementioned deviations. Finally this
might yield hints at where to look for and how to model new physics phenomena.

4.2. Historic Examples
In order to justify the subject of unitarisation from a historic perspective, two examples
that show vividly what is meant by this term and moreover give good reason to believe
this is a well justified procedure are given below.

4.2.1. Fermi’s Interaction

The term Fermi Interaction stands for an effective theory developed by Enrico Fermi in
1933 describing beta decay. Fermi was able to describe the process n → p+ ν̄e + e− to a
high level of precision in proposing a 4-point fermion interaction with coupling constant
GF. Taking a look at the unit of [GF] = GeV−2 already reveals the resemblance to other
EFTs.

The numerical value for Fermi’s coupling constant is [20]

GF√
2

=
g2

8m2
W

= 1.166 378 7(6)× 10−5 GeV−2. (4.1)
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18 4. Unitarisation
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Figure 4.1.: Invariant mass spectrum of the process W+W+ → W+W+. The solid violet line shows the
SM case, the other lines represent different anomalous contributions without unitarisation.
(only low statistics have been used in the generation of this plot, because only the qualitative
behavior is of interest at this point)

(a) Effective 4-vertex
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(b) W - exchange

W
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e−, p1
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Figure 4.2.: µ−-e−- conversion via an effective 4-vertex or the exchange of a massive W boson.

Instead of the beta decay a similar process will be studied in the following, showing the
problems arising from this effective theory and how it was cured later on. The derivation
follows the one in [11].

Proposing a 4-point fermion interaction in electron-neutrino scattering (e−+νµ → µ−+νe)
results in the Feynman diagram 4.2a. It represents the matrix element

M =
GF√

2
ū(k2)γµ(1− γ5)u(k1)gµν ū(p2)γν(1− γ5)u(p1). (4.2)

The generic formula for the unpolarized differential cross section of an elastic 2→ 2 process
is

dσ

dt
=

1

16πs2
|M|2, (4.3)

where s and t are the standard Mandelstam variables and |M|2 is the spin averaged matrix
element squared. In order to calculate the latter one needs to average over polarization
states of the incoming electron (factor 1/2) and sum over the polarizations of the outgoing
muon. No averaging over the initial state neutrinos is needed, because their only produc-
tion mechanism is the weak interaction where only left-handed neutrinos take part. The
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4.2. Historic Examples 19

sum over final state polarizations of the νe can be included facilitating the calculation by
reducing the result to a product of traces. Still it is guaranteed that only the left-handed
neutrinos contribute because of the factor (1− γ5). We then have, neglecting the fermion
masses

|M|2 =
G2

F

2
Tr[/k2γµ(1− γ5)/k1γν(1− γ5)]

1

2
Tr[/p2

γµ(1− γ5)/p1
γν(1− γ5)]. (4.4)

After quite some γ-matrix algebra, contracting the resulting products of momenta, insert-
ing Mandelstam variables and using the massless limit, where s+ t+u = 0, one arrives at
the simple result

dσ

dt
=

1

16πs2

G2
F

2
32s2 =

G2
F

π
. (4.5)

This in turn leads to a total cross section that rises linearly with the center of mass energy
squared s, i.e.

σtot =
G2

F

π
s, (4.6)

which would lead to the violation of unitarity when
√
s is at the order of a few hundred

GeV. This shows that despite the well behaved low energy regime, the effective 4-fermion-
coupling cannot be used up to arbitrary energies. It turned out that the missing piece
of the theory is a heavy particle serving as the mediator of the weak force, the W -boson.
Assuming that the force mediator is a vector boson as in QED, one can insert the corre-
sponding propagator and couplings into the matrix element arriving at

M =
g2

2
ū(k2)γµ

(1− γ5)

2
u(k1)

gµν − qµqν/m2
W

q2 −m2
W

ū(p2)γν
(1− γ5)

2
u(p1), (4.7)

or in the form of a Feynman diagram (figure 4.2b). In the limit q2 � m2
W the W -

propagator reduces to

− 1

q2 −m2
W

=
1

m2
W

+O
(
q2

m2
W

)
, (4.8)

and the qµqν/m2
w part of the numerator can be neglected. Therefore the matrix element 4.7

reduces to 4.2 giving an exact definition of GF in terms of a weak coupling constant gw
and the mass of the W - boson m2

W , i.e.

GF√
2

=
g2
w

8m2
W

, (4.9)

which also makes clear where the dimension of Fermi’s coupling constant is resulting
from. Moreover it shows the interesting fact that the weakness in the weak force does not
necessarily result from a small coupling, but rather from a heavy force mediator. We now
know that the weak coupling constant has a value of gw ' 0.6530 which is of the same
order as the electromagnetic coupling constant e.

We have seen now that the inclusion of the W -boson leaves the low energy regime as it
was, while for energies q2 & m2

W the W -propagator serves as a suppression factor that
guarantees unitarity. This is an example of the unitarisation of an effective theory via the
well-known ultraviolet completion of the model.

4.2.2. Scattering of Longitudinally Polarized Massive Vector Bosons

Although the inclusion of a massive vector boson saves unitarity in the process above, it
generates new divergencies in other processes. Massive vector bosons and their interactions
can be included in a QFT formalism via the Glashow-Weinberg-Salam model. This model
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20 4. Unitarisation

includes self-interactions among the vector bosons, which could in principle lead to an
unphysical high energy behavior in the scattering of longitudinally polarized massive vector
bosons.

Massive vector bosons have an extra degree of freedom compared to the physically allowed
polarizations of the photon, which is a longitudinal polarization state. From the equation
of motion of a massive vector field Aµ(x) we find that the 4-divergence of this field needs
to vanish, i.e.

∂µAµ = 0. (4.10)

Inserting a plane-wave ansatz for the vector field into this equation leads to the constrain-

ing equation for the polarization vectors ε
(λ)
µ of the field, sometimes called transversality

condition,
kµε(λ)

µ = 0, (4.11)

leaving us with three degrees of freedom, i.e. three linearly independent polarization vec-
tors. Another constraint that the polarization vectors need to fulfill is their normalization
to

ε(λ)
µ (ε(λ

′)µ)∗ = −δλλ′ . (4.12)

This is seen by going to a frame where kµ is time-like, i.e. kµ = (mV , 0, 0, 0), transversality
still needs to hold. Therefore the polarization vectors can only be space-like and have a
negative norm.

By choosing kµ along the 3-direction as kµ = (Ek, 0, 0, k), we may set the polarization
vectors as

εµ1 =


0
1
0
0

 , εµ2 =


0
0
1
0

 , εµ3 =
1

mV


k
0
0
E

 , (4.13)

where k =
√
E2 −m2

V . In order to work in a basis of helicity eigenstates we may trans-

form the above set to an equivalent one while ensuring the transversality relation and the
normalization condition still hold:

εµ± =
1√
2

(∓εµ1 − iεµ2 ) =
1√
2

(0,∓1,−i, 0) (4.14)

εµL = εµ3 . (4.15)

The definitions of polarization vectors for arbitrary momenta kµ that has been used
throughout this thesis can be found in the appendix D.

We are now interested in the high energy behavior of processes that include the self-
couplings of massive vector bosons. An instructive example is the vector boson fusion
process W+W− → ZZ. The process consists of the diagrams in fig. 4.3.

The amplitude for process 4.3a reads

M1 = gw cos2(θW ) (ε1·ε∗4ε2·ε∗3 + ε1·ε∗3ε2·ε∗4 − 2ε1·ε2ε∗3·ε∗4) , (4.16)

where gw is the weak coupling constant and θW the Weinberg angle. Only polarization
vectors appear in this amplitude. By looking at definition (4.13) and (4.14) one sees that
only the longitudinal polarization carries an energy dependence that will be translated to
the above amplitude. To find out more about the energy dependence of this amplitude in
the high energy regime where E � mV , we now expand εµL(k) in terms of O(mV /E), i.e.

k =
√
E2 −m2

V = E

√
1−

(mV

E

)2
= E +O

(
m2
V

E2

)
, (4.17)
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(a) 4-vertex
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(b) t-channel
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(c) t-channel crossed
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(d) Higgs contribution
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Figure 4.3.: Diagrams contributing to the process W+W− → ZZ

and see that εµL(k) becomes increasingly parallel to kµ componentwise, i.e.

εµL(k) =
kµ

m
+O

(m
E

)
. (4.18)

Inserting this into amplitude (4.16) and replacing the dot-products of the momenta by
the corresponding Mandelstam variables, one finds a quadratic rise of the amplitude in s.
Fortunately this divergence is exactly canceled by by the two contributions that result from
the vector boson 3-vertices, but the theory is still endangered by a remaining contribution
that grows like s. As it turned out this behavior is nicely cured by the inclusion of the
Higgs mechanism, which imposes an extra graph to the W+W− → ZZ process (fig. 4.3d).

The accompanying amplitude reads

MH =
2m2

Wm
2
Z

v2

(ε1·ε2)(ε∗3·ε∗4)

q2 −m2
H

, (4.19)

where v is the vacuum expectation value of the Higgs field and q2 = (p1 +p2)2. Like before
we insert longitudinal polarization vectors and arrive at

MH = − 1

v2

s2

s−m2
H

+O(1). (4.20)

In the regime where s� m2
H the divergence resulting from graphs 4.3b and 4.3c is canceled

by the amplitude we just calculated. Therefore with the matrix element altogether being
constant in the high energy limit, unitarity is finally restored.

Returning to the subject of unitarisation, one sees from the above examples how the
inclusion of new particles can cure an unphysical high energy behavior. The problem
about this procedure is that one has to impose a very specific model that should better
turn out as being natural in the end. Nowadays we are confident about the existence of
the massive vector bosons as well as the Higgs particle, but in order to study deviations
from the SM via the EFT approach, we do not want to assume the existence of specific
types of new particles in order to cure the unphysical high energy behavior of every part
of the theory. Instead we try to cure it in a model independent way. The methods of the
following sections show how this can be achieved.
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22 4. Unitarisation

To some these methods might seem to be based on a hand-waving arguments, but they
are just tools to achieve what we want to see: low energy effects of a theory unknown at
some higher energy scale Λ. If this scale was at the order of a few TeV, i.e. within the
LHC range, we might be able to describe deviations from the SM below that scale, but
not without curing the unphysical behavior by hand.

4.3. Form Factors

4.3.1. General Remarks

One of the simplest ways to guarantee unitarity in the framework of effective field theories
beside simple cut-off functions, is the use of a so called form factor F(s).

F(s) =
1(

1 + s/Λ2
FF

)n . (4.21)

This function gets multiplied to the couplings fi and suppresses the high energy tail of
amplitudes arising from the operators of an EFT. The choice of the form factor structure
is pretty much arbitrary. The form shown in here is chosen in order to resemble the prop-
agators one would get by introducing new particles (which have been shown to potentially
cancel the unwanted high energy behavior in 4.2.2).

At a certain energy scale ΛFF the suppression sets in and depending on n either pushes
the amplitudes to 0, or lets them saturate at some bounding amplitude value for very
high energies. A typical value for a dimension 8 operator is n = 2 which is due to the
quadratic rise in s of the 0th partial wave of the helicity amplitude in at least one of the
combinations of polarizations that the in- and outgoing vector bosons can have. In this
way the amplitude gets suppressed by s−2 for energies

√
s & ΛFF .

In figure 4.4 the shapes of form factors with different input parameters are shown. Other
than a step function Θ(Λ2− s) one sees a very smooth transition from 1 to 0 independent
of these parameters. Another property is that the suppression starts already at relatively
small values of s which will be an important point in comparing form factors to other
unitarisation methods in section 7.3.

Though form factors can be used as a simple approach for guaranteeing unitarity, it in-
herits the problem of fine-tuning ΛFF for a chosen n, depending on the strength of the
couplings. One can get adequate values for these parameters in a partial wave expansion
of the amplitudes arising from the EFT. By virtue of the unitarity of the S-matrix (see
section 4.5.1) the real parts of these partial waves exhibit an upper bound that represents
the bound for the violation of unitarity. This upper bound can be calculated depending
on the values of the couplings {fi} and used to set the energy scale and exponent of the
form factor.

The form factor as described above is fully implemented into VBFNLO. For the calculation
of ΛFF for a chosen n there exits an external program calc formfactor [21, 22]. The
unitarity bound is determined via a partial wave analysis. The non-unitarized 0th partial
waves of all eligible V V → V V processes for different sets of polarization combinations
are calculated. Then all contributions are used for the analysis via diagonalizing the
resulting T -matrix. Using the eigenvalues as upper bounds for the partial waves, ΛFF gets
determined by trying out one value at a time, multiplying the corresponding form factor
to the amplitudes and see whether the suppression is sufficient in order not to cross the
upper bound. This procedure is then repeated until a small enough ΛFF is found in order
to stay below this bound.

22



4.3. Form Factors 23

(a) Variation of ΛFF
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Figure 4.4.: Form factor F(s) for different choices of the energy scale and exponent.

4.3.2. Energy Scale ΛFF

As stated above, so far the values for ΛFF need to be calculated in a relatively involved
way, i.e. a partial wave analysis in a numerical Fortran routine. To this point this can not
be avoided completely, but it can be shown that the calculation for one value of a coupling
fi 6= 0 is sufficient to determine the values for all other sizes of the same coupling.

As will be shown later, the partial waves giving the strongest contributions to the violation
of unitarity are all of the same simple form (as long as we only look at one fi 6= 0 at a
time). Neglecting all terms sk with k < 2 this general form is

AJ=0(s) = cJ=0,i
fi
Λ4
s2, (4.22)

where the cJ,i are some numerical constants that one gets from a partial wave analysis. If
we want to determine the center of mass energy

√
smax where unitarity would be broken,

we set AJ=0(smax) = Abound
1.

In order to get a reasonable value for ΛFF , we now multiply the form factor F to the
amplitude, i.e.

AJ=0(s)F(s) = cJ=0,i
fi
Λ4

s2

(1 + s/Λ2
FF )n

, (4.23)

and look for its absolute maximum. This maximum will be at

smax =
Λ2
FF

n/2− 1
. (4.24)

If we insert this back, we find

AJ=0(smax)F(smax) = cJ=0,i
fi
Λ4

(n
2

)−n (n
2
− 1
)n−2

Λ4
FF . (4.25)

Note that the exponent of ΛFF is independent of n. In order to find a proper ΛFF that
guarantees unitarity one will now set (4.25) equal to some bound Abound. This bound is
set independent of the coupling, so if we take the ratio of the right side of (4.25) for one
value of the coupling over the same thing for another coupling size, we will find by solving
for the ratio of the form factor energy scales

ΛFF,1
ΛFF,2

=

(
fi,1
fi,2

)− 1
4

. (4.26)

1Typically one chooses Abound = 16π. See section 4.5.2 for details.
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24 4. Unitarisation

This means if one ΛFF is fixed for one specific value of a coupling fi,1, then all others can
be determined via (4.26). This relation has been checked against the table found in [21],
appendix B.4, that shows ΛFF values for all dimension 8 operators, n = 2 and various
coupling sizes all determined via the aforementioned Fortran routine. Accordance of . 4%
was found when taking the first or last column as input.

4.4. Replacement of Mandelstam variables
Throughout this thesis it will often be necessary to replace Mandelstam variables by some
angular dependence and vice versa. A priori the replacements are not as trivial as one
might expect, which is why a few thoughts and definitions on this subject are concluded
in this section.

Only 2→ 2 processes have been studied in this thesis in terms of unitarity considerations.
Therefore the only definitions of Mandelstam variables for the processes of the form V (k1)+
V (k2)→ V (k3) + V (k4) needed are

s = (k1 + k2)2 = (k3 + k4)2 , (4.27)

t = (k1 − k3)2 = (k2 − k4)2 , (4.28)

u = (k1 − k4)2 = (k2 − k3)2 , (4.29)

where the ki are the momenta of the four vector bosons in the processes under considera-
tion. One relation that we will particularly often make use of is

s+ t+ u =
4∑
i=1

m2
i . (4.30)

This relation is true in the case of 2 → 2 scattering processes, obviously in any refer-
ence frame and just a consequence of the definition of the Mandelstam variables and
4-momentum conservation. The energy range of interest in this thesis furthermore allows
to set the masses to zero, so we arrive at

s+ t+ u = 0. (4.31)

In order to justify this, take a look at a typical unitarity bounds from a partial wave
analysis. Taking the result 4.90a and using the unitarity bound |<[AIJ(s)]| ≤ 16π, the
energy at which unitarity is broken is

√
s =

(
96π

7
fS,0
Λ4 + 11

fS,1
Λ4

) 1
4

. (4.32)

Using typical values for the couplings of fS,i/Λ
4 = 10 TeV−4 results in

√
s ' 1138 GeV. (4.33)

This means we end up with an error of ≈ 2% in (4.31) if we compare the sum of the W-
boson masses squared to this energy squared which seems like a reasonable approximation.

In order to calculate the on-shell scattering amplitudes for the partial wave analyses, the
center of mass frame of the incoming two particles has been chosen as the working-reference
frame in this thesis. The 4-momenta are then defined by

kµ1 =


E1

0
0
p

 , kµ2 =


E2

0
0
−p

 , kµ3 =


E3

p sin θ cosφ
p sin θ sinφ
p cos θ

 , kµ2 =


E4

−p sin θ cosφ
−p sin θ sinφ
−p cos θ

 . (4.34)
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4.5. K-Matrix formalism 25

Moreover we can neglect the φ- dependence in all the processes of interest due to rotational
invariance along the z-axis in the systems we are studying. So by choosing φ = 0, we arrive
at

kµ1 =


E1

0
0
p

 , kµ2 =


E2

0
0
−p

 , kµ3 =


E3

p sin θ
0

p cos θ

 , kµ2 =


E4

−p sin θ
0

−p cos θ

 . (4.35)

Inserting these definitions of the 4-momenta into the definitions of the Mandelstam vari-
ables (4.28), (4.29) and again neglecting all m2

i , we find

t =
s

2
(cos θ − 1), u = −s

2
(cos θ + 1). (4.36)

At this point it becomes clear that t and u are not independent. Therefore an ambiguity
in the inversion of (4.36) appears. In practice the replacement that was used throughout
the calculations is

cos θ =
t− u
s

. (4.37)

Quite often products of Mandelstam variables will subsequently appear. These can all be
replaced by using (4.31) and expressing the products in terms of the squares of s, t and u.
This might sound trivial, but in the limit (4.31) quite unobvious relations appear like

t− u
s

=
st− su
s2

=
u2 − t2

s2
. (4.38)

In this way we are able to go back and forth in using either the Mandelstam variables
or θ in the partial wave analysis and unitarisation procedure, which is an essential fea-
ture in keeping analytic calculations simple and in preparing the results for an off-shell
implementation in the end.

4.5. K-Matrix formalism

4.5.1. Defintion of K and Relations

The K-matrix formalism is a comprehensive way in studying unitarity of scattering pro-
cesses and gives a general prescription on how to treat unitarity violating processes like
those arising from anomalous couplings. Therefore a short introduction into the formalism
following the descritption of Chung et. al. [23] is given below.

We will concentrate on 2 to 2 process of the general form ab→ cd. The relevant quantities
in studying scattering amplitudes of processes like these are the particle helicities {λi}, the
total angular momentum J and the z-component of the angular momentum M involved
in the process. In these terms initial state |i〉 and final state |f〉 are denoted by

|i〉 = |ab; JMλaλb〉 , (4.39)

|f〉 = |cd; JMλcλd〉 ,

which are normalized to
〈f |i〉 = δif . (4.40)

Due to conservation of angular momentum the states share the same J and M . The
angular dependence is encoded in J , M and the helicities {λi} respectively the differences
in helicities of in- and outgoing particles λ = λa−λb and µ = λc−λd and can be expressed
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26 4. Unitarisation

in terms of Wigner’s d-functions dJλµ(θ) [24] (see appendix B for the explicit functions that
have been used in this thesis).

In order to study scattering of an initial state |i〉 into a final state |f〉 one defines the
scattering operator S by

Sfi = 〈f |S |i〉 . (4.41)

Due to conservation of probability one sees that S must be unitary, i.e.

SS† = S†S = I (4.42)

with I being the identity operator. In order to separate the effects of free propagation
from scattering effects one separates S into two parts and in this way defines the so called
Transition operator T 2, i.e.

S = I + 2iT. (4.43)

Unitarity of the scattering operator (4.42) now results in

i(T † − T ) = 2TT †. (4.44)

We now assume that the inverse of T exists on some subspace of the Hilbert space. Via
multiplying T−1 from the left and (T †)−1 from the right one then gets the corresponding
equation for the inverse operator:

i
(
T−1 − (T †)−1

)
= 2I. (4.45)

In order to define the K-operator we bring this equation into yet another form, i.e.(
T−1 + iI

)†
= T−1 + iI (4.46)

and define the right hand side of this equation as the inverse of the K- operator:

K−1 ≡ T−1 + iI (4.47)

From (4.46) it is evident the K is hermitian:

K = K† (4.48)

Due to the invariance of the S and T operators under time reversal [25] one sees that K is
symmetric and can be chosen as a real operator [23]. By multiplying (4.46) with K from
the left and T from the right we see that

T = K + iTK (4.49)

Subtracting the same equation with the opposite direction of multiplication, one further
sees that the two operators commutate:

[K,T ] = 0. (4.50)

One can now find explicit forms of T and S in terms of K by inverting (4.49) and plugging
this into (4.43).

T =
K

I − iK
(4.51)

2A more commonly used definition is S = I + iT . The factor of 2 is just introduced for convenience [23].
It avoids factors of 1/2 in the following definitions.
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4.5. K-Matrix formalism 27

S =
I + iK

I − iK
, (4.52)

where the denominators are to be understood as the inverses of the corresponding matrices.
With K ∈ Rn×n one sees that by (4.51) T can be split into a real and an imaginary part:

<(T ) =
K

I +K2
, =(T ) =

K2

I +K2
. (4.53)

Equation (4.52) can also be interpreted as the Cayley transform of S [5]. These equations
can in turn be inverted to get expressions for K in terms of either T or S as

K = i
I − S
I + S

=
T

I + iT
. (4.54)

By inserting the decomposition of T in real and imaginary part into (4.47) we furthermore
find the interesting result

=(T−1) = I. (4.55)

The relation described in this section build an important foundation for the calculations
in the following section, where we will use them to transform arbitrary real scattering
amplitudes to fulfill the unitarity conditions imposed in this section.

4.5.2. Unitarisation Procedure

Let us first return to the beginning of the unitarity discussion in section 4.5.1. From the
unitarity of the S-matrix (4.42) and by inserting the relation between S and the transition
matrix T we find

(I + 2iT )(I + 2iT )† = I. (4.56)

Let us assume that we can transform T into diagonal form via a unitary transformation
UTU †. Then (4.56) still holds and we find for the complex eigenvalues tj of T , that this
is equivalent to

|1 + 2itj | = 1, (4.57)

which can be rewritten into the form known in the literature as Argand circle condition [5]:∣∣∣∣tj − i

2

∣∣∣∣ =
1

2
. (4.58)

This equation has a simple geometric interpretation. It states that with the standard
unitarity condition (4.42) fulfilled, the complex eigenvalue tj of the transition operator T
will lie on a circle with radius 1/2 around the center i/2 in the complex plane.

In figure 4.5 one directly sees a relation often used in calculating unitarity bounds for
tree-level amplitudes, when looking at the partial waves aJλµ of Spin J and with helicity
differences of in- (λ) and outgoing particles (µ):

|<(aJλµ)| ≤ 1

2
. (4.59)

In order to make analytic calculations in this framework affordable, it is convenient to work
in a basis that diagonalizes S. The task to find such a basis is not possible in all cases nor
would it be easy. Still it is the relevant case for this thesis considering the unitarisation of
dimension 8 operators that affect vector boson scattering. There is ongoing work on the
use of different unitarisation methods like the Direct T -Matrix unitarisation [5], where S
does not need to be diagonal, but those will not further be considered in this thesis.
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28 4. Unitarisation

Figure 4.5.: Argand circle in the complex plane showing a T -eigenvalue tj .

Suppose now we can find a diagonal S then by (4.43) ones sees that T is diagonal too.
Further we find that by (4.54) also K will be diagonal, i.e.

Kij =
∑
n

Tin (I + iT )−1
nj =

∑
n

ti(1 + itj)
−1δinδnj

=
tj

1 + i tj
δij , (4.60)

with tj being the eigenvalues of T . In the following part of this section it is assumed that
S, T and K are diagonal.

If there now exists a perturbative expansion of T to order n denoted by T (n), then the
latter formula can be evaluated to get K(n), which will be equal to T in the first order of
expansion, when T (1) is real:

K(1) =
T (1)

I + iT (1)
=

T (1)

I + (T (1))2

(
I − iT (1)

)
=

T (1)

I + (T (1))2
− i

(
T (1)

)2
I + (T (1))2

= T (1) +O
(

(T (1))2
)
. (4.61)

So we found that K = T in the first order expansion of T .

As in [5], we will now assume that we have a hermitian K-matrix from an incomplete ap-
proximation to the true amplitude and build a unitary S or T matrix as a non-perturbative
completion of this approximation. With K being available in diagonal form, we denote its
eigenvalues by kj . These will later be calculated from the on-shell elastic scattering ampli-
tudes resulting from tree-level graphs, therefore being real, but not necessarily bounded.
In order to get amplitudes respecting the unitarity condition, we now simply put the kj
into the form implied by the relation between K and T (4.51):

aj =
kj

1− ikj
. (4.62)
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Figure 4.6.: Projection of the real kj onto the Argand circle via equation (4.62).

This is just the projection of the real eigenvalues kj onto the Argand circle.

In order to guarantee comparability, we will now follow the nomenclature of [6], i.e. use
the partial waves AIJ in the so called isospin(I)- spin(J) basis, that are related to the
normalized eigenamplitudes aIJ by

aIJ =
1

32π
AIJ . (4.63)

In using kj → aIJ we can now use (4.62) to get unitarized eigenamplitudes âIJ ,

âIJ =
aIJ

1− iaIJ
, (4.64)

and respectively the unitarized partial waves ÂIJ

ÂIJ =
AIJ

1− iAIJ/(32π)
. (4.65)

For any AIJ(s) that grows monotonically with s we find for the unitarized partial wave

ÂIJ(s) →
s→∞

32πi, (4.66)

i.e. the real part goes to zero and the imaginary part settles at 32π. With the normalized
unitary amplitude âIJ saturating at i for s → ∞, this behavior is often called formally a
resonance at infinity [6].

Equivalently to (4.65), we may split the unitarized amplitude into the original amplitude
and correction terms ∆AIJ , by defining

∆AIJ(s) = ÂIJ(s)−AIJ(s). (4.67)

Plugging equation (4.65) into this definition gives us the final prescription of how to uni-
tarize the scattering amplitudes of the following sections,

∆AIJ(s) =
i

32π

AIJ(s)2

1− iAIJ(s)/(32π)
, (4.68)

i.e. do a partial wave analysis in the isospin-spin basis for LS,0 and LS,1, use them to get
these correction terms and rebuild the amplitudes from the unitary-guaranteeing partial
waves.
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4.6. Unitarisation of LS,0 and LS,1
The unitarisation procedure of amplitudes altered by the operators LS,0 and LS,1 is a bit
simpler compared to the unitarisation of the LT,i and LM,i amplitudes, the reason being
the number of processes affected by those types of operators and the simpler amplitude
structures. As seen in table 3.1, LS,0 and LS,1 only affect processes involving W± and Z
bosons, whereas for the other operators also various γ-channels need to be included because
in principle they can all endanger unitarity. Isospin symmetry can be used to diagonalize
the S-matrix if only the massive vector bosons are of importance, as seen in [26]. This is
a necessary feature for the K-matrix unitarisation approach, which cannot be achieved as
easily if photons need to be included.

Another facilitating feature of LS,0 and LS,1 are the relatively simple amplitudes they
generate. For all processes of interest they have a similar structure to (4.16), which means
that just as in the SM case (see section (4.2.2)) the strongest contributions result from
longitudinally polarized massive vector bosons. In order to make this point obvious we take
a look at the amplitude generated by LT,0 in the process W+W− → ZZ which amounts
to

AT,0(W+W− → ZZ) =8g4 fT,0

Λ4
(k1·k4k2·k3ε1·ε∗4ε2·ε∗3

− k2·k3ε2·ε∗3ε1·k4ε
∗
4·k1 + k1·k3k2·k4ε1·ε∗3ε2·ε∗4

− k2·k4ε2·ε∗4ε1·k3ε
∗
3·k1 − k1·k4ε1·ε∗4ε2·k3ε

∗
3·k2

+ ε1·k4ε2·k3ε
∗
3·k2ε

∗
4·k1 − k1·k3ε1·ε∗3ε2·k4ε

∗
4·k2

+ ε1·k3ε2·k4ε
∗
3·k1ε

∗
4·k2). (4.69)

It carries a much richer structure involving not only polarization vectors, but also the mo-
menta of the in- and outgoing particles. This leads to the fact that transversely polarized
bosons contribute strongly to the overall energy dependence. If one takes a look at the
S-matrix in the space of helicities respectively the differences in helicities of in- and out-
going particles λ and µ, one will not necessarily find a matrix that only carries one entry
with relevant contributions to the overall scattering amplitude as for LS,0 and LS,1. Hence
it becomes necessary to think of a way of taking into account all important contributions.
We will come back to this subject in 4.8.

For notational simplicity we will drop factors of Λ by denoting

f̄i ≡
fi
Λ4

(4.70)

throughout the rest of this thesis.

4.6.1. Amplitudes arising from Effective Operators

The amplitudes representing the anomalous part in the various vector boson scattering
processes arising from the operator set LS,0 + LS,1 + LS,2 read

A(W±W∓ → ZZ) = m2
Wm

2
Z

× [(f̄S,0 + f̄S,2) (ε1·ε∗4ε2·ε∗3 + ε1·ε∗3ε2·ε∗4) + 2f̄S,1 (ε1·ε2ε∗3·ε∗4)] (4.71a)

A(W±Z →W±Z) = m2
Wm

2
Z

× [(f̄S,0 + f̄S,2) (ε1·ε∗4ε2·ε∗3 + ε1·ε2ε∗3·ε∗4) + 2f̄S,1 (ε1·ε∗3ε2·ε∗4)] (4.71b)
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A(W±W∓ →W±W∓) = 2m4
W

× [(f̄S,1 + f̄S,2) (ε1·ε∗3ε2·ε∗4 + ε1·ε2ε∗3·ε∗4) + 2f̄S,0 (ε1·ε∗4ε2·ε∗3)] (4.71c)

A(W±W± →W±W±) = 2m4
W

× [(f̄S,1 + f̄S,2) (ε1·ε∗3ε2·ε∗4 + ε1·ε∗4ε2·ε∗3) + 2f̄S,0 (ε1·ε2ε∗3·ε∗4)] (4.71d)

A(ZZ → ZZ) = 2m4
Z

× [(f̄S,0 + f̄S,1 + f̄S,2) (ε1·ε2ε∗3·ε∗4 + ε1·ε∗3ε2·ε∗4 + ε1·ε∗4ε2·ε∗3)] (4.71e)

They have been calculated using the FeynRules package [27] for getting the Feynman rules
of the system LS,0 + LS,0 + LS,2 and the FeynArts/FormCalc package [28] for getting the
amplitudes of the specific processes in unitary gauge.

Looking at the structure of these amplitudes one realizes that the longitudinal polarization
states will give the strongest contributions due to their energy dependence. As seen in
equation (4.18) longitudinal polarization vectors are proportional to the corresponding 4-
momentum in the high energy limit. This is why every polarization vector will contribute
one power of k. Taking the transverse polarizations into account it is obvious that with
each vector boson transversely polarized, the amplitude will rise with one power of k less.
In the sense of unitarisation it will therefore be sufficient to take into account only the
all-longitudinal modes.

In this framework one can easily replace the pairs of polarization vectors in the amplitudes
above by the corresponding Mandelstam variables:

ε1·ε2ε∗3·ε∗4 '
s�m2

i

1∏
imi

s2

4
, (4.72a)

ε1·ε∗3ε2·ε∗4 '
s�m2

i

1∏
imi

t2

4
, (4.72b)

ε1·ε∗4ε2·ε∗3 '
s�m2

i

1∏
imi

u2

4
, (4.72c)

to get the results

A(W±W∓ → ZZ) =
1

4
(f̄S,0 + f̄S,2)(t2 + u2) +

1

2
f̄S,1s

2, (4.73a)

A(W±Z →W±Z) =
1

4
(f̄S,0 + f̄S,2)(s2 + u2) +

1

2
f̄S,1t

2, (4.73b)

A(W±W∓ →W±W∓) = f̄S,0u
2 +

1

2
(f̄S,1 + f̄S,2)(s2 + t2), (4.73c)

A(W±W± →W±W±) = f̄S,0s
2 +

1

2
(f̄S,1 + f̄S,2)(u2 + t2), (4.73d)

A(ZZ → ZZ) =
1

2
(s2 + t2 + u2)(f̄S,0 + f̄S,1 + f̄S,2). (4.73e)

As already stated in section 3.3, one is able to get the corresponding amplitudes as shown
in [6, 7] by setting fS,2 = fS,0 and using the replacements (3.32). In order to avoid confusion
another set of replacements should be mentioned. Recent developments in the treatment
of anomalous couplings by the group of Kilian et. al. show a change in the definitions of
the dimension 8 operators. In the paper [5] a set of operators more resembling to the ones
of Eboli et.al. is used, but the resulting amplitudes are equivalent to the (L4 + L5)- set.
The results of this paper can be reproduced by setting

f̄S,0 = f̄S,2 =
1

2
FS,0; f̄S,1 = FS,1. (4.74)
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32 4. Unitarisation

Effectively one could go one from here and use the general prescription for unitarising
amplitudes in the K-matrix formalism (4.68), ignoring the fact that the S-matrix is not
diagonal:

S =

A(W±W±→W±W±) 0 0 0

0 A(W±Z→W±Z) 0 0

0 0 A(W±W∓→W±W∓) A(W±W∓→ZZ)

0 0 A(ZZ→W±W∓) A(ZZ→ZZ).

 (4.75)

The way to do this would be to unitarize the amplitudes from above one by one. A test
implementation of this has been implemented in VBFNLO for the unitarisation of LS,0 in
ZZ-scattering. An exemplarily result of this is shown in figure 4.7. One can see that the
qualitative behavior is similar between the naive approach and the one to be explained in
the following section. The main difference between the two just being a different energy
scale Λ where the suppression of the anomalous contribution sets in. As we will see at the
end of section 4.6.3, the energy scales of the two cases will differ by ∼ 40%
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Figure 4.7.: Comparison of K-matrix approach using a diagonalized S-matrix (see section 4.6.2) in dotted
light blue and a more naive approach with with a non-diagonal S-matrix in dotted dark red
for an anomalous coupling f̄S,0 = 200 TeV−4. In solid dark violet the SM contribution and in
light blue the anomalous part without unitarisation are shown.

4.6.2. Isospin Eigenamplitudes

The typical K-matrix unitarisation approach is only of use if a diagonal S-matrix for
the processes under consideration is available. In the case of the massive vector boson
scattering and only considering the LS,i operators, one can find a basis that diagonalizes
the S-matrix [6] by going to the basis of total isospin. The connection between the original
basis and the diagonalizing one can be expressed in terms of Clebsch-Gordon coefficients
(CGC).

CGSs can be used to express states in an uncoupled tensor basis of a set of spin carrying
objects in a basis of total angular momentum states. The same applies to particles rep-
resented by different states in an isospin basis, which can be used to build a total isospin
basis.

By virtue of the completeness of the set of states, one can expresses the transition between
the two sets by

|I, Iz〉 =

I1∑
I1z=−I1

I2∑
I2z=−I2

|I1I2; I1zI2z〉 〈I1I2; I1zI2z|I, Iz〉︸ ︷︷ ︸
CGC

, (4.76)
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where Ii represents the Isospin of a single particle and Iiz its 3rd component, I the total
Isospin and Iz the z-component of it and the product basis

|I1I2; I1zI2z〉 = |I1, I1z〉 ⊗ |I2, I2z〉 . (4.77)

We will represent the basis of physical mass eigenstates of the massive vector bosons3 by

|W±〉 = |1,±1〉 (4.78)

|Z〉 = |1, 0〉 , (4.79)

and respectively the product basis that is relevant for the scattering of two particles by
combinations like

|W±Z〉 = |1,±1〉 ⊗ |1, 0〉 = |11;±10〉 . (4.80)

These can now be related to the total isospin basis

{|I, Iz〉} with I ∈ {0, 1, 2} and Iz ∈ {−I,−I + 1, . . . , I} (4.81)

The full set of relations between the two representations is listed in appendix E We can now
use this to express the original scattering amplitudes of interest, i.e. of physical processes
like W+W− → ZZ, in terms of only three isospin eigenamplitudes AI as follows [7]:

A(W±W∓ → ZZ) =
1

3
A0 −

1

3
A2, (4.82a)

A(W±Z →W±Z) =
1

2
A1 +

1

2
A2, (4.82b)

A(W±W∓ →W±W∓) =
1

3
A0 +

1

2
A1 +

1

6
A2, (4.82c)

A(W±W± →W±W±) = A2, (4.82d)

A(ZZ → ZZ) =
1

3
A0 +

2

3
A2, (4.82e)

where the fact was used, that the operators under consideration are all CP -conserving and
therefore all the amplitudes are be invariant under charge conjugation.

In order to get the right Isospin eigenamplitudes we will now use the amplitudes (4.73)
and set fS,2 = fS,0 ∈ R, because otherwise the isospin symmetry would be violated. Then
we arrive at a new, even simpler set of amplitudes that can moreover all be expressed in
one single master amplitude

A(s, t, u) = A(W+W− → ZZ) =
1

2
f̄S,0(t2 + u2) +

1

2
f̄S,1s

2. (4.83)

The relation between this master amplitude and the amplitudes of the physical processes
reads [6, 7]

A(W±W∓ → ZZ) = A(s, t, u), (4.84a)

A(W±Z →W±Z) = A(t, s, u), (4.84b)

A(W±W∓ →W±W∓) = A(s, t, u) +A(t, s, u), (4.84c)

A(W±W± →W±W±) = A(u, s, t) +A(t, s, u), (4.84d)

A(ZZ → ZZ) = A(u, s, u) +A(t, s, u) +A(u, s, u). (4.84e)

3We neglect the photon, because no anomalous couplings for it result from LS,i. This means setting
|Z〉 ≡ |W 3〉. We do not need to include any factors of cos θW if we use εµ(k) = kµ/mZ for the Z-bosons.
The 1/mZ factors will then exactly be canceled by the factors mZ in the amplitudes resulting from
{LS,i}.
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We can finally express the isopsin eigenamplitudes in terms of the single master amplitude,
by solving the set of equations (4.82) for AI and inserting (4.84). Then we arrive at

A0(s, t, u) = 3A(s, t, u) +A(t, s, u) +A(u, s, t), (4.85a)

A1(s, t, u) = A(t, s, u)−A(u, s, t), (4.85b)

A2(s, t, u) = A(t, s, u) +A(u, s, t). (4.85c)

The conservation of isospin guarantees that no off-diagonal elements will appear in the
S-matrix using the isospin basis.

4.6.3. Isospin-Spin Eigenamplitudes

The isopsin eigenamplitudes can be further decomposed in terms of a partial wave analysis.
In this way we can get rid of the angular dependence, i.e. t and u and use the unitarity
bounds we found earlier, i.e. the K-matrix prescription (4.68), to unitarize these partial
waves one by one. Then we end up with partial waves, that solely depend on s and respect
unitarity. These will finally be used to reconstruct the original on-shell amplitudes and be
translated to the off-shell case for an implementation into VBFNLO.

By only looking at the anomalous amplitudes from LS,0 and LS,1, we can restrict ourselves
to only include the longitudinal polarization modes and set the differences in helicities of
in- and outgoing particles λ = µ = 0. This means that in the partial wave decomposition
the Wigner-d-functions reduce to the Legendre polynomials:

dJλµ → dJ00(θ) = PJ(cos(θ)). (4.86)

It is possible to express the Legendre polynomials in terms of the Mandelstam variables
(see appendix C), but in order to simplify automatized calculations in a Mathematica
framework a little, we will keep the θ-dependence and instead replace the Mandelstam
variables in the isospin eigenamplitudes.

The decomposition of the isospin eigenamplitudes AI(s, θ) into isospin-spin eigenampli-
tudes AIJ(s) is now given by4

AI(s, θ) =
2∑

J=0

(2J + 1)AIJ(s)PJ(cos θ). (4.87)

In taking only the tree-level contributions into account, it suffices to take the sum up to J =
2. The next step is to calculate the coefficients AIJ(s) by projecting the various Legendre
polynomials onto the isospin eigenamplitudes AI(s, θ) and using the orthogonality relation
for the Legendre polynomials

1∫
−1

d(cos θ)Pk(cos θ)Pl(cos θ) =
2

2k + 1
δkl. (4.88)

We then find

AIJ(s) =
1

2

1∫
−1

d(cos θ)AI(s, θ)PJ(cos θ). (4.89)

The non-vanishing isopsin-spin eigenamplitudes then read

A00(s) =
1

6
(14f̄S,0 + 11f̄S,1)s2, (4.90a)

4This does not contain the SM part.
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A02(s) =
1

30
(4f̄S,0 + f̄S,1)s2, (4.90b)

A11(s) =
1

6
(f̄S,0 − f̄S,1)s2, (4.90c)

A20(s) =
1

3
(4f̄S,0 + f̄S,1)s2, (4.90d)

A22(s) =
1

30
(f̄S,0 + f̄S,1)s2. (4.90e)

At this point one can see the effect of using the isospin basis. It gives slightly stronger
bounds than if one would have just used a partial wave analysis of the physical amplitudes
like the ones in W+W− → ZZ. With AJ(W+W− → ZZ) meaning the projections onto
the corresponding Legendre polynomials, one finds as non-vanishing contributions

A0(W+W− → ZZ) =
1

6
(2f̄S,0 + 3f̄S,1)s2, (4.91a)

A2(W+W− → ZZ) =
1

30
f̄S,0s

2. (4.91b)

If we now exemplarily take a look at the case fS,1 = 0 and calculate the energy Λb at
which the unitarity bound |<[a...(s)]| = 1/2 is reached in both cases, we find for the ratio
of Λb in the isopsin-spin basis over the spin-only basis using the 0th partial waves

(Λb)Isospin

(Λb)Spin
= 7

1
4 ' 0.615, (4.92)

i.e. the unitarisation procedure in the isospin-spin case already sets in at an energy ∼ 40%
lower than in the spin-only case.

Note that the isospin-spin eigenamplitudes do not give stronger bounds for every pro-
cess. They exactly coincide with the spin-only eigenamplitudes in the process W±W± →
W±W±, because A(W±W± →W±W±) ≡ AI=2.

4.6.4. Unitarized Amplitudes

We are now in the position to build unitarized on-shell scattering amplitudes using the
K-matrix prescription and the partial waves of the last section. First we calculate the
∆AIJ(s) from the AIJ(s) using equation (4.68), that will exactly cancel the high energy
behavior of the original amplitudes. These read

∆A00(s) = −
(
14f̄S,0 + 11f̄S,1

)2
s4

6
(
s2
(
14f̄S,0 + 11f̄S,1

)
+ 192iπ

) , (4.93a)

∆A02(s) = −
(
4f̄S,0 + f̄S,1

)2
s4

30
(
s2
(
4f̄S,0 + f̄S,1

)
+ 960iπ

) , (4.93b)

∆A11(s) = −
(
f̄S,0 − f̄S,1

)2
s4

6
(
s2
(
f̄S,0 − f̄S,1

)
+ 192iπ

) , (4.93c)

∆A20(s) = −
(
4f̄S,0 + f̄S,1

)2
s4

3
(
s2
(
4f̄S,0 + f̄S,1

)
+ 96iπ

) , (4.93d)

∆A22(s) = −
(
f̄S,0 + f̄S,1

)2
s4

30
(
s2
(
f̄S,0 + f̄S,1

)
+ 960iπ

) . (4.93e)

Now we use the partial wave decomposition (4.87) to rebuilt the isospin eigenamplitudes
by using the ÂIJ including the ∆AIJ instead of the original partial waves. First we write
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the isospin eigenamplitudes in the form

ÂI(s, t, u) =
2∑

J=0

(2J + 1)ÂIJ(s)PJ(s, t, u)

= AI(s, t, u) +
2∑

J=0

(2J + 1)∆AIJ(s)PJ(s, t, u)︸ ︷︷ ︸
≡∆AI(s,t,u)

, (4.94)

where the PJ(s, t, u) are of the form found in appendix C. Now we use (4.82) to rebuild the
unitarized physical amplitudes. Some rearrangement in terms of the Mandelstam variables
is necessary at this point to get the amplitudes into a form, that can be translated into
an off-shell implementation. In order to show this we exemplarily calculate the unitarized
on-shell amplitude of the process W+W− → ZZ.

From (4.82) we have

Â(W±W∓ → ZZ) =
1

3
Â0 −

1

3
Â2

= A(W±W∓ → ZZ) +
1

3
∆A0 −

1

3
∆A2. (4.95)

Now we insert (4.94), evaluate the sums and insert the explicit forms of the Legendre
polynomials, i.e.

Â(W±W∓ → ZZ) =A(W±W∓ → ZZ)

+
1

3
(∆A00 −∆A20) +

5

3
(∆A02 −∆A22)

3t2 + 3u2 − 2s2

s2
(4.96)

Finally, we enhance the second term in (4.96) by an extra factor of s2/s2, insert the explicit
non-unitarized amplitude and rearrange the whole in terms of the Mandelstam variables.
The resulting unitarized amplitudes for all processes then read

Â(W±W∓ → ZZ) =

[
1

2
f̄S,1 +

1

3s2
(∆A00 −∆A20)− 10

3s2
(∆A02 −∆A22)

]
s2

+

[
1

2
f̄S,0 +

5

s2
(∆A02 −∆A22)

]
(t2 + u2), (4.97a)

Â(W±Z →W±Z) =

[
1

2
f̄S,0 +

1

2s2
∆A20 −

5

s2
∆A22

]
s2

+

[
1

2
f̄S,1 −

3

2s2
∆A11 +

15

2s2
∆A22

]
t2

+

[
1

2
f̄S,0 +

3

2s2
∆A11 +

15

2s2
∆A22

]
u2, (4.97b)

Â(W±W∓ →W±W∓) =

[
1

2
f̄S,1 +

1

6s2
(2∆A00 + ∆A20)− 5

3s2
(2∆A02 + ∆A22)

]
s2

+

[
1

2
f̄S,1 +

1

2s2
(10∆A02 − 3∆A11 + 5∆A22)

]
t2

+

[
2f̄S,0 +

1

2s2
(10∆A02 + 3∆A11 + 5∆A22)

]
u2, (4.97c)

Â(W±W± →W±W±) =

[
2f̄S,0 +

1

s2
(∆A20 − 10∆A22)

]
s2

+

[
1

2
f̄S,1 +

15

s2
∆A22

]
(t2 + u2), (4.97d)
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Â(ZZ → ZZ) =

[(
f̄S,0 +

1

2
f̄S,1

)
+

1

3s2
(∆A00 + 2∆A20)− 10

3s2
(∆A02 + 2∆A22)

]
s2

+

[
2f̄S,0 + f̄S,1 +

5

s2
(∆A02 + 2∆A22)

]
(t2 + u2). (4.97e)

At this point it becomes obvious that crossing symmetry is broken. Each of the processes
listed above needs its own unitarisation procedure.

The structure of (4.97) is already optimized for the translation to the unitarisation of off-
shell amplitudes. In section 6.3 we will show how the transition from to above equations
to the actual matrix element calculation inside a Monte Carlo program is done.

4.7. K-Matrix-like Form Factors

Having a close look at the way the K-matrix approach is used in a final off-shell imple-
mentation shows similarities to the use of form factors. What we have in the very end are
complex form-factor like functions that differ for the three scattering channels (s/t/u) and
every process.

Let us start with the study of a simple case. Take the unitarized amplitude Â(W±W± →
W±W±) (4.97d) with only fS,1 6= 0, i.e.

Â(W±W± →W±W±) =

[
1

2
f̄S,1 +

15

s2
∆A22

]
(t2 + u2)

=

[
15

s2
Â22

]
(t2 + u2). (4.98)

The explicit form of Â22(s) is

Â22(s) =
A22(s)

1− iA22(s)/(32π)
=
f̄S,1s

2

30

1

1− i
f̄S,1s2

960π

. (4.99)

By inserting this back into (4.98) we find

Â(W±W± →W±W±) =
1

1− i
f̄S,1s2

960π

f̄S,1
2

(t2 + u2). (4.100)

If we compare this now to the original amplitude in terms of Mandelstam variable (4.73d),
we see that this is the exact same amplitude multiplied by a function that can be inter-
preted as a complex form factor, i.e.

FK(s) =
1

1− i
f̄S,1s2

960π

=
1

1− i s
2

Λ4
K

. (4.101)

ΛK represents the energy scale where FK(s) would start the suppression of the anomalous
amplitudes. As we have seen in this derivation, it can in principle be determined via a
partial wave analysis of the anomalous scattering amplitudes. Furthermore, if only one
coupling fi 6= 0 at a time, the derivation in section 4.3.2 shows that ΛK = ΛK(fi) in the
sense that

ΛK(fi) ∝ f
− 1

4
i . (4.102)

This can be shown in a completely analogous way to the derivation of sec 4.3.2, meaning
that equation (4.26) will also hold for the ΛK .

37



38 4. Unitarisation

A plot of the real and imaginary part of this function is shown in figure 4.8. Note that
other than implied by this plot, the imaginary part of the amplitudes will not go to zero
for very high energies while the real part does. This is because the real part drops like s−4

while the imaginary part only goes down like s−2. With the amplitudes typically growing
like s2, multiplying FK(s) to it will result in a finite non-zero imaginary part for very high
energies.
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Figure 4.8.: Real and imaginary part of the K-matrix-like form factor FK(s) generated by using prescrip-
tion (4.103) and the isospin-spin eigenamplitude A22(s) as input.

The calculation above shows that we can get complex form-factor-like functions from the
K-matrix formalism. A simple prescription to build these is taking a unitarized partial
wave ÂIJ and divide by the original one, i.e.

FK(s) =
ÂIJ(s)

AIJ(s)
=

1

1− iAIJ(s)
. (4.103)

Now for LS,0 and LS,1, we already have the complete K-matrix formalism which makes
these FK(s) superfluous. The situation is different for all other operators. Here it is diffi-
cult to find a diagonal S-matrix, which is a necessary feature for the K-matrix procedure.
Therefore we discuss the use of the K-matrix-like form factors for the operator classes
{LT,i} and {LM,i} in the following section.

4.8. Unitarisation of LM,i and LT,i
The last section shows that one can get K-matrix like form factors by executing a partial
wave analysis of the amplitudes arising from anomalous couplings and using prescrip-
tion (4.103) to build the form factors. The main problem in transferring this ansatz to the
LM,i and LT,i operators is the final off-shell implementation. In the LS,0 and LS,1 case we
have three circumstances that significantly simplify the unitarisation procedure:

1. One can find a direct correspondence of the Mandelstam variables to the dot-products
of polarization vectors.

2. Only the longitudinal polarizations contribute which reduces the Wigner-d-functions
of the partial wave analysis to Legendre polynomials
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3. A basis that diagonalizes the S-matrix is known.

These features are missing for the other operators, but can to some extent be cured. Note
that just because an elegant unitarisation method for LS,0 and LS,1 is available, their
importance in terms of describing anomalous quartic gauge couplings should not be lifted
above the importance of the other operators.

The first feature of the list means that the s-,t- and u-channels have separate effective
unitarisation factors. By taking a look at a rather simple amplitude generated by the
operator LT,0 in W+W− → ZZ, we see that the separation into different Mandelstam
channels is not possible that easily:

AT,0(W+W− → ZZ)

=
128 cos2 θWm

4
W

v4

fT,0
Λ4

(k1·k2ε1·ε2 − ε1·k2ε2·k1) (k3·k4ε
∗
3·ε∗4 − ε∗3·k4ε

∗
4·k3) (4.104)

With dot-products between momenta and polarization vectors appearing, the correspon-
dence between those terms and the Mandelstam variables is not as clear anymore. The
strongest rise in energy of this amplitude will occur when all vector bosons are transversely
polarized. In this case it might coincidentally happen, that dot-products between momenta
and polarization vectors vanish, but this is not guaranteed in all cases. Therefore there is
no simple prescription in how to treat thosr products, compared to the LS,0 and LS,1 case.

The simplest circumvention would be to take the s-channel effective unitarisation factor
and use it as an overall form factor. This is more or less equivalent to only taking the
J = 0 partial waves into account. Those give the strongest contributions to the partial
wave analysis anyway, which means that the resulting unitarisation procedure would lead
to a stronger suppression than with taking higher J ’s into account (see figure 7.10 where
the bump around 1500GeV would disappear by neglecting the J = 2 partial waves).

When an overall effective form factor is the chosen method, then the second feature can also
be cured. Several combinations of helicities for in- and outgoing particles lead to a bad high
energy behavior for the LM,i and LT,i operators. As will be seen in the following chapter,
it is possible to set up a general framework for the calculation of all these contributions
from different helicity combinations in an analytic way. The final results of the partial
wave analysis will feature a 9× 9 matrix in helicity space that can easily be diagonalized
due to the few non-vanishing contributions. We would then be able to take the strongest
eigenvalues of these matrices as inputs for equation (4.103). The resulting effective form
factors will be a bit weaker than in the LS,0 and LS,1 case, meaning they will start the
suppression at energies to high, if compared to the values one gets from a numerical analysis
like in the calc_formfactor routine by Bastian Feigl [21].

The last feature of the list is irrelevant at least for W±W± scattering, because isospin-spin
eigenamplitudes coincide with the spin eigenamplitudes here. As shown in section 4.6.3
the suppression for other processes would probably set in at too high energy scales again,
but it would not lead to completely incompatible results.

As we see, a K-matrix-like unitarisation procedure is possible for the LM,i and LT,i oper-
ators and so is an implementation into a Monte Carlo program. In the simplest possible
scenario, one could use form factor like functions FK(s) defined in equation (4.101) for
an implementation. FK(s) only has one parameter, the energy scale ΛK that determines
when the suppression should set in. The routine calc_formfactor could be modified and
used together with relation (4.26) in order to determine the values for ΛK . Another ap-
proach would be to use definition (4.103) and an analytic partial wave analysis which will
be discussed in the following chapter.
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CHAPTER 5
Mathematica Framework

A bigger part of the thesis was the development and use of a framework making an analytic
treatment of partial wave analyses for all kinds of dimension 8 operators affordable. In
this section the goal is to showcase some of the findings and functions developed, but more
importantly to give a general overview of the procedures involved, so that future studies
may use them as a foundation.

5.1. From a Lagrangian to Partial Waves

The starting point of the analyses carried out in this thesis is the list of dimension 8
operators with the goal of working the way towards unitarized anomalous amplitudes
achieved by using the K-matrix formalism. During the work it became clear, that the
original K-matrix approach may not be the optimal solution, or even not applicable at all
for the operator groups LM,i and LT,i. Still, as was shown in the previous section, one can
get K-matrix-like form factors for these. Either way a partial wave analysis is necessary
in order to find out where the strongest contributions of the anomalous amplitudes arise
from and in order to use those partial waves for unitarisation.

5.1.1. Feynman Rules

The first step of the whole analysis is to get Feynman rules from which amplitudes of phys-
ical processes can be calculated. For this purpose the Mathematica package FeynRules [27]
has been used. FeynRules is a package that can take pretty much any physical theory in
the form of a Lagrangian as an input, returning all Feynman rules that the theory inherits.
These rules can then be used for further evaluation in other Mathematica packages.

A typical procedure of generating a set of Feynman rules is fairly simple. One starts by
loading in the FeynRules package and a model file that contains the necessary Lagrangians
by

$FeynRulesPath = SetDirectory["FeynRules_dir/feynrules-current"];

<< FeynRules‘

LoadModel["FeynRules_dir/feynrules-current/Models/myModel.fr"]

Afterwards one should choose which gauge to work in. Throughout this thesis, all work is
done in unitary gauge, which means setting

FeynmanGauge = False;

Then we need just one command to generate a file containing all Feynman rules in a
specified output:

WriteFeynArtsOutput[LS0, FlavorExpand -> True, Output -> "my_FeynRules_Models/

LS0"]
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42 5. Mathematica Framework

where FlavorExpand means that rules are separately generated for all particles, not only
flavor types (e.g. separate rules for d-, s- and b- quarks). This already closes the FeynRules
procedure. Note that it is possible to insert a sum of operators into the above command
by simply writing WriteFeynArtsOutput[LS0 + LS1 + ..., ...].

The more involved part in generating the Feynman rules is defining the Lagrangians in a
way understood by FeynRules. Fortunately there exists a model file quartic.fr by Eboli
et. al. [29]. It could directly be used for generating all rules for LM,i, LT,i and LS,1. The
rules for L′S,0 and LS,2 have been generated by using adaptions of the original LS,0. As an
example, consider the definition of LS,2:

LS2 := Block[{PMVec, WVec, Dc, Dcbar},

PMVec = Table[PauliSigma[i], {i, 3}];

Wvec[mu_] := {Wi[mu, 1], Wi[mu, 2], Wi[mu, 3]};

Dc[f_, mu_] := I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 (Wvec[mu].PMVec).f;

Dcbar[f_, mu_] := -I del[f, mu] + ee/cw B[mu]/2 f + ee/sw/2 f.(Wvec[mu].PMVec

);

FS2 (Dcbar[Phibar, mu]).Dc[Phi, nu] (Dcbar[Phibar, nu]).Dc[Phi, mu] ];

The functions defined in here are just the fields and covariant derivatives. The Lagrangian
itself is the last line of the code. Equivalently one may use the definitions of covariant
derivatives provided directly by FeynRules. e.g. for L′S,0:

LpS0 := Block[{ii,jj,mu,nu, feynmangaugerules},

feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[FpS0/2*(DC[Phibar[ii],mu] DC[Phi[ii],nu])

* ( (DC[Phibar[jj],mu] DC[Phi[jj],nu]) + (DC[Phibar[jj],nu] DC[Phi[jj],mu])

) , FlavorExpand-> {SU2D,SU2W}]/.feynmangaugerules];

It has been checked that both methods lead to equivalent results.

5.1.2. Amplitudes from FeynArts/FormCalc

The next step is to generate scattering amplitudes from the Feynman rules created before-
hand. For this matter we are using the Mathematica package FeynArts/FormCalc [28].
First we make sure to quit the local Mathematica Kernel by using the command Quit[];

in order not to mix up FeynRules and FeynArts definitions. Similar to the FeynRules
procedure we then start by loading in the packages:

<< "FeynArts_dir/FeynArts-3.8/FeynArts.m";

<< "FeynArts_dir/FormCalc-8.2/FormCalc82.m";

Next we create the topologies for the process of interest, i.e. tree level 2 → 2 scattering
and only keeping the 4-vertices:

topologies = CreateTopologies[0, 2 -> 2, Adjacencies -> {4}];

Then we are able to create diagrams by inserting particles into the topologies by specifying
the relevant model (i.e. a Lagrangian like LM,0) and particles (i.e. vector bosons with the
syntax V[i]):

diagramWWWWLM0 := InsertFields[topologies, {V[3],-V[3]}->{V[3],-V[3]},

InsertionLevel -> {Particles}, Model -> {"LMi/LM0"}, GenericModel -> {"LMi/

LM0"}];
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5.1. From a Lagrangian to Partial Waves 43

In our case we will always end up with just one diagram representing the anomalous
contribution to the vector boson 4-vertex under consideration. The last step is to use
FormCalc to generate the amplitude from the diagram we just created. This is done via:

amplitudeWWWWLM0 = (CalcFeynAmp[CreateFeynAmp[diagramWWWWLM0], OnShell->False,

Invariants->False, Transverse->False, Normalized->False, InvSimplify->False

]) //.Subexpr[] //.Abbr[];

Here, the options set to False prevent FormCalc from performing any simplifications like
replacing dot-products of momenta by the corresponding Mandelstam variables and so
forth. The meaning of //.Subexpr[] //.Abbr[]; is to expand all abbreviations that
FormCalc automatically introduces in order to keep outputs in a compact, readable form.
The only thing left to be done, is reading in the couplings that FeynRules generated and
save them as a replacement list:

<< "FeynArts_dir/FeynArts-3.8/Models/LMi/LM0.mod";

FACouplingsLM0 = M$FACouplings;

Now we have the complete amplitude resulting from one dimension 8 operator and the
information about the couplings, which already ends the use of the packages FeynRules,
FeynArts and FormCalc for our analysis.

5.1.3. Towards Partial Waves

We are now ready to massage the results from FormCalc into a form that can be used for
an analytic partial wave decompostion. Let us first get a little more familiar with some
Mathematica syntax.

• foo[x_,y_]:= ...; is how a function “foo” with two arguments “x” and “y” is
defined within Mathematica. The underscores are needed to tell “treat these as input
parameters/variables”. The “:=” tells Mathematica not to evaluate the expression
immediately, but to wait until the function is called somewhere (other than using
just “=”). The semicolon in the end is optional. It just suppresses output that might
be generated by defining the function.

• /.{a -> b, ...} is called a replacement. The command“/.” tells to use the follow-
ing list for replacements in the preceding expression, “a->b” tells replace expression
“a” by expression “b”.

• //.{a -> b, ...} The same as the replacement above, but it is run repeatedly
until no appearances of “a” are found anymore.

• expr//foo is used as an alternative to evaluate the function “foo” with the preceding
expression “expr” as argument. It is completely equivalent to foo[expr].

• /.{a :> b, ...} is a delayed replacement rule, meaning that “a” gets replaced by
“b”, but “b” is firstly evaluated, when the rule is used.

With this knowledge we are now ready to understand the following lines1:

resultLSi[pol_, order_] := amplitudeWWWWLSi /.{Amp[a_][b_] -> b} /.FACouplingsLSi

//.replaceEpsDenWWWW[pol, order] /.{Pair[aa_, bb_] :> MyPair[aa, bb]} /.

makeReadable //Expand

This is the most gruesome step in the whole calculation, but it is not too difficult to
understand. We take the amplitude created beforehand and only keep the amplitude

1In order for this command to work, we need to read in the definitions of all functions developed for this
analysis, like the ones in appendix G.
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44 5. Mathematica Framework

itself, i.e. “b”, not the info about particles etc. that is hidden in “a”. Then we replace the
couplings by the ones we read in from the model file. The “results” needed for the partial
wave decomposition are defined with two arguments “pol” and “order” that are used in the
function replaceEpsDenWWWW in the partial wave definitions file. This file of course needs
to be read in before the command above is executed.

The input parameter pol represents the helicity states of the vector bosons in the form
of a four component vector {λ1,λ2,λ3,λ4} with λi ∈ {−1, 0, 1}. The parameter order

defines to which order in O(m2
V /E

2) the momentum pi =
√
E2 −m2

Vi
is expanded. As

it turned out after some time, the expansion to higher orders was not of much use in
the calculations and only added unwanted complexity to some definitions. The parameter
still is of use though, because one can choose between 0th order, i.e. order = 0 meaning
pi = E =

√
s/2 for most processes or setting order = -1 which means working with the

exact momentum. All calculations carried out in this section were computationally still
affordable with the exact definition of the momentum modulus, but results are of course
a lot simpler when only using the 0th order in O(m2

V /E
2) and moreover more comparable

to the results in [6].

The expansion of the momentum and calculation of the helicity eigenvectors is carried out
in replaceEpsDenWWWW. The definitions used for the momenta and helicity eigenvectors
can be found in section 4.4 and appendix D. The vectors are introduced in the form
of a replacement list, meaning the momenta and polarization vectors of the FormCalc
amplitude get replaced by explicit expression in terms of the center of mass energy

√
s,

the scattering angle θ etc.

In the last three steps, first the symbolic definition Pair[a,b] gets replaced by the standard
Minkowski-space scalar product aµb

µ, then we replace some constants like the fine structure
constant α by other constants to get simpler results and finally Expand everything which
adds another level of simplification and readability. In the end the amplitudes will look
like

resultLSiWWWW[{0, 0, 0, 0}, 0] =
ct2fS0S2

8Λ4
+

ct2fS1S2

4Λ4
+

5fS0S2

8Λ4
+

fS1S2

4Λ4
, (5.1)

where ct = cos θ. The sines and cosines have been inserted in this manner, so that
unwanted trigonometric simplifications by Mathematica are avoided. This result is the
amplitude in W+W+ scattering when all vector bosons are longitudinal. Note that by
correctly replacing cos θ with the Mandelstam variables, one reproduces equation (4.73d)
when fS,2 = fS,0.

5.1.4. Exact Momentum vs. First Order Expansion

We are now in a position to check how good the approximation of neglecting higher order

terms in the expansion of pi =
√
E2 −m2

Vi
really is. For that matter we compute the

isospin-spin eigenamplitude AI=2,J=0(s) with the first order expansion mentioned above
and with the exact momentum. The results are

A1st order
I=2,J=0(s) =

2s2fS,0
3Λ4

+
s2fS,1
3Λ4

(5.2a)

Aexact
I=2,J=0(s) =

fS,0
3Λ4

(
12m4

W − 9m2
W s+ 2s2

)
+
fS,1
3Λ4

(
12m4

W − 6m2
W s+ s2

)
. (5.2b)

In setting AI=2,J=0(s) = 16π we are as before able to calculate the energy at which
unitarity would be violated. As expected, the difference is rather small, i.e.

√
s

1st order
bound = 842 GeV (5.3a)
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√
s

exact
bound = 851 GeV, (5.3b)

meaning the two only differ by ∼ 1%.
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Figure 5.1.: This plot shows the isospin spin Amplitude A20(s) calculated with exact momentum pi =√
E2 −m2

Vi
(violet) and the first order expansion pi =

√
s/2 (light blue). The ratio of these

two versions is shown below. It shows that the differences between the two are negligible in
the high energy regime. The dotted line indicates the unitarity bound AIJ = 16π.

5.1.5. Partial Waves in Helicity Space

We now almost arrived at the final partial wave decomposition. In the end an overview of
all contributions to an amplitude of some operator set is desired. In order to achieve this,
we define a helicity basis and collect all amplitudes as matrix elements of the scattering
matrix S, where

Sfi = 〈λ3,f , λ4,f |S |λ1,i, λ2,i〉 . (5.4)

The λi can take three different values. Therefore we would normally end up with 32×32 =
81 entries. Fortunately we can make use of several symmetries to relate the amplitudes
amongst each other. This will be discussed in detail in section 5.2.

The command to get all amplitudes in matrix form looks like

amplitudeMatrixLSi = SparseArray[{6, 4} -> Null] // Normal;

Do[amplitudeMatrixLSi[[aa, bb]] =

resultLSi[polarisationMatrix[[aa, bb]], 0] // Simplify, {aa, 1, 6}, {bb, 1,

4}]

The first line just creates an empty 6 × 4 matrix which is then filled in a loop with the
amplitudes in terms of the entries of the polarization matrix. The output generated in this
way will always look quite messy, but close inspection shows that only very few entries are
of importance. These are the ones that rise quadratically in s. When we are only working
with LS,0 and LS,1, even only one entry survives, which is the all longitudinal channel.

The matrix created in this way gives a nice overview in terms of the amplitudes, but it still
contains some angular dependence that we can get rid of by determining the corresponding
partial waves. This does not blow up the outputs too much, because with conserved angular
momentum, only J ∈ {0, 1, 2} partial waves are non-zero. One can get the partial waves
in a similar matrix form as before by using
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WignerDWaveMatrixListLSi = SparseArray[{3, 6, 4} -> Null] // Normal;

Do[

mm1 = helicityDiffMatrix[[aa, bb, 1]];

mm2 = helicityDiffMatrix[[aa, bb, 2]];

WignerDWaveMatrixListLSi[[J + 1, aa, bb]] =

If[ J >= Abs[mm1] && J >= Abs[mm2],

AJm1m2theta[ {J, mm1, mm2}, resultLSi[polarisationMatrix[[aa, bb]],0] ]

,0]

,{J, 0, 2},{aa, 1, 6},{bb, 1, 4}]

Here again an empty matrix is created and gets filled with the partial waves AJλµ(s), where

λ = mm1 and µ = mm2. It would now again be nice to see only the s2 contributions in the
output. A safe way to get them is

WignerDWaveMatrixListLSiOnlyS2 = {Null, Null, Null};

Do[

WignerDWaveMatrixListLSiOnlyS2[[J + 1]]

= (WignerDWaveMatrixListLSi[[J + 1]] -

Map[# /. {m : Power[S, 2] :> 0} &,

WignerDWaveMatrixListLSi[[J + 1]]]) // Apart, {J, 0, 2}]

This means subtracting all entries that do not grow like s2 from the original entries. The
output of the results we get in this way looks like

J = 0 :


0 0 0 0 0 0

0 0
(4fS0+fS,1)s2

3Λ4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

J = 1 :


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

J = 2 :


0 0 0 0 0 0

0 0
(fS,0+fS,1)s2

30Λ4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

These are just the results we already saw in (4.90d) and (4.90e), representing the isospin-
spin eigenamplitudes AI=2,J(s). They coincide, because W+W+ scattering is the only
process that contributes to the isospin I = 2 amplitudes.

All what we have seen in this section might look like a huge machinery to get results
that we already had, i.e. only all longitudinal modes carry an s2 proportionality when the
operators LS,0 and LS,1 are taken into account. The situation looks a lot different for
the other operators. The amplitudes can be a lot more complex, which makes an analysis
as in section 4.6 unattractive if not impossible. Moreover there can be more than one
contribution to the scattering matrix in helicity space that grows like s2.

Therefore the use of the procedure introduced in this section only shows up when we take
a look at different operator sets. A partial wave analysis for all operators is possible and
quite simple.

Another use we can make of this implementation, is checking how good the approximation
of only taking a first order in the expansion of the momentum modulus into account. In
most cases it will not make too much of a difference for two reasons:
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1. The strongest contributions arising from anomalous couplings grow like s2. If the
suppression supplied by some unitarisation factor falls off with sn and n ≤ −2,
then all terms appearing in the amplitudes which grow slower than with s2 will be
sufficiently suppressed at high energies

2. The contributions that grow less than s2 will merely shift the energy bound at which
unitarity would be violate by a small amount. These shifts will, generally speaking,
be unimportant as we have seen in section 5.1.4.

In conclusion this section shows that getting from an arbitrary operator set to partial
waves that can be used in a unitarisation procedure, is possible in an affordable way.

5.2. Contributions by Different Polarization Combinations

We have learned already that different combinations of helicity states lead to a bad high
energy behavior for the three dimension 8 operator sets. In this section we want to study
the different helicity combinations in more detail. For that purpose let us first define a
piece of notation. We will denote the helicity states of in- and outgoing vector bosons by

(λ1, λ2, λ3, λ4), λi ∈ {−1, 0, 1}, (5.5)

or equivalently in a more symbolic way by

λ1λ2λ3λ4, λi ∈ {−, 0,+}. (5.6)

Let us exemplarily have a look at the amplitudes generated by the operators LS,1, LM,2

and LT,0 in the process W+W− → ZZ. Note that these amplitudes represent relatively
simple structures compared to the ones generated by other operators of the same sets.

AS,1 = 2m2
Wm

2
Z

fS,1
Λ4

ε1·ε2ε∗3·ε∗4, (5.7a)

AM,2 =
4m2

Wm
2
Z sin4 θW
v2

fM,2

Λ4
ε1.ε2 (k3.k4ε

∗
3.ε
∗
4 − ε∗3.k4ε

∗
4.k3) , (5.7b)

AT,0 =
128m4

W cos2 θW
v4

fT,0
Λ4

(k1·k2ε1·ε2 − ε1·k2ε2·k1) (k3·k4ε
∗
3·ε∗4 − ε∗3·k4ε

∗
4·k3) (5.7c)

The first equation shows the by now well known LS,1 amplitude only containing polariza-
tion vectors, leading to an s2 dependence if all vector bosons are longitudinal. The second
amplitude has two momenta appearing in every term. These are resulting from the inser-
tion of a field strength tensor in the LM,i operator class. Naively one could think that the
amplitude might grow like s3 when all vector bosons are longitudinal, but it turns out that
those terms cancel (as for all other operators of this class). The strongest growth will still
go like s2 if we insert longitudinally polarized vector bosons in the initial and transversely
polarized ones in the final state, i.e. for the helicity state (0, 0,±1,±1). The last amplitude
of the set above carries 4 momenta and 4 polarization vectors in every term. We will again
find a s2 growth, but only for the all transverse scattering , i.e in (±1,±1,±1,±1) and
(±1,±1,∓1,∓1).

In the cases above the high energy behavior can be decoded quite easily. But with this not
being very clear in the beginning of the work for this thesis and with the other operators
often showing a lot more complicated structure, one task of this work was to get a good
overview of where the strongest growths in s would appear.
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The simplest approach to that task was calculating the amplitudes for all possible combi-
nations of helicities, i.e build a 9× 9 matrix corresponding to all possible states like

−−−− −−−0 −−−+ −−0− −−00 −−0+ −−+− −−+0 −−++
−0−− −0−0 −0−+ −00− −000 −00+ −0+− −0+0 −0++
−+−− −+−0 −+−+ −+0− −+00 −+0+ −++− −++0 −+++
0−−− 0−−0 0−−+ 0−0− 0−00 0−0+ 0−+− 0−+0 0−++
00−− 00−0 00−+ 000− 0000 000+ 00+− 00+0 00++
0+−− 0+−0 0+−+ 0+0− 0+00 0+0+ 0++− 0++0 0+++
+−−− +−−0 +−−+ +−0− +−00 +−0+ +−+− +−+0 +−++
+0−− +0−0 +0−+ +00− +000 +00+ +0+− +0+0 +0++
++−− ++−0 ++−+ ++0− ++00 ++0+ +++− +++0 ++++

. (5.8)

A much smaller set of helicity states will be sufficient however, because several symmetries
relate the amplitudes amongst each other. For clarity we will focus as above on the case
of W+W− → ZZ scattering. The symmetries we can use here are

1. Parity P, corresponding to a flip of all helicity signs,

2. Charge conjugation C, corresponding to the exchange of W+ and W−,

3. Bose symmetry B, meaning the exchange of the Z-bosons.

All dimension 8 operators studied in this thesis were built such that they are CP invari-
ant, therefore also the amplitudes will be so. Moreover, the exchange of the final state
Z-bosons should not make a difference, because they are identical particles respecting
Bose-symmetry. Plugging explicit momenta and helicity eigenvectors as they are defined
in appendix D and section 4.4 into the amplitudes, we find the following symmetries cor-
responding to the list above:

Aλ1λ2λ3λ4 = (−1)λ1+λ2+λ3+λ4A−λ1−λ2−λ3−λ4 , (5.9a)

Aλ1λ2λ3λ4 = (−1)λ1+λ2Aλ1λ2λ4λ3(θ → π − θ) (5.9b)

Aλ1λ2λ3λ4 = (−1)λ1+λ2+λ3+λ4Aλ2λ1λ3λ4(θ → π − θ) (5.9c)

The change in the scattering angle can be understood by looking at figure 5.2. It is just a
consequence of inserting explicit momenta into the amplitudes.

Figure 5.2.: This figure shows the exchange of a Z-bosons in a kinematical representation. Working with
explicit momenta and helicity eigenvectors in a center of mass frame, this picture shows that
one has to shift θ → θ′ = π − θ when inserting the vectors into the amplitude in order to get
the same result.

These relations have all been explicitly checked on several representative examples of all
operator classes. They help reducing the 81 entries of the matrix (5.8) down to 22 inde-
pendent ones (see figure 5.3).
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5.2. Contributions by Different Polarization Combinations 49

Figure 5.3.: This figure shows a pictorial description of how the charge conjugation C, parity P and Bose-
symmetry B help reducing the number of independent entries of the matrix down to 22 (the
entries without color overlay).

In this way a reduced version of the full matrix (5.8) could be used for analyzing the
strongest contributions of all operators. In the end the version that was used looks like

−−−− −− 00 −−−0 −−−+
+ +−− + + 00 + +−0 + +−+
00−− 0000 00− 0 00−+
−0−− −000 −0− 0 −0−+
0 +−− 0 + 00 0 +−0 0 +−+
−+−− −+ 00 −+−0 −+−+

 . (5.10)

The ordering of the entries is in terms of helicity differences, which are the relevant measure
when working with the Wigner-d-functions in a partial wave analysis. By denoting the
entries of the above matrix as (λ, µ) = (λ1 − λ2, λ3 − λ4), the corresponding matrix in
terms of helicity differences reads

0, 0 0, 0 0,−1 0,−2
0, 0 0, 0 0,−1 0,−2
0, 0 0, 0 0,−1 0,−2
−1, 0 −1, 0 −1,−1 −1,−2
−1, 0 −1, 0 −1,−1 −1,−2
−2, 0 −2, 0 −2,−1 −2,−2

 . (5.11)

In this set up it is now possible to have a look at all relevant contributions from any
dimension 8 operator. As an example, the amplitudes resulting from LM,1 that grow like
s2 are

J = 0 :



0 −m2
W

2v2 f̄M,1s
2 0 0

0 −m2
W

2v2 f̄M,1s
2 0 0

c2wm
2
W

2v2 f̄M,1s
2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


,
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J = 1 :



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

J = 2 :



0 0 0 0
0 0 0 0

0 0 0 − c2wm
2
W

5
√

6v2 f̄M,1s
2

0 0 0 0
0 0 0 0

0
m2
W

5
√

6v2 f̄M,1s
2 0 0


,

where cw ≡ cos θw. Results like these could now be used to get partial waves as proper
inputs for the definition of the K-matrix-like form factor (4.103).

This concludes the chapter on the partial wave analysis with the help of Mathematica. In
the following chapter we will see how the actual implementation of the K-matrix procedure
for LS,0 and LS,1 into VBFNLO works.
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CHAPTER 6
Implementation

The K-matrix unitarisation procedure for the LS,0 and LS,1 operators has been imple-
mented into the Monte Carlo program VBFNLO. Therefore a quick general introduction
into the software and a quick overview on the implementation of anomalous couplings is
given in this chapter. The main part of this chapter is the final implementation of the
K-matrix method with the discussion of some technical details.

6.1. Introduction into VBFNLO

VBFNLO [30] is a parton level Monte Carlo program that simulates hadron collisions for
various processes involving electroweak bosons up to next-to-leading order (NLO) in the
strong coupling constant αs. Its main strength is its speed and reliability. High statistics
and accuracy can often be achieved significantly quicker than in comparable Monte Carlo
programs. It includes various beyond the Standard Model (BSM) effects like anomalous
couplings.

The main focus of VBFNLO is to calculate the total cross section of some process pp → X
in an efficient way, i.e. solving the integral [31]

σ =

∫
dx1dx2

∑
subprocesses

fa1(x1)fa2(x2)
1

2ŝ

∫
dΦn(x1pa1 + x2pa2 ; p1, . . . , pn)

Θ(cuts)
∑
|M|2(a1a2 → b1b2). (6.1)

The quantities fai(xi) represent the parton distribution functions (PDFs), i.e the proba-
bility of finding parton ai with momentum fraction xi inside a (anti-)proton, which are
only known numerically. The energy

√
ŝ represents the center of mass energy of the cor-

responding partonic subprocess. dΦn(P ; p1, . . . , pn) is the Lorentz invariant phase space
element and Θ(cuts) is called acceptance function, which simply summarizes all the cuts
imposed on a specific process. The last quantity M represents the Feynman amplitude
of the subprocess under consideration where the sum means summing and averaging over
the polarizations and colors of the external partons.

With the above (high dimensional) integral not being soluble analytically, one needs ed-
ucated methods for solving it numerically. In VBFNLO this is done via the Monte Carlo
method, i.e. replacing the integral by a sum over randomly generated but carefully cho-
sen phase space points. Here, “carefully chosen” means that they are generated in a way
such that more points fall into regions that give large contributions to the integral, thus
reducing the error in the determination of the integral. This method is called “Importance
Sampling”. According to the law of large numbers the integral will be reproduced by going
to an infinite number of points. Several iterations are used in order to optimize the im-
portance sampling and therefore the error on the final result. For this matter an adapted
version of the VEGAS Monte Carlo integrator [32] is used.
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An actual run of the VBFNLO program starts with reading in all necessary input parameters
that can be manipulated by the user by altering the corresponding input files. Then the
calculation itself is set up by starting the two nested main loops, the outer one controlling
the iteration steps of the adaptive Monte Carlo algorithm, the inner one just counting the
randomly generated phase space points. In every step of the loops, the possible contribu-
tion of the corresponding phase space point to the integral is calculated in the following
way [21]:

1. The integration routine gives an array of random numbers with the accompanying
weight resulting from the importance sampling.

2. The random numbers are converted to particle momenta in the routine phasespace.F

3. The resulting phase space point is only kept if it respects the cuts, otherwise its
weight is set to zero.

4. The factorization scale µF and renormalization scale µR are calculated for this this
phase space point.

5. In amplitude.F the routines for calculating the amplitude and the corresponding
matrix element squared get called for the process under consideration.

6. The result gets multiplied with a phase space factor and together with its weight
transferred back to the integration routine.

7. In the las(t) VEGAS iteration the events get transferred not only to the integration,
but also to a histogram routine which can easily be modified to include the users
own histogram definitions.

8. Finally the resulting total cross section and the accompanying statistical error are
written into xsection.out

The NLO calculation in principle follows the same steps, but is only started after the
full LO calculation and uses the grid, i.e. set of random numbers and weights, of the last
iteration step.

A nice feature of the structure of all VBFNLO calculations is the separation of the matrix
elements into two parts: the so called leptonic tensor and the quark currents, i.e.

M = J1
µJ

2
νL

µν
V1V2→X . (6.2)

The leptonic tensor represents the part one can separate from the two quark lines in
figure 6.1. Not only does this treatment speed up the running of the code, but it also
facilitates the inclusion of NLO corrections to processes involving anomalous couplings.
Thanks to this structure, the anomalous couplings need only be included in the leptonic
tensor and therefore NLO calculations can be done just as in the SM case.

6.2. Structure of Anomalous Couplings in VBFNLO

In this section we will focus on the implementation of anomalous quartic gauge couplings
(AQGCs) in the VBFNLO code. All 4-vertex modifying operators, respectively the resulting
amplitudes are implemented in the file anomal4.F. The subroutines in this file all carry
the same structure, similar to

subroutine wwzz_anomal4(wm,z1,wp,z2, wwzz)

... !definitions and decoding of the momenta
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W+

W+
W+

W+
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νµ
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νe

Figure 6.1.: This figure shows the Feynman graph of two u quarks scattering to two d quarks and four
leptons resulting from W+W+ →W+W+ scattering.

if (fS0 .ne. 0) then

wwzz = wwzz + fS0 * ... !some contribution

endif

if (fS1 .ne. 0) then

wwzz = wwzz + fS1 * ... !another contribution

endif

... !and so on

They use the four polarization vectors of the vector bosons and the SM amplitude wwzz

for the process under consideration as an input, add anomalous contributions and return
the modified amplitude wwzz.

If the use of a form factor has been specified in the input files, then this form factor also
gets calculated in anomal4.F and multiplied to all dimension 8 couplings like fS0. Those
modified couplings are in turn used in the subroutines like the one we have seen above.
In this way the anomalous contributions are suppressed, depending on the center of mass
energy of the electroweak system.

With the work of this thesis, the K-matrix method that has been implemented treats the
operators LS,0 and LS,1 in a separate way. Furthermore, a method has been proposed to
extend the K-matrix method in a simplified way in order to also unitarize the other oper-
ators. The main modifications to the VBFNLO code have been done in the aforementioned
anomal4.F and the next section will show those modifications in detail.

6.3. K-Matrix Method for LS,0 and LS,1
The question of how to translate the unitarized on-shell scattering amplitudes from sec-
tion 4.6 to the off-shell case now arises. It is solved by using the expressions found in that
section to build up channel-dependent form factors, i.e. in general three different form
factor-like functions for the s-, t- and u-channels of an amplitude.

6.3.1. General Approach

In the way we defined the unitarized amplitudes, the implementation of the K-matrix
approach into VBFNLO is now pretty straightforward. We take (4.97), translate the Man-
delstam variables back to the corresponding combinations of polarization vectors and bring
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the resulting unitarized amplitude into a form that can directly be mirrored to the original
amplitude in the VBFNLO code.

As an example, we take a look at the process W+W+ → W+W+. We use (4.72) and
insert this into the unitarized amplitude to get

Â(W+W+ →W+W+)

= 4m4
w

[
2f̄S,0 +

1

s2
(∆A20 − 10∆A22)

]
ε1·ε2ε∗3·ε∗4

+ 2m4
w

[
f̄S,1 +

30

s2
∆A22

]
(ε1·ε∗3ε2·ε∗4 + ε1·ε∗4ε2·ε∗3), (6.3)

To VBFNLO the relevant part is the final state W+W+, so in the unitarisation procedure
one needs to take care that all 4-vertices contributing to the electroweak final state get
unitarized accordingly. For W+W+ this is a simple task, because the only 4-vertex of
importance here is the WWWW -vertex. So for the unitarisation in VBFNLO we only need
to take a look at the anomalous part in the wwww-amplitude. This part reads

A(W+W+ →W+W+)VBFNLO

= 4 ∗ wmass ∗ ∗4 ∗ fS0 ∗ dotcc(wp1, wp2) ∗ dotcc(wm1, wm2)

+2 ∗ wmass ∗ ∗4 ∗ fS1 ∗ (dotcc(wp1, wm2) ∗ dotcc(wp2, wm1)

+dotcc(wp1, wm1) ∗ dotcc(wp2, wm2)), (6.4)

where the wi are the polarization vectors associated with the 4 vector bosons and dotcc(.,.)

is just the dot-product of two complex 4-vectors. We can now match the two amplitudes
from above in terms of the dot-products. This again depends on the process we are look-
ing at. Due to crossing symmetry the same A(W+W+ → W+W+)VBFNLO is used e.g. in
W+W− → W+W− with just a permutation of the polarization vectors. In our case the
right choice is

ε1 ↔ wp1, ε2 ↔ wp2, ε∗3 ↔ wm1, ε∗4 ↔ wm2. (6.5)

The final step is now to replace the couplings fS0 and fS1 by the corresponding terms
of (6.3) in square brakets.

With the above steps we arrived at a unitarized amplitude that has the exact same behavior
as the original amplitude in the low energy regime (<[∆AIJ ] ' 0 and =[∆AIJ ] ' 0) and
which approaches zero for high c.o.m. energies. Here the real part of the sum of the
∆AIJ/s

2 exactly cancels the couplings in front of them.

6.3.2. Technical Details

The final implementation into VBFNLO follows the approach of the previous section. All
of the following changes are implemented in the file anomal4.F. The routines that needed
alterations are

• subroutinewwzz anomal4(wm, z1, wp, z2, wwzz)

• subroutinewwww anomal4(wm1, wp1, wm2, wp2, wwww)

• subroutinezzzz anomal4(z1, z2, z3, z4, zzzz).

In the original implementation of anomalous couplings the two operators LS,0 and LS,1
have been treated separately, i.e.
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6.3. K-Matrix Method for LS,0 and LS,1 55

if (fs0 .ne. 0) then

wwww = ...

endif

if (fs1 .ne. 0) then

wwww = ...

endif

With the K-Matrix unitarisation procedure including relative effects between LS,0 and
LS,1, the two anomalous contributions have been merged in each of the subroutines listed
above. They are nested inside an if-else-structure, that uses a global K-matrix switch. If
the switch is set to true the merged and unitarized version is used, otherwise the original
implementation is chosen. An example of this structure is the code snippet below:

if (kmatrix) then

if (fs0 .ne. 0 .or. fs1 .ne. 0 ) then

wwww = wwww

& + 4. * wmass**4 * fswp1wp2 * dotcc(wp1,wp2) * dotcc(wm1,wm2)

& + 2. * wmass**4 * fswp1wm2 * dotcc(wp1,wm2) * dotcc(wp2,wm1)

& + 2. * wmass**4 * fswp1wm1 * dotcc(wp1,wm1) * dotcc(wp2,wm2)

endif

else

...

endif

This snippet also shows the separation between the s-, t−, and u-channels. The aforemen-
tioned channel-dependent form factors fswiwj are the ones in front of the dot-products.
The reason for not naming the three channels after the Mandelstam variables lies in the
fact that the same subroutines get used for different processes that are related by crossing
symmetry. This corresponds to a permutation of s-, t−, and u. Therefore the decision of
which channel is which needs to be taken elsewhere.

The rest of the unitarisation procedure takes place in the already existent subroutine

anomal_formfactor. Originally this routine is called whenever a vector boson 3- or 4-
vertex appears in the calculation of the leptonic tensor. If the global logical variable
formfact is set to true the form factors get calculated according to the settings in the
input file anomV.dat. The same structure is now used with the logical variable kmatrix

added. If either of the two is true, the center of mass energy squared ss of the electroweak
system is calculated. This energy corresponds to the Mandelstam variable s that is later
inserted in the form factors and the unitarisation factors of the K-matrix approach.

After the calculation of s another if statement separates the original form factor calcula-
tion from the K-matrix procedure. In the latter case a select case- statement is used to
discriminate between the various VBFNLO processes that support anomalous contributions
of the dimension 8 operators in four cases:

1. WPWMjj, WPhadWMjj, WPWMhadjj

2. WPWPjj, WMWMjj, WPhadWPjj, WMhadWMjj

3. WPZjj, WMZjj, WPhadZjj, WPZhadjj, WMhadZjj, WMZhadjj

4. ZZjj_ll, ZZjj_lnu, ZZhadjj .

Note that we do not have five cases in here as one would suspect by looking at the processes
in section 4.6, which is because we are only selecting final states in VBFNLO. The process
not directly seen in here is W±W∓ → ZZ. Obviously the unitarisation of this process
needs to be taken care of in processes that contain either of the two vector boson pairs in
the initial state of the electroweak process, i.e. in cases 1. and 4. from the list above.
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When the selection is done, the ∆AIJ needed for the process are calculated and inserted
into the channel-dependent form factors fsvivj, which can be seen in the following code
snippet:

CASE(ZZjj_ll, ZZjj_lnu, ZZhadjj)

DA00 = -((7.*fS0 + 11.*fS1)**2*ss**4)/(6.*((0,192)*Pi + (7.*fS0 + 11.*fS1)*ss

**2))

DA11 = -((fS0 - 2.*fS1)**2*ss**4)/(12.*((0,384)*Pi + (fS0 - 2.*fS1)*ss**2))

DA02 = -((2.*fS0 + fS1)**2*ss**4)/(30.*((0,960)*Pi + (2.*fS0 + fS1)*ss**2))

DA20 = -((2.*fS0 + fS1)**2*ss**4)/(3.*((0,96)*Pi + (2.*fS0 + fS1)*ss**2))

DA22 = -((fS0 + 2.*fS1)**2*ss**4)/(60.*((0,1920)*Pi + (fS0 + 2.*fS1)*ss**2))

fswmwp = fs1 + 2./(3.*ss**2) * (DA00 - DA20) - 20./(3.*ss**2) * (DA02 - DA22)

fswmz1 = fS0 + 20./(ss**2) * (DA02 - DA22)

fswmz2 = fswmz1

fsz1z2 = fS0 + fS1 + 2./(3.*ss**2) * (DA00 + 2.*DA20) - 20./(3.*ss**2) * (DA02

+ 2.*DA22)

fsz1z3 = fS0 + fS1 + 10./ss**2 * (DA02 + 2. * DA22)

fsz1z4 = fsz1z3

These are then finally used in the V V V V -subroutines that add the corresponding anoma-
lous contribution to the SM amplitude.

Note that in the actual implementation the ∆AIJ need to be calculated separately for the
WWWW vertex. This is a result of the isospin-symmetry breaking nature of LS,0. In
order to get the correction terms, one needs to start from equation (4.73), set fS,2 = 0
and redo the partial wave analysis1. This is to be considered as rather unphysical, but it
guarantees the comparability to the operator L4.

Further changes only include the addition of the logical parameter KMATRIXX to the input
file anomV.dat. This parameter is read in and the global variable kmatrix added in
an_couplings.inc is set to its value. In contrast to the use of form factors no additional
parameters need to be set.

1This is equivalent to taking the results from [6] and using the conversion (3.25).
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CHAPTER 7
Analysis

In this chapter we will see the results of the implementation of the K-matrix unitarisation
procedure for the LS,0 and LS,1 operators. A qualitative comparison to the approach of
using form factors, as well as a quantitative comparison between VBFNLO and WHIZARD
is given. We will furthermore see that the results produced are easily transferable to NLO
calculations of VBFNLO.

7.1. General Remarks on Vector Boson Scattering

Vector Boson Scattering (VBS), i.e. processes of the form V V → V V with V ∈ {W,Z}, rep-
resents an appealing playground for experimentalists and theorists alike in several aspects.
With the recent discovery of a Higgs-like particle by the ATLAS and CMS detectors [1, 2],
in VBS it is testable whether this particle really unitarizes the longitudinal VBS channels
in the way it was discussed in section 4.2.2. Moreover do the VBS processes inherit the
trilinear and quartic vector boson vertices. Especially the quartic couplings have not been
accurately measured so far.

On the theory side there exist several propositions of how VBS processes could be en-
hanced, including the dimension 8 operators that we discuss in this thesis. On the experi-
mental side VBS is on the edge of being experimentally accessible. Already with the LHC
data collected in 2008 first evidence of VBS in the same sign W -channel could be shown
by the ATLAS collaboration [3]. Figure 7.1 shows some of the findings, including the first
limits on the AQGC α4 and α5. A lot more data for this and other processes will follow
in the high luminosity/full energy runs of the LHC starting in 2015.

The bounds on the K-matrix unitarized anomalous couplings α4 and α5 published in [3]
are (only one of the two couplings switched on at a time)

−0.14 < α4 < 0.16; −0.23 < α5 < 0.24. (7.1)

Provided the K-matrix implementation of VBFNLO and WHIZARD give the same results
and using the conversion of αi to fS,i (3.25) one can get the limits

−304 TeV−4 <
fS,0
Λ4

< 348 TeV−4, (7.2)

−805 TeV−4 <
fS,1
Λ4

< 870 TeV−4. (7.3)

These numbers show that there is still a lot of room for the discovery of BSM physics in
VBS. If there is new physics hidden in VBS, there are good chances to find it in the course
of the next few years. Otherwise the experimentalists will at least be able to push the
bounds down by a large factor.
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(a) mjj distribution

(b) Limits on α4 and α5

Figure 7.1.: These plots of the ATLAS collaboration [3] show the first experimental evidence of VBS in
the form of a mjj distribution and the first limits on the ACGQs α4 and α5 (calculated with
WHIZARD, using the K-matrix unitarisation). The light blue area in the mjj plot represents
the electroweak channels of the W±W±jj production, i.e. weak interactions at Born level
including VBS.

7.2. Anomalous couplings at NLO in αs

The modular structure of VBFNLO makes possible to go to NLO in the strong coupling
constant αs without any further modifications. Therefore the anomalous coupling scenarios
as well as the K-matrix unitarized versions can easily be used at NLO. An example of this
is shown in figure 7.2, where the invariant mass spectrum in the process W+W+jj is
plotted in a comparison of the LO to the NLO distributions including the corresponding
K-factor. They have been generated by using the same settings as in the previous section
and just setting NLO_SWITCH = true in the vbfnlo.dat input file. The calculations have
been done with 6 iterations and 226 points in both cases. The computation time for one
setting, e.g. LO and NLO distributions for the K-matrix unitarized case, was less than
half a day on a typical tower PC.

7.3. Comparison of K-Matrix Approach vs. Form Factors

Generally speaking a quantitative comparison of the K-matrix versus the form factor ap-
proach is relatively difficult due to the very different nature of the two. Qualitatively
one can see clear differences by looking at figures 7.3 and 7.5. The first figure shows the
two approaches treated in a simple analytic case, i.e. taking a look at the partial wave
A00(s) (4.91a) from section 4.6.3. In order to discuss this figure, let us first have a look
at the analytic structure. We can build a unitarized amplitude ÂIJ(s) following the usual
K-matrix prescription, but we can also use this to define a form factor like function FK(s)
(see 4.7). With the form factor being a real function, let us take a look at the real part of
FK(s). We can do this by simply dividing ÂIJ(s) by AIJ(s) and taking the real part of
the result, i.e.

FK(s) = <

[
ÂIJ(s)

AIJ(s)

]
= <

[
1

1− iAIJ(s)/(32π)

]
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Figure 7.2.: Invariant mass spectrum of the W+W+ pair at LO and NLO in αs for the SM case and
f̄S,0 = f̄S,1 = 100 TeV−4. The lower plot shows the K-factor, i.e. the NLO/LO-ratio for the
SM case in violet and the K-matrix case in light blue.

=
1

1 + [AIJ(s)/(32π)]2
(7.4)

We can now insert the explicit form (4.91a) into this and get a version of FK(s) that is
comparable to the usual form factor F(s):

FK(s) =
1

1 +
(
fS,0s2

96πΛ4

)2 ; F(s) =
1(

1 + s
Λ2
FF

)n . (7.5)

At first sight one might think both give about similar results when choosing

n = 4, ΛFF =

(
fS,0
Λ4

1

96π

)−1/4

, (7.6)

but figure 7.3a proves differently. The suppression is much stronger for the original form
factor F(s), i.e. the unitarity bound we are using in the K-matrix formalism is not reached
at all. In figures 7.3b and 7.3c the values for ΛFF are chosen in such a way, that the
unitarity bound is just reached. Still the shape of the two unitarized amplitudes strongly
differ. The suppression by F(s) is somewhat smoother and sets in much earlier. One could
pose the question here whether the K-matrix bounds are too weak, or if the form factor
energy scale ΛFF , as they are typically calculated1, are too low.

The advantage of FK(s) is that the unitarized amplitude follows the original one very
closely. This is a desirable feature, because one does not want to spoil the behavior
of the original EFT in the low energy regime. When the unitarity bound is reached,
the suppression forces the amplitude to zero much quicker than F(s) does, which could
also be considered as desirable. Moreover, FK(s) automatically guarantees unitarity for
very different values of the couplings, because it includes them as input parameters (see
figure 7.4).

1The routine calc_formfactor by Bastian Feigl can be used to calculate the values for ΛFF that are
meant here.
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The same comparison done in a more realistic environment can be seen in figure 7.5. Here
we see the implementation of the K-matrix unitarisation method in VBFNLO compared to
the use of form factors in an invariant mass spectrum in ZZ-scattering. The values for
ΛFF are 366 GeV, which is the one listed in [21], appendix B, and 1000 GeV which is just
an approximate fit-by-eye value in order to reach the unitarity bound like in the K-matrix
unitarisation. The figure shares the exact same features as the ones listed above for the
analytic partial waves.

To conclude, it is safe to state that the question of which unitarisation method to use,
is more a question of taste than a question of which is ’the right’ choice. The K-matrix
unitarisation method beats form factors in terms of usability, but at the cost of the in-
troduction of a model dependence that is somewhat hidden in the internals. Form factors
serve as a simpler, somewhat less invasive approach at the cost of having to deal with the
input parameters n and ΛFF .

(a) n = 4 and ΛFF = 1318 GeV−4
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(b) n = 4 and ΛFF = 2210 GeV−4
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(c) n = 2 and ΛFF = 1150 GeV−4
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Figure 7.3.: Comparison of the form factor unitarisation versus the K-matrix method for the partial wave
A00(s) = f̄S,0s

2/3 and f̄S,0 = 10 TeV−4. The plot shows the real part of the (unitarized)
partial wave AIJ(s) over the center of mass energy

√
s. The dotted black line represents the

unitarity bound 16π. The form factors on the two sides feature different exponents n, where
the values ΛFF have been chosen in a ’fit-by-eye’ method, such that the unitarity bound is
just reached. Note that by taking energies

√
s > 4 TeV into account, of course a smaller ΛFF

would need to be used in figure 7.3c.

7.4. Comparison of VBFNLO vs. WHIZARD
A major goal of this thesis is not only to introduce the K-matrix unitarisation method to
VBFNLO, but also to make it comparable to another Monte Carlo program that is commonly
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Figure 7.5.: This figure shows the invariant mass spectrum of the ZZ final state process with f̄S,1 =
2000 TeV−4 in the K-matrix approach (light blue) and two versions of form factors with n =
2 (light red dotted lines). The violet line on the bottom represents SM contribution, the
uppermost turquoise line the anomalous part without unitarisation.

used for studying vector boson processes, WHIZARD [9, 33]. In this way not only the
functioning of the implementation can be tested, but also the comparability of the two
programs can be checked. The latter is an important fact for experimentalists who are
trying to set constraints on the couplings of the dimension 8 operators from measured
vector boson scattering data. So far VBFNLO only featured unitarisation via form factors,
which is more flexible than the K-matrix unitarisation, but poses the challenge of choosing
the ’right’ values for ΛFF for a chosen exponent n. There is a tool that helps finding those
values via a partial wave analysis called calc formfactor [21, 22], but still confusion
remains on how to properly use form factors among the experimentalists. One cannot say
that the K-matrix procedure is the ’better’ approach, but it beats form factors in terms
of usability, because no adjustment of additional parameters is needed.

With both Monte Carlo programs featuring the same theoretical foundations, but very
different ways of implementation, it will be possible to get better estimates on theoretical
uncertainties as well as cross-checks considering the constraints on the operators LS,0 and
LS,1 or L4 and L5 respectively.
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7.4.1. Set Up

The set up of the comparison mainly follows the choices of [16], where some cross-checks
between VBFNLO and WHIZARD in the process pp → W+W+jj → e+νeµ

+νµjj have
already been performed. Agreement at the per mill to percent level of the total cross
section and invariant mass distributions has been shown for the SM case and two different
choices of {fS,0, fS,1}. In this section we will do similar checks for all relevant vector boson
scattering processes. Complete input files for the benchmark process pp → W+W+jj →
e+νeµ

+νµjj, including all relevant cuts can be found in appendix H.

We will focus on leading order calculations in the LHC set up, i.e. proton-proton collisions
at a center of mass energy of 14TeV. The PDF set of choice is CETQ6L1 [34] at a fixed
factorization scale of µF = mV1 + mV2 (note that in WHIZARD this is the same as the
renormalization scale; both are just called “scale”). External bottom- and top-quarks are
neglected and so are the masses of the fermions. The input parameters for masses, particle
widths and the Fermi constant read

mW = 80.398 GeV, ΓW = 2.097673 GeV,

mZ = 91.1876 GeV, ΓZ = 2.508420 GeV,

mH = 126 GeV, ΓH = 4.277 MeV,

GF = 1.16637 · 10−5 GeV−2. (7.7)

The cuts on the final state particles are as follows:

pT,l > 20 GeV, |ηl| < 2.5,

pT,j > 30 GeV, |ηj | < 4.5,

|∆ηjj | > 4, mjj > 600 GeV, (7.8)

where pT is the momentum of a jet or lepton in the plane transverse to the beam axis and η
being the rapidity (which coincides with the pseudo rapidity as the final state particles are
taken as massless). The values correspond to the ones typically chosen for an experimental
analysis at LHC [3].

VBFNLO neglects any s-channel diagrams appearing as well as interference between t-
and u-channel, but it has a negligible numerical effect due to the large invariant mass cut
on the jets [35]. The vector boson scattering processes of interest, the corresponding final
state and VBFNLO process ID are

VBS process final state VBFNLO ID

W+W+ e+νe µ
+νµ 250

W+W− e+νe µ
−ν̄µ 200

W+Z e+νeµ
+µ− 220

ZZ e+e−µ+µ− 210

For the comparison to WHIZARD, we set f̄S,0 = f̄S,1 = 100 TeV−42 for all the processes.
This choice seems rather large, but it serves as simple visual check of the right qualitative
behavior of the unitarisation method. We will concentrate on the invariant mass spectra
of the final state leptons, i.e. dσ/dmV1V2 in the range of [0 GeV, 2000 GeV]. Choosing
more realistic values for the couplings does not show the qualitative behavior in such an
obvious way in the aforementioned mass range and choosing an even larger mass range
would computationally be relatively inefficient.

2Note that with LS,2 not being implemented in VBFNLO so far, we do not need to set some value for f̄S,2.
In the framework of this thesis, e.g. in section 3.3 this we can just set f̄S,2 = 0.
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7.4.2. Low Energy Discrepancies

A common feature among the processes is the somewhat unstable behavior of WHIZARD
in the low energy regime when choosing relatively strong couplings of O(100 TeV−4). Up
to a few hundred GeV one would expect only minor deviations from the SM, but in most
cases the anomalous distributions over- or undershoot the SM case by about ∼ 40% in the
WHIZARD case, while the VBFNLO distributions pretty much coincide with the SM case up
to ∼ 400 GeV. This behavior is exemplarily shown in figure 7.6. In the WHIZARD case the
events have been generated up to mll = 1000 GeV which seems to push the discrepancy
down a bit compared to the generation of events without this cut. This argument is
enforced by the results seen in figure 7.6c. This plot shows the same distributions, but
with a mll ≤ 600 GeV cut. Here we find very good agreement between the SM and the
anomalous coupling distributions. In this case the internal WHIZARD routines have been
used to produce the distributions, but is has also been checked that the distributions
generated with LHA-files give the same results.

The discrepancy might be explainable by differences in the phase space generation of the
two Monte-Carlos or the use of weighted events in the generation of the distributions with
WHIZARD (which was done in order to decrease computation time and still get reasonable
results in terms of statistics). However, the use of unweighted events did neither not resolve
the problem. Typically more phase space points and events are generated in regions with
high differential cross sections leading to higher fluctuations or even systematic errors in
regions with lower values, i.e. the low invariant mass regime.

In figure 7.7 the effect of a coupling strength of f̄S,0 = f̄S,1 = 50 TeV−4 in VBFNLO is shown
together with the ratio of (non-) unitarized anomalous coupling distribution over the SM
part. As expected we find perfect agreement up to a few hundred GeV. This makes clear,
that the effect we see in WHIZARD is most probably not of a physical nature. Due to this
so far unexplained behavior in WHIZARD, we will concentrate on the comparison of the
two Monte Carlos in the high energy regime. Here we will see that they give a far better
agreement.

7.4.3. Comparison for f̄S,0 = f̄S,1 = 100 TeV−4

The use of this section is to show the qualitative agreement between the K-matrix unitari-
sation in VBFNLO and in WHIZARD, by comparing distributions and total cross sections
in the four affected vector boson scattering processes. As we have seen in the last sec-
tion, relatively large discrepancies in the distributions can already arise independently of
the K-matrix implementation. Unfortunately these discrepancies could not be resolved.
Therefore when comparing the two K-matrix implementations, one needs to keep in mind
that already in the non-unitarized distributions discrepancies of ∼ 40% are ’normal’.

The plots of this section show invariant mass distributions of the vector boson system
under consideration. These distributions are strongly affected by anomalous couplings and
therefore serve as a nice tool for studying their effects and the effects of the unitarisation.
The energy range chosen is [0, 2000 GeV], which represents a regime that is expected to
be in the range of the upcoming LHC runs.

The distributions of WHIZARD have been created by generating 500000 up to one million
weighted events for each case (SM, non-unitarized, unitarized), which are collected in a
*.lhe file, i.e. the Les Houches event format [36]. Afterwards some external code is used
to read in the file, calculate the invariant mass of the four final state leptons (neutrinos
are taken into account) in every event and put them into a histogram. The distributions
from VBFNLO are generated internally with the standard utility histograms.F, that has
been extended to generate an invariant mass histogram (of course also taking neutrinos
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(c) WHIZARD with mll ≤ 500 GeV cut
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Figure 7.6.: Invariant mass spectra in W+W+ scattering. Each of the upper two plots shows three lines:
SM contribution, anomalous couplings contribution with f̄S,0 = f̄S,1 = 100 TeV−4 without
unitarisation (dotted) and the same couplings with K-matrix unitarisation (same color, solid).
Beneath the ratio of the anomalous contributions over the SM only contribution is shown with
the same color coding. One sees that the ratio deviates from one by ∼ 40% in the WHIZARD
case while in the VBFNLO case it statistically fluctuates around one in the low energy regime.
The third figure shows a similar WHIZARD run, but with an upper cut on the lepton pair
masses (including neutrinos) of mll ≤ 500 GeV. Discrepancies are a lot smaller in this case.

into account). The VBFNLO output is in terms of fb/GeV, which is why the WHIZARD
distributions have to be scaled accordingly, i.e. divide every bin by the total sum of event
weights (which is the sum of XWGTUP from the .lhe file), divide by the bin width (20GeV)
and multiply by the total cross section σtot to be found in the WHIZARD log file.

There are some common features among all of the distributions shown in this section. All
of them show a relatively sharp cut off at low invariant masses which is because neutrinos
have been included in the calculation of the masses. Neutrinos can of course not be taken
into account experimentally, but for the comparison of the programs this serves as a more
accurate set up. Each plot features two times three pairs (VBFNLO and WHIZARD) of
lines with the lowest two representing the SM case, the top two anomalous couplings with
no unitarisation and the two in the middle showing the same anomalous couplings with
K-matrix unitarisation switched on.

The distributions begin with a peak close to the sum of the vector boson rest masses and all
fall like 1/s in the low energy regime. For the SM case this decrease continues throughout
the whole energy range and therefore one sees a linearly decreasing differential cross section
in the plots showing logarithmic scale. At some point deviations from the SM induced by
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Figure 7.7.: Invariant Mass spectra in V V scattering generated with VBFNLO. Each plot shows three lines:
SM contribution in violet, anomalous couplings contribution with f̄S,0 = f̄S,1 = 50 TeV−4

without unitarisation (dotted, light blue) and the same couplings with K-matrix unitarisation
(solid, green). Beneath the ratio of the anomalous contributions over the SM only contribution
is shown with the same color coding. For all processes good agreement is found in the low
energy regime.

the anomalous couplings become strongly visible. With no unitarisation the differential
cross section increases monotonically, because the anomalous amplitude contributing here
grows like s2. Only the influence of the parton distribution functions (PDFs) cancels some
of the growth in the high energy regime, because with growing fraction of the proton
momentum, partons are more unlikely to find. In this way by looking at the plots one can
suspect a saturation at very high energies. Still it is clear that the behavior is unphysical,
with the differential cross sections even exceeding the SM peaks throughout a large energy
range. The effects look even more dramatic in linear scale.

This unphysical behavior is under control in the K-matrix scheme. For low energies and
with anomalous contributions being small here, the distributions are almost identical to
the SM ones. As energy grows, the unitarized contributions begin to deviate, closely
following the non-unitarized ones, but quickly drop off again, when the unitarity bound
calculated from the on-shell partial wave analysis is reached. After the unitarisation sets
in, the distributions become parallel to the SM contribution again, because the real part
of all anomalous couplings go to zero and the imaginary parts saturate at a finite value.
By comparing the unitarized distributions with the SM ones, keep in mind the logarithmic
scale. Even though the deviations seem drastic in the high energy range here, it becomes
obvious in linear scale, that the deviations become more and more negligible with growing
center of mass energy (see figure 7.8b), at least in terms of the total cross sections.
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process SM no K-Matrix K-Matrix
VBFNLO WHIZ VBFNLO WHIZ VBFNLO WHIZ

W+W+ 1.3102(4) 1.311(1) 51.49(2) 51.54(4) 2.452(1) 2.466(2)

W+W− 0.9019(7) 0.902(2) 24.594(6) 21.52(4) 1.530(1) 1.455(4)

W+Z 0.1473(1) 0.1480(3) 2.633(1) 2.637(3) 0.2413(2) 0.2426(5)

ZZ 0.02840(3) 0.0284(1) 3.141(2) 3.142(6) 0.08301(6) 0.0829(2)

Table 7.1.: This table shows the total cross sections σtotin[ fb] for the four vector boson scattering processes
affected by LS,0 and LS,1, calculated with VBFNLO and WHIZARD. The columns “no K-matrix”
and “K-matrix” show σtot[ fb] for the couplings f̄S,0 = f̄S,1 = 100 TeV−4 with the K-matrix
unitarisation switched off/on.

Apart from the plots showing the qualitative behavior, one can see the corresponding total
cross sections σtot in table 7.1. The values are discussed in the corresponding paragraphs of
the various processes, but generally speaking we find agreement at the per mill level in all
cases except in W+W− for reasons to be explained later in the corresponding paragraph.

W+W+

Figure 7.8 shows the unitarisation behavior for the final state W+W+jj. Considering
the unitarisation procedure, this process is rather simple. The only 4-vertex to appear
in the calculation is the 4-W -vertex. Therefore only the corresponding wwww amplitude
in VBFNLO has to be unitarized, which only includes three partial waves vs. up to five in
other processes. This makes a comparison to WHIZARD relatively simple in terms of the
implementation.

The main feature to notice in figure 7.8 are the unitarized distributions exhibiting the same
structure, but the WHIZARD one overshooting the VBFNLO result in the high energy tail.
Taking a look at the ratio shows that there seems to be some energy dependence involved.
By closely inspecting it, we see that the ratios in the non-unitarized and the unitarized
cases agree up to invariant masses of ∼ 1000 GeV, which makes this energy dependence
irrelevant for checking the K-matrix implementation in VBFNLO. After that point the ratio
of the non-unitarized amplitudes settles at 1 with only small statistical fluctuations, but
the ratio for the unitarized case shows deviations between the two programs of about
∼ 30%.

To this point these deviations lack a thorough explanation. The calculations in [6] include
one-loop corrections to the anomalous amplitudes and scale dependent couplings αi, which
have then been implemented in WHIZARD. These corrections have not been implemented
in VBFNLO due to their negligible influence on the unitarisation procedure, but the difference
in the two codes might still show up in the aforementioned discrepancy. What weakens
this argument is the fact that the discrepancies are not as strong in the other processes,
even though some of them feature the same ∆AIJ .

In terms of the total cross sections, we find agreement among the codes at the per mill
level, despite the deviations in the distributions.

W+W−

The W+W− comparison is shown in figure 7.9. The general behavior of the K-matrix
implementation of both programs looks comparable. Investigating the ratio plot, we find
agreement at the percent level up to energies of 1500GeV. Still, the comparison of the
total cross sections revealed relatively large discrepancies:
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σtot[ fb] SM no K-Matrix K-Matrix

VBFNLO 1.609(2) 25.83(2) 2.261(2)

WHIZARD 1.485(3) 22.55(4 2.055(5)

The reason for this was found to be the Higgs peak, which is completely missing in the
WHIZARD distributions, while it gives a large contribution in all three VBFNLO distribu-
tions (see figure 7.9a). This might be due to some unlucky phase space generation in the
WHIZARD runs, but it could not be cured by choosing different statistics in an affordable
time.

In order to solve this, an invariant mass cut on all leptons including neutrinos has been set
to a value of mll ≥ 60 GeV, so that the Higgs peak is not included anymore. The standard
VBFNLO cut routine cutf.F had to be changed for this, because neutrinos are not included
in any lepton cuts otherwise. The result is shown in figure 7.9b.

With this set up the following total cross sections were found:

σtot[ fb] SM no K-Matrix K-Matrix

VBFNLO 0.9019(7) 24.594(6) 1.530(1)

WHIZARD 0.902(2) 21.52(4) 1.455(4)

Strangely enough, we have perfect agreement for the SM model values, while for the
anomalous coupling scenario the values disagree even more than before. As it turns out,
the reason for this most probably is the conversion between the fS,i and αi. The same
conversion as in the W+W+ case has been used, which is correct for the process W+W− →
W+W−, but with only choosing the final sate W+W− in the two programs, also ZZ →
W+W− gives a contribution. For the latter process a different conversion is needed, which
leads to large deviations in the comparison of the of the anomalous couplings distributions.
The same thing might be the reason for the discrepancies in the high energy tails of the
K-matrix unitarized distributions.

A noticeable feature in figure 7.9a are the strong deviations in the high energy tail of
the unitarized distributions. Fortunately, they have only a minor effect on the total cross
section, because the differential cross section is very low in this regime. Still this is an
obvious difference in the implementation.

It has been checked that the deviation does not grow when going to even higher energies.
Rather we find a small bump around 1500GeV, that is completely absent in the WHIZARD
case. This means that the deviation does not arise from numerical instabilities in VBFNLO,
because they would typically grow when working with smaller numerical values. Thorough
investigation shows that the bump seems to arise from the s-channel unitarisation factor
in the W+W− → ZZ amplitude (see equation (4.97a)). The sum of the imaginary parts
of ∆AI,J=2 show a bump at the same energy, as seen in figure 7.10. This gives a mayor
contribution to the absolute value of the effective s-channel coupling which then shows up
in the differential cross section.
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Figure 7.10.: s-channel unitarisation factor from equation (4.97a) for f̄S,0 = f̄S,1 = 100 TeV−4. The ab-
solute value in violet shows a bump around 1500GeV, which results from the sum of the
imaginary parts of ∆AI,J=2 in turquoise.

It remains unclear whether this is a bug in VBFNLO, if for some reason it is missing in
WHIZARD or if this is just another effect of the missing one-to-one correspondence be-
tween the two sets of couplings.

W+Z

An additional cut in order to avoid collinear divergencies by the inclusion of γ∗ in the final
state has been imposed in this process, i.e.

mll ≥ 60 GeV (7.9)

The way this was implemented in WHIZARD is by defining an alias for the charged leptons
and saying that the mass of each pair of those leptons should respect the cut:

alias lepton = e1:E1:e2:E2

cuts = ...

and all M >= 60 GeV [lepton,lepton]

In VBFNLO one simply sets the value of MLL_MIN = 60.0d0 in the cut input file cuts.dat

and moreover sets the flag MLL_OSONLY = false. This means taking all pairs of charged
leptons into account, not only the ones with opposite charge.

Using this setup we find relatively strong deviations of the K-matrix implementations in
the low energy regime. Looking at the ratio plot in 7.11a we find a similar shape for the
non-unitarized and the unitarized distributions oscillating around one in the ratio plot,
while for energies above 1TeV we find good accordance with one in both cases. This
again might give a hint that the reason for the deviations is not to find in the K-matrix
implementation, but is rather due to some differences in phase space generation of the two
Monte Carlos, or due to the use of weighted events in the WHIZARD case.

In terms of the total cross section, we find accordance at the per mill level in all cases (see
table 7.1).
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ZZ

As in the W+Z case, a minimum invariant mass cut on the lepton pairs of 60GeV was used
in this analysis. Figure 7.11b shows again the ratio of the values produced by VBFNLO and
WHIZARD. We find very good agreement for the unitarized distributions with a slight
tendency of a stronger suppression in VBFNLO like in the W+W+ case. The statistical
fluctuations are rather strong in the distributions due to the very small total cross section
compared to the other processes making an exact comparison more difficult.

Again, the total cross sections agree at the per mill level.
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(a) Logarithmic scale
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(b) Linear scale
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Figure 7.8.: Comparison of VBFNLO vs. WHIZARD in W+W+ → W+W+ scattering for three different
cases: the standard model (SM), anomalous couplings (AC) switched on without unitarisation
(f̄S,0 = f̄S,1 = 100 TeV−4) and the same for K-matrix unitarisation switched on. The lower plot
shows the ratio of WHIZARD vs. VBFNLO with (solid line) and without unitarisation (dashed).
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(a) Without cut to avoid Higgs peak.
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(b) With cut to avoid Higgs peak.
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Figure 7.9.: Comparison of VBFNLO vs. WHIZARD in W+W− for three different cases: the standard model
(SM), anomalous couplings (AC) switched on without unitarisation (f̄S,0 = f̄S,1 = 100 TeV−4)
and the same for K-matrix unitarisation switched on. The lower plots show the ratio of
WHIZARD vs. VBFNLO with (solid line) and without unitarisation (dashed). Two versions
featuring different cuts on the leptons are shown: one including only the charged leptons into
the cuts (Higgs peak) and the second one including neutrinos into the lepton invariant mass
cuts avoiding the Higgs peak.
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(a) W+Z distribution
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(b) ZZ distribution
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Figure 7.11.: Comparison of VBFNLO vs. WHIZARD in W+Z and ZZ for three different cases: the standard
model (SM), anomalous couplings (AC) switched on without unitarisation (f̄S,0 = f̄S,1 =
100 TeV−4) and the same for K-matrix unitarisation switched on. The lower plot shows the
ratio of WHIZARD vs. VBFNLO with (solid line) and without unitarisation (dashed).
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CHAPTER 8
Conclusion

This thesis took a close look on the subject of unitarisation of dimension 8 operators
in the framework of effective field theories. These operators represent a genuine way to
model effects of physics beyond the SM on the vector boson 4-vertices. It was argued
that unitarisation is a necessary procedure when working with these operators. Otherwise
a description of deviations from the SM with those is not be possible when comparing
experimental data to theoretical predictions. They would violate unitarity at energies well
in the range of experimental analyses already for small coupling constants. An example
is W+W+-scattering, where for coupling strengths of fS,0/Λ

4 = fS,1/Λ
4 = 100 TeV−4,

unitarity would be violated around a center of mass energy of ∼ 800 GeV.

The unitarisation procedure of interest for this thesis is the K-matrix approach. It uses
the unitarity of the scattering operator S to define unitarity bounds for partial waves of
scattering amplitudes. A detailed study of this approach and the resulting unitarisation
procedure for the operators LS,0 and LS,1 was given. In order to achieve a better compa-
rability to another dimension 8 operator set in the non-linear realization, the introduction
of a symmetrized version of LS,0 has been proposed. This redefinition would also cure
the problem of LS,0 not being a self-adjoint operator and could be translated to other
operators of the sets {LT,i} and {LM,i}.

With the K-matrix approach not being fully applicable to {LT,i} and {LM,i}, K-matrix-like
form factors FK(s) have been defined and proposed for the use in the parton-level Monte
Carlo program VBFNLO. Anomalous scattering amplitudes unitarized with FK(s) would
share the same features as in the original K-matrix approach, i.e. keeping the original
low energy behavior of the anomalous amplitudes, then cut them off when the unitarity
bound is reached. The real part will go to zero for large center of mass energies, while
the imaginary part will saturate at a finite value, interpretable formally as a resonance at
infinity.

FK(s) only has one input parameter, an energy scale ΛK . The determination of this
scale could be done via a modification of the existing routine calc_formfac [21], or in an
analytic partial wave analysis. A way to do the latter in an affordable manner has been
proposed in chapter 5.

The K-matrix approach has been fully implemented into VBFNLO for LS,0 and LS,1. In
order to check the results, a comparison to another Monte Carlo program, WHIZARD,
featuring the same unitarisation method was given. Here we found good agreement in
terms of the total cross sections for most processes and the same qualitative behavior in
invariant mass distributions generated by the two programs. However, in some cases rela-
tively large discrepancies already showed up without the use of the K-matrix unitarisation.
Distributions with and without anomalous couplings generated with WHIZARD did not
agree in the low energy regime, even though the anomalous couplings should have no effect
there. This showed that differences in the generation of events between the two programs
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74 8. Conclusion

exist which could not be completely resolved in the course of this thesis. Moreover are
the two codes not completely comparable in terms of the dimension 8 operators, because
there is no one-to-one correspondence between the sets both programs have been using at
the time this thesis was written. A more thorough comparison will be possible when a
symmetrized version of LS,0, like the one proposed in this thesis, has been implemented in
VBFNLO.
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A. Optical Theorem

The optical theorem relates the imaginary part of a forward scattering amplitude to the
total cross section of a process. The derivation in this thesis follows the one in [10].
Starting from equation (4.44), which simply restates the unitarity of the S-matrix, we take
the corresponding matrix element of this equation in a two-particle process with initial
state |p1p2〉 and final state |k1k2〉. In order to evaluate the right hand side of the equation,
one has to insert a complete set of intermediate states |{qi}〉, i.e.

〈p1p2|TT † |k1k2〉 =
∑
n

(
n∏
i=1

∫
d3qi
2π3

1

2Ei

)
〈p1p2|T |{qi}〉 〈{qi}|T † |k1k2〉 (A.1)

The relation of the T -matrix to the corresponding invariant matrix element M reads

〈p1p2 . . .| iT |k1k2〉 = (2π)4δ(4)
(
k1 + k2 −

∑
pf

)
· iM(k1, k2 → pf ). (A.2)

It is merely a separation of the kinematic part of a scattering amplitude from the dy-
namic part resulting from the interaction Hamiltonian. Using this definition the unitarity
condition now becomes

−i [M(k1k2 → p1p2)−M∗(p1p2 → k1k2)]

=
∑
n

(
n∏
i=1

∫
d3qi
2π3

1

2Ei

)
M∗(p1p2 → {qi})M(k1k2 → {qi}) (A.3)

× (2π)4δ(4)
(
k1 + k2 −

∑
qi

)
(A.4)

where the overall delta function (2π)4δ(4) (k1 + k2 − p1 − p2) has been omitted for simplic-
ity. Concentrating on the case of forward scattering, we set pi = ki. Then, by inserting
the proper kinematical factors to obtain a cross section, we get the standard form of the
optical theorem

=[M(k1, k2 → k1, k2)] = 2Ecmpcmσtot(k1, k2 → anything), (A.5)

where Ecm is the total center of mass energy and pcm the center of mass momentum of
either of the particles.

B. Wigner’s d-Functions

Explicit forms of the Wigner d-functions can be derived using relations to the spherical

harmonics, Legendre polynomials and several recursion relations among the d
(J)
λµ themselves

(see [24]). The ones most relevant to this thesis read:

d
(0)
00 = 1,
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d
(1)
00 = cos θ,

d
(1)
11 =

1

2
(1 + cos θ), d

(1)
10 = − 1√

2
sin θ, d

(1)
1−1 =

1

2
(1− cos θ),

d
(2)
00 =

3

2
cos2 θ − 1

2
,

d
(2)
11 =

1 + cos θ

2
(2 cos θ − 1), d

(2)
10 = −

√
3

2
sin θ cos θ, d

(2)
1−1 =

1− cos θ

2
(2 cos θ + 1),

d
(2)
22 =

1

4
(1 + cos θ)2, d

(2)
21 = −1

2
(1 + cos θ) sin θ, d

(2)
20 =

1

2

√
3

2
sin2 θ,

d
(2)
2−1 = −1

2
(1− cos θ) sin θ, d

(2)
2−2 =

1

4
(1− cos θ)2.

Two helpful relations give the rest of the functions with opposite helicities to the ones
above [24]:

d
(J)
λµ (θ) = d

(J)
−µ−λ(θ) = (−1)λ−µd

(J)
µλ (θ) (B.6)

and
d

(J)
λµ (θ) = (−1)J+λd

(J)
λ−µ(π − θ) (B.7)

C. Legendre Polynomials

In the unitarisation procedure of the operators LS,0 and LS,1 the Legendre polynomials
PJ(cos θ)are of great importance. For helicity differences of in- and outgoing particles
λ = µ = 0 in a 2→ 2 scattering process, they coincide with the Wigner-D functions. Nev-
ertheless, due to some ambiguities in going from a θ-dependence to Mandelstam variables,
we list the versions used throughout this thesis for clarity:

P0(cos θ) = 1 → P0(s, t, u) = 1, (C.8)

P1(cos θ) = cos θ → P1(s, t, u) =
u2 − t2

s2
, (C.9)

P2(cos θ) =
3

2
cos2 θ − 1

2
→ P2(s, t, u) =

3t2 + 3u2 − 2s2

s2
. (C.10)

D. Polarization vectors

The definitions used throughout this thesis, especially in the Mathematica functions, follow
closely the ones in [37].
When we write the input-momentum k as

kµ = (E, kx, ky, kz) , (D.11)

then we can define three linearly independent polarization vectors satisfying the transver-

sality relation kµε
(λ)
µ by

εµ1 (k) =
1

|~k|kT


0

kxkz
kykz
−k2

T

 , εµ2 (k) =
1

kT


0
−ky
kx
0

 , εµ3 (k) =
E

m|~k|


|~k|2/E
kx
ky
kz

 , (D.12)

with

m =

√
E2 − |~k|2 (D.13)
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E. Clebsch-Gordon Coefficients in the Total Isospin Basis 77

kT =
√
k2
x + k2

y (D.14)

For ε1 and ε2 an ambiguity is appearing when kT → 0. It is fixed by taking ky = 0 in this
case and letting {

kx → +0 if kz > 0

kx → −0 if kz < 0.
(D.15)

From combinations of the above polarization vectors, we can build helicity eigenvectors
for λ = ±1, 0 for massive vector bosons and λ = ±1 in the massless case:

εµ±(k) =
1√
2

(∓εµ1 (k)− iεµ2 (k)) (D.16)

εµL(k) = εµ3 (k). (D.17)

E. Clebsch-Gordon Coefficients in the Total Isospin Basis

Following the definitions of section 4.6.2, the CGCs for the translation of a mass eigenstate
basis to a total isospin basis using the Condon-Shortley convention reads

|2,±2〉 = |W±W±〉 , (E.18a)

|2,±1〉 =
1√
2

(
|ZW±〉+ |W±Z〉

)
, (E.18b)

|2, 0〉 =
1√
6

(
|W−W+〉+ 2 |ZZ〉+ |W+W−〉

)
, (E.18c)

(E.18d)

|1,±1〉 =
1√
2

(
|W±Z〉 − |ZW±〉

)
, (E.18e)

|1, 0〉 =
1√
2

(
|W+W−〉 − |W−W+〉

)
, (E.18f)

(E.18g)

|0, 0〉 =
1√
3

(
|W+W−〉 − |ZZ〉+ |W−W+〉

)
. (E.18h)

The inversion of this basis reads

|W±W±〉 = |2,±2〉 , (E.19a)

|W∓W±〉 =
1√
6
|2, 0〉 ∓ 1√

2
|1, 0〉+

1√
3
|0, 0〉 , (E.19b)

|W±Z〉 =
1√
2

(|2, 1〉 ± |1,±1〉) , (E.19c)

|ZW±〉 =
1√
2

(|2, 1〉 ∓ |1,±1〉) , (E.19d)

|ZZ〉 =
2√
6
|2, 0〉 − 1√

3
|0, 0〉 . (E.19e)

F. Dimension 6 operators

For completeness a full list of the dimension 6 operators is given below. The effects they
have on TGCs and QGCs are summarized in table F.1.
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ZWW AWW HWW HZZ HZA HAA WWWW ZZWW ZAWW AAWW

OWWW X X X X X X

OW X X X X X X X X

OB X X X X

OΦd X X

OΦW X X X X

OΦB X X X

OW̃WW X X X X X X

OW̃ X X X X X

OW̃W X X X X

OB̃B X X X

Table F.1.: This table shows which operators affect which TGC for the various vector bosons [16].

There are three CP-conserving dimension six operators affecting the TGCs and QGCs of
the vector boson only:

OWWW = Tr[WµνW
νρWρ

µ], (F.20)

OW = (DµΦ)†Wµν(DνΦ), (F.21)

OB = (DµΦ)†Bµν(DνΦ) (F.22)

and two of similar type, but CP- violating

OW̃WW = Tr[W̃µνW
νρWρ

µ], (F.23)

OW̃ = (DµΦ)†W̃µν(DνΦ). (F.24)

Another set of operators models also couplings to the Higgs. There are again three CP-
conserving ones

OΦd = ∂µ(Φ†Φ)∂µ(Φ†Φ), (F.25)

OΦW = (Φ†Φ)Tr[WµνWµν ], (F.26)

OΦB = (Φ†Φ)BµνBµν , (F.27)

and two CP-violating ones

OW̃W = Φ†W̃µνW
µνΦ, (F.28)

OB̃B = Φ†B̃µνB
µνΦ. (F.29)

The tilde in the CP- violating operators stand for the use of dual field strength tensors,
which are just contractions of the usual field strength tensors with the epsilon-tensor εµνρσ:

W̃µν =
1

2
εµνρσW

ρσ. (F.30)

With the epsilon tensor being odd under parity, all operators that involve one of this kind
become CP- violating.

G. Some Mathematica Definitions for Partial Wave Analysis

The main functions for calculating and inserting the helicity eigenvectors in the partial
wave analysis in the Mathematica framework are shown here. The definitions of polariza-
tion vectors and helicity eigenvectors directly follow the ones in [37].
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G.1. Polarization Vectors

kT[k_] := Sqrt[k[[2]]^2 + k[[3]]^2];

kk[k_] := Sqrt[k[[2]]^2 + k[[3]]^2 + k[[4]]^2];

chiP[k_] := 1/Sqrt[2 kk[k] (kk[k] + k[[4]])]*{kk[k] + k[[4]], k[[2]] + I*k[[3]]};

chiM[k_] := 1/Sqrt[2 kk[k] (kk[k] + k[[4]])]*{-k[[2]] + I*k[[3]], kk[k] + k

[[4]]};

omega[\[Lambda]_, k_] := Sqrt[k[[1]]^2 + \[Lambda]*kk[k]];

uuP[k_] := {omega[-1, k]*chiP[k][[1]], omega[-1, k]*chiP[k][[2]], omega[1, k]*

chiP[k][[1]], omega[1, k]*chiP[k][[2]]};

uuM[k_] := {omega[1, k]*chiM[k][[1]], omega[1, k]*chiM[k][[2]], omega[-1, k]*chiM

[k][[1]], omega[-1, k]*chiM[k][[2]]};

vvP[k_] := {-1*omega[1, k] chiM[k][[1]], -1*omega[1, k] chiM[k][[2]], +1*omega

[-1, k]*chiM[k][[1]], +1*omega[-1, k]*chiM[k][[2]]};

vvM[k_] := {1*omega[-1, k] chiP[k][[1]], 1*omega[-1, k] chiP[k][[2]], -1*omega[1,

k]*chiP[k][[1]], -1*omega[1, k]*chiP[k][[2]]};

eps1[k_] := (

If[kT[k] =!= 0,

Simplify[1/(kk[k]*kT[k])*{0, k[[2]]*k[[4]], k[[3]]*k[[4]], -kT[k]^2}],

If[k[[4]] =!= 0 ,

{0, Simplify[Sign[k[[4]]], {S > 0, S > 4 MZ2, S > 4 MW2}], 0, 0},

Print["Polarization vector not defined for this momentum"]]

]);

eps2[k_] := (

If[kT[k] =!= 0,

Simplify[1/kT[k]*{0, -k[[3]], k[[2]], 0}],

If[k[[4]] =!= 0 ,

{0, 0, 1, 0},

Print["Polarization vector not defined for this momentum"]]

]);

eps3[k_, m_] :=

If[m =!= 0,

If[kk[k] =!= 0,

Simplify[k[[1]]/(m*kk[k])*{kk[k]^2/k[[1]], k[[2]], k[[3]], k[[4]]}],

Limit[k[[1]]/(m*kkk)*{kkk^2/k[[1]], k[[2]], k[[3]], k[[4]]}, kkk -> 0]],

{0, 0, 0, 0}

Print["Massless Gauge Boson doesn’t exist in longitudinal polarization."]];

G.2. Helicity eigenvectors

epsP[k_] := Simplify[1/Sqrt [2]*(-eps1[k] - I*eps2[k]) /. {ct^2 + st^2 -> 1}, {S

> 4 MZ2, st > 0}];

epsPc[k_] := Simplify[1/Sqrt[2]*(-eps1[k] + I*eps2[k]) /. {ct^2 + st^2 -> 1}, {S

> 4 MZ2, st > 0}];

epsM[k_] := Simplify[1/Sqrt[2]*(+eps1[k] - I*eps2[k]) /. {ct^2 + st^2 -> 1}, {S >

4 MZ2, st > 0}];

epsMc[k_] := Simplify[1/Sqrt[2]*(+eps1[k] + I*eps2[k]) /. {ct^2 + st^2 -> 1}, {S

> 4 MZ2, st > 0}];

epsL[k_, m_] := Simplify[eps3[k, m] /. {ct^2 + st^2 -> 1}, {S > 4 MZ2, st > 0}];

epsLc[k_, m_] := Simplify[eps3[k, m] /. {ct^2 + st^2 -> 1}, {S > 4 MZ2, st > 0}];

G.3. Taylor Expansion of Momentum
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pTaylor[ECM_, M_, order_] := Block[{seriesEpsilon},

seriesEpsilon = Normal[Series[Sqrt[1 - \[Epsilon]], {\[Epsilon], 0, order}]];

Simplify[

ECM*seriesEpsilon /. {\[Epsilon] -> M^2/ECM^2}, {Element[S, Reals], S > 0}]

];

G.4. replaceEpsWWWW

replaceEpsWWWW[pol_, order_] := Block[

{E1, E2, E3, E4,

p1, p2, p3, p4,

kk1, kk2, kk3, kk4,

m1, m2, m3, m4,

massList,

printOption = 0},

m1 = MW;

m2 = MW;

m3 = MW;

m4 = MW;

E1 = ECM[m1, m2];

E2 = ECM[m2, m1];

E3 = ECM[m3, m4];

E4 = ECM[m4, m3];

If[order == -1,

p1 = Simplify[Sqrt[E1^2 - m1^2]];

p2 = Simplify[Sqrt[E2^2 - m2^2]];

p3 = Simplify[Sqrt[E3^2 - m3^2]];

p4 = Simplify[Sqrt[E4^2 - m4^2]];

,

p1 = pTaylor[E1, m1, order];

p2 = pTaylor[E2, m2, order];

p3 = pTaylor[E3, m3, order];

p4 = pTaylor[E4, m4, order];];

kk1 = {E1, 0, 0, p1};

kk2 = {E2, 0, 0, -p2};

kk3 = {E3, p3*st, 0, p3*ct};

kk4 = {E4, -p4*st, 0, -p4*ct};

{e[1] -> Switch[pol[[1]], -1, epsM[kk1], 0, epsL[kk1, m1], 1, epsP[kk1]],

e[2] -> Switch[pol[[2]], -1, epsM[kk2], 0, epsL[kk2, m2], 1, epsP[kk2]],

e[3] -> Switch[pol[[3]], -1, epsM[kk3], 0, epsL[kk3, m3], 1, epsP[kk3]],

e[4] -> Switch[pol[[4]], -1, epsM[kk4], 0, epsL[kk4, m4], 1, epsP[kk4]],

ec[1] -> Switch[pol[[1]], -1, epsMc[kk1], 0, epsLc[kk1, m1], 1, epsPc[kk1]],

ec[2] -> Switch[pol[[2]], -1, epsMc[kk2], 0, epsLc[kk2, m2], 1, epsPc[kk2]],

ec[3] -> Switch[pol[[3]], -1, epsMc[kk3], 0, epsLc[kk3, m3], 1, epsPc[kk3]],

ec[4] -> Switch[pol[[4]], -1, epsMc[kk4], 0, epsLc[kk4, m4], 1, epsPc[kk4]],

k[1] -> kk1,

k[2] -> kk2,

k[3] -> kk3,

k[4] -> kk4,

(*replaces denominator abreviation sometimes introduced by FormCalc*)

Den[x_, y_] -> 1/(x - y)} ];
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H. VBFNLO and WHIZARD Input Files for Comparison of

W+W+-processes

In order to make the comparison of the two Monte Carlo programs VBFNLO and WHIZARD
as transparent as possible, the complete input files used in the benchmark process W+W+

are shown below. Note that all comments and descriptions have been left out for better
readability. The standard input files of VBFNLO feature detailed commentation.

H.1. VBFNLO Input Files

• vbfnlo.dat

In this file one sets the main input parameters for VBFNLO, i.e. the process ID, number of
iterations and points in the calculation, masses and widths of the particles etc.

PROCESS = 250

LOPROCESS_PLUS_JET = false

LEPTONS = -11 12 -13 14

DECAY_QUARKS = 93

LO_ITERATIONS = 6

NLO_ITERATIONS = 6

LO_POINTS = 24

NLO_POINTS = 22

LO_GRID = "grid2_1" "grid2_2" "grid2_3" "grid2_4" "grid2_5"

NLO_GRID = "grid3_1" "grid3_2" "grid3_3" "grid3_4" "grid3_5"

PHTN_GRID = "grid4_1" "grid4_2" "grid4_3" "grid4_4" "grid4_5"

FLOOP_GRID = "grid5_1" "grid5_2" "grid5_3" "grid5_4" "grid5_5"

NLO_SWITCH = false

EWCOR_SWITCH = false

FERMIONLOOP = 3

NLO_SEMILEP_DECAY = 0

ECM = 14000d0

BEAM1 = 1

BEAM2 = 1

ID_MUF = 0

ID_MUR = 0

MUF_USER = 160.796d0

MUR_USER = 160.796d0

XIF = 1d0

XIR = 1d0

HMASS = 126.0d0

HTYPE = 0

MODEL = 1

EWSCHEME = 3

DEL_ALFA = 0.059047686d0

ANOM_CPL = true

KK_MOD = false

SPIN2 = false

EW_APPROX = 5

H2MASS = 600d0

H2WIDTH = -999d0
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SIN2BA = 1d0

COS2BA = -999d0

HWIDTH = -999d0

TOPMASS = 172.4d0

BOTTOMMASS = 4.855d0

CHARMMASS = 1.65d0

TAU_MASS = 1.77684D0

FERMI_CONST = 1.16637d-5

INVALFA = 128.944341122D0

SIN2W = 0.222646d0

WMASS = 80.398d0

ZMASS = 91.1876d0

LHA_SWITCH = true

LHA_FILE = event.lhe

HEPMC_SWITCH = false

HEPMC_FILE = event.hepmc

UNWEIGHTING_SWITCH = true

DESIRED_EVENT_COUNT = 100000

PARTIAL_UNWEIGHTING = true

TAUMASS = false

PDF_SWITCH = 1

LO_PDFNAME = cteq6ll.LHpdf

NLO_PDFNAME = CT10.LHgrid

LO_PDFMEMBER = 0

NLO_PDFMEMBER = 0

XSECFILE = xsection

ROOT = false

TOP = false

GNU = false

DATA = true

REPLACE = false

ROOTFILE = histograms

TOPFILE = histograms

GNUFILE = histograms

DATAFILE = histograms

• cuts.dat

As the name suggests it already, this file contains all cuts that VBFNLO applies in the
generation of events and its calculation of the total cross section.

RJJ_MIN = 0.4d0

Y_P_MAX = 5.0d0

PGENKTJET = -1.0d0

PT_JET_MIN = 30.0d0

Y_JET_MAX = 4.5d0

Y_L_MAX = 2.5d0

PT_L_MIN = 20.0d0

MLL_MIN = 0.0d0

MLL_MAX = 1d20

MLL_OSONLY = true

RLL_MIN = 0.0d0
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RLL_MAX = 50.0d0

Y_G_MAX = 2.37d0

PT_G_MIN = 20d0

RGG_MIN = 0.7d0

RGG_MAX = 50.0d0

PHISOLCUT = 0.7d0

EFISOLCUT = 1d0

RJL_MIN = 0.0d0

RJG_MIN = 0.7d0

RLG_MIN = 0.7d0

MLG_MIN = 0.0d0

MLG_MAX = 1.d20

PTMISS_MIN = 0.0d0

ETAJJ_MIN = 4d0

YSIGN = false

LRAPIDGAP = false

DELY_JL = 0.0d0

GRAPIDGAP = false

DELY_JG = 0.0d0

MDIJ_MIN = 600.0d0

MDIJ_MAX = 1d20

JVETO = false

DELY_JVETO = 0.0d0

YMAX_VETO = 4.5d0

PTMIN_VETO = 50.0d0

DEF_TAGJET = 1

ETA_CENTRAL = 2.0d0

PTMIN_TAG_1 = 20d0

PTMIN_TAG_2 = 20d0

HARD_CENTRAL = false

PTMIN_CENTRAL = 20d0

VBFCUTS_ALWAYS = false

RECONST_HAD_V = 0

V_MASS_RANGE = 20d0

SINGLE_DECAYJET = 0

QSQAMIN_ZDEC = 0d0

• anomV.dat

In this file all the settings for the anomalous couplings are chosen. In the example only
FS0, FS1 and the switch KMATRIXX have been modified, compared to the standard input
files.

TRIANOM = 1

FWWW = 0D-6
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FW = 0D-6

FB = 0D-6

LAMBDA0 = 0D0

ZDELTAKAPPA0 = 0D0

ZDELTAG1 = 0D0

ADELTAKAPPA0 = 0D0

FWW = 0D0

FBB = 0D0

FWWt = 0D0

FBWt = 0D0

FBBt = 0D0

FWt = 0D0

FBt = 0D0

FWWWt = 0D0

FDWt = 0D0

FS0 = 100D-12

FS1 = 100D-12

FM0 = 0D-12

FM1 = 0D-12

FM2 = 0D-12

FM3 = 0D-12

FM4 = 0D-12

FM5 = 0D-12

FM6 = 0D-12

FM7 = 0D-12

FT0 = 0D-12

FT1 = 0D-12

FT2 = 0D-12

FT5 = 0D-12

FT6 = 0D-12

FT7 = 0D-12

FT8 = 0D-12

FT9 = 0D-12

FORMFAC = .false.

KMATRIXX = .true.

FFMASSSCALE = 2000D0

FFEXP = 2

FORMFAC_IND = .false.

MASS_SCALE_FWWW = 2000D0

FFEXP_FWWW = 2

MASS_SCALE_FW = 2000D0

FFEXP_FW = 2

MASS_SCALE_FB = 2000D0

FFEXP_FB = 2

MASS_SCALE_AKAPPA = 2000D0

FFEXP_AKAPPA = 2

MASS_SCALE_ZKAPPA = 2000D0

FFEXP_ZKAPPA = 2

MASS_SCALE_LAMBDA = 2000D0

FFEXP_LAMBDA = 2
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MASS_SCALE_G = 2000D0

FFEXP_G = 2

H.2. Whizard Input File

Below the input file for WHIZARD is shown. Other than in VBFNLO, WHIZARD does not
provide input files containing lists of all necessary parameters, but needs to create his own
file to be written in the WHIZARD-internal programming language Sindarin.

model = SM_rx

alias pr = u:d:s:c:gl:U:D:S:C

alias lepton = e1:E1:e2:E2

process wpwpjj = pr,pr => E1,n1,E2,n2,pr,pr

# Define model parameters

# f_S0 = 10 10^-12GeV^-4

# f_S1 = 10 10^-12 GeV^-4

a4 = 0.0045941

a5 = 0.

me = 0. GeV

mmu = 0. GeV

mtau = 0. GeV

ms = 0. GeV

mc = 0. GeV

mH = 126. GeV

wH = 0.004277 GeV

mW = 80.398 GeV

mZ = 91.1876 GeV

wW = 2.097673 GeV

wZ = 2.508420 GeV

alphas = 0. # alpha_s set to suppress QCD background

# Define reasonable cuts and integrate the cross section(s)

# in order to initialize the phase space grids for simulation

cuts = all Pt >= 20 GeV [lepton]

and all -2.5 <= Eta <= 2.5 [lepton]

and all Pt >= 30 GeV [pr]

and all -4.5 <= Eta <= 4.5 [pr]

and all abs(Eta) >= 4 [pr,pr]

and all M >= 600 GeV [pr,pr]

# Define the process scale

scale = 160.796 GeV

# Beam specification and integration

sqrts = 14 TeV

$pdf_builtin_set = "cteq6l1"

beams = p, p => pdf_builtin

integrate (wpwpjj) { iterations = 20:500000, 5:500000}

# Allocate plots

histogram m_lepton (0 GeV, 2000 GeV, 20 GeV)

histogram pt_lepton (100 GeV, 2000 GeV, 100 GeV)

analysis = record m_lepton (eval M [combine [E1,E2] ]);

85



86 Appendix

record pt_lepton (eval Pt [E1])

# Set the desired numbers of events...

n_events = 400000

sample_format = lhef

# ... and simulate, requesting status information every 5000 events

?unweighted = true

simulate (wpwpjj) {checkpoint = 5000}

compile_analysis { $out_file = "WpWpjj.dat" }
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