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Abstract

We study Quantum Chromodynamics (QCD) at hadron colliders. This is done

in the context of general purpose Monte Carlo event generators. The aim of this

thesis is to develop and implement a model for the so–called underlying event for

the program Herwig++. We discuss multiple parton-parton scattering as source of

the underlying event and show that our implementation is able to describe existing

data from the Tevatron collider very well. Nevertheless we extend this model by

a soft, non-perturbative component. This allows us to use the so–called minimum

bias data, where only a minimum amount of requirements on the final-state are

imposed, to challenge our model. This extension additionally allows us to couple

the underlying event activity to measurements of total and elastic cross sections

and therefore offers a powerful constraint to reduce the extrapolation uncertainties.

Zusammenfassung

Wir untersuchen die Quanten-Chromodynamik (QCD) an Hadron-Kollidern. Dies

geschieht im Rahmen eines Monte Carlo Ereignis Generators, Herwig++. Das

Ziel dieser Arbeit ist die Entwicklung und Implementierung eines Modelles für das

sogenannte underlying event. Wir diskutieren mehrfache Parton-Parton Wechsel-

wirkungen als Quelle und zeigen, dass unsere Implementierung in der Lage ist

existierende Daten des Tevatron Beschleunigers sehr gut zu beschreiben. Gleich-

wohl erweitern wir dieses Modell um eine nicht-störungstheoretische Komponente.

Diese erlaubt uns den Vergleich mit sogenannten minimum bias Daten, welche

sich durch eine minimale Anzahl an Einschränkungen an die Endzustandsteilchen

auszeichnen. Zusätzlich ermöglicht es diese Erweiterung, die Aktivität im under-

lying event an Messungen des totalen und elastischen Wirkungsquerschnittes zu

koppeln, wodurch die Unsicherheiten der Vorhersage reduziert werden.
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“The aim of science is not to open the door to infinite wisdom,

but to set a limit to infinite error.”

— Berthold Brecht, The Life of Galileo.
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Chapter 1

Introduction

We are on the cusp of a new era in particle physics. The imminent start-up

of the Large Hadron Collider (LHC) at the European Organization for Nuclear

Research (CERN) is very likely to end decades of painful uncertainty in theoretical

physics. We will learn if electroweak symmetry-breaking is realised using the Higgs

mechanism and thus may find the last piece in the puzzle that we called the

Standard Model (SM) of particle physics. It will tell us whether Supersymmetry is

a property of our universe or remains a mathematical concept. It may even provide

us more insight into the space-time structure of our universe, by testing the idea

of extra dimensions.

However, the price to pay for answering these fundamental questions is the tremen-

dous complexity of the experiments at LHC. On the one hand we face the purely

technical challenges of operating this huge machine and measuring micrometer dis-

tances with detectors of 20-45 meters size. On the other hand we have to make

full use of and understand the outcome of the high-energy proton-proton collisions

at LHC. We, as theorists, can contribute to the latter one by providing accurate

predictions for these interactions. Anyhow, the task remains colossal and can only

be addressed in close collaboration between theory and experiment.

To illustrate that, let us consider a typical final-state that will be produced at LHC.

By the time the particles hit the first detector layer, it will contain ∼ 500− 1000

particles of only a handful different particle types. This introduces a huge ambigu-

ity as soon as one tries to infer the underlying parameters of the theory from the

1



2 Introduction

observed final-states. “New” physics will in general not produce hadronic final-

states that are completely different from the Standard Model ones. It will rather

show up as an excess of certain events over a background of Standard Model ori-

gin. This makes it in many cases almost impossible to extract properties of the

underlying theory directly from the statistical analysis of these events. One rather

relies on a fully exclusive hadronic simulation of these final-states using Monte

Carlo Event Generators. They implement the underlying theory to the best of our

knowledge. Hence, it is crucial that both the simulation of new physics and the

physics of conventional origin are accurately described.

Calculating the rates of specific processes utilises the parton model (which is de-

scribed in the next Chapter). The main assumption there is, that the collision

of a hadron pair can be described as collision of a parton pair during the pas-

sage of the hadrons through each other. However, plenty of data (from UA1-5

to CDF) suggests that this picture is too simple and that more than one parton

pair may interact during a single hadronic collision, which gives rise to multiple

partonic interactions (MPI). These additional interactions occur in most cases at

much smaller energy scales than the main (hard) interaction. Since they do oc-

cur at scales that are still perturbative, they are often referred to as semi-hard

interactions. MPI are also expected from the theoretical point of view, since the

cross section for these semi-hard jets1 may violate unitarity as long as multiple

scatterings are ignored. Apart from the semi-hard correction, one has to consider

the break-up of the incoming hadrons during the partonic scattering(s) and the

further evolution of the hadron remnants. This happens at typical hadronic scales,

i.e. in the non-perturbative or soft regime. These two effects are what theoreti-

cally is attributed to the so-called underlying event. From the experimental point

of view however, the underlying event contains all activity in a hadronic collision

that is not related to the signal particles from the hard process, e.g. leptons or

missing transverse energy. The additional particles may result from the initial- or

final-state radiation of coloured particles or from multiple interactions.

The aim of this work is the introduction and implementation of a model to describe

the underlying event for the event generator Herwig++. The validation and tuning

of this model against existing data is also an integral part of this task, since data

1Sometimes referred to as mini-jets
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is the ultimate judge for our work.

We will start in Chap. 2, by introducing the basics of Quantum Chromodynamics

(QCD), scattering theory and the concept of jets, which are needed to understand

the underlying event. The next Chapter then reviews the main features of general-

purpose event generators and describes the details for the case of Herwig++.

An introduction to MPI is given in Chap. 4, as well as the model and implementa-

tion details of MPI. A detailed tune to and comparison with CDF measurements

on the underlying event is also presented there, as well as extrapolations to the

LHC.

Chapter 5 contains the description and study of so-called double parton scattering

events, which separate from the above mentioned multiple semi-hard scatterings

in the energy scale that is involved there, which is always hard. We show the

operability of the simulations of these event with the example of like sign di-lepton

production. We compare Standard Model processes leading to that signature with

double parton scattering events.

Chapter 6 completes the underlying event model in adding the non-perturbative

or soft interactions to the model. We study general properties of this model as a

function of the centre-of-mass energy and derive constraints on its parameter space

that are imposed by existing or future measurements.

The findings of the previous Chapter lead us to the formulation of an improved

model, which will be described in detail in Chap. 7. We describe the implemen-

tation of this improved model and compare the simulation to existing data. The

inclusion of soft scatters will enable us to describe also minimum bias data which

is not possible in a model without this soft component. Finally, we tune this model

and make predictions for the LHC.

The last Chapter finally gives a summary and conclusion of the work that has been

done.
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Chapter 2

Basics

“If I could explain it to the average person, I wouldn’t have been worth the Nobel

Prize.”

— Richard Feynman, 1985

The presence of the underlying event can only be understood in terms of hadrons as

compound objects and the strong interaction among the constituents, the partons.

Hence, the understanding of these phenomena requires a sound knowledge of the

strong interaction. This chapter therefore serves as an introduction to scattering

theory, theorems which hold independent of the precise theory formulation and

non-perturbative as well as perturbative attempts to understand the strong force.

Finally, the manifestations of partons in experiments, the jets, deserve a careful

description and explanation.

2.1 Scattering theory

Throughout this work the system of natural units, where ~ = 1 = c, is used.

The two-body scattering process 1 + 2 → 3 + 4 may serve as an entry to the

basic formalism that is at the foundation of scattering theory. The particles 1 . . . 4

have four-momenta pi = (Ei,pi) and the masses mi ≡
√
p2
i . This system has the

5



6 Basics

Lorentz invariants (the Mandelstam variables),

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 , (2.1)

that satisfy the relation s + t + u =
∑

im
2
i . Hence, a scattering amplitude that

describes the transition of the initial-state |i〉 = |1+2〉 to the final-state |f〉 = |3+4〉
during a scattering process, will only be a function of two independent Lorentz

invariants and may be written as A(s, t).

2.1.1 The S-matrix

For orthonormal states |i〉 and |f〉 , not restricted to the two-body scattering case,

that satisfy 〈f |f〉 = 1 = 〈i|i〉 and 〈f |f ′〉 = δff ′ , the S-matrix element 〈f |S|i〉
is defined [1] such that

Pfi = | 〈f |S|i〉 |2 (2.2)

is the probability of initial-state |i〉 resulting in the final-state |f〉 . The com-

pleteness of the states |f〉 together with sum of probabilities being one, leads

to SS† = 1, i.e. the S-matrix is unitary. It is usually expressed as the sum of

an interacting (the so-called T -matrix) and a non-interacting part (the identity

operator). They are related by

〈f |S|i〉 = δfi + i(2π)4δ4(Pf − Pi) 〈f |T |i〉 , (2.3)

where Pf (Pi) denotes the four-momentum sum of all final- (initial-) state particles.

The total cross section for the reaction 12→ n is defined as

σ12→n =
1

4k
√
s

(2π)4δ4(Pf − Pi) | 〈fn|T |i〉 |2 , (2.4)

where k = |k|. k is the momentum of the incoming particles in the centre-of-

mass frame (CMF). For the case of elastic two-body scattering and a continuum

of states, the differential cross section with respect to t is then given by

dσ12→34

dt
=

1

64πs k2
|A(s, t)|2 , (2.5)



Basics 7

where 〈f |T |i〉 ≡ A(s, t) has been identified.

The optical theorem

The unitarity of the S-matrix provides an important connection between total

cross sections and the forward (θ ≡ θCMF = 0) elastic amplitude, known as the

optical theorem, which will be very useful in later chapters. Starting with

δij = 〈j|i〉 = 〈j|SS†|i〉 =
∑
f

〈j|S|f〉 〈f |S†|i〉 (2.6)

and using the definition of the T -matrix from Eq. (2.3), one obtains

〈j|T |i〉 − 〈i|T †|j〉 = i(2π)4
∑
f

δ4(Pf − Pi) 〈j|T †|f〉 〈f |T |i〉 . (2.7)

For the case i = j, which corresponds to elastic scattering with vanishing scattering

angle θ i.e. elastic, forward scattering, this yields

2Im { 〈i|T |i〉 } =
∑
f

(2π)4δ4(Pf − Pi) | 〈f |T |i〉 |2 . (2.8)

The right-hand-side is proportional to σ12→n from Eq. (2.4) summed over all n.

θ = 0 corresponds to vanishing t and therefore the optical theorem,

σtot
12 =

1

2k
√
s

Im {A(s, t = 0)} , (2.9)

is obtained. A(s, t) is the elastic amplitude. In the high-energy limit, where the

masses of all particles are negligible, k is given by
√
s/2 and thus

σtot =
1

s
Im {A(s, t = 0)} , (2.10)

where σtot is the cross section for the scattering of two particles resulting in any

final-state.
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Elastic Scattering

Elastic scattering is connected to the total cross section as discussed in the previous

section. The structure away from the limit t→ 0 exhibits also interesting features.

The differential cross section with respect to t from Eq. (2.5) has been empirically

parameterised in the form

dσel

dt
=

dσel

dt

∣∣∣∣
t=0

· ebelt , (2.11)

with bel the elastic slope parameter. Using this functional form in Eq. (2.5) and

inserting Eq. (2.10) leads to

σel =
σ2

tot

16πbel

(1 + ρ2) , (2.12)

with ρ = Re {A} /Im {A}. Measurements show that ρ . 0.2 and therefore the

real part of the elastic amplitude is often neglected.

2.1.2 Geometrical correspondence

At high energies, scattering processes can be described by means of geometrical

optics since the typical wavelength is smaller than their transverse size [2]. This

picture is based on the impact-parameter space, usually represented by vectors b,

the two-dimensional physical space perpendicular to the beam direction1. The spin

of the scattering particles is neglected in the following, which is a good approx-

imation in the case of small scattering angles. Working in the CMF, t is given

by

t = −q2 = −4k2 sin2

(
θ

2

)
, (2.13)

1defined by k in our case.
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where q2 is the magnitude of the momentum transfer. The scattering amplitude

can now be expanded in Legendre polynomials

A(s, t) = 16π
∞∑
`=0

(2`+ 1)a`(s)P`(cos θ) , (2.14)

since angular momentum is conserved during the scattering process. By comparing

Eqs. (2.5) and (2.10) a requirement for a` can be deduced. It states that Im {a`} =

(Im {a`})2 + (Re {a`})2, which defines the so-called Argand circle. For inelastic

processes the amplitude lies inside this circle. Such an amplitude can always be

represented as

a` =
e2iδ` − 1

2i
, (2.15)

where δ` acquires an imaginary component if there is inelasticity. The optical

theorem additionally implies, that the `th partial wave, σ`tot, is bound as σ`tot(s) ≤
(2`+ 1)4π

k2 . This bound is decreasing in energy and is in contrast to the measured

rise of total hadronic cross sections for a fixed number of partial waves. That

means that an increasing number of partial waves must contribute to the high-

energy amplitude. It is therefore sensible to convert the discrete sum in Eq. (2.14)

into an integral,

A(s, t) = 16π

∫ ∞
0

d`(2`+ 1)a(s, `)P`(cos θ) , (2.16)

where a(s, `) is the analytic continuation of a`(s). The additional relations,

P`(cos θ)
`→∞→ J0

[
(2`+ 1) sin

(
θ

2

)]
,

J0(z) =
1

2π

∫ 2π

0

dφ eiz cosφ ,

q · b = q⊥ · b = q⊥b cosφ ,

allow the conversion of the integral in Eq.(2.16) into

A(s, t) = 4s

∫
d2b a(s,b) e−iq·b , (2.17)
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where a(b, s) = a`(s)|l=kb can be interpreted as source-density of scattered waves

producing interference patterns. This expression for the elastic amplitude can now

be inserted into Eqs.(2.10) and (2.5), and yields the relations

σtot(s) = 4

∫
d2b Im {a(b, s)} , σel(s) = 4

∫
d2b |a(b, s)|2 . (2.18)

The elastic slope bel is given by [2]

bel =

∫
d2b b2a(b, s)

2
∫

d2b a(b, s)
. (2.19)

2.2 Regge theory

Before a field theoretical approach (QCD) for the understanding of the strong

interactions was within reach, the so-called Regge theory [1, 3] very successfully

described the scattering of strongly interacting particles. It is based on very gen-

eral properties of the S-matrix that were partly discussed in Sect. 2.1.1, i.e. lorentz

invariance, unitarity and analyticity in the Mandelstam variables (regarded as com-

plex variables). Furthermore it exploits the formalism that Regge [4] developed

for non-relativistic potential scattering. This formalism involved converting the

orbital angular momentum ` into a complex variable. He showed that the sin-

gularities of the t-channel partial wave amplitude a`(t) are poles in the complex

` plane, the so-called Regge poles or Reggeons, which are t-dependent. Crossing

symmetry of the S-matrix as consequence of analyticity allows for the application

of Eq. (2.14) to resonance production in the t-channel. With cos θ = 1 + 2s
t

in the

high-energy limit, the elastic amplitude yields

A(s, t) = 16π
∞∑
`=0

(2`+ 1)a`(t)P`

(
1 +

2s

t

)
. (2.20)

This sum can be converted to an contour-integral in the complex angular mo-

mentum plane (the Sommerfeld-Watson transform). In the Regge region, that is

s� |t|, the amplitude vanishes for |`| → ∞ leaving only the sum over the residues

of the Regge poles at `k = αk(t). In this limit, P`(1 + 2s/t) can be approximated

by (s/(2t))` and therefore only the leading Regge pole with the largest value has
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to be considered, leading to

A(s, t)
s→∞→ β(t)

η + e−iπα(t)

2
sα(t) , (2.21)

where α(t) is the position of the leading Regge pole and η its signature, defined as

ηbaryons = (−1)J−1/2 and ηmesons = (−1)J .

2.2.1 Regge trajectories

Amplitudes for t-channel processes with positive t are expected to have poles cor-

responding to the exchange of physical particles of spin Jk and mass mk. For the

Regge poles must therefore hold that αk(m
2
k) = Jk. It has been observed experi-

mentally in Ref. [5] that these resonances lie on a straight line, once the spins are

plotted against the square mass, i.e.

α(t) = α(0) + α′t . (2.22)

Figure 2.1: The Chew-

Frautschi plot for the ρ-

trajectory. Taken from Ref. [6].

Hence, the amplitude of such a Reggeon

exchange is estimated by summing

up all resonance exchange amplitudes.

The Regge poles therefore have definite

quantum numbers like isospin, parity or

strangeness. The mesons ρ and ω be-

long to such a trajectory as depicted

in Fig. 2.1. The extracted parameters

from the data are

αρ(t) = 0.55 + 0.86 GeV−2 t . (2.23)

From the asymptotic s-dependence of

the amplitude in Eq. (2.21), the s-

dependence of differential elastic cross

sections can be deduced with Eq. (2.5),
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to be

dσ

dt
∝ s2(α(0)−1+α′t) . (2.24)

The s-dependence of the elastic slope bel can be extracted from that,

bel(s) = 2α′ ln

(
s

s0

)
, (2.25)

using bel = d
dt

ln dσ
dt

. All constant factors have been absorbed into s0, which has to

be determined experimentally.

2.2.2 Total cross sections and the Pomeron

Figure 2.2: Data for the total pp

and pp̄ cross section over a wide

range of energies. Included is the

Regge fit from Ref. [6].

In the same way as for the elastic cross

section, one can extract the asymptotic

s-dependence of the total cross section

from a given Regge trajectory. In us-

ing the optical theorem from Eq. (2.10),

one obtains

σtot ∝ sα(0)−1 . (2.26)

For the ρ-trajectory from Eq. (2.23)

this means that the total cross sec-

tion falls as s increases. Pomeranchuk

proved from general assumptions, that

in any scattering process in which there

is charge exchange, the cross section

vanishes asymptotically. This is known

as the Pomeranchuk theorem. It has

been noticed, that a scattering cross section that does not fall with increasing

s must be dominated by the exchange of vacuum quantum numbers.

Experimentally, a slow rise of the total cross section with increasing s is observed.

If this rise is attributed to the exchange of a single Regge pole, it must satisfy



Basics 13

α(0) > 1 and carrying vacuum quantum numbers. This trajectory is usually called

the Pomeron after its inventor Pomeranchuk.

Donnachie & Landshoff [6] have performed a fit of all available total cross section

data with a Regge type parameterisation given by

σtot = Xsε + Y s−η , (2.27)

where the first term corresponds to a Pomeron Regge pole, whereas the second

term is due to the exchange of the ρ-trajectory from Eq. (2.23). The Pomeron con-

tribution must be identical in pp and pp̄ scattering, as it carries vacuum quantum

numbers. For the ρ-trajectory this obviously does not hold. ε is extracted to be

0.08 and η = 0.45. The complete parameterisation of the Pomeron trajectory can

be extracted from the differential elastic scattering cross section as it is sensitive

to α′ (see Eq. (2.25)). The Pomeron trajectory has the following functional form2

αP(t) = 1.08 + 0.25 GeV−2 t . (2.28)

The description of total cross sections with these two Regge exchanges is universal

though. It successfully describes also πp,Kp and np scattering cross sections with

the same exponents, ε and η, but different couplings. It is note-worthy, that this

high-energy behaviour ultimately leads to the violation of the Froissart-Martin

bound σtot < A ln2 s, derived using unitarity and the partial wave expansion. This

violation however happens not before energies reach the Planck scale! That is the

reason why ε is expected to be energy dependent, although only very slightly, to

preserve unitarity. Multiple Pomeron exchanges are known to be able to tame this

asymptotic rise.

2.3 QCD

Quantum Chromodynamics (QCD) is the component of the Standard Model that

describes the strong interactions. It is a theory formulated in terms of quarks and

gluons at the Lagrangian level, but observed in terms of baryons and mesons in

2The same authors provide in Ref. [7] an updated form of the trajectory.
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nature. Therefore observations in hadron spectroscopy triggered the formulation

of the quark model. Confirmation of that model has been deduced from deep

inelastic scattering experiments. Subsequent measurements have so far verified

QCD in various quantitative test. More information on QCD and Jets can be

found in Refs. [8–10].

2.3.1 QCD-Lagrangian

QCD is defined as a field theory by its Lagrangian density [11],

LQCD =

nf∑
f=1

ψ̄fi
[
iD�ij −mfδij

]
ψfj −

1

4
Fµν,aF

µν
a + Lgauge + Lghost , (2.29)

where the abbreviations,

D�ij = γµDµ,ij = γµ[∂µδij + igAµ,a(Ta)ij] (2.30)

for the covariant derivative Dµ, and

Fµν,a = ∂µAν,a − ∂νAµ,a − gCabcAµ,bAν,c (2.31)

for the field strength tensor have been used. Greek letters indicate Lorentz indices

and latin letters colour indices. Letters from the beginning of the alphabet, abc,

are in the range 1 to N2
C − 1, whereas the other latin indices are from 1 to NC .

The Lagrangian is a function of the spinor fields ψf (x) (quarks) and the vector

field A(x) (gluon). The first two terms are invariant under local SU(NC) gauge

transformations, with NC = 3 in QCD. f is the summation over independent quark

fields, i.e. nf = 6 in the standard model. g is the coupling constant of QCD and

Cabc are the structure constants of SU(NC) which define its Lie algebra. Usually

one defines the coupling in analogy with the fine structure constant of QED to be

αs = g2

4π
. Perturbation theory is not applicable without fixing a particular choice

of gauge. This is done in the term Lgauge which is needed to define the gluon

propagator. Lghost introduces a complex scalar field, the ghost fields, which are

needed to cancel unphysical degrees of freedom that would otherwise propagate in

covariant gauges.
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2.3.2 Asymptotic freedom and confinement
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Figure 2.3: Experimental tests of

the running coupling in QCD. Taken

from Ref. [12].

The most puzzling features of the

strong interaction can be sum-

marised by two terms: Confine-

ment and asymptotic freedom [13,

14]. The first one explains, why

quarks and gluons are not observed

at macroscopic distances. The lat-

ter one is the reason why pertur-

bation theory is applicable at high

energies. QCD is able to accom-

modate both features of strong in-

teractions by making the forces be-

tween quarks a function of the dis-

tance. The coupling constant is

said to run, being large at low en-

ergy and becoming smaller at high

energy.

The concept of a running coupling has to be introduced once higher order terms

in the perturbation series are computed. There, ultraviolet divergences are en-

countered, which are absorbed into the couplings and fields at a renormalisation

scale µ. Physical observables, however, must not depend on this arbitrary scale,

as the Lagrangian of QCD makes no mention of it. To illustrate that, consider

a dimensionless physical observable R depending on αs and a single energy scale

Q2. If this scale is large enough, all masses can be set to zero. R can only be a

function of the dimensionless quantities Q2/µ2 and αs(µ
2). The µ-independence of

R can be expressed as

µ2 d

dµ2
R
(
Q2

µ2
, αs(µ

2)

)
=

[
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

]
R !

= 0 . (2.32)

Hence, any explicit dependence of R on µ must be cancelled by the µ-dependence

of αs. If one eliminates the presence of the second scale by setting µ2 = Q2, all

of the scale dependence in R(1, αs) enters through the coupling constant αs(Q
2).
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This scale dependence is predicted by the renormalisation group equation (RGE),

Q2 ∂αs
∂Q2

= β(αs) , (2.33)

where β can be computed as a power series in αs,

β
(
αs(Q

2)
)

= −α2
s(Q

2)
(
b1 + b2αs(Q

2) + . . .
)
, (2.34)

with b1 =
33−2nf

12π
and b2 =

153−19nf
24π2 . nf is the number of active flavours at Q2.

Hence, for nf ≤ 16 the beta function has a negative sign, leading to a vanishing

coupling constant at asymptotically large energies, i.e. asymptotic freedom. This is

contrary to the beta function in QED, where the coupling increases with increasing

energy. This behaviour in QCD can be made more explicit if Eq. (2.33) is solved

in the 1-loop approximation, i.e. truncating the expansion for the beta function

after α2
s,

αs(Q
2) =

αs(µ
2)

1 + αs(µ2) b1 ln Q2

µ2

. (2.35)

Eq. (2.35) also shows the divergence of αs for small Q2. The absolute value of the

coupling constant however is not predicted and has to be obtained from experiment.

It can therefore be regarded as the fundamental parameter. One typically chooses

αs(M
2
Z) as reference point to ensure that the perturbative description is valid.

Using αs(M
2
Z) = 0.12, αs exceeds unity for Q2 < O (0.1− 1 GeV), which signals

the breakdown of perturbation theory. Alternatively to Eq. (2.35), αs can be

parameterised in terms of the dimensionful parameter ΛQCD,

αs(Q
2) =

1

b1 ln Q2

Λ2
QCD

, (2.36)

which essentially defines the scale where the coupling constant diverges. ΛQCD

is not uniquely defined though, it depends on the renormalisation scheme as well

as on the number of active flavours and the order to which the beta function is

computed. At 4 loops, calculated in the MS scheme, its value is ΛMS
QCD = 220 MeV.
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2.3.3 Infrared Safety

With the solution to the running coupling from Eq. (2.35), we can see how asymp-

totic freedom can help in a practical case. The perturbative expansion of the

observable R from the previous section is

R
(
Q2

µ2
,
m2
i

µ2
, αs(µ

2)

)
=
∞∑
n=0

an

(
Q2

µ2
,
m2
i

µ2

)
αns (µ2) , (2.37)

where the mi denote the internal (quark) masses. One encounters that the coef-

ficients, an, are large and even in many cases infrared (IR) divergent, due to the

vanishing gluon mass. This divergence is independent of the value for αs(µ
2). Nev-

ertheless a large class of quantities can be identified [15], which are infrared safe.

These quantities do not depend on the long-distance behaviour of the underlying

theory, their coefficients are IR finite and possess a finite limit for vanishing mi,

such that

R
(
Q2

µ2
,
m2
i

µ2
, αs(µ

2)

)
= R

(
Q2

µ2
, 0, αs(µ

2)

){
1 +O

(
mi

Q2

)}
. (2.38)

For such a quantity we can set µ2 = Q2 and therefore put all scale dependence

into αs. If Q2 is large, the coupling decreases and the perturbation series becomes

better and better.

The simplest case where this can be studied in more detail is e+e− annihilation

into hadrons, e+e− → qq̄. The O (αs) real corrections to that process, e+e− → qq̄g,

will reveal the structure of these divergences. The total cross section is given by

σqq̄g =
4πα2

s

∑
q

e2
q

∫ 1

0

dx1dx2CF
αs
2π

x2
1 + x2

2

(1− x1)(1− x2)
, (2.39)

where x1,2 are the energy fractions of the quark and anti-quark, respectively,

i.e. x1,2 = 2Eq,q̄
√
s. The group constant CF is 4

3
for QCD. The integrals in

Eq. (2.39) are divergent along the boundaries x1,2 = 1. Since 1−x1,2 = x2,1Eg(1−
cos θ{2,1}g)/

√
s, with Eg being the gluon energy and θi,g the angle between the

quarks and the gluon. Hence, the singular behaviour stems from kinematic re-

gions, where either the gluon is soft or collinear with the quark or anti-quark.

The key point now is that these singularities, once regularised in e.g. dimensional
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regularisation, cancel exactly against singularities that appear in the O (αs) vir-

tual corrections. This leaves a finite, infrared and collinear (IRC) safe3 total cross

section.

This cancellation of soft and collinear singularities is not accidental though, it is

subject of the Kinoshita, Lee and Nauenberg (KLN) theorem [16, 17]. It states

that suitably defined inclusive quantities will be free of singularities in the mass-

less limit. The relevant physical observation that justifies infrared safety is that

the creation of a quark pair is a short-distance phenomenon, and is not expected

to interfere quantum mechanically with the long-distance processes that produce

hadrons from quarks. Consequently, the cross section can be thought of as a prod-

uct of probabilities, one for quark pair creation (Born diagram plus calculable

corrections), the other for the evolution of quarks to hadrons. In the fully inclusive

cross section, we sum over all final-states. Then, because of the absence of inter-

ference between short and long-distance effects, the probabilities for hadrons to be

produced from quarks sum to unity. This is also the justification for the separated

phases during event generation, which will be discussed in Chapter 3.

2.3.4 Parton model and deep inelastic scattering

q

p

k
′

k

Figure 2.4: Deep inelastic lep-

ton hadron scattering process

`h→ `X.

Hadrons are compound objects, made

up of strongly interacting particles.

However, once a scattering process oc-

curs that has a relatively large scale in

the process, > 1 GeV2, the asymptotic

freedom property of QCD permits that

to be understood in terms of a scat-

tering process of the more fundamental

constituents - quarks and gluons (par-

tons), which interact relatively weakly.

The fundamental quantities that are

needed for a calculation of such scat-

tering processes are the parton distri-

3Up to now, only to O (αs)
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butions (PDFs). The concept of point

like constituents has been developed after the observation of Bjorken scaling in

deep inelastic lepton-hadron scattering (DIS). Breaking of this scaling property

was of the same importance, because it cannot be explained by the naive parton

model but is a prediction of QCD.

The canonical example for the discussion of parton densities and the parton model

is DIS. The example of electron proton scattering is used to briefly introduce the

main points. Figure 2.4 shows the scattering process, where the lepton scatters

off the proton leaving some hadronic state X. The incoming and outgoing lepton

four-momenta are labelled by kµ and k′µ respectively. The proton by pµ and the

momentum transfer by qµ = kµ − k′µ. With these definitions the standard DIS

variables are

Q2 = −q2 , ν = p · q ,

x =
Q2

2ν
, y =

q · p
k · p .

(2.40)

The lepton scattering cross section can be parameterised in terms of the two struc-

ture functions F1,2(x,Q2). Neglecting the mass of the proton, which is justified

when working in the infinite momentum frame, this expression yields

d2σ

dx dQ2
=

4πα2
s

Q2

[(
1 + (1− y)2

)
F1 +

1− y
x

(F2 − 2xF1)

]
. (2.41)

In the Bjorken limit, where Q2, ν →∞ with x fixed, these structure functions are

observed to obey an approximate scaling law [18]. That means they depend only on

the dimensionless variable x. This implies that the virtual photon scatters off point

like constituents, since otherwise a scale associated with the length scale of the

constituents would appear. From that observation the parton model has evolved,

where the photon scatters off a point like constituent which is moving parallel with

the proton and carries a fraction ξ of its momentum. Using this model, the cross

section from Eq. (2.41) can be calculated using the matrix element for the process

e−q → e−q,

d2σ̂

dx dQ2
=

4πα2
s

Q2

[
1 + (1− y)2

] e2
q

2
δ(x− ξ) . (2.42)
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The “hat” indicates that this is a partonic cross section. The partonic structure

functions can be obtained by comparing Eqs. (2.41) and (2.42),

F̂2 = 2xF̂1 = xe2
q δ(x− ξ) . (2.43)

Measurements however show that they are rather a distribution in x and not a delta

function, which then finally lead to the formulation of the naive parton model :

• partons carry a range of momentum fraction, where fq(ξ)dξ represents the

probability that a quark q carries a momentum fraction between ξ and ξ+dξ

and ξ ∈ [0, 1]. fq(x) are the parton distributions.

• the virtual photon scatters incoherently off the proton constituents

The structure functions can now be written as

F2(x) = 2xF1(x) =
∑
q,q̄

∫ 1

0

dξ fq(ξ)xe
2
q δ(x− ξ) =

∑
q,q̄

e2
q fq(x) . (2.44)

The relation between F2 and F1 is known as the Callan-Gross relation and is a

manifestation of the spin-1
2

property of the quarks. The two terms of Eq.(2.41)

correspond to the absorption of transversely (F1) and longitudinally (F2 − 2xF1)4

polarised virtual photons. The absence of the second term follows from the fact

that spin-1
2

particles cannot absorb longitudinally polarised vector bosons.

It is note-worthy that the DIS process doesn’t specify the nature of the hadronic

state X. This inclusive definition means that for example diffractive processes are

included. Therefore whenever a parton distribution is used to calculate a cross

section, the contribution from diffractive scattering is implicitly included.

2.3.5 Perturbative QCD and the parton model

Perturbative QCD beyond leading order breaks Bjorken scaling by logarithms of

Q2. This is due to the fact that the parton can acquire large transverse momentum

by emission of a gluon. The probability for a emission with transverse momentum

4only in the Bjorken limit
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kT is proportional to αs
dk2
T

k2
T

at large kT . Going up to the kinematical limit, k2
T ∼

Q2, this gives rise to terms ∼ αs logQ2, which break scaling. Taking the O (αs)

corrections from quarks (γ∗q → qg) to the parton model into account, leads to

F̂2 = e2
qx

[
δ(1− x) +

αs
2π

(
Pqq(x) ln

Q2

κ2
+ Cq(x)

)]
. (2.45)

Here the quark is assumed to have the full proton momentum, p. Pqq(x) is the

splitting function for the qqg Vertex, κ is used to regularise the collinear divergence

at k2
T = 0. Cq(x) is a finite and calculable function. The limit k2

T → 0 corresponds

to the long-range part of the interaction which is not calculable in perturbative

QCD. It can’t be subject to the KLN theorem, introduced in Sect. 2.3.3, because

a quark and a collinear quark-gluon pair carrying the same momentum are dis-

tinguishable for a virtual photon. To obtain the proton structure function, the

quark structure function, F̂2 has to be convoluted with a bare parton distribution,

fq,0 like in Eq. (2.44). Exactly as for the renormalisation of the coupling constant

the singularities can now be absorbed into this bare distribution at a factorisation

scale µ, which plays a similar role to the renormalisation scale. The renormalised

parton distribution is then

fq(x, µ
2) = fq,0(x) +

αs
2π

∫ 1

x

dξ

ξ
fq,0(ξ)

[
Pqq

(
x

ξ

)
ln
µ2

κ2
+ Cq

(
x

ξ

)]
+ . . . , (2.46)

so that the structure function takes the form

F2(x,Q2) = x
∑
q,q̄

e2
q

∫ 1

x

dξ

ξ
fq(ξ, µ

2)

[
δ(1− x

ξ
) +

αs
2π
Pqq

(
x

ξ

)
ln
Q2

µ2
+ . . .

]
.

(2.47)

This factorisation of short and long-distance contributions in DIS observables is a

general feature that holds to all orders in perturbation theory [19]. It allows for the

separation of all infrared sensitivity into the parton distributions. It is universal,

i.e. independent of the particular hard scattering process.

One should note that in Eqs. (2.46) and (2.47) the finite contributions in Cq(x)

have been absorbed into the quark distribution fq. This freedom of treating finite

contributions is matter to the preferred factorisation scheme. The one above is the

DIS scheme.
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The full O (αs) result, including the gluon (γ∗g → qq̄) contribution, for F2 in the

MS scheme is given by

F2(x,Q2) = x
∑
q,q̄

e2
q

∫ 1

x

dξ

ξ
fq(ξ,Q

2)

[
δ(1− x

ξ
) +

αs
2π

CMS
q

(
x

ξ

)]
+ x

∑
q,q̄

e2
q

∫ 1

x

dξ

ξ
fg(ξ,Q

2)

[
αs
2π

CMS
g

(
x

ξ

)]
.

(2.48)

The functions Cq and Cg are the so-called coefficient functions. They are infrared

safe and calculable in perturbation theory. They depend on the factorisation and

renormalisation schemes and on the observable that is computed but are indepen-

dent of the hadron that is considered in the scattering process.

A remarkable consequence of factorisation is that measuring parton distributions

for one scale µ allows their prediction for any other scale µ′, as long as both are

large enough to ensure that αs(µ
2) and αs(µ

′2) are small5. The evolution of parton

distribution is described by a set of integro-differential equations,

dfi(x, µ
2)

d lnµ2
=
∑
j

∫ 1

x

dξ

ξ
Pij

(
x

ξ
, αs(µ

2)

)
fi(x, µ

2) , (2.49)

known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [20–

22]. Pij are the splitting functions used before, which are calculable order by

order in perturbation theory. A derivation can be obtained from Eq. (2.47). The

right-hand side of that equation seems to have a µ dependence, which it cannot

have. The scale dependence of the PDFs has to cancel all other scale dependencies

exactly in the very same way than the scale dependence of αs is obtained and

finally described by the RGEs.

2.3.6 Hadronic cross sections in the parton model

A similar factorisation than present in DIS has not been rigorously proven for

hadron-hadron scattering, but is generally employed for the calculation of cross

sections. It can be carried out using the parton distributions, f(x,Q2), measured

5It is note-worthy, that the DGLAP description works down to very small scales (Q ∼
0.4 GeV), where αs certainly exceeded unity.
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in DIS. The general form of such cross sections, for the hadronic process AB →
X1 . . . Xn is given by

σAB(p1, p2) =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(x1p1, x2p2)fa/A(x1, µ
2)fb/B(x2, µ

2) , (2.50)

where σ̂ab is the partonic cross section for incoming partons a and b and x1 and

x2 their longitudinal momentum fractions with respect to the incoming hadrons.

The partonic cross section can be calculated using

dσ̂ab =

∑ |M|2 (papb → p1 . . . pn)

F
dΦn . (2.51)

∑ |M|2 is the squared Feynman amplitude of the considered process summed over

all final-state quantum numbers and averaged over initial-state quantum numbers

for the process. The incoming particle flux is taken into account by the factor F ,

which is given by F = 4
√

(pa · pb)2 − p2
ap

2
b . The number of possible final-states is

counted by dΦn, the Lorentz invariant phase space element (LIPS) for n outgoing

partons,

dΦn(papb → p1 . . . pn) = (2π)4δ4

(
pa + pb −

n∑
k=1

pk

)
n∏
k=1

d3pk
(2π)32Ek

. (2.52)

2.4 Jets

This section is dedicated to the objects that are used to study - and emerge from

- QCD, the jets. After a brief introduction, the theoretical basis of jets will be

discussed before challenges and solutions to jet finding are described.

2.4.1 Introduction

In the mid 1950s, sprays of particles emerging from the collisions of energetic

cosmic rays in an emulsion target have been observed. The particles had relatively

large and nearly parallel longitudinal momenta and were called jets. In the naive

parton model it was assumed that a fast moving hadron can be regarded as a
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bunch of more-or-less collinear partons. In a very similar way one can assume that

a fast moving parton may lead to a spray of more-or-less collinear hadrons. This

hypothesis is called collinear fragmentation. In e+e− → qq̄ reactions this would lead

to the production of two back-to-back jets. Experimentally, most events contain

indeed 2 jets, where a typical event is shown in Fig. 2.5. But there is also a small

contribution from 3 and 4 jets etc. These appear once higher orders, thus more

partons in the final-state, are considered. They lead to the problems of IRC safety,

discussed in Sect. 2.3.3, and have to be treated carefully.

The decay products of an energetic parton are of course not infinitely well collimi-

nated which makes it necessary to establish jet algorithms, which map the outgoing

hadrons to a (smaller) number of jets. Hence, they provide a way of projecting

away the multiparticle dynamics of an event so as to leave a simpler quasi-partonic

picture of the underlying hard scattering event. It was shown that such algorithms

can be applied without loosing IRC safety [15]. They have to fulfil general condi-

tions that any IRC safe observable has to fulfil. To be useful, they should also be

relatively insensitive to the formation of hadrons, the hadronisation process. The

reason for that is that jet algorithms are used to compare distributions at parton

and hadron level, thus being applied to partons and hadrons or ultimately to their

representation in experiment, detector cells.

2.4.2 Infrared safe observables

The total cross section for the e+e− annihilation into hadrons is guaranteed to

be an IRC safe quantity by the KLN theorem. The amount of information it

contains however is limited, it tells nothing about the distribution of hadrons in

the final-state. Infrared safe cross sections or observables can be understood as

generalisation of the KLN theorem to less inclusive quantities.

All possible divergences arise from the collinear or soft momentum configurations

that were explicitly discussed in Sect. 2.3.3 for the e+e− → qq̄g case. The general

requirements for IRC safe observables can therefore be deduced.
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Figure 2.5: Two jet event in e+e− annihilation from the Opal Collabora-
tion.

e+e− collisions

Consider an observable, R, defined as,

R =
∞∑
n=2

1

n!

∫
dΦn

dσ

dΦn

Sn(pµ1 , . . . , p
µ
n) , (2.53)

where dΦn is the lorentz invariant phase space element already discussed in pre-

vious sections. On the assumption that all partons are not distinguished, the

symmetrisation factor 1
n!

is included. The functions Sn define the measurement to

be made. Note, that for Sn = 1 the total cross section is recovered.

Once the Sn fulfil certain requirements, the cancellation of infrared singularities

is guaranteed to all orders. On the assumption that the Sn are invariant under
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interchange of their arguments, this property may be expressed as

Sn+1(pµ1 , . . . , (1− λ)pµn, λp
µ
n+1) = Sn(pµ1 , . . . , p

µ
n) , (2.54)

for 0 ≤ λ ≤ 1. The definition in Eq.(2.54) implies, that any measurement should

not distinguish between a final-state, where two particles are collinear and one in

which these particles are replaced by one particle carrying the sum of the momenta

of these particles. Similarly, the measurement should not distinguish between a

final-state in which one particle has zero momentum and the final-state in which

this particle is omitted entirely. Typical examples for these observables at e+e−

colliders are the event shape variables, like thrust or spherocity. They literally

define the shape of an event in contrast to the jet finding procedure that is done

by jet algorithms. In the case of uniformly distributed hadrons for example, a jet

algorithm would always define jets, whereas the event shapes would disentangle

that shape from e.g. a pencil-like.

Hadronic collisions

For hadronic collisions, AB → X, the general form of a IRC finite quantity, R,

may be written as,

R =
∞∑
n=2

∫
dx1dx2

∑
a,b

fa/A(x1, µ
2) fb/B(x2, µ

2)

×
∫

dΦn
dσ̂

dΦn

Sn(pµ1 , . . . , p
µ
n) ,

(2.55)

where Sn has the property of Eq. (2.54). x1, x2 denote the longitudinal momentum

fractions of the incoming partons a and b. The “hat” on dσ̂ indicates that IRC

sensitivity arising from the the initial-state is factored into the parton distributions,

as discussed in Sect. 2.3.5. In addition to Eq. (2.54), partons that are collinear

with one of the beam momenta pµA or pµB, should not affect the measurement, i.e.

Sn+1(pµ1 , . . . , p
µ
n, λp

µ
A) = Sn+1(pµ1 , . . . , p

µ
n, λp

µ
B) = Sn(pµ1 , . . . , p

µ
n) . (2.56)
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Jet cross sections

δ

εQ

Figure 2.6: Visualisation of

the jet definition of Ref. [15].

The usage of jets also allows for a more ex-

clusive measurement without loosing IRC

safety. This is somehow obvious as jets

are the manifestation of partons in nature,

where it is expected that no divergences ap-

pear.

One of the first attempts to define jet cross

sections in e+e−annihilation [15], classified

an event as two-jet-like if all but a fraction

ε of the total available energy is contained

in a pair of cones of half-angle δ. The two-

jet cross section can then be obtained by integrating the matrix elements over the

regions of phase space that are determined by ε and δ. At leading order the two-jet

and total cross section are identical. At O (αs) one has to integrate Eq. (2.39) over

the appropriate range of x1, x2, which leads to the 2- and 3-jet rates

f2 =
σ2

σtot

= 1− 8CF
αs
2π

{
ln

1

δ

[
ln(

1

2ε
− 1)− 3

4
+ 3ε

]
+
π2

12
− 7

16
− ε+

3

2
ε2 +O (δ2 ln ε

)}
f3 = 1− f2 ,

(2.57)

where only the terms which are important for small δ are shown. The residual

soft and collinear singularities are revealed for ε, δ → 0. In a measurement ε and

δ would correspond to the finite energy resolution and granularity of a particle

detector and therefore never vanish.

2.4.3 Jet algorithms

The jet definition introduced in the previous section is the forerunner of a en-

tire class of jet algorithms, known as cone type algorithms [15, 23, 24]. They are

nowadays widespread at hadron colliders. Recent implementations are based on

identifying energy flow into cones in rapidity y and azimuth φ. To obtain final
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jets, various steps of iteration, merging and splitting of cones are used. The sec-

ond large class of algorithms is the sequential cluster or sequential recombination

type [25–30]. They introduce a distance measure between particles and repeatedly

recombine the closest pair until all are sufficiently well separated.

Cone algorithms

Cone jet algorithms try to find an angular cone around some direction of dominant

energy flow, by taking particles as seeds, i.e. trial cone directions. Then by evalu-

ating the four-momentum sum of all particles falling into the cone, the algorithm

defines a new trial direction for it. This procedure is iterated until the direction no

longer changes, i.e. a stable cone is found. Hence, stable cones have the property,

that the cone axis pµaxis coincides with the axis defined by the four-momentum sum

of all contained particles pµsum. One therefore has to define a measure of angular

distance, d, so that the requirement of a stable cone can be expressed as

d(pµsum, p
µ
axis) = 0 , with pµsum =

∑
i

pµi ·Θ (R− d(pµi , p
µ
axis)) , (2.58)

with R being the angular resolution or cone radius. A typical choice for the distance

measure is d2(p, q) = (yp − yq)2 + (φp − φq)2.

To ensure collinear safety the selection of seed particles is not allowed to be re-

stricted, all particles must be considered. However, if any particle can act as a

seed, it has to be ensured that the addition of an infinitely soft particle cannot

lead to a new stable cone. Otherwise the algorithm is IR unsafe. It turned out

that traditional cone type algorithms indeed suffered from this problem in certain

configurations with two particles being at the edge of a stable cone and no par-

ticle in between. Adding artificial midpoint seeds between pairs of stable cones

and searching for new stable cones seemed to be a solution. The identification of

certain triangular configurations, where the midpoint solution fails as well, showed

that these algorithms are only IRC safe to a certain order in αs.

The naive iterative cone algorithms for example are unreliable from O (α3
s) (or

O (α2
sαEM)), which means that at O (α4

s) first stable cones are missed. For vector

boson production + 2 jets for example, this means that the last meaningful order
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is the LO calculation!

It was only recently [24], that an infrared safe cone algorithm was proposed, which

is both reasonably fast O (N2 lnN) and IRC safe to all orders.

Sequential recombination algorithms

In contrast to the cone type algorithms, all sequential recombination algorithms

(SRAs) are IRC safe and have rather simple definitions. Their drawback however

was the apparent slowness in high-multiplicity hadron collider environments. The

clustering of N particles required O (N3) operations. This speed issue has been

solved in Ref. [31] by reducing the clustering problem to a (solved) problem in

computational geometry. Running times could be reduced to O (N lnN).

The most widely used algorithm is the kt jet-finder [29, 30]. In its longitudinally

invariant formulation, suitable for hadron colliders, it is defined as follows.

1. Calculate the kt-distance dij = min(k2
T,i, k

2
T,j) · R2

ij for each pair of particles

i, j, where R2
ij = (ηi− ηj)2 + (φi− φj)2 and kT,i is the transverse momentum

of particle i. Also calculate the beam distance diB = k2
T,i.

2. Find the minimum, dmin, of all dij and diB.

• If dmin is a dij, merge particles i and j into a single particle. The

resulting four-momentum is the sum of both.

• If dmin is a diB, declare the particle i to be a final jet and remove it from

the list.

3. Go back to step 1 until all particles are clustered.

A variant that is often used, introduces a jet resolution threshold dcut. The cluster-

ing procedure is stopped there, once all distance measures are above that threshold.

The number of clustered jets will therefore depend on the value of dcut. Hence, it

can be seen as a resolution parameter where dcut ≡ dmax would lead to only one

reconstructed jet, whereas dcut → 0 corresponds to the mode where all particles

are clustered. Typical observables to examine the jet structure are for example the
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number of jets as a funtion of the resolution parameter, or the resolution parameter,

Yn, at which n-jet events become n+ 1-jet events.



Chapter 3

Event Generators

“First Commandment of Event Generation:

Thou shalt never believe event generation is easy.”

— Leif Lönnblad, April 21, 2008

3.1 Introduction

The model for the underlying event has been implemented in the context of a

general-purpose event generator. For a coherent picture, the basics of these pro-

grams are reviewed in this chapter. This is done for Herwig++ [32–36], the event

generator of actual use. There are several other successful programs [37–42] avail-

able, which are not discussed in detail here.

Herwig++ is a general-purpose event generator for the simulation of high-energy

lepton-lepton and hadron-hadron collisions with special emphasis on the accurate

simulation of QCD radiation. It builds upon the heritage of the HERWIG program

[37, 43–47], while providing a much more flexible structure for further development.

It is based on ThePEG [48], which is a framework for event generators. ThePEG

provides all parts of the event generator infrastructure that do not depend on the

physics models used as a collection of modular building blocks. The specific physics

models of Herwig++ are implemented on top of these.

31
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It is useful to start by recalling the main features of a generic hard, high-momentum

transfer, process in the way it is simulated by Herwig++. The processes involved

can be divided into a number of stages corresponding to increasing time and dis-

tance scales, as already mentioned in Sect. 2.3.3:

1. Elementary hard subprocess. In the hard process the incoming particles inter-

act to produce the primary outgoing fundamental particles. This interaction

can involve either the incoming fundamental particles in lepton collisions or

partons extracted from a hadron in hadron-initiated processes. In general

this is computed at leading order in perturbation theory, although work is

ongoing to include higher-order corrections [49–52]. The energy scale of the

hard process, Q2, together with the colour flow between the particles, sets

the initial conditions for the production of QCD radiation in the initial- and

final-state parton showers.

2. Initial- and final-state parton showers. The coloured particles in the event are

perturbatively evolved from the hard scale of the collision to the infrared cut-

off. This occurs for both the particles produced in the collision, the final-state

shower, and the initial partons involved in the collision for processes with

incoming hadrons, the initial-state shower. The coherence of the emission of

soft gluons in the parton showers from the particles in the hard collision is

controlled by the colour flow of the hard collision. Inside the parton shower,

it is simulated by the angular ordering of successive emissions.

3. Decay of heavy objects. Massive fundamental particles such as the top quark,

electroweak gauge bosons, Higgs bosons, and particles in many models of

physics beyond the Standard Model, decay on time-scales that are either

shorter than, or comparable to that of the QCD parton shower. Depending

on the nature of the particles and whether or not strongly interacting particles

are produced in the decay, these particles may also initiate parton showers

both before and after their decay. One of the major features of the Herwig++

shower algorithm is the treatment of radiation from such heavy objects in

both their production and decay. Spin correlations between the production

and decay of such particles are also correctly treated.

4. Multiple scattering. For large centre-of-mass energies the parton densities
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are probed in a kinematic regime where the probability of having multiple

partonic scatterings in the same hadronic collision becomes significant. For

these energies, multiple scattering is the dominant component of the under-

lying event that accompanies the main hard scattering. These additional

scatterings take place in the perturbative regime, above the infrared cut-off,

and therefore give rise to additional parton showers. This is the part of the

simulation that has been developed and that is described in this thesis.

5. Hadronisation. After the parton showers have evolved all partons involved

in hard scatterings, additional scatters and partonic decays down to low

scales, the final-state typically consists of coloured partons that are close

in momentum space to partons with which they share a colour index, their

colour ‘partner’. Note, that this assignment is unique in the large Nc limit.

Herwig++ uses the cluster hadronisation model[44] to project these colour–

anticolour pairs onto singlet states called clusters, which decay to hadrons

and hadron resonances.

6. Hadron decays. The hadron decays in Herwig++ are simulated using a matrix

element description of the distributions of the decay products, together with

spin correlations between the different decays, wherever possible. The treat-

ment of spin correlations is fully integrated with that used in perturbative

production and decay processes so that correlations between the production

and decay of particles like the τ lepton, which can be produced perturbatively

but decays hadronically, can be treated consistently.

3.2 Monte Carlo methods

Before the details of the different phases of event generation are discussed, the very

basics of it, the Monte Carlo method, shall be introduced and briefly discussed.

The method and its name go back to Ref. [53].
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3.2.1 Integration

As will be seen in the next section, one vital ingredient to event generation is the

calculation of the cross section for the underlying hard process. This involves the

calculation of high-dimensional integrals, where both the integrand, f(x), and the

integration volume, V , are not necessarily well behaved,

I =

∫
V

f(x) dnx . (3.1)

The most convenient way solve this integral is stochastic sampling of the integrand

using uniformly distributed pseudo random numbers, xi,

I ≈ IMC := V · 〈f〉 = V · 1

N

N∑
i=1

f(xi) , (3.2)

where the integral is simply the product of the average value of the integrand times

the integration volume. The uncertainty that is inherent to IMC can be computed

using the variance defined as Var [f ] := 〈f 2〉 − 〈f〉2,

Var [IMC] = Var

[
V

N

N∑
i=1

f(xi)

]
=
V 2

N2
Var

[
N∑
i=1

f(xi)

]
=
V 2

N
Var [f ] , (3.3)

where in the last step the fact that the xi are independent has been exploited.

This simple result has several implications. First, the uncertainty is independent

of the dimension of the integration volume. It will always scale like ∝ 1√
N

. This

is the main advantage compared to other numerical integration algorithms, which

are typically highly dependent on the dimensionality of the problem. Second, the

uncertainty is proportional to the variance of the integrand. From that observation

you can immediately deduce two ways of improving the accuracy:

1. The so called Stratified Sampling relies on the partitioning of the integration

volume into smaller volumes, where the variance of the function is smaller.

2. The Importance Sampling simply modifies the integrand and the distribution

of sampling points in the same way, such that this modification cancels but

leaves a integrand with less fluctuations and therefore smaller variance.
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3.2.2 Event Generation

So far the integral can be computed, but the points xi, which are analogous to

events, i.e. kinematic configurations, are uniformly distributed. Each of them

however has a corresponding weight wi = V
N
f(xi). The sum of these weights is the

integral value. If these events are accepted with the probability

Pi =
wi

max(wi)
, (3.4)

they will be distributed in the same way than the initial integrand was. This is also

known as the Acceptance and Rejection method. But also refers to an unweighting

of events, because after that procedure, all events have equal weight.

3.3 Elementary Hard Process

The elementary hard process is the scattering process of fundamental particles with

the highest scale in the event. The generation of this scattering process, i.e. the

determination of the momenta of the external particles, their flavour, colour flow

etc. is done using the Monte Carlo technique introduced in the previous Section.

The corresponding integral that is used in that process is the standard expression

for hadronic cross sections from Sect. 2.3.6,

σ =
∑
a,b

∫
dx1dx2 dΦn fa/p1(x1, Q

2) fb/p2(x2, Q
2)

× 1

2ŝ
θ(cuts)

∑
|M|2 (papb → p1 . . . pn) .

(3.5)

The longitudinal momentum fractions of the struck partons w.r.t. the incoming

hadrons are x1,2, dΦn denotes the lorentz invariant phase space element, fa/h(x,Q
2)

the PDFs for parton a in a hadron h andM is the amplitude of the process. This

expression contains a theta function to account for kinematic cuts that are imposed

on the outgoing particles.

ThePEG provides the infrastructure for doing this in a generic way. The PDFs are

specific to Herwig++ or handled by the generic tool LHAPDF [54]. The matrix
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elements are the remaining part to be implemented. In order to facilitate the

process of adding new matrix elements, where needed, and to enable the generation

of spin correlation effects [55–58], all matrix element calculations are based on the

helicity libraries of ThePEG.

There are a few of them included for e+e− collisions, namely quark-antiquark and

dilepton pair production, via interfering photon and Z0 bosons, Z0h0 production

and higgs production in vector boson fusion. In hadron-hadron collisions a few

more are available:

• single W/Z production with up to one additional jet

• QCD dijet production

• heavy quark pair production

• prompt photon pair production as well as direct photon production in asso-

ciation with a jet

• s-channel higgs boson production, associated production with heavy vector

bosons and associated production with a hard jet

As well as providing a native library of Standard Model processes and an interface

to parton-level generators, which is discussed in the next section, Herwig++ also

includes matrix elements for hard 2 → 2 collisions and 1 → 2 decays, arising in

various models of new physics like the Minimal Supersymmetric Standard Model,

the Randall-Sundrum Model and Minimal Universal Extra Dimensions. Details

can be found in Ref. [59].

3.3.1 Les Houches interface

Nowadays there are a number of programs that automate these calculations, for

a wide range of processes and high multiplicity final states. To enable the usage

of such programs a standardised interface has been developed. These programs

can generate parton-level events using either the original Les Houches Accord [60]

or the subsequent extension [61], which specified a file format for the transfer of
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the information between the matrix element generator and a general-purpose event

generator.

Nevertheless, there are still some cases for which it is useful to handle all stages of

the event generation process by one program. This is particularly true for processes

in which spin correlations between the production and decay stages are significant

e.g. those involving top quarks, τ leptons or other heavy unstable particles. Such

correlation effects are hard to treat correctly if different programs handle different

steps of the simulation process.

3.4 Parton Showers

The elementary hard process previously discussed, is typically calculated at the

leading order (LO) in QCD. Next-to-leading order (NLO) calculations are avail-

able for many processes and even one further order in αs, NNLO calculations are

available in some special cases. Due to the roughly factorial growth in complexity

one cannot expect much higher orders to be computed soon. There are kinematic

regions, however, where higher-order terms are enhanced and cannot be neglected.

The collinear and soft singularities discussed in Sects. 2.3.3 and 2.4.2 arose once

higher orders were included. Parton shower algorithms give an approximate de-

scription of these effects to all orders, by working in the collinear limit and to

leading logarithmic accuracy.

3.4.1 Single branching

θba

b

c

θc

Mn

Figure 3.1: Timelike

branching.

The collinear enhancements are associated

with a parton branching. Such a single

branching of parton a into partons b + c

is depicted in Fig. 3.1. The blob represents

the rest of the diagram. That means that

a is an outgoing parton with p2
a ≡ t > 0,

which is called timelike branching. The

branching of an incoming parton is called
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spacelike branching, due to the negative virtuality (t < 0) of the parton there. The

opening angle is θ = θb + θc. With the energy fractions

z =
Eb
Ea

= 1− Ec
Ea

, (3.6)

t is given, in the collinear limit, by1

t = 2EbEc(1− cos θ) = z(1− z)E2
aθ

2 . (3.7)

θ can be expressed in terms of θa or θb as θ = θb
1−z = θc

z
. The different possible

branchings are g → gg, g → qq̄ and q → qg. Using the small angle approximation

one finds that the matrix element squared for these n+ 1 particle processes can be

expressed in terms of the n particle matrix element as

|Mn+1|2 ∼ 4g2

t
P̂ba(z) |Mn|2 . (3.8)

The additional factors P̂ba are the so-called unregularised, massless splitting func-

tions related to the Altarelli-Parisi kernel from Eq. (2.49). For the three possible

splittings, they are given by

P̂gg = 3

[
1− z
z

+
z

1− z + z(1− z)

]
P̂qg =

1

2

[
z2 + (1− z)2

]
P̂qq =

4

3

1 + z2

1− z .

The differential cross section can be expressed using the splitting functions, as long

as the dependence on the azimuthal angle φ of the branched parton is integrated

out,

dσn+1 = dσn
dt

t
dz

αs
2π
P̂ba(z) . (3.9)

One finds that exactly the same formula also describes spacelike branchings. This

universality of hierachical emissions is known as factorisation of collinear singular-

ities.

1assuming that p2
b , p

2
c � p2

a
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3.4.2 Multiple branching

The aim of a parton shower algorithm is now to simulate according to Eq. (3.9)

the ensemble effects of multiple parton branchings. Introducing the cut-off scale

Q2
0 ≡ t0, imposes a resolution parameter, such that branchings that are softer

or more collinear2 than that, are not distinguishable from no branching at all,

i.e. unresolvable. By invoking unitarity (requiring the sum of branching plus no-

branching probabilities is one), the cancellation between the divergent parts of the

splitting functions and the corresponding loop diagrams is implicitly handled. The

main tool for the simulation of multiple branching is the Sudakov form factor [62],

∆(t),

∆i(t) ≡ exp

[
−
∑
j

∫ t

t0

dt′

t′

∫
dz
αs
2π
P̂ij(z)

]
. (3.10)

It is constructed such, that it gives the probability, for parton i, to evolve from

t to t0 without any resolvable emission. It is therefore given by one minus the

n-emission probabilities, taken from Eq. (3.9), summed over all n.

The crucial ingredient for the Monte Carlo simulation is now the scale t′ where the

next branching occurs. The probability that parton i evolved from t to t′ without

resolvable emission is ∆i(t)/∆i(t
′). t′ will have the correct probability distribution,

if the equation

∆i(t)

∆i(t′)
= R (3.11)

is solved for t′, with R being a uniformly distributed random number, R ∈ [0, 1].

The algorithm is then recursively applied to each of the products of this branching.

The evolution of spacelike partons must take into account, that these partons are

extracted from the incoming hadrons. This can be consistently done, by modifying

Eq. (3.11) in the following way

fi(x, t)∆i(t
′)

fi(x, t′)∆i(t)
= R , (3.12)

2The boundaries of the z integration will also depend on t to regularise the divergences in
P̂ba(z) at z = 1 by z < 1− ε(t)
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where parton i evolves backwards from (t′, x) to (t, x).

The remaining variables to generate are the momentum fraction z and azimuthal

angle φ. When averaging over φ, a simple uniform distribution φ ∈ [0, 2π] can be

chosen. In the timelike case z will be distributed according to αs
2π
Pi(z), whereas in

the spacelike case ((t′, x′)→ (t, x)) according to αs
2π

Pi(z)
z
fi(x

′/z, t).

3.4.3 Coherent branching

Such an algorithm of multiple branchings treats all leading collinear logarithms,

arising from the dt
t

term, correctly. However, there are also important soft loga-

rithms, from dz
z

terms, for gluon emissions. After averaging over azimuthal angle,

their interference is completely destructive. It has been shown [43, 63–71] that

whenever soft gluon emissions are considered, branchings that are not angular

ordered do not give any leading logarithmic contributions.

A major success of the original HERWIG program was its treatment of soft gluon

interference effects, in particular the phenomenon of colour coherence, via the angu-

lar ordering of emissions in the parton shower. Herwig++ simulates parton showers

using the coherent branching algorithm of [72], which generalises that used in the

original HERWIG program [43–45]. The new algorithm retains angular ordering as

a central feature and improves on its predecessor in a number of ways, the most

notable of these being:

• a covariant formulation of the showering algorithm, which is invariant under

boosts along the jet axis;

• the treatment of heavy quark fragmentation through the use of mass-dependent

splitting functions [73] and kinematics, providing a complete description of

the so-called dead-cone region.

3.5 Hadronisation
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Figure 3.2: Primary cluster mass

distribution in e+e− annihilation at

various centre-of-mass energies Q for

clusters containing only light quarks.

Taken from Ref. [32].

The higher-order calculations men-

tioned above are all parton-level

calculations that are not usable for

e.g. detector simulation. They con-

tain quarks and gluons at large en-

ergy scales. Parton showers evolve

this high-scale, Q2, outgoing par-

tons to lower scales by successive

parton emissions as long as per-

turbation theory is applicable, i.e.

until some infrared cut-off value,

Q2
0 is reached. A mechanism is

then needed to convert the partons

to hadrons at the typical hadronic

scale Λ2
QCD. In Herwig++ this is

done using the cluster model [44].

The basis of this model is the

colour preconfinement property of

the angular-ordered parton shower, described in Ref. [74]. There it was shown,

that the parton shower evolution leads to a configuration of quarks and gluons

from which one can form colourless clusters with a finite and Q2-independent mass

of order Q0. As this happens still in the perturbative regime this phenomenon was

called preconfinement. Confinement is the underlying dynamics of the conversion

from clusters to observed hadrons. Associated with that is the transition from

mass scales of O (Q0) to typical hadron masses O (mπ,mρ).

The cluster model, which implements that transition, has the properties that it is

local in the colour of the partons and independent of both the hard process and

centre-of-mass energy of the collision [44, 45].

3.5.1 Gluon splitting and cluster formation

As a first step of the cluster hadronisation model, the gluons left at the end of the

parton shower are non-perturbatively split into quark-antiquark pairs. Since, at
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the end of the Herwig++ shower the gluons are given their constituent mass it is

essential that this mass is heavier than twice the constituent mass of the lightest

quark. The gluon is allowed to decay into any of the accessible quark flavours

with a probability given by the available phase space for the decay. The decay

itself is isotropic. Now, the event only contains colour connected (di)quarks and

anti-(di)quarks. The colour singlets formed by these colour connected parton pairs

are formed into clusters with the momentum given by the sum of the momenta of

the constituent partons.

3.5.2 Cluster fission

Figure 3.2 provides the justification for regarding the clusters as highly excited

hadron resonances, because the cluster mass spectrum is both universal (indepen-

dent of the hard scale) and peaked at low masses. These clusters could then simply

decay into the observed hadrons. There is however a small fraction of clusters that

are too heavy for this to be a reasonable approach. These heavy clusters are

therefore first split into lighter clusters before they decay.

A cluster is regarded heavy if its mass, M , is such that

MClpow ≥ ClClpow
max + (m1 +m2)Clpow , (3.13)

where Clmax and Clpow are parameters of the model, and m1,2 are the masses of

the constituent partons of the cluster. In order to improve the description of the

production of bottom and charm hadrons, both Clmax and Clpow can be set with

distinct values for clusters containing light, charm and bottom quarks respectively.

For clusters that need to be split, a qq̄ pair is selected and taken from the vacuum.

Only up, down and strange quarks are chosen with separate probabilities, given

as adjustable parameters. Once a pair is selected the cluster is decayed into two

new clusters with one of the original partons in each cluster. Unless one of the

partons is a remnant of the incoming beam particle the mass distribution of the

new clusters is given by

Mi = mi + (M −mi −mq) · x(P ) , (3.14)
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where mq is the mass of the parton taken from the vacuum and Mi=1,2 are the

masses of the clusters formed by the splitting. x is a random number distributed

between xmin > 0 and 1 according to f(P ) = 1/P . The distribution of the masses

of the clusters is controlled by the parameter P , which again can have different

values for clusters containing light, charm or bottom quarks. In addition to the

selection of the mass according to Eq. (3.14) the masses of the daughter clusters

are required to be less than that of the parent cluster and greater than the sum of

the masses of their constituent partons.

For clusters that contain a remnant of the beam particle in hadronic collisions a

soft distribution is used for the masses of the clusters produced in the splitting.

The mass of the soft clusters is given by

Mi = mi +mq + x, (3.15)

where x is distributed between 0 and M −m1 −m2 − 2mq according to

dP

dx2
= e−bx . (3.16)

The faster decreasing exponential is used in contrast to Eq. (3.14), because that

avoids a proliferation of transverse energy due to the many sequential decays of

the typically high-mass remnant clusters.

3.5.3 Cluster decays

The final step is the decay of the cluster into a pair of hadrons. For a cluster

of a given flavour (q1, q̄2) a quark-antiquark or diquark-antidiquark pair (q, q̄) is

extracted from the vacuum and a pair of hadrons with flavours (q1, q̄) and (q, q̄2)

is formed. The hadrons are selected from all the possible hadrons with the appro-

priate flavour based on the available phase space, spin and flavour of the hadrons.

The weight for the production of hadrons a(q1,q̄) and b(q,q̄2) is

W (a(q1,q̄), b(q,q̄2)) = Pqwasawbsbp
∗
a,b, (3.17)

where Pq is the weight for the production of the given quark-antiquark or diquark-
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antidiquark pair, wa,b are the weights for the production of individual hadrons and

sa,b are suppression factors for the hadrons, which allow the production rates of

individual meson multiplets, and singlet and decuplet baryons to be adjusted. The

momentum of the hadrons in the rest frame of the decaying cluster,

p∗a,b =
1

2M

[(
M2 − (ma +mb)

2
) (
M2 − (ma −mb)

2
)] 1

2 , (3.18)

measures the phase space available for two-body decay. If the masses of the decay

products are greater than the mass of the cluster then the momentum is set to

zero. The weight for the individual hadron is

wh = wmix(2Jh + 1), (3.19)

where wmix is the weight for the mixing of the neutral light mesons3 and Jh is the

spin of the hadron.

The amount of baryon production can be controlled directly by the following mech-

anism: If a cluster mass is sufficiently large that it can decay into the lightest

baryon-antibaryon pair the parameter Pqq is used to decide whether to select a

mesonic or baryonic decay of the cluster. The probabilities of selecting a mesonic

decay or baryonic decay are 1
1+Pqq

and Pqq
1+Pqq

.

The final cluster decay is isotropic in the cluster rest frame. However, hadrons

that contain a parton produced in the perturbative stage of the event retain the

direction of the parton in the cluster rest frame, apart from a possible Gaussian

smearing of the direction.

In practice there is always a small fraction of clusters that are too light to decay into

two hadrons. These clusters are therefore decayed to the lightest hadron, with the

appropriate flavours, together with a small reshuffling of energy and momentum

with the neighbouring clusters to allow the hadron to be given the correct physical

mass. The cluster with the smallest space-time distance that can absorb the recoil

is used for that reshuffling.

3wmix = 1 for all other particles.
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3.6 Particle Decays

The hadronisation model has converted the colourless clusters into hadrons. How-

ever, most of them have such short lifetimes that they decay before they hit the

first layer of a potential detector in a typical collider experiment. Therefore the

decay of these hadrons has to be simulated as well. Herwig++ uses a sophisticated

model of hadronic decays, as described in Refs. [75, 76]. The simulation is designed

to have the following properties:

• a unified treatment of the decays of both the fundamental particles and

the unstable hadrons, this is of particular importance for particles like the τ

lepton, which, while a fundamental particle, is more like the unstable hadrons

in the way it decays;

• up-to-date particle properties, i.e. masses, widths, lifetimes, decay modes and

branching ratios together with a new database to store these properties to

make updating the properties easier and the choices made in deriving them

clearer;

• full treatment of spin correlation effects using the algorithm of Refs. [55–58]

for the decay of all unstable particles, it is important that the same algorithm

is used consistently in all stages of the program so that correlations between

the different stages can be correctly included;

• a sophisticated treatment of off-shell effects for both the unstable hadrons

and fundamental particles;

• a large range of matrix elements for hadron and τ decays including both gen-

eral matrix elements based on the spin structures of the decays and specific

matrix elements for important decay modes;

• the accurate simulation of QED radiation in the particle decays using the

Yennie-Frautschi-Suura (YFS) formalism.

The information in the Particle Data Group’s (PDG) compilation [77] of experi-

mental data is sufficient in many cases to determine the properties of the hadrons
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used in Herwig++. However, there are some particles for which the data are incom-

plete or too inaccurate to be used. Equally, there are a number of particles that

are necessary for the simulation but have not been observed, particularly excited

bottom and charm hadrons. A number of choices therefore have to be made in

constructing the particle data tables used in the event generator based on the data

in Ref. [77].

In the past the data were stored as either a text file or the contents of a FORTRAN

COMMON block. However, due to the relatively large amount of data that needs

to be stored a database approach based on the MySQL database system has been

adopted. The event generation still uses text files to read in the particle properties

but these files are now automatically generated from the database. This provides

a range of benefits: the data can now be edited using a web interface; additional

information describing how the particle properties were determined is stored in

the database both improving the long-term maintenance and allowing the user to

understand the uncertainties and assumptions involved.

3.6.1 Details

τ decays

The simulation of τ lepton decays in Herwig++ is described in detail in Ref. [75],

together with a detailed comparison between the results of Herwig++ and TAUOLA

[78, 79]. The matrix element for the decay of the τ lepton can be written as

M =
GF√

2
Lµ J

µ, Lµ = ū(pντ ) γµ(1− γ5)u(pτ ) , (3.20)

where pτ is the momentum of the τ and pντ is the momentum of the neutrino

produced in the decay. The information on the decay products of the virtual W

boson is contained in the hadronic current, Jµ. This factorisation allows for the

implementation of the leptonic current Lµ for the decaying τ independent of the

hadronic current and then combine them to calculate the τ decay matrix element.

Hadronic currents that occur are for the τ decays to one pseudoscalar- or vector-

meson, the leptonic decay to lepton and anti-neutrino, decays to two mesons via ρ

or K∗ resonances, to Kπ via vector and scalar resonances, 3 meson decays, π±π0γ
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and the four and five pion decays.

Weak hadron decays

There are five classes of weak mesonic decays currently included in the simulation:

1. Exclusive semi-leptonic decays of bottom and charm mesons

The decays are of the general type X → Y `ν`. Their matrix element can

again be factorised into a leptonic and a hadronic current. The latter one can

be written in a general Lorentz structure with a number of unknown form

factors. Several form factor models are available.

2. Exclusive decays

Several models for D → Kππ are included here, which are based on various

experimental fits. Apart from that, other weak hadronic decays are simulated

using the form factors that were already implemented for semi-leptonic meson

decays together with the weak currents from τ decays.

3. Inclusive decays

In addition to the exclusive weak decays of the mesons to specific final-states

we include a number of models of the decay of mesons containing a heavy,

i.e. bottom or charm, quark based on the partonic decay of the heavy quark.

The Herwig++ cluster hadronisation model is then applied to the resulting

partonic final state to produce hadrons. This approach is primarily used for

the bottom mesons where there are insufficient exclusive modes to saturate

the branching ratios.

4. Leptonic decay of pseudoscalar mesons

There are a small number of decays of pseudoscalar mesons to a charged

lepton and a neutrino, e.g. π → `ν and Ds → `ν.

5. Inclusive b → sγ mediated decays

There is a range of decays, both inclusive and exclusive, mediated by the

b → sγ transition. These decays are simulated by using a partonic decay

of the B meson to a photon and a hadronic system, composed of a quark

and antiquark, which recoils against the photon. The mass spectrum of the

hadronic system is calculated using a theoretical model [80].
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Strong and electromagnetic hadron decays

The vast majority of the strong and electromagnetic decays in Herwig++ are sim-

ulated using a few simple models based on the spin structure of the decay. These

simple models are supplemented with a small number of specialised models, usually

from experimental fits, for specific decay modes.

For a number of bottomonium and charmonium resonances partonic decays of the

mesons to qq̄, gg, ggg and ggγ are used to model the unobserved inclusive modes

needed to saturate the branching ratios. The cluster hadronisation model is then

used to hadronise these partonic final-states. A veto prevents double counting with

other exclusive modes.



Chapter 4

Multiple Partonic Interactions

“Prediction is very difficult, especially if it’s about the future.”

— Niels Bohr, 1885 - 1962

After an introduction and discussion of experimental findings related to the un-

derlying event, we will introduce the model that we use to simulate it in terms of

multiple interactions. After tuning its free parameters to existing data, we address

the question of intrinsic PDF uncertainties and make predictions for the LHC.

Needless to say, these studies rely on a Monte Carlo implementation of the pre-

sented ideas into Herwig++, which is a central building block of this work. We

will, however, focus on the physics and describe the implementation only briefly in

Appendix A.

4.1 Introduction

With the advent of the LHC in the near future it will become increasingly impor-

tant to gain a detailed understanding of all sources of hadronic activity in a high

energy scattering event. An important source of additional soft and semi-hard

jets will be the presence of the underlying event. From the experimental point of

view, the underlying event contains all activity in a hadronic collision that is not

related to the signal particles from the hard process, e.g. leptons or missing trans-

49
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verse energy. The additional particles may result from the initial-state radiation

of additional gluons or from additional hard (or soft) scatters that occur during

the same hadron–hadron collision. Jet measurements are particularly sensitive to

the underlying event because, although a jet’s energy is dominated by the primary

hard parton that initiated it, jet algorithms inevitably gather together all other

energy deposits in its vicinity, giving an important correction to its energy and

internal structure.

In standard Monte Carlo event generators, like Herwig(++) [32–36, 47] , PYTHIA

[38, 39] or SHERPA [40], additional gluons from initial- and final-state radiation

are generated with the help of parton shower algorithms, possibly supplemented

by multi-jet matrix elements[81, 82]. Therefore, we tend to attribute these to the

hard process rather than to the underlying event. On top of that, the underlying

event is simulated as some additional hadronic activity. The simplest way to do

so is the so–called UA5 model [83], which has been the default underlying event

model in HERWIG for a long time. Here, additional (soft) hadronic activity is

generated as a number of additional clusters are generated flat in rapidity with an

exponential transverse momentum distribution. See [35] for more details. These

clusters eventually give the required additional activity of soft hadrons.

h1

h2

Figure 4.1: Sketch of two par-

tonic scatterings.

Another variant, which has been far

more successful in the description of re-

cent collider data, was formulated as

a sequence of more-or-less independent

parton interactions. The simplest case

of two partonic interactions is shown

in Fig. 4.1 In contrast to the UA5

model this model is capable of describ-

ing the jet-like structure of the underly-

ing event. In its initial formulation [84]

there were no parton showers invoked.

Later variants of this model also con-

tain full parton showers [85, 86]. The additional scatters in these models are

always modelled as simple QCD 2 → 2 scattering as long as the scattering con-

tains a hard jet of at least a few GeV. Soft, more forward scattering may also be
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modelled but requires a unified description of perturbative and non-perturbative

scattering, as in the dual parton model [87–89], which had been implemented into

the event generator PHOJET [41]. Another model is the simple extrapolation of

the transverse momentum distribution of hard jets in QCD processes down to zero

pt [90]. Such a modelling of soft interactions will also allow us to describe mini-

mum bias events. These are dominated by soft, forward scatterings and diffractive

production of particles during the hadron–hadron scattering event.

Understanding minimum bias interactions and the underlying event are very im-

portant for many aspects of LHC physics. Particularly in high luminosity runs,

every triggered hard event in one bunch crossing will be accompanied by additional

interactions among other protons from the same bunch. These are predominantly

minimum bias interactions and will give some additional activity in the detectors.

There are already detailed plans for the measurement of the underlying event in

ATLAS [91] and CMS [92, 93]. The presence of the underlying event is important

whenever measurements at the LHC will be based on the measurements of the

properties of jets, like e.g. their energy. The determination of the so-called jet en-

ergy scale is known to be improved when a reasonable modelling of the underlying

event is included in the analysis. A good example for this is the measurement

of the top mass [94]. Implications for the central jet veto in vector boson fusion

processes have been addressed in detail in [95].

In this Chapter we will focus on the description of the semi-hard component of the

underlying event, which stems from additional semi-hard scatters within the same

proton. Not only does this model give us a simple unitarisation of the hard cross

section, it also allows to give a good description of the additional substructure of

the underlying events. It turns out that most activity in the underlying event can

be understood in terms of hard mini-jets. We therefore adopt this model, based

on the model Jimmy [85, 86], for our new event generator Herwig++ [35]. We

will describe the basic implementation of the model and its parameters and study

some important implications for jet final-states. In Chap. 6 we will consider an

extension of this model towards softer interactions, which will also allow us to

describe minimum bias interactions.

Improvements of the underlying event description have also been implemented in

other event generators. A completely new formulation of the interleaving of un-
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derlying hard scatterings with the parton shower has been introduced with the

latest versions of PYTHIA [38, 39, 96, 97]. A model very similar to the multi-

ple interaction model in PYTHIA has been implemented in SHERPA [98]. A new

approach, based on kT–factorisation [99–101] has been introduced and studied in

[102]. An important issue, which has been addressed in [96] is the relation between

the charged particle multiplicity and the average transverse momentum in the un-

derlying event. The relation between these observables in the transverse region of

jet events may point us towards the right colour correlations of the different hard

scatters [103]. We want to point out that the organisation of colour lines adopted

in our model differs significantly from that in PYTHIA.

In Sect. 4.3 we briefly review the theoretical motivation for multiple interactions

and describe all details that are relevant for our Monte Carlo implementation. In

Sect. 4.4 we discuss the parameters of our model and perform a fit to current

Tevatron data. Taking this as a starting point, we make predictions for the most

important final-state observables at the LHC. Furthermore, we discuss implications

of the intrinsic uncertainties of parton distribution functions for the underlying

event observables.

4.2 Experimental results

Experimentally, there has been strong evidence for the presence of multiple par-

tonic interactions already at the CERN ISR through the measurement of a mo-

mentum imbalance in multi-jet events [104]. The idea for this measurement is that

multiple pairs of jets, two in this case, will appear to be balanced in transverse

momentum if they have been created in different back–to–back events rather than

a single multi-jet event. Similar observations of double parton scattering [105]

have been made at the Tevatron [106, 107]. Nowadays, the clearest observation

has been made in γ+3 jet events at CDF [108]. In addition to this clear evidence

for the presence of multiple interactions in hadronic collisions, the only sensible

description of the final-state of such events can be made with detailed Monte Carlo

modelling, based on this ansatz. The most detailed measurements of the properties

of the underlying event as well as their implications for Monte Carlo models are

described in [109, 110].
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4.2.1 CDF analyses

We will use the data of Ref. [109] to validate and tune our model and therefore

give a detailed description of the measurement in this section.

CDF has studied the properties of the charged particle component of jets, which

they refer to as charged particle jet. They used a simple algorithm to reconstruct

the jets and examine event properties as a function of the transverse momentum of

the so-called leading jet. This is the jet with the largest transverse momentum in

the event. The jet pt is defined to be the scalar sum of the transverse momentum

of all constituents, i.e. charged particles, that build up the jet.

The analysis solely used information from the central tracking chamber (CTC) in

the region pt > 0.5 GeV and |η| < 1 where the track finding efficiency is high and

uniform. The data is then compared to the simulation by applying this constant

efficiency (92%) to the simulated data, without any further detector simulation.
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Figure 4.2: Event topology.

Taken from Ref. [109].

The direction of the leading jet was

used to partition each event into three

parts, the towards, away and trans-

verse regions. These regions are equal

in size in η − φ space and classify

where particles are located in this space

with respect to the hardest jet in the

event. Figure 4.2 shows the three

regions schematically for an example

event. The towards region contains the

leading charged particle jet, whereas

the away region contains, on average,

the balancing jet. The transverse re-

gion, being perpendicular to the plane

of the hard 2 → 2 scattering, exhibits

the largest relative contribution from the underlying event. If we assume a sym-

metric underlying event in azimuth, this region is therefore very sensitive to the

underlying event. For each of these regions the average number of charged particles

and the average scalar pt sum is plotted against the pt of the leading jet.
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Two data sets were used in the analysis, where in addition to the pt and η cuts on

the tracks a single vertex requirement was imposed to eliminate the background

from several proton anti-proton collisions in one bunch crossing (Pile-up).

1. The first dataset was obtained by applying the Min-bias trigger, which re-

quired at least one particle hit in the forward beam-beam counter (BBC) as

well as in the backward BBC (3.4 < |η| < 5.2). The data collected here goes

up to 20 GeV leading jet transverse momentum.

2. The Jet20 trigger was used for the second dataset to extend the analysis

to larger values of leading jet transverse momentum. It required an energy

deposit of at least 20 GeV in a cluster of calorimeter cells. Hence, this trigger

acts on both charged and neutral particles. Nevertheless its data samples are

used from 20 GeV transverse momentum of the leading charged particle jet

onwards. This matching should have a residual bias, which forced us to

add an additional systematic error for this transition region. Details on this

additional error are given in Appendix B.

Jet definition

The jet algorithm that was used is non-standard and works as follows:

1. Order all particles according to their transverse momentum (→ ordered list).

2. Go to the first particle in the list and assign a new jet to it. Remove this

particle from the list. If the list is empty: exit

3. Go to the first particle in the list

4. Compute the distance measure R with respect to the centroid of the jet.

5. R ≤ 0.7:

(a) Add this particle to the jet.

(b) Remove it from the list. If the list is empty: exit
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(c) Recalculate the centroid of the jet, with

ηjet =
∑
i

pt,i ηi
pt,jet

, φjet = ∆φ

(
φ1 +

∑
i

pt,i
pt,jet

∆φ(φi − φ1)

)
, (4.1)

where φ1 is the azimuthal angle of any particle in the jet and ∆φ a

mapping to the range [−π, π].

(d) Go to 3.

R > 0.7:

(a) If the end of the list is already reached, Go to 2. otherwise go to the

next particle in the list.

(b) Go to 4.

Once a particle is assigned to a jet it stays with that jet. This ensures that all

particles are assigned to a jet, but it means that some particles in the jet may lie

outside of R. There is no merging or splitting and a particle is in one and only one

jet. This jet algorithm is not IRC safe and therefore not applicable at the parton

level. Full event generation provides a regularisation of the infrared and collinear

divergences via the hadronic masses but a residual sensitivity to soft physics may

still exist.
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4.3 The model
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Figure 4.3: Total cross sec-

tions (black) in two parame-

terisation [6, 7] based on the

non-perturbative Pomeron fits by

Donnachie and Landshoff. In

blue the QCD jet production

cross section above 2 GeV.

The starting point for thinking about

multiple interactions is the observation

that the cross section for QCD jet pro-

duction may exceed the total pp or

pp̄ cross section already at an inter-

mediate energy range and eventually

seems to violate unitarity. For exam-

ple, for QCD jet production with a min-

imum pt of 2 GeV this already hap-

pens at
√
s ∼ 1 TeV. This can be seen

in Fig. 4.3, where we plot the QCD

jet cross section as well as the total

pp cross section parameterisation from

the non-perturbative Pomeron fits from

Refs.[6, 7].

This pt cutoff should however be large

enough to ensure that we can calcu-

late the cross section in pQCD, using

Eq. (2.50),

σinc(s; pmin
t ) =

∑
i,j

∫
pmin
t

2
dp2

t fi/h1(x1, µ
2)⊗ dσ̂i,j

dp2
t

⊗ fj/h2(x2, µ
2) , (4.2)

where ⊗ denote the convolution integrals in longitudinal momentum fractions x1

and x2. dσ̂ is the differential partonic cross section for QCD 2→2 scattering. The

rapid increase of this cross section remains for any fixed cut-off and the reason for

it turns out to be the strong rise of the proton structure function at small x, since

the x values probed decrease with increasing centre-of-mass energy.

The key to resolve this seeming unitarity violation is the inclusive definition of the

standard parton distribution functions. They give the inclusive distribution of a

parton in a hadron, with all other partonic interactions summed and integrated

out. If, on average, there are 〈ndijet〉 jet pairs produced with transverse momentum
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larger than pmin
t per collision, one has

σinc(s; pmin
t ) = 〈ndijet〉 · σinel(s; p

min
t ) , (4.3)

where σinel is the cross section for having one or more jet pairs above pmin
t . σinel

has to stay below the total cross sections to preserve unitarity. This proliferation

of low-x partons does, however, signal the onset of a regime in which the simple

interpretation of the pQCD calculation as describing the only partonic scattering

must be unitarised by additional scatters.

In principle, predicting the rate of multiple partonic scattering processes requires

multi-parton distribution functions, about which we have almost no experimental

information. However, the fact that the standard parton distribution functions

describe the inclusive distribution gives a powerful constraint, which we can use to

construct a simple model.

4.3.1 Parton level theory

The procedure of calculating the inelastic cross section from the inclusive one

employs the eikonal approximation, introduced in Chap. 2. At fixed impact pa-

rameter, b ≡ |b|, the probability for k partonic interactions,

Pk =
〈n(b, s)〉k

k!
e−〈n(b,s)〉 , (4.4)

can be derived [111] in a field-theoretical approach using the Abramovski-Gribov-

Kancheli (AGK) cutting rules [112]. The average number of partonic collisions,

〈n(b, s)〉 , can be obtained as convolution of a parton luminosity, Lpartons, and the

partonic cross section as

〈n(b, s)〉 = Lpartons(x1, x2, b)⊗
∑
i,j

∫
dp2

t

dσ̂i,j
dp2

t

. (4.5)

Since Lpartons most likely depends on the longitudinal momentum fractions as well

as the transverse coordinates, it is expressed in terms of the number densities

G(x,b, µ2). They represent the average number of partons with a given momentum
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fraction x and transverse coordinate b. Equation (4.5) reads now

〈n(b, s)〉 =

∫
d2b1d2b2dp2

t

∑
i,j

dσ̂ij
dp2

t

⊗Gi/h1(x1, |b1| , µ2)⊗Gj/h2(x2, |b2| , µ2)δ2(b2 − b1 − b) (4.6)

=

∫
d2b′dp2

t

∑
i,j

dσ̂ij
dp2

t

⊗Gi/h1(x1, |b− b′| , µ2)⊗Gj/h2(x2, |b′| , µ2) , (4.7)

By assuming a factorisation of the x and b dependence in G, namely

G(x,b, µ2) = f(x, µ2) · S(b) , (4.8)

where f(x, µ2) is the conventional parton distribution and S(b) are the spatial

parton distributions, Eq. (4.7) can be written as

〈n(b, s)〉 = σinc(s; pmin
t ) ·

∫
d2b′ Sh1(|b− b′|) Sh2(|b′|)

= A(b) · σinc(s; pmin
t ) , (4.9)

where we identify the standard perturbative jet cross section from Eq. (4.2) . In

Eq. (4.9), A(b) describes the overlap of the partons in the colliding hadrons. We

model the impact parameter dependence of partons in a hadron, S(b), by the

electromagnetic form factor,

Sp̄(b) = Sp(b) =

∫
d2k

(2π)2

eik·b

(1 + k2/µ2)2
, (4.10)

where µ is the inverse hadron radius. This leads to

A(b) =
µ2

96π
(µb)3K3(µb) , (4.11)

where K3(x) is the modified Bessel function of the third kind. The overlap function,

shown in Fig. 6.2, is normalised such that∫
d2b A(b) = 1 . (4.12)
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We do not fix µ at the value determined from elastic ep scattering, but rather treat

it as a free parameter, because the spatial parton distribution is assumed to be

similar to the distribution of charge, but not necessarily identical.

The cross section for having exactly n scatters with individual cross section σinc,

using this Poissonian distribution is

σn(σinc) =

∫
d2b Pn(A(b) · σinc) =

∫
d2b

(A(b) · σinc)n

n!
e−A(b)·σinc

. (4.13)

The probability of having n scatters in an event, given that there is at least one,

is then

Pn≥1(σinc) =

∫
d2b Pn(A(b) · σinc)∫

d2b
∑∞

k=1 Pk(A(b) · σinc)
=

σn(σinc)

σinel(σinc)
. (4.14)

Equation (4.14) is used as the basis of the multi-parton scattering generator for

events in which the hard process is identical to the one used in the underlying

event, i.e. QCD 2 → 2 scattering. σinel in the denominator of Eq.(4.14) is the

inelastic cross section, which takes multiple scatterings properly into account and

thus ultimately solves the initial problem of unitarity violation. It is given by,

σinel(σ
inc;µ) =

∫
d2b

∞∑
n=1

Pn =

∫
d2b

[
1− e−〈n(b,s)〉 ] (4.15)

For distinct scattering types a modification is used, as described in the next section.

Different scattering types

Following the assumption of independent additional scatterings the cross section

for two distinct scattering types a and b with the respective multiplicities k and m

can be written as

σk,m(σa, σb) =

∫
d2b Pk(A(b)σa) Pm(A(b)σb)

=

∫
d2b

(A(b)σa)
k

k!
e−A(b)σa

(A(b)σb)
m

m!
e−A(b)σb . (4.16)
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For small signal cross sections σb, the exponential can be approximated by unity.

Using Eq. (4.16) the probability of having k events of type a in the presence of

exactly one of type b is

Pk =
σk,1∑∞
`=0 σ`,1

≈
∫

d2b Pk(A(b)σa) · A(b)σb∫
d2b A(b)σb

=

∫
d2b Pk(A(b)σa) · A(b) .

This can then be rewritten to avoid the extra factor A(b) in the form,

Pn=k+1 ≈ n

σa

∫
d2b Pn(A(b)σa) . (4.17)

Here n is the total number of scatters, i.e. there is one of type b and n−1 of type a.

It is worth noting that the fact that we have ‘triggered on’ a process with a small

cross section leads to a bias in the b distribution and hence a higher multiplicity

of additional scatters than in the pure QCD 2→ 2 scattering case.

Equation (4.17) can be used to describe underlying event activity under rare signal

processes as well as jet production in the underlying event simulated under high

pt jet production as signal process. In the latter case the assumption of distinct

scattering processes may not be fulfilled. One can show that in that case the mth

scatter of type a that is also of type b should be rejected with probability 1/(m+1).

4.3.2 Monte Carlo implementation

The model introduced so far is entirely formulated at the parton level. However,

an event generator aims for a full description of the event at the level of hadrons.

This implies that the implementation of multi-parton scattering must be properly

connected to the parton shower and hadronisation models, a few details of which we

discuss in the following. We describe technical details of the implementation into

Herwig++ in Appendix A.1, details of the way in which the multiple scattering

is represented in the Herwig++ event record, and of how to access the model

parameters, in Appendices A.2, A.3 and A.4 respectively.

Event generation starts with the sampling of the hard process according to its
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matrix element and the parton densities. After that the parton shower evolves the

final-state partons from the scale of the hard interaction down to a cut-off scale that

is of the order of the confinement scale, but large enough to ensure that we remain

within the perturbative regime. The incoming partons are evolved backwards to

higher values of x and decreasing µ2. The initial- and final-state parton showers

in Herwig++ are performed using the coherent branching algorithm of Ref. [72],

which is based on the original coherent shower algorithm of Refs. [43–45]. After

the initial-state shower has terminated, the incoming partons are extracted out of

the beam particles, a step that we describe in more detail below.

Now the number of secondary interactions is sampled from the probability distri-

butions of Eq. (4.14) or Eq. (4.17) respectively. The chosen number of additional

scatters is sampled according to the standard QCD 2→ 2 matrix elements and the

same parton densities that were used for the hard process. That is, the additional

hard processes are generated exactly according to the inclusive perturbative cross

section, with no modification for the fact that they are additional scatterings. This

list of processes is then successively processed by the parton shower. The partons

involved in the additional hard scatters are also parton showered. As far as final-

state showering is concerned, this is identical to a standard hard process. For the

initial-state shower, we use the standard evolution algorithm, but with modified

parton distribution functions, motivated by our model for extracting partons out

of the hadron, which we return to shortly.

The backward evolution of an additional scattering may lead to partons with more

energy than the remaining energy in the hadron remnants. This scattering has to be

vetoed and is therefore regenerated until the desired multiplicity has been reached.

If a requested scattering can never be generated without leading to violation of

energy-momentum conservation, the program eventually gives up, reducing the

multiplicity of scatters.

After the parton shower, the cluster model [44] is used in Herwig++ to model

the hadronisation. The cluster model however necessarily expects (anti)quarks or

(anti)diquarks at the beginning of the hadronisation. In the final-state this pre-

requisite is easily fulfilled by the gluon splitting mechanism: all final-state gluons

decay non-perturbatively to light quark–antiquark pairs. In the case of an initial-

state parton from an incoming hadron, this necessitates a parton extraction model,
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Figure 4.4: Schema of how the forced splittings and colour connections
are implemented. Splittings in the shaded area stem from the hard scatters
and the initial-state parton shower. The final splittings at the bottom are
non-perturbative.

which we describe in the next section.

Finally all unstable particles must be decayed. Herwig++ uses a sophisticated

model of hadronic decays as described in Refs. [75, 76].

Parton extraction

In the standard Herwig++ treatment of a single hard scattering, the prerequisite

that the outgoing partons must be (anti)quarks or (anti)diquarks is implemented

by forcing the backward evolution to terminate on a valence parton. This then gives

a diquark as the proton remnant for example. This diquark is colour-connected

through the colour connections of the valence quark either to a final-state parton

emitted during the corresponding initial-state parton shower or through the hard

process to a parton in one of the other jets in the event. In collisions other than

pp, in events with little radiation, it can even be connected right through the event

to the other hadron remnant.

It is often the case that by the time the perturbative evolution has terminated,
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the backward evolution has reached a valence parton, since their PDFs dominate

at high x and low scale. When this is not the case and the backward evolution

has terminated on a gluon or sea quark, one or two additional backward steps

respectively are ‘forced’, using the standard backward evolution algorithm, but

with all flavours except the one necessary for the forced step, vetoed.

In the implementation of multiple interactions, we keep the treatment of the first

interaction untouched, i.e. it is exactly as just described. This means that the va-

lence structure of the hadron has already been saturated, with one valence parton

extracted and the remainder forming the hadron remnant. This does not there-

fore provide a structure that can be iterated for subsequent scatters. Instead,

we modify the backward evolution so that it terminates on a gluon. We do this

both dynamically during the evolution and by a forced backward evolution step

if necessary. During the backward evolution we use modified parton distribution

functions that are identical to the standard ones but with the valence contribu-

tions subtracted out1. We stress that this subtraction of valence contributions is

the only modification we make. In particular, the distribution of gluons is iden-

tical to that in the original hadron, leading to the possibility that the backward

evolution of multiple scatters can over-saturate the available energy, which we deal

with as already discussed above.

Once the backward evolution has terminated on a gluon, its colour connections can

therefore be inserted into those of the previous remnant. As a concrete example,

for the second scattering in an event with an incoming proton, the colour line of

the gluon is connected to the diquark proton remnant and the anticolour line of

the gluon is connected through the valence quark, to the outgoing parton that

the diquark was previously connected to. This then gives a structure that can be

iterated an arbitrary number of times. Since we do not order the additional hard

scatters, for example in transverse momentum, this is equivalent to the colour con-

nection model described as ‘random’ in [96]. The implementation of other colour

connection models as described there would be possible, and may be interesting

work for the future as well a models of colour re-connection [113].

1They do not therefore obey a momentum sum rule, but the algorithm is not sensitive to this
fact, since it only involves ratios of PDFs. If one wanted to, one could rescale all the modified
PDFs by a common factor to regain the momentum sum rule. The results would be unchanged.
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We illustrate this parton extraction model in more detail in Fig. 4.3.2. In the

upper part of the figure, which is shaded, we can see the extracted partons after

a possible perturbative parton shower. In the lower half of the figure, additional

forced splittings are carried out in order to guarantee a certain flavour structure

of the remnant. The first extracted parton will always be a valence quark while

all additional hard scatters will always end up on a gluon. The colour structure is

as just described, with the gluon produced by each hard scatter inserted into the

colour–anticolour connection left by the previous one.

The way in which the structure of the hadron remnant is represented in the event

record is not quite the same as the way in which it is generated, as described above.

The same event is shown in Fig. A.1 as it would appear in the event record, as

described in Appendix A.2.

4.4 Results

We will now discuss several hadronic observables both for the Tevatron and the

LHC. In particular a comparison to CDF data [109] is performed. For that reason,

the non-standard jet algorithm used for the data analysis has been implemented.

Detector effects are solely taken into account by simulating the 92% track efficiency

by ignoring 8% of charged particles, chosen randomly2. For the LHC the prediction

is compared to several other generators [98].

4.4.1 Tuning and Tevatron results

We have performed a tune of the model by calculating the total χ2 against the

data from Ref. [109]. See Sect. 4.2.1 for a detailed description. We used

χ2 =
∑
bins

(XExp −XMC)2

σ2
Exp + σ2

MC

(4.18)

as definition of our χ2 function, where X are the observed values and σ the cor-

responding errors. We compare our predictions to data for the average number

2This is exactly the same procedure that the original analysis employed.
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Figure 4.5: Contour plots for the χ2 per degree of freedom of all discussed
observables (left) and only the ones from the transverse region (right). The
cross indicates the location of our preferred tune.
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of charged particles and for the scalar pt sum in each of the three regions. As

we are aiming primarily at a good description of the underlying event in high pt

events, we used jet production with a minimal transverse momentum of 15 GeV

as the signal process. Because of that we only use data for the region of leading

jet transverse momentum above 20 GeV corresponding to the jet data sample in

the original analysis. We added an additional systematic error in quadrature for

the lowest pt bins as described in Appendix B.

The parameter space for this tune is two dimensional and consists of the pt cut-off

pmin
t and the inverse hadron radius squared, µ2, entering A(b) in Eq. (4.10). In

Fig. 4.5 we show the contour plots for all six observables and for the observables

from the transverse region respectively. We have used the MRST 2001 LO[114]

PDFs built in to Herwig++ for this plot, and discuss the PDF-dependence in

the next section. For these, and all subsequent plots, we use Herwig++, with all

parameters at their default values except the two we are tuning and, in the next

section, the PDF choice.

The description of the Tevatron data is truly satisfactory for the entire range of

considered values of pmin
t . For each point on the x-axis we can find a point on the

y-axis to give a reasonable fit. Nevertheless an optimum can be found between 3

and 4 GeV. The strong and constant correlation between pmin
t and µ2 is due to the

fact that a smaller hadron radius will always balance against a larger pt cut-off as

far as the underlying event activity is concerned.

As a default tune we use pmin
t = 3.4 GeV and µ2 = 1.5 GeV2. Figure 4.7 shows

the result of this parameter choice for the transverse region. The towards region

is shown in Fig. 4.8 as well as the away region in Fig. 4.9. For these plots we used

10 million events in contrast to 1 million for each point in Fig. 4.5, which is the

reason for the slight differences in the corresponding χ2 values.

It is clear from these figures that event generation without any model for the

underlying event is not capable of describing the data. In particular, in the trans-

verse region, which receives the least contribution of the two jets from the matrix

element, the results are a factor of two below the data.

Although our default multi-parton interaction (MPI) model gives a good overall

description of the data, we see a slight trend to produce too much multiplicity in
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Figure 4.7: Multiplicity and psum
t in the transverse region. CDF data
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dots, Herwig++ with MPI using MRST [114] PDFs in solid red and with
CTEQ6L [115] as blue dashed. The lower plot shows the statistical signif-
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all the regions, most noticeably in the towards region, and too little psum
t in all the

regions, most noticeably in the away region. This corresponds to having a slightly

too soft spectrum of individual particles and has also been observed in attempts

to fit the fortran Herwig+Jimmy model, the forerunner of ours, to the data of

[109]. We note that in the towards region, which is dominated by the primary jet,

Herwig++ without MPI is already close to the data, leaving very little room for

MPI effects. Almost any model of the underlying event will produce more than

enough multiplicity here and overshoot the data. The same is true to a lesser

extent in the away region. In the process of χ2 minimisation, there is therefore a

slight pressure to suppress the underlying event effect, which results in the slight

undershooting of the psum
t predictions. The same effect is true even more weakly in

the transverse region, where one would say that the description is very good, but

there is a slight trend to be above the data for Nchg and below it for psum
t . Since

the effect is strongest for the regions dominated by the primary jets, we conclude

that this is a general Herwig++ issue not specifically related to the MPI model. In

any case, it is clear that it vastly improves the description of data relative to the

no-MPI model.

We want to stress that the data from the experimental analysis are uncorrected.

We already obtain a total χ2 per degree of freedom very close to unity even with

the over-simplified implementation of the reconstruction efficiency as used in the

original analysis. A more precise examination would have to take detector effects

into account in a more complete manner.

4.4.2 PDF uncertainties

For precision studies it is important to quantify the extent to which hard scattering

cross sections are uncertain due to uncertainties in the PDFs. As we have already

mentioned, jet cross sections are particularly sensitive to the amount of underly-

ing event activity, which introduces an additional dependence on the PDF in our

model. In particular, it relies on the partonic scattering cross sections down to

small transverse momenta, which probe momentum fractions as small as x ∼ 10−7

at the LHC and x ∼ 10−6 at the Tevatron, where the PDFs are only indirectly con-

strained by data. One will have measured the amount of underlying event activity
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at the LHC by the time precision measurements are being made, so one might

think that the size of the underlying event correction will be known. However, in

practice, jet cross section corrections depend significantly on rare fluctuations and

correlations in the underlying event, so the correction must be represented by a

model tuned to data, rather than by a single number measured from data. This

will therefore entail in principle a retuning of the parameters of the underlying

event model for each new PDF. This would make the quantification of PDF errors

on a given jet cross section, or of extracting a new PDF set from jet data, much

more complicated than a simple reweighting of the hard scattering cross section.

In this section we explore the extent to which this effect is important, by studying

how the predictions with fixed parameters vary as one varies the PDF. We do this

by comparing the central values of two different PDF sets (MRST and CTEQ)

and also using the quantification of the uncertainties within one of them (CTEQ).

Similar issues were also discussed in Ref. [116] for the uncertainty in parton shower

corrections, which were found to be relatively small.

The results in Figs. 4.7–4.9 show the predictions of our model with MRST 2001[114]

and CTEQ6L[115] PDFs with the parameters fixed to the values obtained from our

fit with the MRST PDFs. We see that the difference in the amount of underlying

event activity, quantified by the results in the transverse region between 30 and

40 GeV as an example, is some 10% higher with CTEQ6L than with MRST.

To quantify the effect of the uncertainties within a given PDF set, we have used

the error sets provided with the CTEQ6 family, and the formula

∆X =
1

2

(
Np∑
i=1

[
X(S+

i )−X(S−i )
]2)1/2

, (4.19)

from Ref. [115]. Here X is the observable of interest and X(S±i ) are the predictions

for X based on the PDF sets S±i from the eigenvector basis. Doing this näıvely,

we found that the statistical error on independent runs with each PDF set was

greater than the variation between the sets. To try to overcome this obstacle, we

have studied the relative PDF uncertainty, i.e. ∆X/X(S0), as a function of the

number of points used for each X(S±i ).

As an example, we show the result in Fig. 4.10 for one bin corresponding to 35−36
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Figure 4.10: Relative PDF uncertainty, ∆X/X(S0), in percent. Left
for the multiplicity observables and right for the psum

t observables. The
different curves show the results for the three different regions defined in
the experimental analysis. The PDFs used are CTEQ6M [115] and its
corresponding error sets. The fit result shown as a solid line is for the
transverse region. Also shown as a light dashed line is the fit assuming a
purely statistical error.

GeV of the leading jet. The final statistics are obtained from 20M fully generated

events for each PDF set and the value on the x axis is the number of events falling

within this bin. We see that with these 20M events, we have still not completely

eliminated the statistical uncertainties. However, a departure from the straight

line on a log–log plot that would be expected for pure statistical errors, ∼ 1/
√
N ,

is clearly observed. We use this to extract the true PDF uncertainty, by fitting a

curve of the form

f(N) =

√
k2

N
+ P2 (4.20)

to these data. In performing the fit we get a reliable result already for a moderate

number of events. From the fit results we can estimate the number of events that

would be necessary to eliminate the contribution of the statistical uncertainty.

Requiring it to be less than 10−1 of the total uncertainty leads to N ∼ 106, which

translates into ∼ 109 fully generated events for each of the 40 PDF sets, which is
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not feasible in practice. Instead, using our fit, we have a clear indication that the

PDF uncertainty is around 4% for the multiplicity and 4.5% for the psum
t in the

transverse region.

It is note-worthy that the difference between the two PDF sets is larger than the

uncertainty on each. Although, as we have already mentioned, the underlying

event will have already been measured before making precision measurements or

using jet cross sections to extract PDFs, a model tuned to that underlying event

measurement will have to be used and its tuning will depend on the PDF set. We

consider an uncertainty of 5–10% large enough to warrant further study in this

direction.

4.4.3 LHC expectation

We start the discussion of our predictions for the LHC with the plots in Fig. 4.11,

which are related to the total multiplicity and mean multiplicity flow in jet events.

We show Herwig++ with and without MPI. We used QCD jet production with a

minimal pt of 20 GeV as signal process. The MPI parameters were left at their

default values, i.e. the fit to Tevatron CDF data.

The first plot in Fig. 4.11 shows the Koba-Nielsen-Olesen (KNO) distribution[117].

The MPI model satisfies KNO scaling fairly well, whereas Herwig++ without an

underlying event clearly violates it.

The second plot in Fig. 4.11 shows the mean charged multiplicity as a function of

pseudorapidity, η. The effect of MPI is clearly visible, growing significantly from

the Tevatron to the LHC.

In Ref. [98] a comparison of different predictions for an analysis modelled on the

CDF one discussed earlier was presented. As a benchmark observable the charged

particle multiplicity for the transverse region was used. All expectations reached

a plateau in this observable for pljett > 10 GeV. Our prediction for this observable

is shown in Fig. 4.12, where it can be seen to have also reached a roughly constant

plateau within the region shown. The height of this plateau can be used for

comparison. In Ref. [98] PYTHIA 6.214 ATLAS tune reached a height of ∼ 6.5,

PYTHIA 6.214 CDF Tune A of ∼ 5 and PHOJET 1.12 of ∼ 3. Our model reaches
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Figure 4.11: KNO plot (left) and differential multiplicity distribution
(right) for Tevatron and LHC runs.

a height of ∼ 5 and seems to be close to the PYTHIA 6.214 CDF tune, although

our model parameters were kept constant at their values extracted from the fit to

Tevatron data.

We have seen already in Sec. 4.4.1 that our fit results in a flat valley of parameter

points, which all give a very good description of the data. We will briefly estimate

the spread of our LHC expectations, using only parameter sets from this valley. The

range of predictions that we deduce will be the range that can be expected assuming

no energy dependence on our main parameters. Therefore early measurements

could shed light on the potential energy dependence of the input parameters by

simply comparing first data to these predictions. We extracted the average value

of the two transverse observables shown in Fig. 4.12 for a given parameter set in

the region 20 GeV < pljett < 30 GeV. We did that for the best fit points at three

different values for pmin
t , namely 2 GeV, 3.4 GeV and 4.5 GeV. The resulting values

are displayed in Table 4.1.
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Figure 4.12: Multiplicity and psum
t in the transverse region for LHC

runs with Herwig++. The different data sets are (from bottom to top):
Tevatron with MPI off, LHC with MPI off, Tevatron with MPI on and
LHC with MPI on.

LHC predictions 〈Nchg〉transv 〈psum
t 〉transv( GeV)

TVT best fit 5.1± 0.3 5.0± 0.5

Table 4.1: LHC expectations for 〈Nchg〉 and 〈psum
t 〉 in the transverse

region. The uncertainties are obtained from varying pmin
t within the range

we considered. For µ2 we have taken the corresponding best fit values.
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4.5 Conclusions

We have implemented a model of multiple semi-hard partonic interactions into the

Herwig++ event generator. We have tuned its two free parameters to Tevatron

data and found a good overall description. We have shown the extrapolation of its

predictions to the LHC.

We consider the present work as only a first step towards our eventual goal of

providing a complete description of the final-state of minimum bias collisions and

underlying events in hard hadron–hadron collisions, validated on and tuned to all

available data and extrapolated to the LHC with quantified uncertainties.

Among the various phenomenological and theoretical studies that will be needed to

achieve this goal, the most prominent one is to consider the contribution from non-

perturbative partonic scatterings below pmin
t . We will pursue this path in Chap. 6

and Chap. 7, which will then allow us to describe minimum bias events, as well as

the underlying event.



Chapter 5

Double Parton Scattering

We have already discussed, that current direct measurements of multiple partonic

scatterings are limited to the case, where two of them happen in one hadronic

collision. These special cases are called double parton scattering events. We will

discuss their measurement as well as the simulation of these events in the context

of our multiple scattering model, introduced in the previous chapter. We will

show results for the case of like sign di-lepton production. In the double parton

scattering case, these leptons stem from two like sign W ’s that are produced in

two separate Drell Yan processes.

5.1 Introduction

The term double parton scattering events typically refers to two partonic scat-

terings in one hadronic collision, where both interactions occur at similar scales.

These scales are typically larger than the ones in underlying event processes and

at least one of the partonic interactions is not pure jet production. This char-

acterisation is mainly due to the experimental needs to distinguish double parton

scattering from the average underlying event and other QCD backgrounds. Several

channels might be interesting, among them the production of several b quark pairs

as discussed in Ref. [118], but also W production with an additional b quark pair

[119], which can act as a background to pp→ W +H(→ bb̄). In general, additional

b production offers a copious source of double parton scattering events due to its
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large cross section. Also like sign W production was discussed in Ref. [120]. The

best measurement so far used the γj + jj double parton scattering channel [108].

Double parton scattering is not only of interest as background to certain signal

processes. Many models [41, 84, 85, 90, 96, 97, 121] of underlying event physics,

including ours, rely on multiple partonic interactions as their perturbative contri-

bution. Measuring this contribution directly and not only via certain final-state

measurements can provide valuable insights and constraints to existing models.

5.1.1 Effective cross section

We will now discuss the link between double parton scattering and our model with

special emphasis on the so-called effective cross section. This quantity has been

measured by CDF [108] and was defined as,

σab,2 =
σa σb
σCDF,eff

, (5.1)

where σab;2 is the cross section for a colliding proton anti-proton pair to have exactly

two scatters, one of type a and one of type b, assumed to be of different types,

i.e. distinguishable, and σa,b are their inclusive cross sections. We denoted the

scale factor above with σCDF,eff as this definition has some deficiencies which can

be eliminated by the more convenient definition,

σab;incl =
σa σb
σeff

, (5.2)

where σab;incl is the inclusive double-scattering cross section. As we will see, σeff

is related to the distribution of partons in the transverse plane and can serve as a

constraint to our model.

We will calculate the double parton scattering cross sections within our model

and see explicitly why Eq. (5.2) is the more appropriate definition. To derive

Eq. (5.1) we start with the expression for the exclusive n scattering cross section

from Eq. (4.13),

σn(σinc) =

∫
d2b Pn(A(b) · σinc) =

∫
d2b

(A(b) · σinc)n

n!
e−A(b)·σinc

.
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The cross section is obtained by integrating over all values of impact parameter the

probability of the scatters: each has a probability σincA(b); there are n independent

of them giving the power of n; and they are all of the same type, giving the n! factor.

Finally, the exponential gives the probability that there are no other scatters (of

type b). It’s generalisation to the case of two distinct scattering types leads to

Eq. (4.16),

σk,m(σa, σb) =

∫
d2b

(A(b)σa)
k

k!
e−A(b)σa

(A(b)σb)
m

m!
e−A(b)σb .

Eq. (5.1) corresponds to σ1,1(σa, σb). Assuming that at least one cross section (σa)

is small enough to approximate the exponential with unity leads to

σab;2 = σaσb

∫
d2b A2(b) e−A(b)σb , (5.3)

where the integral corresponds to (σCDF,eff)−1. The problem is that this defini-

tion is not process independent. We see that for individual cross sections σa, σb

that are large enough, the effective cross section receives a contribution from the

exponential.

However, by simply using the inclusive instead of the exclusive double parton

scattering cross section this problem can be avoided. Equation (4.13) gives the

cross section for having exactly n scatters by integrating over the probability for

having exactly n scatters. One obtains the inclusive probability by removing the

exponential, which took into account that no other scattering happened. Hence,

σincl
n (σa) =

∫
d2b

(A(b)σa)
n

n!
(5.4)

is the cross section for having n or more interactions. The generalisation to two

distinct scatters leads to

σab;incl = σaσb

∫
d2b A2(b) (5.5)

=
σaσb
σeff

,

as expression for the double parton scattering cross section. σeff is now completely

process independent and its measurement gives a direct handle on the partonic
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overlap function A(b) in impact parameter space.

It’s clear that Eqs. (5.1) and (5.2) will give the same effective cross section in the

limit σa, σb → 0. The CDF measurement however used the exclusive definition and

obtained a value of

σCDF,eff = (14.5± 1.7+1.7
−2.3) mb . (5.6)

It is possible to correct [122, 123] this measurement for the theoretically more

useful definition of σeff , which then leads to

σeff = (11.5± 1.3+1.3
−1.5) mb . (5.7)

To calculate the inclusive double parton scattering cross section, given the inclusive

cross sections of the individual scatterings of type a and b, we therefore use

σab,incl =
σa σb

(1 + δab)σeff

, (5.8)

which also gives the right formula in case of identical scattering types (a ≡ b),

where it introduces the combinatorial factor of two in the denominator.

5.2 Like sign di-lepton production

There are several analyses where double parton scattering contributions to various

processes have been studied at lower energies [124–130]. We will use like sign

di-lepton production (from like sign W s in the double parton scattering case) to

demonstrate the successful operation of the double parton scattering simulation

inside our model of multiple interactions. We will examine the event properties

of double Drell-Yan events as suggested in Ref. [120] and depicted in Figure 5.1,

but now with fully exclusive, i.e. hadronic, final-state simulation and decay of

the W bosons. W production will be used as a standard candle for Standard

Model physics and like sign W pair production may as well be used to measure

and calibrate double parton scattering. To what extend that is possible and in

which kinematical regions that is achieved most easily is subject of the subsequent
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h1

h2

W+

W+ ℓ+

νℓ

νℓ

ℓ+

Figure 5.1: Diagram of the double parton scattering event with two
W+ bosons produced in Drell Yan processes that leads to the signature
pp → `+

1 `
+
2 + jets + Et�. The normally invoked parton showers as well as

additional QCD-like multiple interactions are not drawn.

sections.

Additionally, like sign di-lepton production is a very distinct signature that appears

in various models of physics beyond the Standard Model (BSM). Analyses searching

for Supersymmetry using this channel are for example discussed in Ref. [131]. We

will also discuss the background contribution to these analyses arising from double

parton scattering.

5.2.1 Simulation

Using the definition above, it is clear that double parton scattering is a subset

of our multiple scattering model, where the additional interactions fluctuate up,

in scales, to the level of the hard interaction. This is of course very inefficient

since the rate at which these fluctuations would appear without changing the cross

section,

R ∼ σsignal

σue + σsignal

, (5.9)

is very small in all cases of interest. We therefore introduced the possibility in

Herwig++ to exclusively request the number of additional scatters of a certain

type using specific cuts. We describe these settings in detail in Appendix A.4.
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Figure. 5.1 shows the process that was requested to simulate the double parton

scattering background to like sign di-lepton production. The total cross section

for these events has to be reweighted though. Equation (5.8) will give the correct

cross section for this process. All histograms are normalised to this cross section,

which is then compared to the Standard Model background to the di-lepton signal

pp→ `+
1 `

+
2 + jets + Et�. At leading order the subprocesses considered are

q1q2 → `+
1 `

+
2 ν`1ν`2 q

′
1q
′
2 , (5.10)

with q = u, c and q′ = d, s and the crossed subprocesses. Some example Feynman

diagrams for the subprocess uu → `+
1 `

+
2 ν`1ν`2dd are shown in Fig. 5.2. We used

Madgraph and Madevent [132, 133] to generate the parton level events and read

them into Herwig++ where the parton showers, underlying event and hadronisa-

tion was performed. The Standard Model processes as well as the double parton

scattering events are calculated using the CTEQ6L leading order PDFs [115].

5.2.2 Results

We begin our discussion of the results with the cross sections for the processes

when minimal acceptance cuts,

pt,j > 5 GeV, pt,` > 5 GeV

|ηj| < 2.5, |η`| < 2.5 (5.11)

∆Rjj,∆Rj` > 0.2, ∆R`` > 0.2 ,

are applied at the parton level. In addition to these basic cuts, we reconstruct

the lepton pair by checking the highest pt leptons for the same charge. A further

requirement is the reconstruction of at least one jet from the coloured final-state

particles. We used the kt algorithm [29, 30] of the FastJet package [31] with

R = 0.7 for the jet reconstruction. In the case `1 = e = `2, this yields the

cross sections displayed in Table 5.1. The double parton scattering cross section is

comparable to the Standard Model cross section, both are at O (1 fb).

The production characteristics in double parton scattering are of course different
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Figure 5.2: Examples of Feynman diagrams contributing to the subpro-
cess uu → `+

1 `
+
2 ν`1ν`2dd. (e) is of O(α2

sα
4
EW) whereas the others are at

O(α6
EW) .

σ( fb) SM pp→ e+e+ννjj 2× qq → W+(→ e+ν)

minimal cuts 2.29 1.52

Emax
t,j < 30 GeV 0.09 1.28

Emax
t,j > 50 GeV 2.05 0.12

Table 5.1: Cross sections in femtobarn for the Standard Model and double
parton scattering process leading to the signature pp→ e+e+ + jets + Et�

to the Standard Model case. The pt distribution of the charged leptons can be

examined by the pmax
t,` (pmin

t,` ) observables. They measure the maximum (minimum)

pt of the two charged leptons for each event. Figures 5.3 and 5.4 show these

observables comparing the two production mechanisms. The two independently

produced W bosons in the double parton scattering case, result in lepton transverse

momentum distributions that are peaked at similar values. The tails in these

distributions are also much smaller than in the Standard Model case. This is
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Figure 5.3: Differential cross section for the charged lepton maximum
transverse momentum distribution. The Standard Model contribution is
shown in cyan and the double parton scattering contribution in red.

due to the rather small transverse momentum at which the W boson is produced.

The invariant mass of the lepton pair is the next observable we considered. It is

displayed in Fig. 5.5 and is fairly similar for the two production processes. Double

parton scattering again exhibits a more steeply falling distribution.

Our final-state required two charged, same sign leptons and at least one jet. We

will have several jets in a typical event and decided to look only at the transverse

energy (Et) of the hardest jet. This observable has the largest discriminative power,

which arises from the absence of any jet (apart from the proton remnants) in double

parton scattering at the parton level. It leads to the steeply falling distribution

shown in Fig. 5.6. To quantify this discriminative power we have chosen to use

Emax
t,j for a further cut. We considered two different scenarios. In the first one

we consider double parton scattering as our signal and assume that we want to

measure it in a very clean channel. This corresponds to a upper limit on the Emax
t,j

distribution. Restricting the maximum Et of the jets to 30 GeV improves the signal

to background ratio, σ2×DY/σSM > 14, tremendously. The inverse case, i.e. double

parton scattering as background, can be covered by requiring a certain amount of

transverse energy which automatically reduces the background contribution. For
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Figure 5.4: Differential cross section for the charged lepton minimum
transverse momentum distribution. The Standard Model contribution is
shown in cyan and the double parton scattering contribution in red.
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Figure 5.5: Differential cross section for the invariant mass distribution
of the charge lepton pair. The Standard Model contribution is shown in
cyan and the double parton scattering contribution in red.
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Figure 5.6: Differential cross section for the Et distribution of the hardest
jet. The Standard Model contribution is shown in cyan and the double
parton scattering contribution in red.

Emax
t,j > 50 GeV the signal to background ratio exceeds 17. The cross sections

using these additional cuts are also displayed in Table 5.1.

5.3 Conclusions

We have introduced the term double parton scattering and discussed the effective

cross section as a way to quantify the rate at which double or multiple collisions

of partons in the same hadronic interaction appear. We have seen that this rate

is directly coupled to the partonic overlap in transverse space, once it is correctly

defined. Thus, it offers a direct measurement of A(b), which is a vital ingredient

to most of the models that aim for a description of the underlying event in terms

of multiple semi-hard scatterings. We then discussed the W+W+ channel in detail

and examined how this channel would allow a measurement of double parton scat-

tering. To simulate these events, we implemented and used a new infrastructure

in Herwig++ that allows for an arbitrary combination of several hard interactions

with completely independent cuts. This is an absolutely unique feature to this day.
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We have seen that cutting on the Emax
t,j distribution eliminates the background

process vastly. However, other sources of backgrounds may be important as well,

but are left for further studies. The fake identification of charged leptons has not

been considered for example. This opens up a large set of possible backgrounds,

which don’t need additional jets for charge conservation and may have a similar

distribution of jets. Cross sections for these processes have to be weighted with

the fake rate, which is typically at the per-mille level for leptons in the considered

pt range [134]. The influence of higher order corrections to the W production

processes definitely distorts the spectrum of transverse energy of the additional

jets. This could be studied using an algorithm [81, 135] to merge fixed (and

higher) order matrix elements with the conventional all order resummation that

the parton shower performs. We don’t expect dramatic changes though. The

parton shower is corrected for the first emission with respect to the full matrix

element, which is known as matrix element correction. Changes will appear once

higher jet multiplicities are considered, but as we are only interested in the hardest

jet, the influence should be modest.

Finally, the considered double parton scattering process is a background to su-

persymmetric processes, where like sign di-leptons are produced. The potential

of like sign di-muons in the search for Supersymmetry is discussed in Ref. [131].

Our results were obtained for the like sign di-electron channel but are of course

almost unchanged when using muons instead. Like sign di-leptons in general can

arise from gluino decays in various production channels because the gluino, be-

ing a Majorana particle, decays with equal probability to positively or negatively

charged leptons. Squark production is another source of same sign di-leptons, since

the squark charge tends to coincide with the valence quark charge of the collid-

ing hadrons. The production mechanism always includes heavy (supersymmetric)

resonances and therefore the jet transverse energy and missing transverse energy

distributions are much broader than in the double parton scattering case. The anal-

ysis in Ref. [131] for example requires the hardest jet to have Emax
t,j > 175 GeV,

which reduces the double parton scattering signal to the level of O (1ab), which is

at least 3 orders of magnitude less than most of the considered BSM cross sections.

We therefore conclude that these contributions to the total background can safely

be neglected.
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Chapter 6

Soft Interactions

Multiple partonic interactions are widely used to simulate the hadronic final-state

in high energy hadronic collisions, and successfully describe many features of the

data. It is important to make maximum use of the available physical constraints on

such models, particularly given the large extrapolation from current high energy

data to LHC energies. In eikonal models, the rate of multiparton interactions is

coupled to the energy dependence of the total cross section. The eikonal formal-

ism furthermore provides an unified description of additional scatters covering the

entire transverse momentum spectrum. Hence, it removes the intrinsic deficiency

of the model described in Chap. 4, which uses the perturbative jet cross section

(above some transverse momentum cut-off) and therefore cannot describe events

without any perturbative scale. Using a Monte Carlo implementation of such a

model, we study the connection between the total cross section, the jet cross sec-

tion, and the underlying event. By imposing internal consistency on the model and

comparing to current data we constrain the allowed range of its parameters. We

show that measurements of the total proton-proton cross section at the LHC are

likely to break this internal consistency, and thus, to require an extension of the

model. Likely such extensions are that semi-hard scatters probe a denser matter

distribution inside the proton in impact parameter space than soft scatters, a con-

clusion also supported by Tevatron data on double-parton scattering, and/or that

the basic parameters of the model are energy dependent. In the second part of this

chapter we describe the implementation of an extension, where semi-hard scatters

probe a different matter distribution than soft scatters. We tune this model with
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the CDF data that we already used in Chap. 4, and show extrapolations to the

LHC.

6.1 Introduction

 [GeV]
T,min

p
1 2 3 4 5 6 7

 [
m

b]
σ
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Figure 6.1: The inclusive hard

jet cross section for three differ-

ent proton PDFs, compared to

various extrapolations of the non-

perturbative fits to the total pp

cross section at 14 TeV centre-of-

mass energy.

Hadron-hadron collision events at high

energies often contain high transverse

energy jets, which in QCD arise from

gluon or quark (generically, parton)

scattering followed by QCD radiation

and hadronisation. This model is gen-

erally taken to be realistic above some

minimum transverse momentum scale,

pmin
t . The contribution of these events

to the total cross section rises with

hadron-hadron centre-of-mass energy,

s, since the minimum value of the x

probed is given by (2pmin
t )2/s, and the

parton densities rise strongly for x <

10−2 or so [136, 137].

One reason that this rising contribution

to the cross section is of interest is that

while perturbative QCD cannot predict

total hadronic cross sections (since in

many events no hard perturbative scale

is present), rising hadronic cross sec-

tions are a feature also seen in successful non-perturbative approaches [6, 7], the

behaviour of which must presumably emerge from the QCD Lagrangian in some

manner. Thus by comparing the behaviour of the hard contribution to the cross

section to the behaviour expected from fits to the total cross section, it may be

possible to learn something about the connection between these approaches and

about hadronic cross sections in general.
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The connection between the hard partonic cross section and the total cross section

is not one-to-one, however. There are certainly hadronic scatters in which no hard

jets are produced, and some non-perturbative scattering process must be added

to the perturbative jet contribution to model the total cross section. In addition,

at the high parton densities probed at recent, current and future colliders, simple

assumptions lead to the conclusion that the probability of multiple partonic scatters

in a single hadron-hadron collision is significant. In fact, Fig. 6.1 shows that for

pmin
t values below about 5 GeV, the total “hard” cross section calculated assuming

one parton-parton scatter per proton-proton collision exceeds the total cross section

as extrapolated using the non-perturbative fits, at LHC energies. This means that

there is no room left for any elastic or soft contribution to the total cross section

and strongly implies that the average number of partonic scatters in an inelastic

collision must be greater than one.

Introducing the possibility of such multiparton interactions also seems to be re-

quired in order to describe the hadronic final-state [84, 109, 138]. In general, softer

additional scatters occurring in a high-pt event manifest themselves as additional

particles and energy-flow, the underlying event.

In the first sections of this chapter we examine the predictions of the model that

was implemented in [35, 85, 90, 121] including the possibility of soft scatters. We

explore the consistency constraints that would be imposed by comparing a given

value of the total cross section to the predicted jet cross section, and attempt to

identify allowed regions of parameter space within which the model must lie if it is

to be consistent with the measured cross section at the LHC. We also discuss ways

in which energy dependencies in the parameters could arise, and their impact upon

these constraints. The studies are all carried out using the new implementation in

Herwig++ [35, 121]; however, they are also relevant to the fortran implementation

Jimmy [85], if the same hard cross section is used.

6.2 Total and elastic cross section parameterisations

Throughout these sections we will exploit the connection that can be established

between the eikonal model of Refs. [85, 90, 121] and the total cross section. To give
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a reasonable range of expectations for the latter, we use the successful parameter-

isation of Donnachie and Landshoff [6, 7]. We will use three different variations;

1. The standard parameterisation from [6] with the following behaviour at high

energies:

σtot ∼ 21.7 mb ·
( s

GeV2

)0.0808

→ σtot(14 TeV) = 101.5 mb . (6.1)

2. Using the same energy dependence but normalising it to the measurement

[139] by CDF:

σtot ∼ 24.36 mb ·
( s

GeV2

)0.0808

→ σtot(14 TeV) = 114.0 mb . (6.2)

3. Using the most recent fit [7], which takes the contributions from both hard

and soft Pomerons into account:

σtot ∼ 24.22 mb ·
( s

GeV2

)0.0667

+ 0.0139 mb ·
( s

GeV2

)0.452

→ σtot(14 TeV) = 164.4 mb .
(6.3)

Other parameterisations and models for the total cross section exist [140, 141], but

their predictions for the total cross section at 14 TeV generally lie within the range

covered by these three1. As will be seen, the range is wide, and early measurements

of the total cross section at the LHC can be expected to have a big impact [144].

We will also find it useful to compare our model with the elastic slope parameter,

bel, defined in terms of the differential elastic scattering cross section, dσ/dt, as

bel(s) = bel(s, t = 0) =

[
d

dt

(
ln

dσ

dt

)]
t=0

. (6.4)

In the Donnachie-Landshoff parameterisation, this is given by:

bel(s) = 2α′ ln
s

s0

(6.5)

1The most recent models of [142, 143] predict σtot(14 TeV) ' 90 mb, which is 10 % below the
smallest expectation we use. Since the difference this introduces is similar to the one between
our first and second parameterisation it can easily be estimated by the reader.
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with α′ = 0.25 GeV−2. Together with the CDF data[145], this implies

bel(s) =

(
ln

√
s

1800 GeV
+ (17± 0.25)

)
GeV−2

=

(
ln

√
s

14 TeV
+ (19± 0.25)

)
GeV−2.

(6.6)

The most recent fit[7] has the same value for α′ and hence bel, while those of

[140, 141] are a little higher: 20–22 GeV−2. We therefore use the CDF value for

the Tevatron energy and the range 19–22 GeV−2 to represent the range of possible

measurements from the LHC.

6.3 Eikonal model

We have seen in Sect. 2.1.2, that the scattering amplitude A(s, t) can, in the Regge

limit, be expressed as the Fourier transform of the elastic scattering amplitude

a(b, s) in impact parameter space (Eq. (2.17)) as

A(s, t) = 4s

∫
d2b a(b, s) eiq·b ,

where q is the transverse momentum transfer vector, with, in the high energy

limit, q2 = −t. In this limit, a(b, s) can be assumed to be purely imaginary and

therefore be expressed in terms of a real eikonal function χ(b, s), as

a(b, s) =
1

2i

[
e−χ(b,s) − 1

]
. (6.7)

The total pp (pp̄) cross section as well as the elastic cross section can be obtained

from that parameterisation as (Eq. (2.18)),

σtot(s) = 2

∫
d2b

[
1− e−χ(b,s)

]
, σel(s) =

∫
d2b

∣∣1− e−χ(b,s)
∣∣2 . (6.8)

The inelastic cross section is obtained as the difference between the two cross
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sections and therefore counts non-diffractive as well a diffractive processes

σinel = σtot − σel

=

∫
d2b

[
1− e−2χ(b,s)

]
.

(6.9)

The elastic slope parameter at zero momentum transfer is also calculable within

this framework and yields [2]

bel =
1

σtot

∫
d2b b2

[
1− e−χ(b,s)

]
. (6.10)

In the first step we want to reproduce the results from Chap. 4, before we ex-

tend that model to include also scatters below the transverse momentum cut-off.

This can be done by comparing the inelastic cross sections in the two models, i.e.

Eq. (4.15) and (6.9) and yields the simple relation

χ(b, s) =
1

2
〈n(b, s)〉 . (6.11)

We identify this as the hard part of a universal eikonal function, which then has

the form,

χtot(b, s) = χQCD(b, s) + χsoft(b, s) , (6.12)

with the perturbative part

χQCD(b, s) =
1

2
A(b) σinc

hard(s; pmin
t ) . (6.13)

That is, we assume that the distribution of partons in hadrons factors into an

impact parameter dependence, independent of the longitudinal momentum fraction

dependence. Here σinc
hard denotes the inclusive cross section above a transverse

momentum cutoff pt > pmin
t . A(b) describes the overlap distribution of the partons

in impact parameter space.

In the models of Refs. [90, 146, 147], the soft eikonal function has the form

χsoft(b, s) =
1

2
Asoft(b) σinc

soft , (6.14)
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where σinc
soft is the purely non-perturbative cross section below pmin

t , which is a free

parameter of the model. That is, we assume that soft scatters are the result of

partonic interactions that are local in impact parameter.

The elastic slope parameter discussed above relates to bulk interactions of the

proton. Thus it can be taken as directly constraining the matter distribution

“seen” by soft scatters. Higher pt scatters might be expected to see a different

matter distribution, for example they might probe denser “hot spots” within the

proton. However, at present we take the simplest assumption for the perturbative

part of the eikonal function, i.e. that the semi-hard scatters “see” the same matter

distribution as the soft ones and therefore take A(b) ≡ Asoft(b). This is clearly a

simplifying assumption, but offers us the possibility to study the model in a generic

way.

According to the definition in Eq. 6.9, the inelastic cross section contains all inelas-

tic processes, including diffraction. This is not in contradiction with the definition

of the inclusive hard cross section, which is calculated from the conventional par-

ton distribution functions, which describe the inclusive distribution of partons in a

hadron whatever their source, i.e. whether the proton remains intact or not. Thus

the model of the final-state of the partonic collisions should include this diffractive

fraction of events. This would be particularly important when implementing a

model for the final-state of σinc
soft.

6.3.1 Overlap parameterisation

The only remaining freedom in the eikonal model is the functional form of the

overlap function A(|b| = b). A(b) is the convolution of the individual spatial

parton distributions of the colliding hadrons,

A(b) =

∫
d2b′ Sh1(|b− b′|) Sh2(|b′|) . (6.15)
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In Chap. 4 we have used S(b) proportional to the electromagnetic form factor as

suggested in Ref. [148],

Sp̄(b) = Sp(b) =

∫
d2k

(2π)2

eik·b

(1 + k2/µ2)2
. (6.16)

]mbimpact parameter b [

0 5 10 15

A
(b

) 
[1

/m
b]

-610

-510

-410

-310

-210

-110

1
2 = 2 GeV2µEM form factor, 

2 = 2 GeV2µdouble-Gaussian, 

2 = 0.71 GeV2µEM form factor, 

2 = 0.71 GeV2µdouble-Gaussian, 

Figure 6.2: A(b) for the two pa-

rameterisations.

µ is the only parameter and has the di-

mensions of an inverse radius. In ep

scattering its value was measured to be

0.71 GeV2. This is a loose constraint,

since the distribution of partons may

not necessarily coincide with the distri-

bution of electromagnetic charge. Ac-

tually, using the results from the previ-

ous section, the CDF data on the total

cross section (σtot = 81.8±2.3 mb [139])

and the elastic slope (bel = 16.98 ±
0.25 GeV−2 [145]) one can solve for the

total inclusive cross section and for µ2,

yielding µ2 = 0.56± 0.01 GeV2.

In order to investigate the dependence

on the assumed shape of the matter distribution, we have compared our default

results with those obtained with a double-Gaussian distribution, as chosen in

Refs. [38, 39, 96],

S(b) =
1− β
πr2

· e− b
2

r2 +
β

π(k · r)2
· e− b2

(k·r)2 . (6.17)

Here β, k and r are all free parameters, but we choose to fix β and k at values

that are reasonably generic, but also close to the tuned values used in [38, 39, 96],

with the relative strengths given by β = 0.5 and the relative widths by k = 2, and

view r as the only free parameter. The parameters µ2 and r in the two models are

arbitrary and should ultimately be fit to data. However, in order to have a like-

for-like comparison, we choose to relate them in such a way that the rms value of
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S(b) is identical. That is, we describe the double-Gaussian also as being a function

of µ2, with r set via brms. We illustrate the shapes of the two resulting overlap

functions for two different values of µ2 in Fig. 6.2.

We find that for small values of µ2 (∼ 1 GeV2) the results of the two models are

extremely similar, differing at most by ±2 %. For large values (∼ 3 GeV2) they

differ more, the double Gaussian distribution giving a larger de-eikonalised cross

section (see next section) by between 30 % with the standard Donnachie–Landshoff

total cross section prediction at the LHC and 150 % with the soft+hard Pomeron

prediction. While these lead to somewhat different predictions, in our final results

they effectively correspond to a distortion of the µ2 axis. The effect on our final

plots, Figures 6.6-6.8, is small, since our consistency requirement is mainly active

at small µ2.

6.3.2 Connection to the total cross section

For a given point in the parameter space (pmin
t , µ2) of our model, we are able to

calculate χQCD using Eq. 6.13. The remaining uncertainty is in σinc
hard(s; pmin

t ), which

depends on the PDF choice, the treatment of αs etc. If we now choose a value

for the non-perturbative cross section below pmin
t , σinc

soft, we have the full eikonal

function,

χtot(b, s) =
1

2
A(b)(σinc

hard + σinc
soft) ,

at hand and can calculate the total cross section from Eq. (6.8).

We will, however, turn this argument around and use predictions [6, 7] for the

total cross section as input to fix the additional parameter in our non-perturbative

part of the eikonal function (σinc
soft). To examine the validity of that procedure, we

extracted the sum σinc
hard + σinc

soft ≡ σde−eik from Eq. (6.8), which now reads

σtot(s) = 2

∫
d2b

[
1− e−

1
2
A(b)σde−eik

]
,

for a given value of µ2 and a given value of the total cross section. We will call

this cross section the de-eikonalised cross section. In Fig. 6.3 we plot the de-
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Figure 6.3: Cross sections in millibarn as a function of the centre-of-mass
energy in GeV. The three different plots vary the value of µ2 from 0.6 to
3 GeV2. The black curves show de-eikonalised total cross sections. We use
the total cross section parameterisation of Ref. [6] for the dashed curves.
The solid curves use the same exponent, but the normalisation is rescaled
to fit the total cross section measurement of CDF. The dashed-dotted curve
uses the parameterisation of Ref. [7]. The coloured solid curves show σinc

hard

for different values of pmin
t . The coloured dotted curves incorporate the

simple small-x deviations discussed in Sect. 6.3.3.
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eikonalised cross sections for the three different total cross section extrapolations

as a function of the centre-of-mass energy. Furthermore we show the value of σinc
hard

using different cutoffs. σinc
soft is now given by the difference of these curves. This

has the implication that whenever the inclusive hard cross section is larger than

the de-eikonalised one, the model is not able to reproduce the total cross section

as expected. We will investigate this behaviour in more detail in Sect. 6.4.1.

From the plots in Fig. 6.3 the values for σinc
soft can in principle be read off. However,

due to the logarithmic scale it is not easy to see what is implied for the energy

dependence of the soft cross section. Therefore, for selected points in parameter

space, σinc
soft is shown separately in Fig. 6.4. Note that where the de-eikonalised line

for pmin
t = 3.0 GeV crosses and re-crosses the total cross section extrapolation in

the top left plot of Fig. 6.3, the soft cross section in the top left plot of Fig. 6.4 first

becomes negative and then positive again. The dependence of σinc
soft on the centre-

of-mass energy reveals two main points: First, it is noticeable that one observes

a more-or-less constant behaviour with increasing energy only in a limited range

of our parameter space. This behaviour is mainly present for lower values of µ2.

Second, for the most extreme total cross section prediction, σinc
hard is never sufficient

to explain the strong rise with energy. There, essentially all parameter choices

require a strongly rising soft cross section, in addition to the expected strong rise

in the hard cross section. This is, at very least, counter-intuitive.

6.3.3 Parton saturation physics

The main motivation for allowing multiparton scatterings is the rise of the inclu-

sive cross section, for fixed pmin
t , with increasing centre-of-mass energy. Multiparton

scattering provides a mechanism to allow this quantity to exceed the total cross

section. Eikonal models that incorporate this fact unitarise the inclusive cross

section. There is however a second source of unitarisation, the physics of parton

saturation, which is a competing effect. To estimate the influence on our studies,

we have used a simple modification of the PDFs recently introduced [36] into Her-

wig++ to mimic parton saturation effects for any PDF. The modification replaces
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Figure 6.4: σinc
soft for four different points in parameter space. Each of the

three different curves shows the soft cross section that would appear when
the respective parameterisation for the total cross section is used as input
to fix σinc

soft.



Soft Interactions 101

xf(x) below x0 by

xf(x)→
(
x

x0

)α
x0f(x0) ∀ x < x0 , (6.18)

where x0 and α are changeable parameters. HERA data indicate that saturation is

unlikely to be a strong effect above x ≈ 10−4. Therefore, the strongest reasonable

influence from this effect is obtained by setting x0 = 10−4, α = 0. The results are

shown in Fig. 6.3, where the effect is visible, but small, at LHC energies.

6.4 Parameter space constraints from data

In discussing the de-eikonalised cross section, we noted that for some parameter

values the hard partonic cross section exceeds it. This implies in our model that

the soft cross section should be negative. We take this as an inconsistency that

would, for a given measured σtot at the LHC, rule out such parameter space points.

In this section we discuss the extent to which the space of parameter values can

be limited by this and other constraints.

6.4.1 Consistency

The parameter space in µ2 and pmin
t is shown in Fig. 6.5 for the Tevatron, and

Figs. 6.6-6.8 for the LHC.

The horizontal band shows the range of µ2 values allowed for a given value of the

elastic slope, calculated with Eq. (6.10), in conjunction with the indicated σtot. For

Tevatron energies, both bel and σtot are chosen according to the CDF measurement

from Refs. [139] and [145] respectively.

Our expectations on the value of the elastic slope at LHC energies simply reflect

the range of predictions that the models of [6, 7, 140, 141] give, as discussed in

Sect. 6.2. For the value of σtot at the LHC we show a range of possible values

motivated by these parameterisations.

For a particular value of σtot (or for a given range of possible values at the LHC),
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we are able to extract constraints on the allowed parameters, by simply requiring

a sensible performance of the eikonal model. The most basic requirement, which

was just mentioned, is that the non-perturbative cross section that is needed to

match the total cross section prediction is positive. A negative value means that

the model cannot be applied and therefore this requirement puts a stringent limit

on the allowed values of µ2 and pmin
t . This limit will depend on the value of σinc

hard,

which is not a stable prediction itself. We therefore calculate this limit with several

variations. We use three different PDF sets [114, 115, 149], vary the running of

αs from 1-loop, which is the default in Herwig++ to 2-loop and finally apply the

modifications to the PDF’s described in Sect. 6.3.3. The solid lines in Figs. 6.5

and 6.6-6.8 show these limits, where the entire range below the curves is excluded.

The limits impose a minimal µ2 for any given value of pmin
t . Points on that line are

parameter sets where σinc
soft = 0 mb.

Another, weaker, consistency constraint we apply is related to the simulation of

the final-state of these collisions. We observe that when we embed them into the

full simulation of Herwig++, including backward evolution of the initial-state, each

collision consumes, on average, about a tenth of the available total energy, so that

the approximation that individual semi-hard scatters are independent must break

down, at least due to energy conservation, when there are more than about ten of

them. We therefore indicate on Figs. 6.6-6.8 the points in parameter space where

the average multiplicity of scatters above pmin
t reaches 10. This is certainly not a

stringent limit but a sensible parameter choice most likely avoids this region.

The classic CDF analysis of the distribution in azimuth of the mean charged mul-

tiplicity and scalar pt sum as a function of the transverse momentum of the leading

jet[109] also provides constraints on the model as embedded in Herwig++. Chap-

ter 4 described the implementation of multiparton scattering into Herwig++ (i.e.

the simulation of the final-state corresponding to σinc
hard) and made a two-parameter

fit (µ2 and pmin
t ) to these data. Since this fit was obtained without a simulation

of the final-state corresponding to σinc
soft, we do not take the results of this fit as

a strong constraint on the parameter space, but an indication of the effect such

a tuning could have once a complete description is available. The result is that,

although one obtains a best fit with the values µ2 = 1.5 GeV2, pmin
t = 3.4 GeV, the

best-fit values of the parameters are strongly correlated, with the χ2 function hav-
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Figure 6.5: The plots show the parameter space of the eikonal model at
Tevatron energies. The solid curve imposes a minimum allowed value of µ2,
for a given value of pmin

t by requiring a positive value of σinc
soft. The horizontal

lines correspond to the measurement of bel = 16.98±0.25 GeV−2 from CDF
[139]. The excluded regions are shaded. The dashed lines constitute the
boundaries of the preferred parameters for a fit to Tevatron final-state
data from Ref. [121], which used the MRST2001 PDF set. The left plot
shows the PDF uncertainty by varying the PDF set. The right plot shows
the uncertainty that is implied by using 2-loop αs running and using the
saturation modifications.

ing a long, thin, rather flat valley running from (pmin
t = 2.5 GeV, µ2 ∼ 0.7 GeV2)

to (pmin
t = 4.5 GeV, µ2 ∼ 2.5 GeV2), and beyond. For any given value of pmin

t in

this range one can find a µ2 value that gives a good description of these data.

Combining these constraints at the Tevatron, a small allowed region remains

around pmin
t = 2.3 GeV and µ2 = 0.6 GeV2.

At the LHC, this region would be ruled out for all the values of σtot we have consid-

ered. Note that if the LHC measurement were as high a 164 mb, this would on its

own imply an energy-dependent µ2, in contradiction with our initial assumptions.

In the next section we discuss different ways in which the assumptions of the model

might be modified to account for this potential inconsistency.
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Figure 6.6: The plots show the parameter space of the eikonal model and
three constraints assuming a total cross section behaviour as predicted in
[6]. The first one drawn as solid curve imposes a minimum allowed value
of µ2, for a given value of pmin

t by requiring a positive value of σinc
soft. The

second one, in dashed lines is deduced from an upper limit of the average
number of additional semi-hard scatters in a typical minimum bias event.
The excluded regions are shaded. The third constraint comes from the
expected range of values for the elastic slope bel ∈ [19 − 22] GeV−2. The
left column shows the PDF uncertainty by varying the PDF set. The right
column shows the uncertainty that is implied by using 2-loop αs running
and using the saturation modifications.

6.4.2 Extensions to the model

Some authors have suggested, within multiparton scattering models, that the pa-

rameters of the model, analogous to our µ2 and pmin
t , should be energy dependent.

In this section we briefly discuss the arguments for these models.

In [150] a simple model of the spatial/momentum structure of a hadron was con-

structed from which it was argued that the colour screening length decreases slowly

with increasing energy. This translates into a pmin
t that increases slowly with en-

ergy, for which they estimated pmin
t ∼ sε with ε in the range 0.025 to 0.08. The

actual value used in Refs. [38, 39, 96] is 0.08, leading to a 35% increase in pmin
t

from the Tevatron to the LHC.
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Figure 6.7: The plots show the parameter space of the eikonal model and
three constraints assuming a total cross section behaviour as predicted in
[6], but rescaled to match the CDF measurement [139]. The first one drawn
as solid curve imposes a minimum allowed value of µ2, for a given value of
pmin
t by requiring a positive value of σinc

soft. The second one, in dashed lines is
deduced from an upper limit of the average number of additional semi-hard
scatters in a typical minimum bias event. The excluded regions are shaded.
The third constraint comes from the expected range of values for the elastic
slope bel ∈ [19 − 22] GeV−2. The left column shows the PDF uncertainty
by varying the PDF set. The right column shows the uncertainty that is
implied by using 2-loop αs running and using the saturation modifications.

In [151, 152] a multiparton model was constructed that is very similar to ours at

low energy, with an impact parameter distribution of partons given by the electro-

magnetic form factor. However, soft gluon effects were estimated and summed to

all orders, to give a mean parton-parton separation, brms, that falls with energy,

quickly at first, but then saturating: the value at 1 TeV is about a factor of two

smaller than at low energy, while the value at 14 TeV is only about 10% smaller

still. In terms of our simple model in which the matter distribution always has

the form factor form and is parameterised by µ2, 〈b2〉 ∝ 1/µ2 and this corresponds

to µ2 ∼ 2.8 GeV2 at the Tevatron and ∼ 3.4 GeV2 at the LHC. Not only would

this introduce an energy dependence in µ2, but the values imply a different µ2 for

semi-hard partonic interactions than that derived from the measured elastic slope

parameter, a point that we will return to below.
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Figure 6.8: The plots show the parameter space of the eikonal model and
three constraints assuming a total cross section behaviour as predicted in
[7]. The first one drawn as solid curve imposes a minimum allowed value
of µ2, for a given value of pmin

t by requiring a positive value of σinc
soft. The

second one, in dashed lines is deduced from an upper limit of the average
number of additional semi-hard scatters in a typical minimum bias event.
The excluded regions are shaded. The third constraint comes from the
expected range of values for the elastic slope bel ∈ [19 − 22] GeV−2. The
left column shows the PDF uncertainty by varying the PDF set. The right
column shows the uncertainty that is implied by using 2-loop αs running
and using the saturation modifications.

Note that both these sources of energy dependence would act in the right direction

to evade the potential consistency constraints at the LHC. Allowing pmin
t and/or

µ2 to increase with energy would move the model towards the allowed region in

Figs. 6.6-6.8.

The CDF collaboration have published measurements of the double-parton scat-

tering cross section[108, 153]. As pointed out in Chap. 5, the quantity called σeff

there is not the effective cross section as it is usually defined,

σeff =
1∫

d2b
(
A(b)

)2 , (6.19)

but is related to the latter by a small correction. Using the value of this correction
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estimated in Ref. [123], we obtain σeff ∼ 11.5±2 mb. In our form factor model, this

corresponds to µ2 ∼ 3.0±0.5 GeV2. It is interesting to note that this value is close

to the one predicted by the analysis of Refs. [151, 152] mentioned earlier. Again,

this value is inconsistent with the assumption that the semi-hard scatters “see” a

form factor matter distribution derived from the elastic slope parameter. Recall

from our earlier discussion that we do not expect significant qualitative differences

for other models of the matter distribution in the proton, merely some distortions

of the parameter-space plane.

Improved analyses of these and other observables are under way and, once com-

pleted, in particular with a simulation of the final-state of σinc
soft, will provide strong

constraints on the values of the parameters µ2 and pmin
t in our model.

6.4.3 Conclusions

The connections between our underlying event model and the total proton-proton

cross section have been discussed. Requiring consistency of the model up to LHC

energies imposes constraints on the allowed parameter values, for a given range

of possible measurements of σtot at the LHC. Our main result is summarised in

Figs. 6.6-6.8, which show these constraints for various values of the total cross

section at the LHC and various inputs to the perturbative cross section calculation.

Taking the Tevatron data together with the wide range of possible values of σtot

considered at LHC, no allowed set of constant parameters (µ2, pmin
t ) remains for

our simple model.

This would imply that soft and semi-hard scatters see different matter distributions

as a function of impact parameter and/or that the parameters of our model are

energy dependent. The measurement of double-parton scattering at the Tevatron

supports the idea that hard scatters see a more dense matter distribution than

is implied by the t-slope of the elastic cross section. Various phenomenological

models also predict such effects. We will therefore study this possibility in the

next Chapter as well as describing the Monte Carlo implementation of such a

model.
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Chapter 7

Hot Spot Model

“In God we trust, all others bring data.”

— Dr. W. Edwards Deming 1900-1993, American Statistician

We have seen in the last sections that the measurements of the elastic t-slope reveal

our initial assumption of identical matter overlaps for both hard and soft scatters

eventually as being too simple. The idea of different matter distributions for hard

and soft scatters is furthermore supported by several models and indicated by the

measurement of the double parton scattering cross section. We therefore relax

this condition and go back to the initial form of the soft eikonal function from

Eq. (6.14), with Asoft(b) 6= A(b). For simplicity we choose the same functional

form but use a new free parameter, µ2
soft, to describe its shape. The strongest

constraints came from the measurements of the elastic t-slope so the main idea

of this improved model now is to fix this additional parameter by requiring the

elastic t-slope to be correctly described. The details are slightly more complicated

because we still have to fix σinc
soft. Since we have two unknowns, σinc

soft and µ2
soft, and

two additional constraints, t-slope and σtot, we can aim to solve this system for

any given parameter set (pmin
t , µ2, CM energy, PDFs, etc.).

109
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7.1 Details

Our goal, to describe interactions over the entire pt spectrum, can be achieved

by using χQCD(b, s) for interactions with pt > pmin
t and χsoft(b, s) for interactions

with 0 GeV < pt < pmin
t . With this procedure we become to some extent indepen-

dent of pmin
t , as it doesn’t control the amount of additional activity but rather its

decomposition in hard and soft scatters. χtot(b, s) reads now

χtot(b, s) =χQCD(b, s) + χsoft(b, s)

=
1

2

[
A(b;µ2) σinc

hard(s; pmin
t ) + Asoft(b;µ2

soft) σ
inc
soft

]
,

(7.1)

where the two additional free parameters compared to the model of QCD-like addi-

tional scatters, µ2
soft and σinc

soft, are fixed by solving Eqs. (6.8) and (6.10) respectively,

σtot(s) = 2

∫
d2b

[
1− e−χtot(b,s)

]
,

bel(s) =
1

σtot

∫
d2b b2

[
1− e−χtot(b,s)

]
.

(7.2)

The left-hand-side of both equations is evaluated using one of the parameterisations

discussed in Sect. 6.2. They describe all available data below 1.8 TeV and give a

sensible range of possible measurements at e.g. LHC energies. This leaves then

the same parameter space as before, since all free parameters in the soft sector are

fixed by external constraints.

With the full eikonal from Eq. (7.1), we can construct our model for additional

scatters, by imposing the additional assumptions,

• The probability distributions of semi-hard and soft scatters are independent

• Soft scatters are uncorrelated and therefore obey Poissonian statistics

The probability Ph,n(b, s), for having exactly h semi-hard and n soft scatters at

impact parameter b and centre-of-mass energy s is then given by,

Ph,n(b, s) =
(2χQCD(b, s))h

h!

(2χsoft(b, s))
n

n!
e−2χtot(b,s) . (7.3)
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From Eq. (7.3) we can now deduce the cross section for having exactly h semi-hard

and n soft scatters as,

σh,n(s) =

∫
d2b Ph,n(b, s) . (7.4)

The cross section for an inelastic collision (either semi-hard or soft), is obtained

by summing over the appropriate multiplicities and yields

σinel(s) =

∫
d2b

∑
h+n≥1

Ph,n(b, s)

=

∫
d2b

[
1− e−χtot(b,s)

]
. (7.5)

The inelastic cross section for at least one semi-hard scattering is

σsemi−hard
inel (s) =

∫
d2b

∑
h≥1,n≥0

Ph,n(b, s)

=

∫
d2b

[
1− e−χQCD(b,s)

]
. (7.6)

With the cross sections from Eqs. (7.4) and (7.5) we can construct the basis of

our multiple soft and semi-hard scattering model, the probability, Ph,n, of having

exactly h semi-hard and n soft scatters in an inelastic event (h+n ≥ 1). It is given

by

Ph,n(s) =
σh,n(s)

σinel(s)
=

∫
d2b Ph,n(b, s)∫

d2b [1− e−χtot(b,s) ]
, h+ n ≥ 1 , (7.7)

which is analogous to Eq.(4.14) for the case of solely semi-hard additional scatter-

ings. Equation (7.7) defines a matrix of probabilities for individual multiplicities.

This matrix is evaluated at the beginning of each run and the corresponding mul-

tiplicities are drawn for each event from this matrix according to their probability.

Presence of a different scattering type

Equation (7.7) leads to very inefficient generation of additional scatters in cases

where a rare hard scattering, with cross section σrare, takes place. Equation (4.17)



112 Hot Spot Model

has been deduced for this case, by exploiting the independence of different scatters.

The presence of soft scatters doesn’t alter that result as our assumption is that

the soft scatters are independent from each other and from the other scatterings.

Hence, the probability for h hard scatters (from which one is distinct, i.e. h = m+1)

and n soft scatters is given by

Ph=m+1,n(s) =

∫
d2b Pm,n(b, s) (A(b)σrare)1

1!
e−A(b)σrare∫

d2b A(b)σrare

(7.8)

≈
∫

d2b Pm,n(b, s)A(b) (7.9)

=
h

σinc
QCD

∫
d2b Ph,n(b, s) . (7.10)

The probability for m semi-hard (pt ≥ pmin
t ) and n soft additional scatters is

multiplied in Eq (7.8) with the probability for exactly one scattering with an

inclusive cross section of σrare. The denominator is the inclusive cross section for

this distinct scattering, i.e. summed over all multiplicities for additional semi-hard

and soft scatters. By approximating the exponential with unity and exploiting the

normalisation of A(b) (
∫

d2b A(b) = 1), we finally deduce Eq. (7.10).

7.1.1 Monte Carlo implementation

In this section, we will describe in detail how the additional soft scatterings are

implemented. The corresponding description for the semi-hard part of the under-

lying event is given in Sect. 4.3.2. At the end of this section we will give a brief

overview over the entire event generation with respect to the underlying event.

At large centre-of-mass energies, s, and small scale of interactions, Q2, the parton

densities suggest a proliferation of small-x gluons. That is the reason why we

chose to model the soft scattering contributing to the underlying event as elastic

collisions between soft gluons. We start the generation of these soft scatters after

all perturbative evolution has terminated, since pmin
t is typically at the order of

the parton shower cut-off scale. The non-perturbative remnant decays, that are

described in detail in Sect. 4.3.2, produce diquarks from which the soft gluons are

radiated and scatter off each other. Such a scattering is depicted in Fig. 7.1.
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Figure 7.1: Soft gluon collision in a diquark scattering. The diquarks are
in a anti-triplet state and remain unchanged with respect to their colour
state. Figure 4.3.2 is the corresponding figure from Chap. 4.

All soft gluons carry colour charge and have an effective gluon mass, mg = 0.75 GeV,

in correspondence to the effective gluon mass that is used during parton showers

and hadronisation. As simplest solution, we chose to sever the colour connections

to the diquarks so that the two outgoing gluons from each soft scattering are colour

connected to each other. This is motivated by a assuming a Pomeron-like structure

for this soft forward interactions.

The scattering of the soft gluons can be described by the variables x1, x2, pt, φ.

x1 and x2 are the longitudinal momentum fractions of the two incoming gluons

(g1, g2), so that their 4 momenta in the lab frame are,

pµg1,2 =

√x2
1,2 s

4
+m2

g , 0, 0, ±
√
x2

1,2 s

4

T

. (7.11)

pt and φ are the transverse momentum and azimuthal angle, in the CM frame,

of the outgoing gluons (g3, g4) respectively. Their four-momenta can therefore be

parameterised as,

pµg3,4 =
(√

p2
t + p2

z +m2
g , ±pt cosφ, ±pt sinφ, ±pz

)T
, (7.12)

where the longitudinal momentum, pz, is fixed by total energy-momentum conser-
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vation,

p2
z =

(pµg1 + pµg2)
2

4
− p2

t −m2
g . (7.13)

The kinematics of the soft processes are fixed by choosing values for the four pa-

rameters. x1 and x2 are sampled from a f(x) = 1/x-distribution in the range

[xmin, xmax]. xmin is a cut-off to avoid numerical instabilities. xmax corresponds to

the maximum available energy, that is left in the diquarks. The azimuthal angle is

sampled from a uniform distribution, φ ∈ (0, 2π). The transverse momentum is the

last remaining degree of freedom. By construction the transverse momentum dis-

tribution must not exceed pmin
t , but the functional form of it is not predetermined.

We use a Gaussian distribution,

dσinc
soft

dp2
t

= A e−β p
2
t , (7.14)

to parameterise it. To fix the free parameters A and β, we impose the following

constraints:

• The resulting soft cross section has to match the total soft cross section,

which has been fixed to describe σtot and bel with Eqs. (6.8) and (6.10),∫
dp2

t

dσinc
soft

dp2
t

!
= σinc

soft (7.15)

• The transverse momentum distribution of semi-hard and soft scatterings

should be continuous at the matching scale,

H(s; pmin
t ) :=

dσinc
hard

dp2
t

∣∣∣∣
pt=pmin

t

!
=

dσinc
soft

dp2
t

∣∣∣∣
pt=pmin

t

, (7.16)

where we introduced H as shorthand for the hard inclusive jet cross section

at pt = pmin
t .

These conditions are fulfilled by the parameterisation,

dσinc
soft

dp2
t

= H(s; pmin
t ) e−β(p2t−pmin

t
2
) , (7.17)
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Figure 7.2: Transverse momentum distribution of additional scatters

where the slope, β, must satisfy,

eβp
min
t

2 − 1

β
=

σinc
soft

H(s; pmin
t )

. (7.18)

Figure 7.2 shows the transverse momentum spectrum for two different cut-off val-

ues. The slope, β, is chosen such that both curves correspond to the same inte-

grated cross section.

After the kinematics has been generated in the CM frame, we boost back to the

lab frame and reshuffle the diquark momenta such, that they remain on their

original mass shell. Now we can determine the available energy for the next soft

interaction and iterate the process until the requested multiplicity has been reached

or all available energy of the diquarks has been used.

Overview

After this detailed description of how the soft scatters are modelled, we give an

overview of the event flow. During initialisation the following steps are performed:

1. Calculation and pre-sampling of the inclusive hard jet cross section above
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pmin
t according to the standard QCD 2→ 2 matrix elements and the parton

densities that are selected.

2. Optional calculation and pre-sampling of other hard processes that are se-

lected for the simulation of double parton scattering events, as for example

in Chap. 5.

3. Determination of the parameters for the soft eikonal, i.e. µ2
soft and σinc

soft ac-

cording to Eqs. (6.8) (σtot) and (6.10) (bel). If it is not possible to fulfil both

constraints, the run is aborted indicating that this parameter choice is unable

to reproduce sensible values for σtot and bel.

4. Determination of the slope, β, for the soft gluon transverse momentum dis-

tribution. This is obtained by solving Eq. (7.18).

5. Calculation of Ph,n(s) from Eqs. (7.7) or (7.10) respectively.

For each event we now have to go through the following list, as far as the multiple

interaction model is concerned:

1. Sampling and generation of the requested additional hard scatters (for double

parton scattering). Evolution of the external partons down to the hadronic

scale using the parton shower algorithm.

2. Generation of additional semi-hard scatters as described in Chap. 4 according

to the multiplicity distribution of Ph,n(s) and evolution using parton showers.

3. Execution of the forced splitting algorithm as described in Sect. 4.3.2 and

decay of each beam remnant to a (anti)diquark system according to their

flavour content.

4. Generation of soft scatters as described above and governed by Ph,n(s).

7.2 Parameter space

To study the features of our improved model, we try to repeat the analyses done for

the case where semi-hard and soft scatters used the same matter distribution. We
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Figure 7.3: σinc
soft for two different points in parameter space. Each of

the three different curves shows the soft cross section that would appear
when the respective parameterisation for the total cross section is used as
input to fix σinc

soft. The y-axis range is identical to Fig. 6.4, which allows
easy comparison. Curves that don’t reach out to 30 TeV correspond to
parameters choices that are unable to reproduce σtot and bel correctly at
these energies.

started the discussion there with the de-eikonalised cross section. It is not possible

to define this quantity in the improved model however, since µ2
soft is in general

different from µ2. χtot(b, s) has therefore no simple relation to a cross section any

more. The de-eikonalised cross section was defined as σde−eik = σinc
soft+σ

inc
hard. We find

it therefore illustrative to extract and discuss σinc
soft for a fixed set of parameters as

a function of the centre-of-mass energy. Figure 7.3 shows this quantity and reveals

interesting features. First, it is noticeable that not all parameter combination are

valid over the considered range of centre-of-mass energies. Whenever a curve is

not available at a certain energy, it means that this model instance is not able to

describe σtot and bel, from Sect. 6.2, simultaneously, i.e. Eq. (7.2) had no solution.

In particular, the most recent Donnachie-Landshoff parameterisation from Ref. [7]

is only functional up to energies of ≈ 10 TeV. The second feature that can be

extracted from Fig. 7.3 is, that the soft cross section is more-or-less constant when

going from 1-30 TeV. In the previous model (Fig. 6.4) this was extremely different

and at least an undesirable feature. We used an identical y-axis range to allow
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easy comparison between the two models. This behaviour is even retained when

going to larger values of µ2.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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0.5

1.0

1.5

2.0
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bel = 17.0 GeV−2  @ Tevatron

DL '92
DL '92 fixed to CDF data
DL '04

Figure 7.4: Parameter space of

the improved eikonal model at 1.8

TeV. The solid curves impose a

minimum allowed value of µ2, for

a given value of pmin
t by requiring

a valid description of σtot and bel.

The excluded regions are shaded.

To further examine the parameter

space of the model we fix the centre-of-

mass energy and calculate the bound-

aries of the allowed parameter space

in analogy to Figs. 6.5 and 6.6-6.8 re-

spectively. We start with Tevatron

energy of 1.8 TeV where we rely on

the measurement of the elastic slope

(bel = 16.98 ± 0.25 GeV−2 [145]). Fig-

ure 7.4 incorporates this requirement

along with the total cross section in

the three different variants described in

Sect. 6.2. It shows the remaining pa-

rameter space, where the blue curve

corresponds to the CDF measurement

(σtot = 81.8± 2.3 mb [139]). The disal-

lowed regions are partly shaded. From

Fig. 7.4 we can deduce that for values

of pmin
t > 3 GeV essentially no restric-

tion with respect to µ2 remains (except

for µ2 > 0.5 GeV2, which is within the

usually considered region). The differences between the curves at low pmin
t are due

to the different total cross sections they describe. DL ’92 assumes the smallest

total cross section, whereas the CDF measurement is the largest one.

The next point in energy we consider is of course the nominal LHC energy, 14

TeV, and the corresponding constraints are shown in Fig. 7.5. The total cross

section parameterisation from Ref. [7] is omitted there, because no valid parameter

configuration could be found. We have seen that already in Fig. 7.3, where 10 TeV

was the upper limit of validity. This problem is due to the very steeply rising

total cross section that requires also a strongly rising soft cross section component.

However, since the slope parameter remains at its values from the old extrapolation
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Figure 7.5: The plots show the parameter space of the eikonal model
assuming a total cross section behaviour as predicted in Ref. [6] (left) and
(right). The solid curves impose a minimum allowed value of µ2, for a given
value of pmin

t by requiring a valid description of σtot and bel. The excluded
regions are shaded. The two different curves correspond to the boundaries
of the expected elastic slope measurements at LHC (bel ∈ [19−22] GeV−2).
We used the MRST 2001 LO[114] PDFs for these plots.

the two constraints cannot be fulfilled at high energies. In general, Ref. [7] predicts

a cross section that is ∼ 40% larger than any of the predictions from Refs. [6, 140–

143] and therefore we do not draw any conclusion until the total and elastic cross

sections have been measured at LHC.

At LHC energies we see that the region, where essentially no restrictions to µ2

are active moves towards larger values of pmin
t , i.e. above ∼ 4 GeV, compared to

Tevatron. Below we need significantly larger values of µ2. For µ2 ∼ 3 GeV2,

which is implied by CDFs double parton scattering measurement, all values of

pmin
t > 3 GeV are allowed.
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7.3 Results

We have determined the general shape of the allowed parameter space for Teva-

tron and LHC in the previous section. In this section we simulate events and

infer from the resulting final-states on the goodness of fit for individual parameter

configurations in this allowed region.

7.3.1 Tevatron

We start by comparing the simulation to existing data from the Tevatron and use

the analysis described in Sect. 4.2.1 for that purpose. In contrast to Chap. 4,

we can now make use of all available data, i.e. the Jet20 and MinBias sample.

Figure 7.6 displays the χ2 values of describing this data as colour code in our two-

dimensional parameter space. We show the contour plots for all six observables in

the left plot and for the observables solely from the transverse region in the right

plot. We have used the MRST 2001 LO[114] PDFs built in to Herwig++. Because

we almost doubled the data points to which we compare, the overall χ2 increased.

Nevertheless, the optimum still gives a good description of the data and exhibits

a value of χ2/Ndof < 3.0. One has to keep in mind that these two parameters

are the only variables in this fit, where all other parameters are fixed by LEP-,

B-factory and Tevatron data. The white areas in Fig. 7.6 are the ones predicted

in Fig. 7.4 for disallowed regions. We could identify clearly a best-fit region which

lies within pmin
t ∈ (3.5, 4.5) and µ2 ∈ (1.2, 1.8). This region is also confirmed by

the χ2-contour for the transverse observables, although generally larger values of

µ2are preferred there.

To find the optimal parameter choice we extracted the χ2-profile along the µ2-

axis, i.e. for fixed values of pmin
t . These profiles are displayed in Fig. 7.7 again for

all observables and only for the transverse ones. Crosses indicate the simulated

parameter configurations. The curves are quadratic fits to these points and the

legend indicates the minimum of each parabola, calculated using the fit coefficients.

From that we extract our final tune, which consists of the values,

pmin
t = 4 GeV and µ2 = 1.5 GeV2 . (7.19)
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Figure 7.6: Contour plots for the χ2 per degree of freedom of all discussed
observables (left) and only the ones from the transverse region (right). The
cross indicates the location of our preferred tune and the white area consist
of parameter choices where the elastic t-slope and the total cross section
cannot be reproduced simultaneously. For this scan we used all available
bins

It is indicated in Fig. 7.6 by the white cross. If we compare Fig. 7.7 with Fig. 4.6,

we see that the sensitivity on the transverse momentum cut-off is clearly reduced.

In the old model, the optimal parameter choices for µ2 varied in the range 0.9–2.4,

whereas in the new model the range is reduced to 1.0–1.5. In both cases, the µ2

range is extracted for a variation of pmin
t (pmin

t ) in the range 3-4 GeV. The absolute

χ2 is larger in the new model, but this is due to the additional data points we

included for the fit.

Figures 7.8, 7.9 and 7.10 show the final-state result for the transverse, towards and

away region respectively. The plots compare 3 points in parameter space including

our final tune. The subplot below each main plot shows the ratio of the simulation

to the data and indicates the error on the data points as yellow band.

Although we are happy with the overall description of the data, we clearly see a

systematic deviation for the first bins in each observable. Our simulation tends to

overshoot the data there for both the multiplicities and the transverse momentum

sums. Since this seems to be independent of our parameter choice, we repeated



122 Hot Spot Model

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0�2 (GeV2 )

2

3

4

5

6

7

8

9

10

�2 (total
)

pmin
t =3.00, xmin=1.03

pmin
t =3.25, xmin=1.17

pmin
t =3.50, xmin=1.32

pmin
t =3.75, xmin=1.40

pmin
t =4.00, xmin=1.52

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0�2 (GeV2 )

2

3

4

5

6

7

8

9

10

�2 (trans
v
er
se
)

pmin
t =3.00, xmin=1.24

pmin
t =3.25, xmin=1.37

pmin
t =3.50, xmin=1.50

pmin
t =3.75, xmin=1.60

pmin
t =4.00, xmin=1.66

Figure 7.7: Line scans at fixed values of pmin
t of all discussed observables

(left) and only the ones from the transverse region (right). The curves
show a quadratic fit for each dataset. xmin is the position of the minimum
calculated using the fit parameters. For this scan we used all available bins

the χ2-contour plots for the case where we neglect the first 4 bins. The result is

shown in Fig. 7.11 and shows that we are not biased towards a completely different

χ2-map. We attribute this behaviour to the missing implementation of diffractive

events within our model. Our inelastic cross section implicitly contains these events

and e.g. double diffraction would lead to event topologies that would be triggered

but won’t give any activity in any region. All observables are averaged quantities

so that this effect could very well move the average in the first bins into the right

direction.

Another slight discrepancy is present in the 〈psum
t 〉-observable for the transverse

region. The data reaches a plateau for pljet
t & 10 GeV, whereas our simulation does

for pljet
t & 20 GeV. At the same time, the particle flow is well described, which

means that the particles there are too soft.

We see that in the towards region, which is dominated by the primary jet, Her-

wig++ overshoots the data systematically. This has already been described in

Chap. 4 and is due to the fact, that Herwig++ without MPI is already close to

the data, leaving very little room for additional activity. Almost any model of the
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Figure 7.8: Multiplicity and psum
t in the transverse region. CDF data

are shown as black circles. The histograms show Herwig++ with the im-
proved model for semi-hard and soft additional scatters using the MRST
2001 LO [114] PDFs for three different parameter sets. The lower plot
shows the ratio Monte Carlo to data and the data error band. The legend
on the upper plot shows the total χ2 for all observables.
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Figure 7.9: Multiplicity and psum
t in the towards region. CDF data are

shown as black circles. The histograms show Herwig++ with the improved
model for semi-hard and soft additional scatters using the MRST 2001 LO
[114] PDFs for three different parameter sets. The lower plot shows the
ratio Monte Carlo to data and the data error band. The legend on the
upper plot shows the total χ2 for all observables.
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Figure 7.10: Multiplicity and psum
t in the away region. CDF data are

shown as black circles. The histograms show Herwig++ with the improved
model for semi-hard and soft additional scatters using the MRST 2001 LO
[114] PDFs for three different parameter sets. The lower plot shows the
ratio Monte Carlo to data and the data error band. The legend on the
upper plot shows the total χ2 for all observables.
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Figure 7.11: Contour plots for the χ2 per degree of freedom of all dis-
cussed observables (left) and only the ones from the transverse region
(right). The cross indicates the location of our preferred tune and the
white area consist of parameter choices where the elastic t-slope and the
total cross section cannot be reproduced simultaneously. For this scan we
left out the first 4 bins to gain insight in the question whether the first bins
bias the tune.

underlying event will produce more than enough multiplicity here and overshoot

the data. In the process of χ2 minimisation, there is therefore a slight pressure

to suppress the underlying event. Nevertheless we see that compared to the re-

sults from Chap. 4 the imbalance between particle- and energy-flow is significantly

reduced. This is most visible the away region.

7.3.2 LHC

Our discussion of the final-state simulation using the improved model will be com-

pleted by showing extrapolations to the LHC using the best fit point at the Teva-

tron. We start with the observables from Fig. 7.12, where the left plot shows

the KNO distribution[117]. The right plot shows the mean charged multiplicity

as a function of pseudorapidity, η. In comparison to Fig. 4.11, which displays

these observables for the model without the soft component, we see an increase
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(pmin
t , µ2) 〈Nchg〉transv 〈psum

t 〉transv(GeV)

(3.0, 1.5) 5.2 4.5

(4.0, 1.5) 5.7 5.1

(5.0, 1.5) 4.3 3.9

(pmin
t , µ2)

(4.0, 1.0) 4.9 4.4

(4.0, 1.5) 5.7 5.1

(4.0, 2.0) 6.2 5.4

Table 7.1: LHC expectations for 〈Nchg〉 and 〈psum
t 〉 in the transverse

region for pljet
t / GeV ∈ (10, 20). The values are obtained from varying our

Tevatron best fit along the pmin
t - and µ2- axes respectively.

of ∼ 0.5 particles per unit rapidity in the central region. Especially at Tevatron

energies this might be counter-intuitive, since both models are tuned to the same

data. However, for these plots we don’t impose any cut on the charged particle

transverse momentum, whereas the CDF analysis has a lower cut of 0.5 GeV. The

increase we see is therefore due to additional soft particles, which we expect to

appear once we include a model for soft interactions.

Finally we show the benchmark observables from Fig. 4.12 simulated with the

improved model in Fig. 7.13. They show the average multiplicity (left) and average

psum
t (right) for the transverse region. Our new LHC expectation is very close to the

old one with minor increase in activity. Due to this stabilisation we are confident

that the uncertainties in the LHC extrapolation are significantly reduced.

We try to give an estimate on possible LHC measurements by varying our best

parameter choice along the pmin
t - and µ2- axes respectively. We want to emphasise

that the varied parameters do not necessarily give a good fit for the Tevatron data.

But since the possibility of energy dependent parameters is not ruled out, they

give the range of possible final-states at LHC. The resulting values of 〈Nchg〉transv

and 〈psum
t 〉transv are shown in Table 7.1.
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Figure 7.12: KNO plot (left) and differential multiplicity distribution
(right) for Tevatron and LHC runs in the improved model. The different
data sets are (from bottom to top): Tevatron with MPI off, LHC with MPI
off, Tevatron with MPI on and LHC with MPI on.
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Figure 7.13: Multiplicity and psum
t in the transverse region for LHC

runs with Herwig++. The different data sets are (from bottom to top):
Tevatron with MPI off, LHC with MPI off, Tevatron with MPI on and
LHC with MPI on.
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7.4 Conclusions

We have studied an eikonal model to describe semi-hard and soft additional scat-

terings. We used the value of the total hadronic cross section to fix additional

free parameters of the soft sector. Its initial formulation, discussed in the last

Chapter, with identical matter distributions seen by these two components, ap-

peared to have deficiencies in describing the elastic t-slope over a large range of

centre-of-mass energies. We therefore implemented and studied a model, where

the semi-hard scatters probe a different matter distribution than the soft ones. We

tuned this model to CDF data and found a good overall description with fitting

only two free parameters. Furthermore we studied the details of this improved

model for several centre-of-mass energies and derived the allowed parameter space,

for a given range of possible LHC measurements. We have seen that the resulting

soft cross section stabilises with respect to the simpler model and remains almost

constant when going from 1-30 TeV. The biggest unknown in our analysis is the

total cross section at the LHC. With even a first imprecise measurement of this

cross section, we could strengthen our parameter space analysis considerably.
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Chapter 8

Summary and Conclusions

Our eventual goal of providing a complete description of the final-state in minimum

bias collisions and underlying events in hard hadron–hadron collisions has been at-

tained. This code is officially available inside Herwig++, has been tested in various

circumstances and approved by all members of the collaboration. In addition, we

systematically studied the parameter space of the model with respect to the de-

scription of available data and applicability of the model at various centre-of-mass

energies.

We started by implementing a model for semi-hard additional scatters. Before,

Herwig++ had to rely on a simple parameterisation of underlying event data (UA5).

With the new model, it was possible to give a good overall description of CDF data

on the underlying event by only tuning its two free parameters. Predictions for

LHC have been made and their uncertainties have been quantified. Additionally,

the uncertainties implied by the PDFs have been addressed.

Next, we extended this model to also describe events, where several hard scatterings

occur. The flexible implementation for double parton scatterings is an absolutely

unique feature that is only available for Herwig++ so far. We used it to examine the

same-sign di-lepton channel and compared it to the Standard Model background.

We concluded that this channel may offer a very clean way to measure double

parton scattering, but is negligible with respect to BSM signatures.

In Chaps. 6 and 7 we described the inclusion of soft partonic scatters, which al-
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lows Herwig++, for the first time, to describe minimum bias interactions but also

gives a more realistic description of the underlying event. We were lead to the

conclusion, that semi-hard interactions are very likely to probe a denser matter

distribution inside the proton than soft interactions. This hot spot-like model was

then examined with respect to its applicability at various centre-of-mass energies,

where it uses existing parameterisations of total and elastic cross sections to fix

additional free parameters. We finally tuned it to the CDF data, where we could

include additional minimum bias data points.

The form of the respective overlap functions in our model has to be determined

by measurements. Chapter 5 shows a clean way to determine the overlap function

of hard scatters, whereas the measurement of the elastic slope gives a handle on

the soft overlap function. With steadily improving data from the Tevatron, more

detailed phenomenological analyses being performed and the prospect of data from

the LHC, there is a real hope that the various simplifying assumptions that go into

our model will be tested to the limit and we will discover where, if anywhere, more

detailed understanding of the dynamics of underlying event physics is needed.
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Program details

A.1 Code structure

We briefly discuss the classes that are responsible for the generation of additional

partonic scatters and the implementation of the models discussed in Chapters 4,

6 and 7. In addition to being the main class responsible for the administration of

the shower, the ShowerHandler steers also the generation of the additional semi-

hard scattering processes. It has a reference to the MPIHandler set in the input

files, which is used to actually create the additional scattering processes. It in-

vokes the parton shower on all the available scatters and connects them properly

to the incoming beam particles. This includes potential re-extraction of the in-

coming parton if it is changed as a result of initial-state radiation. It modifies

the RemnantParticles that were initially created by the PartonExtractor. A num-

ber of classes are used by the ShowerHandler to generate the additional scattering

processes. Soft additional scatters are generated in the HwRemDecayer class.

MPIHandler: The MPIHandler administers the calculation of the underlying event

activity. The sampling and cross section calculation of the physical processes is

performed using the ProcessHandler class. Using the cross section computed inside

that class, the probabilities for the individual multiplicities of additional scatters

are calculated during initialization. The method MPIHandler::multiplicity() sam-

ples a number of extra scatters from that pretabulated probability distribution.
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http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1ShowerHandler.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPIHandler.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1RemnantParticle.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1PartonExtractor.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1ShowerHandler.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1HwRemDecayer.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPIHandler.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1ProcessHandler.html
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The method MPIHandler::generate() creates one subprocess according to the phase

space and returns it.

ProcessHandler: The ProcessHandler class is used to sample and calculate cross

sections of a physical process. This is necessary once several physical processes

with independent cuts are included in the underlying event. In that case several

instances of the ProcessHandler are assigned to the MPIHandler. Each instance uses

the MPISampler to sample the phase space of the processes that is connected to it.

MPISampler: The MPISampler performs the phase-space sampling for the addi-

tional scatterings. It inherits from SamplerBase and implements the Auto Com-

pensating Divide-and-Conquer phase space generator, ACDCGen.

HwRemDecayer: The HwRemDecayer is responsible for decaying the

RemnantParticles to something that can be processed by the cluster hadronization,

i.e. (anti)quarks or (anti)diquarks. This includes the forced splittings to valence

quarks and gluons respectively. Also the colour connections between the additional

scatters and the remnants are set here. If additional soft partonic interactions, i.e.

the non-perturbative part of the underlying event, are enabled, they are generated

inside this class after the remnants have been decayed to the (anti)diquarks.

MPIPDF: The MPIPDF class is used to modify the PDF’s used for the initial

state shower of additional scatters. All sorts of rescaling are possible but currently

the mode that is used is the one where the valence part of the PDF is removed.

The objects are instantiated inside ShowerHandler and set to the default PDF’s

using void ThePEG::CascadeHandler::resetPDFs(...)

A.1.1 Interfaces

The most important interfaces to set parameters for the above mentioned classes

are described here. An exhaustive description of all interfaces is provided by our

Doxygen documentation.

http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1ProcessHandler.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1ProcessHandler.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPIHandler.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPISampler.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPISampler.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1SamplerBase.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1ACDCGen.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1HwRemDecayer.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1RemnantParticle.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPIPDF.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1ShowerHandler.html
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MPIHandler

• SubProcessHandlers: Vector of references to SubProcessHandler objects.

The first element is reserved for the underlying event process. Additional

references can be set to simulate additional hard processes in a single collision.

See Sect. A.4 for details of how to use this functionality.

• Cuts: Vector of references to Cuts objects. The first element is used to

impose the minimal pt of the additional scatters, pmin
t . This is one of the two

main parameters of the model. The current default, obtained from a fit to

Tevatron data is 4.0 GeV. See Chap. 7 for details. Additional cuts object

may be defined for additional hard processes that should be simulated in the

same event.

• additionalMultiplicities: Vector of integer values to specify the multiplic-

ity of additional hard scattering processes in a single collision. See Sect. A.4

for an example.

• InvRadius: The inverse beam particle radius squared, µ2. The current

default is 1.5 GeV2, obtained from the fit performed in Chap. 7.

• IdenticalToUE: An integer parameter specifying which element of the list of

SubProcessHandlers in SubProcessHandlers is identical to the underlying

event process. Zero means the the conventional hard subprocess is QCD jet

production. -1 means that no process is identical. Any number > 0 means

that one of the additional hard scatterings is QCD jet production, where the

exact number specifies the position in the vector. The default is -1, which is

appropriate as long as no QCD jet production is simulated.

• colourDisrupt: Real number in the range [0, 1], which gives the probability

for an additional semi-hard scattering to be disconnected from other subpro-

cesses as far as the colour connections are concerned. The current default is

0.

• softInt: Switch to turn the inclusion of non-perturbative scatters to the

underlying event model on (Yes) or off (No). The current default is Yes.

http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#SubProcessHandlers
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1SubProcessHandler.html
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#Cuts
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1Cuts.html
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#additionalMultiplicities
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#InvRadius
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#IdenticalToUE
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1SubProcessHandler.html
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#SubProcessHandlers
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#colourDisrupt
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#softInt
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• twoComp: Switch to toggle between an independent overlap function for

soft additional scatters (Yes) and identical ones Asoft(b) ≡ A(b) (No). If the

two-component model is used, the parameters of the soft sector are automat-

ically choosen to describe the total cross section as well as the elastic t-slope

correctly.

• DLmode: Integer number ∈ {1, 2, 3} to choose between three different

parametrizations of the total cross section as a function of the centre-of-mass

energy:

1. Parametrization of Ref. [6].

2. Parametrization of Ref. [6] but with rescaled normalization to match

the central value of the measurement [139] by CDF. Default

3. Parametrization of Ref. [7].

• MeasuredTotalXSec: Parameter to set the total cross section (in mb)

explicitely. If this parameter is used, it will overwrite the parametrization

selected with the previous switch. This is intended for first data on the total

cross section and should be used instead of the parametrization, which may

deviate substantially.

ShowerHandler

• MPIHandler: Reference to the MPIHandler. To switch multiple parton

interactions off, this reference has to be set to NULL.

• MaxTryMPI: The maximum number of regeneration attempts for an ad-

ditional semi-hard scattering that consumes more energy than the available

one in the hadron remnants.

• MaxTryDP: The maximum number of regeneration attempts for an addi-

tional hard scattering that consumes more energy than the available one in

the hadron remnants.

http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#twoComp
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#DLmode
http://projects.hepforge.org/herwig/doxygen/MPIHandlerInterfaces.html#MeasuredTotalXSec
http://projects.hepforge.org/herwig/doxygen/ShowerHandlerInterfaces.html#MPIHandler
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPIHandler.html
http://projects.hepforge.org/herwig/doxygen/ShowerHandlerInterfaces.html#MaxTryMPI
http://projects.hepforge.org/herwig/doxygen/ShowerHandlerInterfaces.html#MaxTryDP
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Figure A.1: The structure of the event as it is implemented in Herwig++.

A.2 Forced splitting: implementation in the event

record

In Sect. 4.3 we have briefly described how the different hard scatters are correlated

in colour space. This is of course an important model detail. In the event record,

however, this will not be very obvious as this appears to be organised differently,

in a way more closely related to the eikonal idea. In Fig. A.1 we show the same

particles (s, g, q̄) that have already been extracted from the proton in the example

of Fig. 4.3.2. This time the particles that have been extracted as last particles of

the parton shower are directly extracted from the proton. All additional emissions

of partons that are related to the forced splitting, described in Sect. 4.3 appear as

decay products of the intermediate remnant. In this way we emphasise the non-

perturbative origin of these partons and draw a clear line between the perturbative

parton shower model and the non-perturbative mechanism of forced splittings in

the event record.
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A.3 Setup for minimum bias runs

With the introduction of the new underlying event model from Herwig++ 2.3

onwards, we are able to simulate minimum bias events. However, the default setup

is tailored for simulating underlying event activity in hard scattering events. We

therefore have to change the setting at a few places. First, the specific minimum

bias matrix element, MEMinBias, has to be selected

cd /Herwig/MatrixElements

insert SimpleQCD:MatrixElements[0] MEMinBias

Herwig++ simulates minimum bias collisions as events in which there is effectively

no hard process. However, to maintain a uniform structure with the simulation

of standard hard process events, we have implemented a matrix element class,

MEMinBias that generates a hard process with as minimal an effect as possible. It

extracts only light (anti)quarks (d, u, d̄ or ū) from the hadrons and allows them

to scatter through colourless exchange at zero transverse momentum, with matrix

element set to unity, so that their longitudinal momentum is determined only by

their parton distribution functions. To give a predominantly valence-like distribu-

tion, a cut on their longitudinal momentum fraction x > 10−2 is recommended,

as shown below. Note that because the matrix element is set to unity, the cross

section that is printed to the output file at the end of the run is meaningless. The

needed cuts on the process are as follows

##################################################

# Cuts on the hard process. MUST be ZERO for MinBias

##################################################

cd /Herwig/Cuts

set JetKtCut:MinKT 0.0*GeV

set QCDCuts:MHatMin 0.0*GeV

# Need this cut only for min bias

set QCDCuts:X1Min 0.01

set QCDCuts:X2Min 0.01

http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MEMinBias.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MEMinBias.html
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The remaining settings that need to be changed are the ones in the underlying

event model, i.e. in the MPIHandler. The parameter that tells the model which

hard process is identical to QCD jet production has to be set to zero as our primary

hard process is QCD-like,

set /Herwig/UnderlyingEvent/MPIHandler:IdenticalToUE 0

The settings so far enable the new underlying event model with both perturbative

and non-perturbative contributions. For completeness we report the switches that

are available to turn the soft model off. In this case the simulation is identical to

any version 2.x before 2.3.

set /Herwig/UnderlyingEvent/MPIHandler:softInt Yes

The modification that calculates the overlap function of soft scatters from the

elastic t-slope data can be controlled by

set /Herwig/UnderlyingEvent/MPIHandler:twoComp Yes

A.4 Double parton scattering settings

We describe the needed settings to request explicitly a fixed number of hard in-

teractions as done for the example in Chap. 5 To achieve that, the hard processes

have to be specified along with the cuts that should be used for them. We will

choose the example of like-sign W production as illustrative example.

We start with the conventional hard process and its cuts, where we select only W+

production and decay to e+νe

cd /Herwig/MatrixElements

insert SimpleQCD:MatrixElements[0] MEqq2W2ff

# only W+

set MEqq2W2ff:Wcharge 1

# only positrons

set MEqq2W2ff:Process 3

http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPIHandler.html
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To modify the cuts on that process we have to change the following

cd /Herwig/Cuts

set LeptonKtCut:MinKT 5.0*GeV

set LeptonKtCut:MaxEta 2.5

# inv mass cut on lepton pairs

set MassCut:MinM 0.*GeV

Now we can start adding additional hard processes. This is done in the MPIHandler

class and always needs a SubProcessHandler that has a MatrixElement assigned and

a compulsory reference to a Cuts object. This reference can be an existing one, in

the case where we want to use identical cuts for the processes, but can also be an

independent instance. To create such an independent instance we do

cd /Herwig/UnderlyingEvent/

# cut on pt. Without a specific matcher object, it works on all particles

create ThePEG::SimpleKTCut DPKtCut SimpleKTCut.so

set DPKtCut:MinKT 10

set DPKtCut:MaxEta 2.5

# create the cuts object for DP1

create ThePEG::Cuts DP1Cuts

# This should always be 2*MinKT!!

set DP1Cuts:MHatMin 20

insert DP1Cuts:OneCuts 0 DPKtCut

We first created an instance of the class SimpleKTCut to implement a cut on the

transverse momentum and rapidity of the outgoing particles. This instance then

has to be assigned to the instance of the Cuts object, DP1Cuts. To create a valid

SubProcessHandler we have to specify

cd /Herwig/UnderlyingEvent/

create ThePEG::SubProcessHandler DP1

http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPIHandler.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1SubProcessHandler.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1MatrixElement.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1Cuts.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1SimpleKTCut.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1Cuts.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1SubProcessHandler.html
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insert DP1:MatrixElements 0 /Herwig/MatrixElements/MEqq2W2ff

set DP1:PartonExtractor /Herwig/Partons/QCDExtractor

We have assigned the reference to the same MatrixElement instance and therefore

also have W+ production and decay to positrons. The PartonExtractor is needed

to extract the partons from the beam particles but is always the reference to the

QCDExtractor.

The last step now is to assign the subprocess and cuts instance to the MPIHandler

and select the multiplicity at which they should appear. In our case this is of

course simply one, but in the case of e.g. b-quark pairs or QCD dijets this may be

different from one.

cd /Herwig/UnderlyingEvent/

# set the subprocesses and corresponding cuts

# 0 is reserved for the "usual" underlying events

# Each SubProcessHandler must be accompanied by a Cuts object!

insert MPIHandler:SubProcessHandlers 1 DP1

insert MPIHandler:Cuts 1 DP1Cuts

# now set what multiplicities you want. index = 0 means the first

# ADDITIONAL hard process

# this is SubProcessHandler 1 with multiplicity 1

insert MPIHandler:additionalMultiplicities 0 1

http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1MatrixElement.html
http://projects.hepforge.org/thepeg/doxygen/classThePEG_1_1PartonExtractor.html
http://projects.hepforge.org/herwig/doxygen/classHerwig_1_1MPIHandler.html
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Appendix B

Systematic errors in the low pt

region

When making the initial comparison with the data from Ref. [109], we observed

a > 3σ discrepancy for the observable ptowt,sum below 30 GeV of the leading jet.

Above 30 GeV, this discrepancy is completely absent. However, we have almost

no freedom to tune this observable, because it is completely dominated by the pt

of the jet itself. For the same reason, the relative error is extremely small in this

region, ∼ 0.5%, so the absolute discrepancy is only about 2%. Nevertheless if we

are going to fit to data in this region, we need to understand this effect, to avoid

the χ2 of the fit being completely dominated by it.

From Ref. [109] we find that the data sample was obtained by requiring a calorime-

ter tower with Et > 20 GeV (including charged and neutral particles), described

as the Jet20 sample. The analysis however is based on charged particle tracks. In

particular the x-axis in all observables is the scalar pt sum of the charged particles

defined to be in the hardest jet. It is clear that this sample is only unbiased for

large enough values of pljet
t relative to the 20 GeV trigger. Where this happens

however is not obvious. In Ref. [109] the sample was assumed to be perfectly un-

biased from 20 GeV onwards. This statement is based on the good match between

the Jet20 data and the Min Bias sample around that value. Any judgement on the

smoothness of the match is however limited by the statistical error on the minimum

bias data, which is becoming large in the region where the two samples overlap.
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144 Systematic errors in the low pt region

region σ0
sys

towards 440 MeV

away 1950 MeV

transverse 840 MeV

Table B.1: σ0
sys for the three transverse momentum sum observables.

region σ0
sys

towards 0.75

away 1.07

transverse 0.63

Table B.2: σ0
sys for the three multiplicity observables.

Therefore we have added an additional systematic error in quadrature to the data

points to reflect the precision with which we are confident they are unbiased. We

choose this to have the form

σadd =
σ0
sys

10

(
30.5− pt

GeV

)
for (20.5 < pt/ GeV < 30.5) , (B.1)

where σ0
sys is extracted from the uncertainties in the bins 18− 21 GeV of the Min

Bias data and the linear form ensures that the additional uncertainty goes to zero

for pt ∼ 30 GeV. In more detail, we extract σ0
sys by fitting these three bins with

a linear function and use the uncertainty on the value at 20.5 GeV from this fit

for σ0
sys (in practice, this procedure gives only a slightly smaller error than simply

averaging the errors on the three bins). The values for σ0
sys that we obtained, are

shown in Table B.1 and B.2 respectively.
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[96] T. Sjöstrand and P. Z. Skands, Multiple interactions and the structure of

beam remnants, JHEP 03 (2004) 053, [hep-ph/0402078].
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