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on the Higgs boson couplings at the CERN Large Hadron Collider. The achievable statistical ac-

curacy demands comparison with next-to-leading order QCD calculations, which are presented

here in the form of a fully flexible partonic Monte Carlo program. QCD corrections are deter-

mined for jet distributions and are shown to be modest, of theorder of5%-10% in most cases, but

reaching30% occasionally. Remaining scale uncertainties range from the order of5% or less for

distributions to below±2% for the Higgs boson cross section in typical vector-boson fusion search

regions.

Higgs boson production plus two jets via vector-fusion is sensitive to the tensor of theHV V

(V = W,Z) couplings, which distinguishes loop induced vertices from SM expectations. At the

CERN Large Hadron Collider this information shows up in the azimuthal angle correlations of

the two forward and backward quark jets which are typical forweak boson fusion. The next-

to-leading order QCD corrections to this process, in the presence of anomalousHV V couplings

are computed. It is shown that gluon emission does not significantly change the azimuthal jet

correlations.

For Higgs production via vector boson fusion (VBF), there issuppressed jet activity in the

central region of rapidity. Higgs production via VBF in the association of three jets (Hjjj) is

computed to NLO accuracy in QCD.K factors forHjjj are modest, typically,1.03 to 1.06. Scale

uncertainties for the total cross section at NLO are less than 5%. 3-jet ratios for Higgs production
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1.1 Introduction

Assuming the Higgs boson is discovered, the measurement of its couplings to the gauge bosons

and fermions will be of high importance to researchers in high energy physics. An exact determi-

nation of the properties of the Higgs-like resonance will beneeded in order to definitely confirm

the discovered particle is actually the Higgs boson. However, the CERN Large Hadron Collider

(LHC) is a hadron collider. For Higgs production at the LHC there are a large number of QCD

backgrounds. These backgrounds constitute a problem if onewants to measure Higgs boson cou-

plings or even discover the Higgs boson. Recently, there hasbeen a great deal of study of the

vector boson fusion (VBF) processqQ → qQV V → qQH at the LHC. Thet-channel color sin-

glet nature of the VBF process allows for background reduction, which in turn leads to higher

sensitivity for the measurement of the couplingsHWW andHZZ. If one wants to maximize the

statistical accuracy of the LHC, it is imperative that our theoretical predictions for both the total

cross section and differential cross sections involve QCD corrections. This thesis will be dedicated

to the computation of one-loop QCD corrections for Higgs production via vector boson fusion.

In Section 1.2 a brief introduction to the Standard Model will be given. The Glashow-Weinberg-

Salam electroweak theory will be discussed in Subsection 1.2.1. Here theHiggs Mechanism will

be presented. In Subsection 1.2.2 the theory of Quantum Chromodynamics will be outlined. Higgs

production via vector boson fusion will be discussed in Section 1.3. There will be a discussion in

Section 1.4 of theCatani-Seymour dipole subtraction method.

1.2 The Standard Model

The Glashow-Weinberg-Salam electroweak theory [1], whichis a Yang-Mills theory [2], is

based on the symmetry groupSU(2)L × U(1)Y describing the electromagnetic and weak interac-

tions between quarks and leptons. Quantum Chromodynamics (QCD), anSU(3)C gauge theory,

describes the strong interactions of the quarks and gluons [3]. The direct product of the above two

groups,SU(3)C × SU(2)L × U(1)Y , is known as the Standard Model (SM).
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Table 1.1 The electroweak quantum numbers for the first generation of quarks and leptons.

TL T3
1
2
Y Q

νeL
1
2

1
2

−1
2

0

eL
1
2

−1
2

−1
2

−1

uL
1
2

1
2

1
6

2
3

dL
1
2

−1
2

1
6

−1
3

eR 0 0 −1 −1

uR 0 0 2
3

2
3

dR 0 0 −1
3

−1
3

Essential to the SM is theHiggs mechanism which was proposed forty years ago by Higgs,

Brout, Englert, Guralnik, Hagen and Kibble [4]. TheHiggs mechanism provides a way in which

the gauge groupSU(2)L × U(1)Y is spontaneously broken down toU(1)EM which describes the

electromagnetic interaction and in the process generates mass for gauge bosons and fermions.

1.2.1 Glashow-Weinberg-Salam Electroweak Model

The Glashow-Weinberg-Salam Electroweak model (GWS) is based on the gauge groupSU(2)L×
U(1)Y [1] . There are three generations of left-handed and right-handed chiral quarks and leptons,

ψL.R = 1
2
(1∓ γ5)ψ. The conserved quantum number associated withSU(2)L is weak isospin TL.

Theweak hypercharge quantum numberY is associated with the gauge groupU(1)Y . In order to

incorporate the electric chargeQ and unify the weak and electromagnetic interactions in a common

gauge structure,U(1)Y symmetry is essential. Weak hypercharges are specified according to the

formula

Q = T3 +
1

2
Y. [1.1]

Right-handed fermions are assigned to transform underU(1)Y only whereas left-handed fermions

transform under bothSU(2)L andU(1)Y in a non-trivial fashion. Weak quantum numbers for the
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first generation of quarks and leptons are shown in Table 1.1.Due to the fact that there are equal

numbers of quarks and leptons and three quark colors, chiralanomalies [5] are canceled [6] and

the renormalizability of electroweak theory is preserved [7].

The gauge fields for the unbroken electroweak sector consistof theBµ field which corresponds

to the generatorY of theU(1)Y group and the threeW a
µ (a = 1, 2, 3) fields which correspond to

the generatorsT a (a = 1, 2, 3) of theSU(2)L group. The generatorsT a are equivalent to half the

Pauli matrices

T a =
1

2
τa [1.2]

with commutation relations

[T a, T b] = iǫabcT c, [Y, Y ] = 0 [1.3]

whereǫabc are antisymmetric structure constants for anSU(2) group.

The unbrokenSU(2)L × U(1)Y Lagrangian is given by

L = −1

4
W µνaW a

µν −
1

4
BµνBµν + ψ̄iγµDµψ [1.4]

with a separate fermion term for each fieldψL andψR. The covariant derivativeDµ is given by

Dµ = ∂µ + ig2W
a
µT

a + ig1
1

2
BµY. [1.5]

The field strengths for theW andB fields are

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ǫ

abcW b
µW

c
ν , [1.6]

Bµν = ∂µBν − ∂νBµ [1.7]

whereg2 is the coupling constant ofSU(2)L andg1 is the coupling constant ofU(1)Y .

The unbroken Lagrangian (Eq. (1.4)) is invariant under the infinitesimal local gauge transfor-

mations forSU(2)L andU(1)Y independently. The masses of the fermion and gauge fields are

taken as zero to insure gauge invariance.
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�
f2

f1

V µ = −iegV f1f2

τ γµ 1

2
(1 + τγ5)

Figure 1.1qqV vertex for fermion of chiralityτ = ±.

In the GWS model, theW3 andB fields are linear combinations of the photon fieldA and

another neutral fieldZ. The relation between these fields is






W3

Z





 =







cos θw sin θw

− sin θw cos θw













Z

A





 , [1.8]

whereθw is the electroweak orWeinberg mixing angle. Substituting the above relation into the

neutral termi(g2W3µ + g1
1
2
BµY ) of the covariant derivative yields

i(g2W3µ + g1
1

2
BµY ) = iAµ[g2 sin θwT3 + g1 cos θw

1

2
Y ] [1.9]

+ iZµ[g2 cos θwT3 − g1 sin θw
1

2
Y ]. [1.10]

In order to unify the electromagnetic interaction with the weak interactions, the coefficient in front

of theA field must be equal toieQ = ie(T3 + 1
2
Y ). This implies the following coupling relations

g1 =
e

cos θw
, g2 =

e

sin θw
. [1.11]

The interaction of the gauge bosons and fermions shown in Figure 1.1 originates from the term

ψ̄iγµDµψ of Eq. (1.4) which can be written as

−Lint = eJµ
EMAµ +

g1√
2

(

J+µ
L W+

µ + J−µ
L W−

µ

)

+ gZJ
µ
ZZµ. [1.12]

J±
L , JZ , andJEM are currents with the following definitions

J±µ
L =

√
2ψ̄γµT±

L ψ, [1.13]

Jµ
Z = ψ̄γµ[T3L − xwQ]ψ, [1.14]

Jµ
EM = ψ̄γµQψ, [1.15]
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T T3
1
2
Y Q

φ+ 1
2

1
2

1
2

1

φ0 1
2

−1
2

1
2

1

Table 1.2 Quantum numbers

with

gZ =
e

sin θw cos θw
, xw = sin2 θw. [1.16]

In the SM aSU(2) doubletΦ of hyperchargeYΦ = 1/2 is introduced. Its self-interactions

provide the mechanism for spontaneous symmetry breaking (SSB), giving rise to gauge boson and

fermion masses [4] in gauge invariant fashion. Also, as the result of SSB, a new neutral scalar

called the Higgs boson (H0) arises. The isodoublet is specified to be

Φ =







φ+

φ0





 , [1.17]

with Lagrangian

LΦ = (DµΦ)†DµΦ − µ2|Φ|2 + λ|Φ|4 [1.18]

whereDµΦ = (∂µ + ig2W
a
µτ

a + ig1YΦBµ)Φ. Forµ2 < 0 in the classical theory the ground state

of |Φ|2 occurs at|Φ|2 = −1
2
µ2/λ. In quantum field theory, the fieldΦ develops a non-vanishing

vacuum expectation value. The appearance of this non-vanishing vacuum expectation value selects

a preferred direction in weak isospin plus hypercharge space and thereby “spontaneously breaks”

theSU(2)L × U(1)Y symmetry down toU(1)EM which describes the electromagnetic interaction.

Here the modulusv/
√

2 = (−µ2/2λ)
1
2 of the vacuum expectation value (vev) of|Φ| is intro-

duced. Since conventional perturbation theory is formulated for fields with zero vev, it is appropri-

ate to separate out the vev and to redefine the scalar doubletΦ as

Φ =







θ2 + iθ1

1√
2
(v +H) − iθ3





 = exp

(

iθ · τ
v

)







0

(v +H)/
√

2





 , [1.19]
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where the fieldsθ1, θ2, θ3, andH have zero vev. By a finite gauge transformation underSUL(2)

with α = θ/v, the above phase factor can be removed fromΦ. This is the “unitary gauge”. Theθ

fields in unitary gauge become longitudinal components to theW± andZ0 fields.

The covariant derivative operation on an isodoublet field expressed in terms of the physicalA,

W±, andZ fields is

D = ∂ + ieQA + i
1√
2
g2(τ

+W+ + τ−W−) + igZ(
1

2
τ3 − xwQ)Z, [1.20]

where the space-time indexµ has been suppressed. The2 × 2 matricesτ± are defined as

τ+ =
√

2T+ =







0 1

0 0





 , τ− =
√

2T− =







0 0

1 0





 . [1.21]

In the unitary gaugeΦ has only a neutral component

Φ =
1√
2







0

v +H





 [1.22]

and

DΦ =
1√
2







1√
2
ig2W

+(v +H)

∂H − 1
2
igZZ(v +H)





 . [1.23]

By inserting Eq.(1.23) into Eq.(1.18), the LagrangianLΦ becomes,

LΦ =
1

2
(∂H)2 +

1

4
g2
2W

+W−(v +H)2 +
1

8
g2

ZZZ(v +H)2 − V
(

1

2
(v +H)2

)

. [1.24]

Thev2 terms provideW andZ boson mass terms

M2
WW

+W− +
1

2
M2

ZZZ [1.25]

with

MW =
1

2
gv, MZ =

1

2
gZv =

MW

cos θw
, [1.26]

while the photon remains massless.
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�
V ν

V µ

H = 2i
M2

V

v
gµν

Figure 1.2HV V vertex

The interactions between the Higgs boson,H, and the gauge bosons,W andZ, are given by

the cubic and quartic terms,

(
1

4
g2W+W− +

1

8
g2

ZZZ)(H2 + 2vH), [1.27]

which are completely specified by the gauge couplings. Notice, if v = 0 there can be no tree-level

trilinear couplings of the Higgs boson to the weak bosons. Figure 1.2 shows the Feynman rule for

theHV V interaction vertex.

1.2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is aSU(3) gauge theory of quarks and gluons [3]. The

Lagrangian for QCD is

LQCD = −1

4
F a

µνF
aµν +

∑

q

q̄i(iγ
µDµ −mq)ijqj . [1.28]

The field strengthF a
µν and the covariant derivativeDµ are given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν [1.29]

(Dµ)ij = δij∂µ + igsT
a
ijA

a
µ [1.30]

(mq)ij = mqδij [1.31]

whereAa
µ are the gluon fields andqi are quark fields.fabc are the structure constants andT a

ij are

the generators of the Lie group which defines the gauge symmetry. The structure constantsfabc

are defined by the commutation relation

[T a, T b] = i fabcT c. [1.32]
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The Lagrangian (Eq.(1.28)) is invariant under infinitesimal gauge transformations

q(x) → [1 − igsθ
a(x)T a]q(x), [1.33]

Aa
µ(x) → Aa

µ(x) + ∂µθ
a(x) + gsf

abcθb(x)Ac
µ. [1.34]

The self-interactions of the gluons shown in Figure 1.3 arise from the non-Abelian structure of the

theory and has no analogue in quantum electrodynamics (QED).

Loop integrals in QCD lead to ultraviolet divergences. These ultraviolet divergences can be

absorbed through the redefinition of coupling parameters. However, renormalization introduces

a dependence on an arbitrary scaleµ in couplings. The renormalization scale dependence of the

effective QCD couplingαs = g2
s/4π is controlled by theβ-function,

µ
∂αs

∂µ
= 2β(αs) = −β0

2π
α2

s −
β1

4π2
α3

s − . . . , [1.35]

β0 = 11 − 2

3
nf , [1.36]

β1 = 51 − 19

3
nf ; [1.37]

wherenf is the number of quarks less than the energy scaleµ. Solution of the above differential

equation requires the introduction of an integration constant. This integration constant must be

determined experimentally. The most sensible choice for this constant is the value ofαs at a fixed

references scaleµ0. The standard choice isµ0 = mZ .

αs(µ) =
4π

β0 ln(µ2/Λ2)

[

1 − 2β1

β2
0

ln [ln(µ2/Λ2)]

ln(µ2/Λ2)
+ . . .

]

[1.38]

The solution above to the renormalization group equations illustrates the asymptotic freedom prop-

erty: αs → 0 asµ→ ∞ and shows that QCD becomes a strongly coupled theory forµ ∼ Λ [3].

1.3 Higgs Production via Vector Boson Fusion

The vector boson fusion process1 qq → qqV V → qqH (VBF) has the second largest pro-

duction cross section to that of the gluon fusion processgg → H in the Higgs mass range

1The termvector-boson fusion (VBF) and the termweak-boson fusion (WBF) can be used interchangeably since
the Higgs production processqQ → qQV V → qQH involves only the weak bosonsW andZ.



10

�
qb

qa

gµ,c = −igsT
c
abγ

µ

�
gν,b(q)

gµ,a(p)

gλ,c(r) = igsf
abc[(p− q)λgµν + (p− r)µgνλ + (r − p)νgλµ]

�
gν,b

gµ,a

gρ,d

gλ,c

= −ig2
s [f

abef cde(gλνgµρ − gλρgµν)

+facef bde(gλµgνρ − gλρgµν)

+fadef bce(gλµgνρ − gλνgµρ)]

Figure 1.3 Feynman rules for QCD. The momentar, p, andq are incoming.
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W,Z 

Figure 1.4 Higgs production via vector boson fusion.

MH ≈ 100−200 GeV. The VBF process shown in Figure 1.4 can be visualized as the exchange of

a vector bosonV (V = W,Z) in thet-channel with the Higgs boson attached to the vector boson

propagator. Even though gluon fusion has the highest cross section, it is difficult to extract the

Higgs boson signal out of the QCD backgrounds. Besides the issue of signal extraction for gluon

fusion is the issue of theoretical uncertainty of the cross section. K-factors for gluon fusion are

typically larger than2 with a residual uncertainty of10-20% remaining after the2-loop corrections

have been evaluated [8, 9]. However, for VBF, the situation is quite different withK-factors in the

range of1.08-1.1 over the range of Higgs massMH ≈ 100 − 200 GeV with scale variation on the

order of±2% [10, 11, 12].

Typical for a VBF event, is the presence of two forward tagging jets which at LO corresponds

to processes likeqQ̄ → qQ̄H shown in Figure 1.4. The observation of forward tagging jets

in addition to any kinematic cuts on the Higgs decay productsis crucial for the suppression of

backgrounds [25, 26, 28, 29]. In Chapter 2, tagging jet properties for Higgs production via VBF

in the association of two jets (VBFHjj) are investigated at NLO in QCD and in Chapter 3, the

NLO QCD corrections for VBFHjj are computed in the presence of anomalous Higgs couplings.

Much of the material in Chapters 2 and 3 has appeared previously in Refs. [10, 13].

Another useful technique for the suppression of QCD backgrounds to VBF is the veto of any

additional jet activity in the central region of rapidity [14, 15, 16, 17, 18, 19, 20]. For VBF pro-

cesses there tends to be suppressed jet activity in the central region due tot-channel color singlet

exchange. Since QCD backgrounds are characterized by quarkor gluon exchange in thet-channel,

a veto of any additional jet activity in the central rapidityregion is expected to suppress more of the

backgrounds than the signal. The effect of the central jet veto has been estimated at leading order
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in Ref. [15]. In Chapter 4 the ratios for Higgs+ 3 jet distributions to Higgs+ 2 jet distributions

for VBF are analyzed at next-to-leading order in QCD.

1.4 The Dipole Subtraction Method

A typical NLO cross sectionσ consists of three pieces: the LO (Born-level) cross section, σLO,

the virtual loop corrections,σV , and the real emission corrections,σR;

σ = σLO + σNLO =
∫

n
dσB +

∫

n+1
dσR +

∫

n
dσV . [1.39]

Phase space integrals over thedσR anddσV are separately divergent ind = 4 space-time dimen-

sions. However, their sum in Eq.(1.39) is finite. In order to carryout the phase space integration

numerically, one first needs to regulate the divergences ofdσR anddσV separately. By carrying

out the integrations ind = 4 − 2ǫ dimensions using dimensional regularization, the divergences

are replaced by double (soft and collinear) poles,1/ǫ2, and single (soft, collinear, or ultraviolet)

poles,1/ǫ. Ultraviolet divergences are absorbed into coupling constants through the renormaliza-

tion procedure. The infrared divergences of the real corrections,dσR, are subtracted off by a local

counter-term,dσA. The integrated local counter-termσA cancels the infrared divergences of the

virtual corrections. The general idea of the subtraction method is to use the identity

σNLO =
∫

n+1
dσR −

∫

n+1
dσA +

∫

n

∫

1
dσA +

∫

n
dσV , [1.40]

wheredσA is such that it has the same pointwise singular structure asdσR. TheCatani-Seymour

dipole subtraction method [21] provides a recipe for constructing dσA for arbitrary processes.

The dipole subtraction method uses an improved factorization formula for the soft and collinear

divergences of then + 1-parton matrix elements, called dipole formulae:

dσA =
∑

dipoles

dσB ⊗ dVdipole [1.41]

The notation used in Eq.(1.41) is symbolic.dσB denotes an appropriate color and spin projection of

the Born-level exclusive cross section. The symbol⊗ denotes properly defined phase space convo-

lutions and sums over color and spin indices. The dipole factorsdVdipole, which match the singular
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behavior ofdσR, are completely independent of the process. The explicit form of the dipole factors

are not shown here but are given in Appendix A. Introducing the phase space integration,

σNLO =
∫

n+1

[

dσR − dσA
]

+
∫

n+1
dσA +

∫

n
dσV , [1.42]

one can safely perform the limitǫ → 0 under the integral sign of the first term on the right-hand-

side of Eq.(1.42). Now, the first term can be integrated ind = 4 space-time dimensions. That

being the case one, can perform the phase space integration numerically.

At this stage, all of the singularities reside in the last twoterms in the right-hand-side of

Eq.(1.42). Now, since a convenient choice ofdσA has been made in Eq.(1.41), one can carry out

analytically the integration ofdσA over the one-parton subspace. Again, using symbolic notation,

one can write:

∫

n+1
dσA =

∑

dipoles

∫

n
dσB ⊗

∫

1
dVdipoles =

∫

n

[

dσB ⊗ I

]

, [1.43]

where the universal factorI is defined as

I =
∑

dipoles

∫

1
dVdipoles, [1.44]

and contains the1/ǫ2 and1/ǫ poles. These poles can be combined with poles indσV thereby

canceling all divergences. After the cancellation has beencarried out, one can take the limitǫ→ 0

and perform the remainingn-parton phase space integration numerically. The final structure of the

calculation is

σNLO =
∫

n+1





(

dσR
)

ǫ=0
−




∑

dipoles

dσB ⊗ dVdipoles





ǫ=0



+
∫

n

[

dσV + dσB ⊗ I

]

ǫ=0
. [1.45]

In Chapters 2 and 4 the dipole subtraction method described here is used to compute the next-to-

leading order (NLO) QCD corrections for Higgs production inassociation of two and three jets via

VBF.
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Chapter 2

Next-to-Leading Order Jet Distributions For Higgs Boson Pro-
duction Via Vector-Boson Fusion
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2.1 Introduction

The vector-boson fusion (VBF) process,qQ→qQH, is expected to provide a copious sources

of Higgs bosons inpp-collisions at the Large Hadron Collider (LHC) at CERN. It can be visu-

alized (see Fig. 2.1) as the elastic scattering of two (anti-)quarks, mediated byt-channelW or

Z-exchange, with the Higgs boson radiated off the vector-boson propagator. Together with gluon

fusion, it represents the most promising production process for Higgs boson discovery [22, 23].

Once the Higgs boson has been found and its mass determined, the measurement of its couplings

to gauge bosons and fermions will be of main interest [24]. Here VBF will be of central importance

since it allows for independent observation in theH→ττ [25],H→WW [17, 26, 27],H→γγ [28]

andH→ invisible [29] channels. This multitude of channels is crucial for separating the effects of

different Higgs boson couplings.

The VBF measurements can be performed at the LHC with statistical accuracies on cross sec-

tions times decay branching ratios,σ · B, reaching 5 to 10% [24]. In order to extract Higgs

boson coupling constants with this full statistical power,a theoretical prediction of the Standard

Model (SM) production cross section with error well below 10% is required, and this clearly entails

knowledge of the next-to-leading order (NLO) QCD corrections.

For the total Higgs boson production cross section via VBF these NLO corrections have been

available for a decade [12] and they are relatively small, withK-factors around 1.05 to 1.1. These

modestK-factors are another reason for the importance of Higgs boson production via VBF:

theoretical uncertainties will not limit the precision of the coupling measurements. This is in

contrast to the dominant gluon fusion channel where theK-factor is larger than 2 and residual

uncertainties of 10-20% remain, even after the 2-loop corrections have been evaluated [8, 9].

In order to distinguish the VBF Higgs boson signal from backgrounds, stringent cuts are re-

quired on the Higgs boson decay products as well as on the two forward quark jets which are

characteristic for VBF. Typical cuts have an acceptance of less than 25% of the starting value for

σ ·B. The question then arises whether theK-factors and the scale dependence determined for the

inclusive production cross section [12] are valid for the Higgs boson search region also. This is
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best addressed by implementing the one-loop QCD corrections in a fully flexible NLO parton-level

Monte Carlo program.

The purpose of this Chapter then is twofold. First, we use theHiggs boson signal process

as our example to discuss the generic features of NLO QCD corrections to VBF processes. We

use the subtraction method of Catani and Seymour [21] throughout. In Section 2.2 we describe

the handling of real emission singularities. We give explicit formulas for the finite contributions

which remain after factorization of the initial-state collinear singularities and after cancellation of

divergences produced by soft and collinear final-state gluons against the corresponding terms in

the virtual corrections.

This procedure yields a regularized Monte Carlo program which allows us to determine infrared

safe observables at NLO. The main features of the program, numerical tests, and parameters to be

used in the later phenomenological discussion are described in Section 2.3. In Section 2.4 we

then use this tool to address our second objective, a discussion of the QCD radiative corrections

as a function of jet observables. We determine theK-factors and the residual scale uncertainties

for distributions of the tagging jets which represent the scattered quarks in VBF. In addition, we

quantify the cross section error induced by uncertainties in the determination of parton distribution

functions (pdf’s). Pdf errors and scale variations in the phase-space regions relevant for the Higgs

boson search turn out to be quite small (approximately 4% when combined) and thus indicate

the small theoretical uncertainties required for reliablecoupling measurements. Conclusions are

presented in Section 2.5.

2.2 Subtraction terms for soft and collinear radiation

At lowest order, Higgs boson production via vector-boson fusion is represented by a single

Feynman graph, like the one depicted in Fig. 2.1(a) forq̄Q→q̄QH. We use this particular pro-

cess to describe the QCD radiative corrections. Generalization to crossed processes (q̄→q and/or

Q→Q̄) is straightforward. Strictly speaking, the single Feynman graph picture is valid for differ-

ent quark flavors on the two fermion lines only. For identicalflavors annihilation processes, like

q̄q→Z∗→ZH with subsequent decayZ→q̄q or similarWH production channels, contribute as
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(a) (b)
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Q
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H

Q Q

H

Q

q q q q

Figure 2.1 Feynman graphs contributing toq̄Q→q̄QH at (a) tree level and (b) including virtual
corrections to the upper quark line.

well. Forqq→qqH or q̄q̄→q̄q̄H the interchange of identical quarks in the initial or final state needs

to be considered in principal. However, in the phase-space regions where VBF can be observed

experimentally, with widely separated quark jets of very large invariant mass, the interference of

these additional graphs is strongly suppressed by large momentum transfer in the vector-boson

propagators. Color suppression further makes these effects negligible. In the following we sys-

tematically neglect any identical fermion effects.

At NLO, the vertex corrections of Fig. 2.1(b) and the real emission diagrams of Fig. 2.2 must

be included. Because of the color singlet nature of the exchanged vector boson, any interference

terms between sub-amplitudes with gluons attached to both the upper and the lower quark lines

vanish identically at orderαs. Hence, it is sufficient to consider radiative corrections to a single

quark line only, which we take here as the upper one. Corrections to the lower fermion line are an

exact copy. We denote the amplitude for the real emission process

q̄(pa) +Q(pb)→g(p1) + q̄(p2) +Q(p3) +H(P ) [2.1]

depicted in Fig. 2.2(a) and (b) asMq̄
r = Mq̄

r(pa, p1, p2; q), whereq = p1 + p2 − pa is the four

momentum of the virtual vector boson,V , of virtualityQ2 = −q2.

The 3-parton phase-space integral of|Mq̄
r|2 suffers from soft and collinear divergences. They

are absorbed in a single counter term, which, in the notationof Ref. [21], contains the two dipole
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q
V(q)

q(pa)

Figure 2.2 Real emission contributions to Higgs boson production via vector-boson fusion.
Corrections for the upper quark line only are shown: gluon radiation ((a) and (b)) and gluon

initiated processes ((c) and (d)).
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factorsDq̄1
2 andDq̄

12

|Mq̄|2sing = Dq̄1
2 + Dq̄

12 = 8παs(µR)CF
1

Q2

x2 + z2

(1 − x)(1 − z)

∣

∣

∣Mq̄
B

∣

∣

∣

2
, [2.2]

whereCF = 4
3

andMq̄
B = Mq̄

B(p̃a, p̃2; q) is the Born amplitude for the lowest order process

q̄(p̃a) +Q(pb)→q̄(p̃2) +Q(p3) +H(P ) , [2.3]

evaluated at the phase-space point

p̃a = xpa , p̃2 = p1 + p2 − (1 − x)pa , [2.4]

with

x = 1 − p1 · p2

(p1 + p2) · pa
, [2.5]

z = 1 − p1 · pa

(p1 + p2) · pa

=
p2 · pa

(p1 + p2) · pa

. [2.6]

This choice continuously interpolates between the singularities due to final-state soft gluons (p1→0

corresponding tox→1 and z→1), collinear final-state partons (p1||p2 resulting inp1 · p2→0 or

x→1) and gluon emission collinear to the initial-state anti-quark (p1→(1 − x)pa andz→1). The

subtracted real emission amplitude squared,|Mq̄
r|2−|Mq̄|2sing, leads to a finite phase-space integral

of the real parton emission cross section

σNLO
3 (q̄Q→q̄QHg) =

∫ 1

0
dxa

∫ 1

0
dxb fq̄/p (xa, µF ) fQ/p (xb, µF )

1

2ŝ
dΦ4 (p1, p2, p3, P ; pa + pb)

×
{

|Mq̄
r|

2
F

(3)
J (p1, p2, p3) − |Mq̄|2sing F

(2)
J (p̃2, p3)

}

, [2.7]

whereŝ = (pa + pb)
2 is the center-of-mass energy. The functionsF

(3)
J andF (2)

J define the jet

algorithm for 3-parton and 2-parton final states and we obviously needF (3)
J →F

(2)
J in the singular

limits discussed above, i.e. the jet algorithm (and all observables) must be infrared and collinear

safe. Being finite, the phase-space integral of Eq. (2.7) is evaluated numerically inD = 4 dimen-

sions. Similarly, for the gluon initiated process

g(pa) +Q(pb)→ q(p1) + q̄(p2) +Q(p3) +H(P ) , [2.8]
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the singular behavior forg→qq̄ splitting is absorbed into the singular counter term

|Mg|2sing = Dg1
2 + Dg2

1 = 8παs(µR)TF
1

Q2

[

x2 + (1 − x)2

1 − z

∣

∣

∣Mq̄
B (p̃a, p̃2; q)

∣

∣

∣

2

+
x2 + (1 − x)2

z
|Mq

B (p̃a, p̃2; q)|2
]

, [2.9]

whereTF = 1
2

andMq̄
B andMq

B denote the Born amplitudes for the leading-order (LO) processes

q̄(p̃a) +Q(pb)→q̄(p̃2) +Q(p3) +H(P ) andq(p̃a) +Q(pb)→q(p̃2) +Q(p3) +H(P ), respectively.

The subtraction of|Mg|2sing from the real emission amplitude squared leads to a contribution to the

subtracted 3-parton cross section analogous to the one given in Eq. (2.7).

The singular counter terms are integrated analytically, inD = 4−2ǫ dimensions, over the phase

space of the collinear and/or soft final-state parton. Integrating Eq. (2.2) yields the contribution

(we are using the notation of Ref. [21])

< I(ǫ) >= |Mq̄
B|2

αs(µR)

2π
CF

(

4πµ2
R

Q2

)ǫ

Γ(1 + ǫ)
[

2

ǫ2
+

3

ǫ
+ 9 − 4

3
π2
]

. [2.10]

We have regularized the divergences using dimensional reduction. If we had used conventional

dimensional regularization we would have obtained a finite piece equal to(10 − 4π2/3). The

1/ǫ2 and1/ǫ divergences cancel against the poles of the virtual correction, depicted in Fig. 2.1(b).

For the case at hand, the virtual correction amplitudeMV is particularly simple, leading to the

divergent interference term

2Re [MV M∗
B] = |Mq̄

B|2
αs(µR)

2π
CF

(

4πµ2
R

Q2

)ǫ

Γ(1 + ǫ)
[

− 2

ǫ2
− 3

ǫ
+ cvirt

]

. [2.11]

Here we have included the finite contribution of the virtual diagram which is proportional to the

Born amplitude. In dimensional reduction this contribution is given bycvirt = π2/3 − 7 ( cvirt =

π2/3 − 8 in conventional dimensional regularization).

Summing together the contributions from Eq. (2.10) and Eq. (2.11), we obtain the following

finite 2-parton contribution to the NLO cross section

σNLO
2 (q̄Q→q̄QH) =

∫ 1

0
dxa

∫ 1

0
dxb fq̄/p (xa, µF ) fQ/p (xb, µF )

1

2ŝ
dΦ3 (p2, p3, P ; pa + pb)

×
∣

∣

∣Mq̄
B

∣

∣

∣

2
F

(2)
J (p2, p3)

[

1 +
αs(µRa) + αs(µRb)

2π
CF

(

9 − 4

3
π2 + cvirt

)

]

. [2.12]
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The twoαs terms, at distinct renormalization scalesµRa andµRb, correspond to virtual corrections

to the upper and the lower fermion line in Fig. 2.1, respectively, and we have anticipated the

possibility of using different scales (like the virtualityof the attached vector bosonV ) for the QCD

corrections to the two fermion lines.

The remaining divergent piece of the integral of the counterterms in Eqs. (2.2) and (2.9) is

proportional to theP qq andP gq splitting functions and disappears after renormalizationof the

parton distribution functions. The surviving finite collinear terms are given by

σNLO
2,coll (q̄Q→q̄QH) =

∫ 1

0
dxa

∫ 1

0
dxb f

c
q̄/p (xa, µF , µRa) fQ/p (xb, µF )

× 1

2ŝ
dΦ3 (p2, p3, P ; pa + pb)

∣

∣

∣Mq̄
B

∣

∣

∣

2
F

(2)
J (p2, p3) , [2.13]

and similarly for quark initiated processes. Here the anti-quark functionf c
q̄/p(x, µF , µR) is given

by

f c
q̄/p(x, µF , µR) =

αs(µR)

2π

∫ 1

x

dz

z

{

fg/p

(

x

z
, µF

)

A(z)

+
[

fq̄/p

(

x

z
, µF

)

− zfq̄/p (x, µF )
]

B(z) + fq̄/p

(

x

z
, µF

)

C(z)
}

+
αs(µR)

2π
fq̄/p(x, µF )D(x) , [2.14]

with the integration kernels

A(z) = TF

[

z2 + (1 − z)2
]

ln
Q2(1 − z)

µ2
Fz

+ 2TF z(1 − z) , [2.15]

B(z) = CF

[

2

1 − z
ln
Q2(1 − z)

µ2
F

− 3

2

1

1 − z

]

, [2.16]

C(z) = CF

[

1 − z − 2

1 − z
ln z − (1 + z) ln

Q2(1 − z)

µ2
Fz

]

, [2.17]

D(x) = CF

[

3

2
ln

Q2

µ2
F (1 − x)

+ 2 ln(1 − x) ln
Q2

µ2
F

+ ln2(1 − x) + π2 − 27

2
− cvirt

]

. [2.18]

Note thatcvirt exactly cancels between the contributions from Eq. (2.12) and Eq. (2.18). This fact

will be used below to numerically test our program.

The same kernels define the quark functionsf c
q/p(x, µF , µR), which appear with the Born am-

plitudeMq
B(pa, p2; q) in the analog of Eq. (2.13) for theqQ→qQH processes. The gluon distribu-

tion fg/p(x, µf) thus appears twice, multiplying the Born amplitudes squared |Mq
B|2 and |Mq̄

B|2
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in the quark and anti-quark functions. These two terms correspond to the two terms in Eq. (2.9),

after the1/ǫ collinear divergences have been factorized into the NLO parton distributions.

Formulae identical to the ones given above for corrections to the upper line in the diagrams of

Fig. 2.2 apply to the case where the gluon is attached to the lower line (witha ↔ b, p2 ↔ p3). As

for the renormalization scaleµR in Eq. (2.12), we distinguish between the two factorizationscales

that appear for the upper and lower quark lines, calling themµFa andµFb, when needed.

A second class of gluon initiated processes arises from crossing the final-state gluon and the

initial-state quarkQ in the Feynman graphs of Fig. 2.2(a) and (b). The resulting process can be

described asgq̄→q̄V H with the virtual vector bosonV undergoing the hadronic decayV→QQ̄.

Such contributions are part of the radiative corrections toq̄q→V H, they are suppressed in the VBF

search regions with their large dijet invariant mass, and wedo not include them in our calculation.

2.3 The NLO parton Monte Carlo program

The cross section contributions discussed above for theq̄Q→q̄QH process and crossing related

channels have been implemented in a parton-level Monte Carlo program. The tree-level amplitudes

are calculated numerically, using the helicity-amplitudeformalism of Ref. [30]. The Monte Carlo

integration is performed with a modified version of VEGAS [31].

The subtraction method requires the evaluation of real-emission amplitudes and, simultane-

ously, Born amplitudes at related phase-space points (see e.g. Eqs. (2.7) and (2.13)). In order to

speed up the program, the contributions fromσNLO
3 andσNLO

2,coll are calculated in parallel, as part of

the 3-parton phase-space integral. Since the phase-space element factorizes [21],
∫

dΦ4 (p1, p2, p3, P ; pa + pb) =
∫ 1

0
dx
∫ 1

0
dz dΦ3 (p̃2, p3, P ; xpa + pb)

Q2

16π2x
, [2.19]

we can rewrite the finite collinear term of Eq. (2.13) as

σNLO
2,coll (q̄Q→q̄QH) =

∫ 1

0
dxa

∫ 1

0
dxb

1

2(pa + pb)2
dΦ4 (p1, p2, p3, P ; pa + pb)

×
{

fg/p(xa, µF )A(x) + fq̄/p(xa, µF )
[

B(x) + C(x)
]

+ xfq̄/p(xxa, µF )

[

D(xxa)

1 − xxa

−B(x)

]}
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×fQ/p (xb, µF )
8παs(µR)

Q2

∣

∣

∣Mq̄
B

∣

∣

∣

2
F

(2)
J (p̃2, p3) , [2.20]

wherex and z are determined as in Eqs. (2.5) and (2.6). Equation (2.20) allows for stringent

consistency checks of our program, since we can determine the finite collinear cross section either

as part of the 2-parton or as part of the 3-parton phase-spaceintegral. For example, because of

the cancellation ofcvirt mentioned below Eq. (2.18), the final result cannot depend onits value.

We have checked this independence numerically, at the3 × 10−4 level. Another method to test

the program is to determine the (anti-)quark functionsf c
a/p(x, µF , µR) by numerical integration of

Eq. (2.14), to then compute the finite collinear cross section together with the Born cross section,

and to compare with the results of Eq. (2.20). For all phase-space regions considered, our numerical

program passes this test, with relative deviations of less than2 × 10−4 of the total Higgs boson

cross section, which is the level of the Monte Carlo error.

As a final check we have compared our total Higgs boson cross section with previous analytical

results [12], as calculated with the program of Spira [32]. We find agreement at or below the

1 × 10−3 level which is inside the Monte Carlo accuracy for this comparison.

The cross sections to be presented below are based on CTEQ6M parton distributions [33] with

αs(MZ) = 0.118 for all NLO results and CTEQ6L1 parton distributions withαs(MZ) = 0.130 for

all leading order cross sections. For allZ-exchange contributions, theb-quark is included as an ini-

tial and/or final-state massless parton. Theb-quark contributions are quite small, however, affect-

ing the Higgs boson production cross section at the3% level only. We choosemZ = 91.188 GeV,

αQED = 1/128.93 and the measured value ofGF as our electroweak input parameters from which

we obtainmW = 79.96 GeV andsin2 θW = 0.2310, using LO electroweak relations. In order to

reconstruct jets from the final-state partons, thekT -algorithm [34] as described in Ref. [35] is used,

with resolution parameterD = 0.8.

2.4 Tagging jet properties at NLO

The defining feature of vector-boson fusion events at hadroncolliders is the presence of two for-

ward tagging jets, which, at LO, correspond to the two scattered quarks in the processqQ→qQH.
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Their observation, in addition to exploiting the properties of the Higgs boson decay products, is

crucial for the suppression of backgrounds [17, 25, 26, 27, 28, 29]. The stringent acceptance re-

quirements imply that tagging jet distributions must be known precisely for a reliable prediction

of the SM Higgs signal rate. Comparison of the observed Higgsproduction rate with this SM

cross section, within cuts, then allows us to determine Higgs boson couplings [24] and, thus, the

theoretical error of the SM cross section directly feeds into the uncertainty of measured couplings.

The NLO corrections to the Higgs boson cross section do not depend on the phase space of the

Higgs boson decay products because the Higgs boson, as a scalar, does not induce any spin cor-

relations. It is therefore sufficient to analyze tagging jetdistributions to gain a reliable impression

of the size and the uncertainties of higher order QCD corrections. Since search strategies depend

on the decay mode considered and will evolve with time, we here consider generic vector-boson

fusion cuts only. They are chosen, however, to give a good approximation of the cuts suggested

for specific Higgs boson search channels at the LHC. The phasespace dependence of the QCD

corrections and uncertainties, within these cuts, should then provide a reasonably complete and

reliable picture.

Using thekT -algorithm, we calculate the partonic cross sections for events with at least two

hard jets, which are required to have

pTj ≥ 20 GeV , |yj| ≤ 4.5 . [2.21]

Hereyj denotes the rapidity of the (massive) jet momentum which is reconstructed as the four-

vector sum of massless partons of pseudorapidity|η| < 5. The Higgs boson decay products (gener-

ically called “leptons” in the following) are required to fall between the two tagging jets in rapidity

and they should be well observable. While an exact definitionof criteria for the Higgs boson decay

products will depend on the channel considered, we here substitute such specific requirements by

generating isotropic Higgs boson decay into two massless “leptons” (which representτ+τ− or γγ

or bb̄ final states) and require

pTℓ ≥ 20 GeV , |ηℓ| ≤ 2.5 , △Rjℓ ≥ 0.6 , [2.22]
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whereRjℓ denotes the jet-lepton separation in the rapidity-azimuthal angle plane. In addition the

two “leptons” are required to fall between the two tagging jets in rapidity

yj,min < ηℓ1,2
< yj,max . [2.23]

We do not specifically require the two tagging jets to reside in opposite detector hemispheres

for the present analysis. Note that no reduction due to branching ratios for specific final states is

included in our calculation: the cross section without any cuts corresponds to the total Higgs boson

production cross section by vector-boson fusion.

At LO, the signal process has exactly two massless final-state quarks, which are identified as

the tagging jets, provided they pass thekT -algorithm and the cuts described above. At NLO these

jets may be composed of two partons (recombination effect) or we may encounter three well-

separated partons, which satisfy the cuts of Eq. (2.21) and would give rise to three-jet events. As

with LHC data, a choice needs to be made for selecting the tagging jets in such a multijet situation.

We consider here the following two possibilities:

1) Define the tagging jets as the two highestpT jets in the event. This ensures that the tagging

jets are part of the hard scattering event. We call this selection the “pT -method” for choosing

tagging jets.

2) Define the tagging jets as the two highest energy jets in theevent. This selection favors the

very energetic forward jets which are typical for vector-boson fusion processes. We call this

selection the “E-method” for choosing tagging jets.

Backgrounds to vector-boson fusion are significantly suppressed by requiring a large rapidity sep-

aration of the two tagging jets. As a final cut, we require

∆yjj = |yj1 − yj2| > 4 , [2.24]

which will be called the “rapidity gap cut” in the following.

Cross sections, within the cuts of Eqs. (2.21)–(2.24), are shown in Fig. 2.3(a), as a function of

the Higgs boson mass,mH . As for the total VBF cross section, the NLO effects are modest for
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Figure 2.3 Effect of QCD radiative corrections on the Higgs boson production cross section via
VBF, as a function of the Higgs boson mass,mH . Results are given at LO (black dotted) and at
NLO for thepT -method (solid red) and theE-method (dashed blue) for defining tagging jets.
Panel (a) gives the total cross section within the cuts of Eqs. (2.21)–(2.24). The corresponding

scale dependence, for variation ofµR andµF by a factor of 2, is shown in panel (b). See text for
details.
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the cross section within cuts, amounting to a 3-5% increase for thepT -method of selecting tagging

jets (solid red) and a 6-9% increase when theE-method is used1. TheseK-factors, and their scale

dependence, are shown in Fig. 2.3(b). Here theK-factor is defined as

K =
σ(µR, µF )

σLO(µF = Qi)
, [2.25]

i.e. the cross section is normalized to the LO cross section,determined with CTEQ6L1 parton

distributions, and a factorization scale which is set to thevirtuality of the vector boson which is

attached to a given quark line.

We have investigated two general scale choices. First we consider the Higgs boson mass as the

relevant hard scale, i.e. we set

µF = ξFmH , µR = ξRmH . [2.26]

As a second option, we consider the virtuality of the exchanged vector boson. Specifically, inde-

pendent scalesQi are determined for radiative correction on the upper and thelower quark line,

and we set

µF i = ξFQi , µRi = ξRQi . [2.27]

This choice is motivated by the picture of VBF as two independent DIS events, with independent

radiative corrections on the two electrovector boson vertices. In general we find the largest scale

variations when we vary the renormalization scale and the factorization scale in the same direction.

We only show results for this case,ξ = ξR = ξF , in the following. The curves in Fig. 2.3(b)

correspond to the largest variations found forξ = 1/2 andξ = 2 when considering both scale

choices simultaneously. The residual scale uncertainty isabout±5% at LO and reduces to below

±2% at NLO.

In addition to missing higher order corrections, the theoretical error of the VBF cross section

is dominated by uncertainties in the determination of the parton distribution functions. We have

1The larger cross section for theE-method is due to events with a fairly energetic extra central jet. A veto on
central jets ofpTj > 20 GeV and rapidity between the two tagging jets, as suggested for the VBF selection, lowers
the NLO cross section to0.97 × σLO for thepT -method and0.93 × σLO for theE-method.
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Figure 2.4 Variation of the total cross section, within cuts, due to errors in the parton distribution
functions, as a function ofmH . The central solid line corresponds to the “best fit” CTEQ6M pdf,
while the upper and lower curves define the pdf error band, which is determined from the 40 error
eigenvectors in the CTEQ6M set (CTEQ6M101–CTEQ6M140), adding cross section deviations

in quadrature.
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Figure 2.5 Transverse momentum distribution of the softer tagging jet for the thepT -method
(solid red) and theE-method (dashed blue) of defining tagging jets, formH = 120 GeV. The

right-hand panels give theK-factors (black dash-dotted line) and the scale variation of the NLO
results. Solid colored curves correspond toµF = µR = ξQi and dashed colored curves are for

µF = µR = ξmH with ξ = 1/2 and2.
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investigated this dependence by calculating the total Higgs boson cross section, within the cuts of

Eqs. (2.21)–(2.24), for the 40 pdf’s in the CTEQ6Mxxx (xxx = 101–140) set. They correspond to

extremal plus/minus variations in the directions of the 20 error eigenvectors of the Hessian of the

CTEQ6M fitting parameters [33]. Adding the maximum deviations for each error eigenvector in

quadrature, one obtains the blue dashed lines in Fig. 2.4, which define the pdf error band. We find

a uniform±3.5% pdf uncertainty of the total cross section over the entire range ofmH shown.

Scale and pdf uncertainties exhibit little dependence on the Higgs boson mass. We therefore

limit our investigation to a single, representative Higgs boson mass for the remaining discussion,

which we take asmH = 120 GeV.

While the scale dependence of the integrated Higgs boson production cross section is quite

weak, the same need not be true for the shape of distributionswhich will be used to discriminate

between Higgs boson signal and various backgrounds. Havinga fully flexible NLO Monte Carlo

program at hand, we can investigate this question. Crucial distributions for the detection efficiency

of the signal are the transverse momentum and the rapidity ofthe tagging jets. In Fig. 2.5 the cross

section is shown as a function ofpmin
T, tag, the smaller of the two tagging jet transverse momenta.

At LO, the tagging jets are uniquely defined, but at NLO one finds relatively large differences

between thepT -method (solid red curves in the top panels) and theE-method (dashed blue curves

in bottom panels). The right-hand-side panels give the correspondingK-factors, as defined in

Eq. (2.25), (black dash-dotted lines) and the ratio of NLO differential distributions for different

scale choices. Shown are the ratios

R =
dσNLO(µF = µR = Qi)

dσNLO(µF = µR = µ)
[2.28]

for µ = 2±1Qi (solid lines) andµ = 2±1mH (dashed lines). While theK-factor is modest for the

pT -method, it reaches values around 1.3 in the threshold region for theE-method. This strong rise

at NLO is due to hard forward gluon jets being misidentified astagging jets in theE-method. This

problem was recognized previously in parton shower Monte Carlo simulations and has prompted

a preference for thepT -method [36]. In spite of the largeK-factor, however, the residual scale

uncertainty is small, ranging from -4% to +2% for thepT -method and -2% to +5% for theE-

method.
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Figure 2.6 Higgs boson production cross section as a function of the smaller of the absolute value
of the two tagging jet rapidities,dσ/d|y|min

tag (in fb, formH = 120 GeV). Results are shown at LO
(dotted black) and at NLO for thepT -method (solid red) and theE-method (dashed blue) of

defining tagging jets. The right-hand panel gives theK-factor (black dash-dotted line) and the
scale variation of the NLO result for theE-method. Colored curves for the scale dependence are

labeled as in Fig. 2.5.
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Figure 2.7 Rapidity separation of the two tagging jets formH = 120 GeV. In the left-hand panel,
dσ/d∆yjj (in fb) is shown at LO (dotted black) and at NLO (solid red), for thepT -method of

defining tagging jets. The right-hand panel gives the correspondingK-factor (black dash-dotted
line) and the scale variation of the NLO results. Colored curves for the scale dependence are

labeled as in Fig. 2.5.
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Figure 2.8 Transverse momentum distribution of the harder tagging jet, formH = 120 GeV. In
the left-hand panel,dσ/dpmax

T, tag (in fb/GeV) is shown at LO (dotted black) and at NLO (solid red),
for thepT -method of defining tagging jets. The right-hand panel givesthe corresponding

K-factor (black dash-dotted line) and the scale variation ofthe NLO results. Colored curves for
the scale dependence are labeled as in Fig. 2.5.
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The more forward selection of tagging jets in theE-method is most obvious in the rapidity

distributions of Figs. 2.6 and 2.7. In Fig. 2.6 the rapidity of the more central of the tagging jets,

|y|min
tag , is shown. At NLO, the tagging jets are slightly more forwardthan at tree level, leading to a

K-factor which varies appreciably over phase space. This|y|min
tag -dependence is shown in the right-

hand panel for theE-method, together with the residual scale dependence at NLO. Again, scale

variations of less than±4% are found over virtually the entire phase space. For thepT -method,

similar scale variations arise, as shown in Fig. 2.7 for the rapidity separation between the two

tagging jets, where the cuts of Eqs. (2.21)–(2.23) have beenimposed. Figure 2.7 demonstrates that

the wide separation of the tagging jets, which is important for rejection of QCD backgrounds, does

survive at NLO. In fact, the tagging jet separation even increases slightly, making a separation cut

like ∆y = |yj1 − yj2| > 4 even more effective than at LO.

In all distributions considered so far, no clear preferenceemerges on whether to choose the

vector-boson virtuality,Qi, or mH as the hard scale. While both choices are acceptable, the

transverse momentum distributions show somewhat smaller scale variations forµ = ξQi than

µ = ξmH . The effect is most pronounced in the highpT tail of the tagging jet distributions. When

consideringdσ/dpmax
T,tag, as shown in Fig. 2.8, the scale variation increases to+10% at largepT

whenµ = ξmH is taken, while the same distribution forµ = ξQi stays in a narrow±2% band.

This observation provides another reason for our default scale choice,µ = Qi.

Unlike the tagging jets considered so far, distributions ofthe Higgs decay products show little

change in shape at NLO.

2.5 Conclusions

Vector-boson fusion processes will play an important role at future hadron colliders, most

notably as a probe for electroweak symmetry breaking. For the particular case of Higgs boson

production, we have presented a first analysis of the size andof the remaining uncertainties of

NLO QCD corrections to jet distributions in VBF.

As for the inclusive VBF cross section, QCD corrections to distributions are of modest size, of

order 10%, but occasionally they reach larger values. Thesecorrections are strongly phase-space
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dependent for jet observables and an overallK-factor multiplying the LO distributions is not an

adequate approximation. Within the phase-space region relevant for Higgs boson searches, we find

differentialK-factors as small as 0.9 or as large as 1.3. These correctionsneed to be taken into

account for Higgs coupling measurements, and our NLO Monte Carlo program, or the recently

released analogous program in the MCFM package [11, 37], provide the necessary tools.

After inclusion of the one-loop QCD corrections, remaininguncertainties due to as yet un-

calculated higher order terms, can be estimated by considering scale variations of the NLO cross

section. Using the Higgs boson mass,mH , and the vector-boson virtuality,Qi, as potential hard

scales, we find that these remaining scale dependencies are quite small. Varying renormalization or

factorization scales by a factor of two away from these two central values results in typical changes

of the NLO differential cross sections by±2% or less. The uncertainty bands forµ = ξmH and

µ = ξQi typically overlap, yielding combined scale uncertaintiesof less than±3% in most cases,

occasionally rising up to order 5% at the edges of phase space. Moreover, the variation in different

regions typically cancels in the integrated Higgs cross section, within cuts, leading to uncertainties

due to higher order effects of±2% (see Fig. 2.3), even when considering different hard scales. The

remaining theoretical uncertainty on the measurable Higgscross section, thus, is well below ex-

pected statistical errors, except for theH→WW search for Higgs masses around 170 GeV, where

the high LHC rate allows statistical errors as low as 3%. In addition, pdf uncertainties for the total

cross section are of order±3.5% over the range 100 GeV≤ mH ≤ 200 GeV. This means that the

SM Higgs boson production cross section via VBF can be predicted, at present, with a theoretical

error of about±4%.

The expected size of the LHC Higgs signal is enhanced slightly by the NLO QCD corrections.

In addition to aK-factor slightly above unity due to a small shift of the tagging jets to higher

rapidities, still well inside the detector coverage, tagging jets are moved slightly farther apart. This

allows for better differentiation of the Higgs signal from QCD backgrounds.

The techniques described here work in a very similar fashionfor other vector-boson fusion

processes such asW+W−jj production [38],ZZjj production [39], and productionV jj (V =

Z,W ) [40].
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Chapter 3

QCD Corrections to Jet Correlations in Vector Boson Fusion
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3.1 Introduction

The production of Higgs bosons in the vector boson fusion (VBF) process will provide a direct

and highly sensitive probe ofHWW andHZZ couplings at the CERN Large Hadron Collider

(LHC) [17, 24, 25, 26, 27, 28, 41]. The determination both of the strength and of the tensor

structure of these couplings is crucial for the identification of the produced boson as a remnant of

the spontaneous symmetry breaking process which is responsible forW andZ mass generation.

Within spontaneously broken, renormalizable gauge theories like the standard model (SM), this

coupling originates from the kinetic energy term,(DµΦ)†(DµΦ), of a scalar Higgs field,Φ, whose

neutral component obtains a vacuum expectation value (vev), Φ0→(v+H)/
√

2. This replacement

then leads to a characteristic coupling in the interaction Lagrangian, of the formHVµV
µ (V =

W,Z). The existence of the vev is necessary to produce a trilinear HV V coupling at tree level:

with v = 0 all couplings to the gauge fieldsV contain two scalar fields, i.e., onlyHHV and

HHV V couplings would be generated. A trilinearHV V coupling may also be loop-induced,

however. The SMHγγ andHgg effective couplings are an example: they are induced byW -boson

and/or top quark loops. Gauge invariance dictates a different tensor structure of these loop-induced

couplings: the corresponding effective Lagrangian contains the square of the field strength, i.e. the

lowest order loop-induced terms are of the formHVµνV
µν orHVµνṼ

µν , whereṼ µν = 1
2
ǫµνρσVρσ

denotes the dual field strength of the gauge field.

The task of future Higgs experiments is, then, twofold: (i) to measure the overall strength of

theHV V coupling, and (ii) to identify its tensor structure. One would expect a loop-induced

coupling to be much smaller than the expected SMHV V coupling strength. However, the mea-

surement of VBF rates alone will not be sufficient to establishH as being related to spontaneous

symmetry breaking: to give just two examples, the loop-induced couplings might be substantially

enhanced by additional non-SM particles in the loop or by theexistence of multiplets of large weak

isospin which couple strongly toH. Or a particular LHC signature may be strongly enhanced by a

much largerH decay branching ratio than in the SM. A confirmation that theHV V coupling has
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tree level strength is, thus, ambiguous: a clear identification of the Higgs boson also requires the

identification of the tensor structure of theHV V vertex.

It was pointed out some time ago that the azimuthal angle correlations of the two quark jets

in the weak boson fusion processqQ→qQH provide tell-tale signatures for the tensor structure

of theHV V couplings [42]: the SM expectation is for a flat distribution, while the loop-induced

couplings lead to a pronounced dip at azimuthal separationsφjj of the two tagging jets of 90

degrees for aHVµνV
µν coupling and at 0 and 180 degrees for the CP violatingHVµνṼ

µν vertex.

Observation of the tagging jets is crucial for isolating theVBF process from backgrounds and,

therefore, their distributions will be available for all VBF samples. Also, signal to background

ratios for VBF processes are expected to be very good within the SM, exceeding the 1:1 level for

wide ranges of the Higgs boson mass [24, 25, 26, 28, 41].

The analysis of Ref. [42] was performed at leading order (LO)in QCD. This means that addi-

tional gluon emission, which might lead to a de-correlationof the tagging jets, was ignored in the

analysis. Subsequently it was argued [43] that such de-correlation effects play an important role in

a related process,gg→Hgg, when the two tagging jets are widely separated in rapidity,which is a

typical requirement for VBF studies. In this Chapter we analyze this question, by calculating the

tagging jet distributions in next-to-leading order (NLO) QCD, for the production of a scalarH via

VBF with an arbitrary tensor structure of theHV V vertex. If de-correlation is important, it should

show up in the form of large radiative corrections at NLO. We use the term “Higgs boson” as a

generic name for the produced scalar in the following.

3.2 The NLO calculation

The current calculation is an extension of the NLO QCD corrections for the SM VBF processes

qQ→qQH (and crossing related ones) [10, 11, 12]. For the total crosssection these corrections

have been known for over a decade [12]. Recently, the QCD corrected cross section has been

recalculated by developing a NLO parton level Monte Carlo program [10] which provides the

flexibility to calculate arbitrary distributions at NLO, such as the azimuthal angle correlations that

are of interest here (See Chapter 2).
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Figure 3.1 Feynman graphs contributing toq̄Q→q̄QH at (a) tree level and (b) including virtual
corrections to the upper quark line. The momentum labels andLorentz indices for the internal

weak bosons correspond to the vertex function of Eq. (3.1).

The calculation of Ref. [10] uses a SM vertex function,T µν(q1, q2) =
2m2

V

v
gµν for theHV V

vertex in Fig. 3.1. Here the vertex is generalized to the mostgeneral structure compatible with

Lorentz invariance. Taking into account that the quark currents in Fig. 3.1 and for the correspond-

ing gluon emission processes are conserved, all terms proportional to qµ
1 or qν

2 may be dropped,

and the most generalHV V vertex may be written as

T µν(q1, q2) = a1(q1, q2) g
µν + a2(q1, q2) [q1 · q2gµν − qµ

2 q
ν
1 ] + a3(q1, q2) ε

µνρσq1ρq2σ . [3.1]

Here q1 and q2 are the four-momenta of the two weak bosons, and theai(q1, q2) are Lorentz-

invariant form factors, which might, for example, represent scalar loop integrals in a perturbative

calculation. It is straightforward to implement the general vertex of Eq. (3.1) into the NLO QCD

Monte Carlo: the virtual amplitude of Fig. 3.1 is proportional to the Born amplitude,MBorn,

irrespective of the structure of theHV V vertex. Thus, all amplitudes reduce to a simple contraction

of quark (or quark-gluon) currents with the vertex functionof Eq. (3.1). These currents, and

their contractions, are evaluated numerically, using the amplitude formalism of Ref. [30]. All

other aspects of the present NLO calculation are handled as in Ref. [10], except that Higgs boson

decays are not simulated in the following. Factorization and renormalization scales are fixed to

µF = µR = Qi for QCD corrections to the first or second quark line in Fig. 3.1. HereQ1 andQ2

are the virtualities of the exchanged weak bosons. We use CTEQ6M parton distributions [33] with
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αs(MZ) = 0.118 for all NLO results and CTEQ6L1 parton distributions for allleading order cross

sections.

3.3 Anomalous couplings and form factors

While thegµν-term in the vertex function (3.1) corresponds to a SM Higgs coupling, the anoma-

lous coupling termsa2 anda3 can be related to higher dimensional operators in an effective La-

grangian. They first appear at the dimension-5 level1 and may be written as

L5 =
gHWW
5e

Λ5e
HW+

µνW
−µν +

gHWW
5o

Λ5o
HW̃+

µνW
−µν +

gHZZ
5e

2Λ5e

HZµνZ
µν +

gHZZ
5o

2Λ5o

HZ̃µνZ
µν , [3.2]

where the subscripte or o refers to the CP even or odd nature of the individual operators. In the

discussion possible contributions fromHγγ andHγZ couplings which can appear inSU(2) ×
U(1) invariant formulations [44, 45] will be neglected. The precise mix ofHWW , HZZ, HZγ

andHγγ contributions is quite irrelevant for the observable azimuthal angle distributions, as long

as we do not consider interference effects between SM and anomalous vertices, and it will not

affect our conclusions about the size of NLO corrections. For simplicity we therefore seta1 = 0

for the anomalous coupling case and choose relative contributions fromWW andZZ fusion as

in the SM, by takinggHWW
5o = gHWW

5e = 1, gHZZ
5e = gHZZ

5o = 1/cos2 θW , and by using either

Λ5e ≃480 GeV,Λ5o = ∞ for the CP even case orΛ5o ≃480 GeV,Λ5e = ∞ for the CP odd case,

which roughly reproduces SM rates for a scalar mass ofmH = 120 GeV.

The effective Lagrangian of Eq. (3.2) produces couplings

a2(q1, q2) = − 2

Λ5e
gHWW
5e , a3(q1, q2) =

2

Λ5o
gHWW
5o [3.3]

for theHWW vertex, and

a2(q1, q2) = − 2

Λ5e

gHZZ
5e , a3(q1, q2) =

2

Λ5o

gHZZ
5o [3.4]

1The dimension 5 language is appropriate for, e.g., an isosinglet scalar resonanceH . For a Higgs doubletΦ with
a vev, the leading operators appear at dimension 6 level [44,45] and the couplings in Eq. (3.2) are suppressed by an
additional factorgHV V

5
∼ v/Λ.
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for theHZZ vertex. In general, theai are form factors which are expected to be suppressed once

the momentum transfer,
√

−q2
i , carried by the virtual gauge boson reaches the typical massscale,

M , of the new physics which is responsible for these anomalouscouplings. Below we use the

simple ansatz

ai(q1, q2) = ai(0, 0)
M2

q2
1 −M2

M2

q2
2 −M2

[3.5]

for discussing the consequences of such form factor effects.

3.4 Results

The typical signature of a weak boson fusion event at the LHC consists of the two quark jets

(tagging jets) and the Higgs decay products. The tagging jets tend to be widely separated in rapid-

ity, with one quite forward (typical pseudorapidity of 3 to 4) and the second one backward, but fre-

quently still located in the central detector (pseudorapidity below 2.5). Various Higgs decay modes

have been considered in the literature for VBF,H→WW [26], H→ττ [25], andH→γγ [28] be-

ing the most promising ones. While optimized event selection varies, in particular for the decay

products, the cuts on the tagging jets are fairly similar in all analyses. Since the QCD features are

of main interest here, the NLO anlaysis is performed withoutsimulating Higgs decays, and typical

VBF cuts on the tagging jets are imposed.

In order to reconstruct jets from the final-state partons, the kT -algorithm [34] as described in

Ref. [35] is used, with resolution parameterD = 0.8. In a given event, the tagging jets are then

defined as the two jets with the highest transverse momentum,pTj, with

pTj ≥ 20 GeV , |yj| ≤ 4.5 . [3.6]

Hereyj denotes the rapidity of the (massive) jet momentum which is reconstructed as the four-

vector sum of massless partons of pseudorapidity|η| < 5. Backgrounds to weak-boson fusion

are significantly suppressed by requiring a large rapidity separation of the two tagging jets. This

motivates the final cut

∆yjj = |yj1 − yj2| > 4 , yj1 · yj2 < 0 , [3.7]

which includes the requirement that the two tagging jets reside in opposite detector hemispheres.
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Figure 3.2 Normalized transverse momentum distribution ofthe hardest jet for the SM Higgs
boson (solid red line) and a scalarH of massmH = 120 GeV with CP even anomalous coupling
a2(q1, q2). The dash-dotted curves correspond to different form factor scalesM = 100, 200, 400
GeV in Eq. (3.5) anda2 = const. (blue curves) at NLO. LO curves are shown by the dashed lines

and differ very little from the NLO results.
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The structure of theHV V coupling affects the production dynamics ofH and we can expect

significant deviations in jet observables if, instead of theSM, anomalous couplings describe the

vertex of Eq. (3.1). One example is shown in Fig. 3.2, where transverse momentum distributions,

dσ/dpTj(max), are compared between the SM (solid line) and the CP even coupling a2(q1, q2),

with different form factor scalesM in Eq. (3.5). Here,pTj(max) is the maximumpT of the two

tagging jets. Only the shape of the distribution is considered, since the rate can always be adjusted

by multiplying the anomalous couplings by a constant factor. Also, one should note that a CP odd

coupling leads to very similar curves for a given form factorscale. In all of the cases shown the

LO expectations (dashed lines) together with the NLO results: QCD corrections are of order 10%,

typically, and well under control.

One finds that anomalousHV V couplings generally lead to harderpT spectra of the two tag-

ging jets. Since the anomalous Lagrangian in Eq. (3.2) couples the Higgs boson to weak boson

field strengths, transverse polarizations of the incidentV V pairs dominate the anomalous case,

while longitudinalV V fusion is responsible for SM Higgs production. A telltale sign of transverse

vector boson fusion is the more central and, hence, higherpT production of the tagging jets. This

effect is enhanced by the momentum factors in theHV V anomalous vertices.

While the changed transverse momentum distributions in Fig. 3.2 could be used to rule out the

SM, the reverse is not readily possible: a jet transverse momentum distribution compatible with

SM expectations might be faked by anomalous couplings and a judiciously chosen form factor

behavior of the coefficient functionsa2 or a3 in Eq. (3.5). The different scale choices in Fig. 3.2

demonstrate this effect: a low form factor scale ofM = 100 GeV or slightly lower would be

difficult to distinguish from the SM expectation and one can certainly find a functional form of the

form factors which reproduces the SM within experimental errors.

A much better observable for distinguishing the different tensor structures of theHV V vertex

is the azimuthal angle correlation of the two tagging jets,dσ/dφjj [42]. Hereφjj is the azimuthal

angle between the two tagging jets. The corresponding distributions are shown in Fig. 3.3 for the

SM (solid line) and for the same choices of form factors as before. The dip atφjj = 90 degrees

for the CP even coupling and the suppression at 0 and 180 degrees for the CP odd coupling are
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Figure 3.3 Normalized azimuthal angle distribution,1/σ dσ/dφjj whereφjj is the azimuthal
angle separation of the two tagging jets. NLO (solid and dot-dashed) and LO results (dashed
lines) are shown formH = 120 GeV in the SM (red curves) and (a) for a CP even anomalous
couplinga2(q1, q2), (b) for a CP odd anomalous couplinga3(q1, q2) with form factor scales

M = 100, 200, 400 GeV and (blue curves)M = ∞.
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clean signatures which only depend on the tensor structure of the couplings and not on the precise

dynamics which is responsible for the form factors. The remaining form factor dependence is

very small and can be explained by kinematic effects relatedto the higher average jet transverse

momentum for big form factor scales,M : at smallφjj two highpT jets recoil against theH scalar,

resulting in an increased invariant mass of the event compared to the situation with two back-to-

back jets. This leads to a more asymmetricφjj distribution for high form factor scales.

The pronounced dip at 90 degrees, which is characteristic ofthe CP even coupling, is also found

inHjj production via gluon fusion [46], at LO. This is not surprising because, in the large top mass

limit, the Hgg vertex can be described by an effective Lagrangian proportional toHGa
µνG

aµν ,

which exhibits the same field strength squared behavior and hence the same tensor structure as

the CP evenHV V coupling in Eqs. (3.1,3.2). Since the two tagging jets are far apart from each

other, separated by a large rapidity gap of 4 units of rapidity or more, this LO behavior may

be significantly reduced by gluon radiation when higher order QCD corrections are taken into

account. Such de-correlation effects have been studied fordijet events at the Tevatron [47]. For

Hjj production via gluon fusion, Odagiri [43] has argued that the dip structure is largely washed

out by additional gluon emission between the two tagging jets.

NLO calculations show that such de-correlation effects areirrelevant for weak boson fusion,

wheret-channel color singlet exchange severely suppresses gluonradiation in the central region.

The LO and the NLO curves in Fig. 3.3 are virtually indistinguishable. In order to better exhibit

the size of the NLO QCD effects for the VBF case the azimuthal angle correlations for a pure

CP even anomalous coupling for three different Higgs masses, mH = 120, 200 and 500 GeV is

shown in Fig. 3.4(a). Only small changes are visible when going from LO (dashed lines) to NLO

(solid lines). The differences between LO and NLO are smaller than kinematical effects that can

be induced by cuts on the Higgs decay products or by variations of the Higgs boson mass.

The small to modest size of the QCD corrections is quantified in Fig. 3.4(b) where theK factor

for the distribution is shown, which is defined as

K(φjj) =
dσNLO/dφjj

dσLO/dφjj
. [3.8]
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Figure 3.4 Higgs mass dependence of the azimuthal angle separationφjj of the two tagging jets.
In (a) the normalized azimuthal angle distributions are shown at LO (dashed lines) and NLO

(solid lines) for Higgs masses ofmH = 120, 200, 500 GeV and a constant CP even anomalous
couplinga2. Corresponding K-factors are shown in (b).
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TheK-factor is below≈ 1.4 even in the dip region, where the cross section is severely suppressed.

Virtually identical results hold for the CP-odd case. Clearly, the characteristic azimuthal angle

distributions of the jets in VBF are not affected in any significant way by NLO QCD corrections.

3.5 Conclusions

The first calculation of the NLO QCD corrections to Higgs boson production via VBF in the

presence of arbitrary anomalousHV V (V = W,Z) couplings has been performed. Anomalous

couplings lead to characteristic changes in the azimuthal angle correlation of the two tagging jets in

weak boson fusion events at the LHC, which provides for a verysensitive test of the tensor structure

of theHV V couplings of the Higgs boson or of any other scalar with sufficiently large production

cross section in VBF [42]. By explicit calculation, it has been shown that these azimuthal correla-

tions are not washed out by gluon emission, at NLO QCD, even though the tagging jets are widely

separated in rapidity. This behavior can be understood as a consequence oft-channel color singlet

exchange in VBF which severely suppresses the central gluonradiation which might cause tagging

jet de-correlation.
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Chapter 4

Next-to-Leading Order QCD Corrections for Higgs Production
via Vector-Boson Fusion in the Association of Three Jets



49

4.1 Introduction

In this chapter the next-to-leading order (NLO) QCD corrections for Higgs production via vec-

tor boson fusion in the association of three jets (VBFHjjj) are computed. In Section 4.2 the

leading order (LO) cross section is discussed. In Section 4.3 theCatani-Seymour dipole subtrac-

tion method [21] is used to regulate soft and collinear singularities of the real emission corrections.

Formulae for the virtual corrections are given in Subsection 4.3.2. The cancellation of infrared di-

vergences of the virtual corrections is presented in Subsection 4.3.3. Formulae for finite collinear

contributions to the cross section that arise from renormalization of the parton distribution func-

tions are given explicitly in Subsection 4.3.4.

4.2 The Leading Order Cross Section

The leading order (LO) cross section for the processpp→ Hjjj can be computed from the real

emission graphs of the NLO QCD corrections to Higgs production via vector boson fusion in the

association of two jets which was presented in Chapter 2 [10]. More precisely, the calculation is

exact for non-identical quark flavors on the upper and lower quark lines. For processesqq̄ → qq̄gH

annihilation graphs likeqq̄ → Z⋆ → ZH with subsequent decayZ → qq̄ or WH production

channels also contribute. Forqq → qqgH or q̄q̄ → q̄q̄gH the interchange of two particle in the

initial or final state needs to be considered. However, in phase space regions in which VBF can

be observed experimentally, with widely separated quark jets of very large invariant mass, the

interference of these additional graphs is strongly suppressed by the large momentum transfer in

the weak-boson propagators. Additionally, color suppression further makes these effect negligible.

For these reasons, identical particle effects will be systematically neglected. The matrix elements

for the Born-level graphs are computed numerically using the helicity-amplitude formalism of

Ref.[30] and the computer code developed in Ref.[10] is readily available for use in the current

calculation.

The Born Feynman graphs depicted in Figure 4.1 consist of twocolor structures. The index21

refers to gluon emission off the21 quark-line and the index43 refers to gluon emission off the43
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Figure 4.1 Feynman graphs for the LO processq(k1) +Q(k3) → q(k2) +Q(k4) +H(P ).

quark-line. The Born amplitude can be decomposed into two color structures

MB(k1i1, k2i2, k3i3, k4i4, qa) = tai2i1
δi4i3MB,21 + tai4i3

δi2i1MB,43 [4.1]

with

MB,21 = MB,21(k2, q, k1; k4, k3) [4.2]

and

MB,43 = M43(k4, q, k3; k2, k1) [4.3]

for the generic process

q(k1) +Q(k3) → q(k2) +Q(k4) + g(q) +H(P ). [4.4]

The indicesi1, i2, i3, andi4 are color indices for the external (anti-) quarks that carryfour momenta

k1, k2, k3, andk4, respectively. The indexa is the color index for the gluon. The notation being

used here will be referred to as diagrammatic notation. Below the color sub-amplitudesMB,21 =

Mµ
B,21ǫµ andMB,43 = Mµ

B,43ǫµ are given explicitly. Here the space-time indexµ is the spin-index
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of the external gluon. For gluon emission off the21 quark line, the color sub-amplitude is

Mµ
B,21 = e2gV f2f1

τ1
gV f4f3

τ3
gHV V gsψ̄(k2)[γ

νPτ1

(/k2 + /q1)

(k2 + q1)2
γµ

+ γµ (/k2 + /q)

(k2 + q)2
γνPτ1 ]ψ(k1)ψ̄(k4)γνPτ3ψ(k3)DV (q2

1)DV (q2
2) [4.5]

whereq1 = k1−q−k2 andq2 = k3−k4. HereDV (q2) = 1
q2−m2

V
+i0+

is the vector boson propagator

andPτ = 1
2
(1 + τγ5) is the chirality projector. For gluon emission off the43 quark line, the color

sub-amplitude is

Mµ
B,43 = e2gV f2f1

τ1 gV f4f3

τ3 gHV V gsψ̄(k4)[γ
νPτ3

(/k4 + /q2)

(k4 + q2)2
γµ

+ γµ (/k4 + /q)

(k4 + q)2
γνPτ3 ]ψ(k3)ψ̄(k2)γνPτ1ψ(k1)DV (q2

1)DV (q2
2) [4.6]

whereq1 = k1 − k2 andq2 = k3 − q − k4. In both color sub-amplitudes,ǫ = ǫ(q) is the gluon

polarization. The square of the amplitude averaged over color is

|MB|2 = CF (|MB,21|2 + |MB,43|2) [4.7]

for the case that there are two initial state quarks. For the case of an initial state gluon, one would

either drop the first or second term in the above equation since only VBF processes are considered.

Crossing can be used to compute the amplitudes for all other processes involving4 quarks and one

gluon. Physical momenta will be labeled bypa andpb for initial partons whilepi, (i = 1, 2 . . . n)

label the momenta of the final state partons.

In terms of physical momenta, the Born amplitude for the process

q(pa) +Q(pb) → q(p1) +Q(p2) + g(p3) +H(P ), [4.8]

is denoted byMqQ
B = MB(paia, p1i1, pbib, p2i2, p3c3). MB is the amplitude given in Eq. 4.1. The

momentum of the Higgs bosonP is determined by momentum conservation, i.e.,P = pa + pb −
p1−p2−p3. The Born amplitude can be decomposed into color sub-amplitudesMqQ

B,1a andMqQ
B,2b.

The decomposition into color sub-amplitudes is

MqQ
B = tc3i1iaδi2,ibMqQ

B,1a + tc3i2ib
δi1iaMqQ

B,2b. [4.9]
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and the color averaged matrix element squared is

|MqQ
B |2 = CF (|MqQ

B,1a|2 + |MqQ
B,2b|2). [4.10]

MqQ
B,1a = MB,1a(p1, p3, pa; p2, pb) denotes the color sub-amplitude for graphs with gluon emission

off the quark line that connects the final state quarkq(p1) to the initial state quarkq(pa). This will

be referred as emission off the upper line. Likewise,MqQ
B,2b = MB,2b(p2, p3, pb; p1, pa) denotes

the color sub-amplitude for graphs with gluon emission off the quark line that connects the final

state quarkQ(p2) to the initial state quarkQ(pb). This will be referred to as gluon emission off the

lower line. One should take note that due to the color structure no interference can occur between

gluon emission off the upper and lower lines.

The contribution ofqQ→ qQgH processes to theHjjj LO cross section is then

σLO
3 (qQ→ qQgH) =

∫ 1

0
dxa

∫ 1

0
dxbfq/p(xa, µF )fQ/p(xb, µF ) [4.11]

· 1

2ŝ
dΦ4(p1, p2, p3, P ; pa + pb)|MqQ

B |2F (3)
J (p1, p2, p3, P ; pa, pb)

whereŝ = (pa + pb)
2 is the center-of-mass energy squared.F

(3)
J defines the jet algorithm for the

3-parton final states.

The Born amplitude for the gluon initiated process

g(pa) +Q(pb) → q(p1) + q̄(p3) +Q(p2) +H(P ), [4.12]

is denoted byMgQ
B = MB(−p3i3, p1i1, pbib, p2i2,−paca). Since, only vector-boson fusion pro-

cesses are included there is only one color structure. Thes-channel graphs have been neglected.

The decomposition is as follows

MgQ
B = tca

i1i3δi2ibMB,13(p1,−pa,−p3; p2, pb) [4.13]

and the matrix element square averaged over colors is

|MgQ
B |2 =

CFdF

dG

|MB,13(p1,−pa,−p3; p2, pb)|2 [4.14]

wheredF anddG are the number of colors for quarks and gluons respectively.
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The contribution ofgQ→ qq̄QH processes toHjjj LO cross section is then

σLO
3 (gQ→ qq̄QH) =

∫ 1

0
dxa

∫ 1

0
dxbfg/p(xa, µF )fQ/p(xb, µF ) [4.15]

· 1

2ŝ
dΦ4(p1, p2, p3, P ; pa + pb)|MgQ

B |2F (3)
J (p1, p2, p3, P ; pa, pb).

There is also a contribution due to the interchange of the initial state quark and gluon, i.e.Qg →
qq̄QH.

4.3 The Next-to-Leading Order Cross Section

In this Subsection analytic formulas for the NLO4-parton and3-parton cross sections forpp→
Hjjj are presented. In Subsection 4.3.1 the real emission corrections and the dipole subtraction

method is discussed. In Subsection 4.3.2 formulae for the virtual corrections are given.

4.3.1 Real Emission Corrections and Dipole Subtraction

The real emission corrections for Higgs production in the association of three jets via vector

boson fusion (Hjjj) consist of four subprocess classes:

(a) subprocesses in which there are two gluons and two quarksin the final state,qQ→ qQggH,

(b) subprocesses with six external quarks,qQ→ qQq′q̄′H,

(c) subprocesses which have one gluon in the initial state,gQ→ qq̄QgH, and

(d) subprocesses which have two gluons in the initial state,gg → qq̄QQ̄H.

The matrix elements squares,|M|2, for the above subprocess classes contain both soft and collinear

singularities. These singularities are regulated by use ofthe dipole subtraction method of Ref.[21].

The matrix element for the subprocess,

q(pa) +Q(pb) → q(p1) +Q(p2) + g(p3) + g(p4) +H(P ) [4.16]
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Figure 4.2 Feynman graphs forMqQ
r for which two external gluons are attached to the1a quark

line.
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Figure 4.3 Feynman graphs forMqQ
r for which an external gluon is attached to both the1a and

2b quark lines.
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depicted in Figures 4.2 and 4.3 is denoted byMqQ
r = MqQ

r (p1, p2, p3, p4, P ; pa, pb). MqQ
r can be

written in terms of color tensors,T (k), and color sub-amplitudes,MqQ,(k)
r .

MqQ
r =

6
∑

k=1

T (k)MqQ,(k)
r , [4.17]

with

T (1) = (ta3ta4)i1iaδi2ib , [4.18]

T (2) = (ta4ta3)i1iaδi2ib , [4.19]

T (3) = (ta3ta4)i2ibδi1ia , [4.20]

T (4) = (ta4ta3)i2ibδi1ia , [4.21]

T (5) = ta3

i1iat
a4

i2ib
, [4.22]

T (6) = ta4

i1iat
a3

i2ib
. [4.23]

It is possible to write the color tensorsT (k) in terms of orthogonal color tensors in order to

compute the matrix element squared,|MqQ
r |2. However, for what follows it is sufficient to simply

square Eqs. (4.17). Color factors are defined asCkl = Tr
(

T (k)†T (l)
)

. Hence, the matrix element

squared takes the form,

|MqQ
r |2 =

6
∑

k=1

6
∑

l=1

CklMqQ(k)†
r MqQ(l)

r . [4.24]

The non-zero color factors,Ckl, are

C11 = C22 = C33 = C44 = C55 = C66 = d2
FC

2
F , [4.25]

C12 = C34 = d2
FCF (CF − 1

2
CA), [4.26]

C13 = C14 = C23 = C24 = C56 =
d2

FC
2
F

dG
. [4.27]

HeredG = N2 − 1 anddF = N whereN is number of colors in anSU(N) gauge group.

The various color-sub-amplitudes can be grouped into double gluon emission off thea1 quark

line, double gluon emission off theb2 quark line, and gluon emission off both quark lines. Graphs

for which gluons are emitted off both quark lines do not interfere with graphs for which two gluons
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are emitted off a single quark line. Color sub-amplitudes,M(6) andM(5), are orthogonal to the

sub-amplitudes,M(k) for k = 1 to 4. Inserting the color factors,Ckl into Eq. 4.24, the matrix

element squared takes the form

|MqQ
r |2 = d2

FC
2
F (|M(1)|2 + |M(2)|2 + |M(3)|2 + |M(4)|2 + |M(5)|2 + |M(6)|2)

+ 2Re[M(1)M(2)† + M(3)M(4)†]d2
FCF (CF − 1

2
CA)

+ 2Re[(M(1) + M(2))(M(3) + M(4))†]
d2

FC
2
F

dG

+
d2

FC
2
F

dG
2Re[M(5)M(6)†]. [4.28]

The terms2 Re[M(5)†M(6)] and2 Re[(M(1) + M(2))(M(3) + M(4))†] are interference terms

that are color suppressed by1/dG = 1/(N2 − 1). Besides being color suppressed there are kine-

matic suppressions that arise. For the VBF processqQ → qQggH the two forward tagging jets

are typically final state quarks. Gluon radiation typicallyoccurs in the direction of the tagging jets.

Consider the case in which gluong(p3) is along the direction ofq(p1). The fermion propagators in

M(1), M(2), andM(5) are enhanced while the fermion propagators inM(3), M(4), andM(6) be-

come suppressed due to the large invariant mass of the two tagging quarks jets. These interference

effects are collinear finite but do give rise to soft singularities. In the soft limit the interference

terms are proportional to the interference of the Born sub-amplitudesMqQ
B,1a andMqQ

B,2b. Using a

LO parton-level Monte Carlo program for Higgs production inthe association with three jets via

VBF, the contribution from the above mentioned interference term to the cross section is computed

using

C2
F

dG

αs

2π
2|Re[MqQ

B,1a(MqQ
B,2b)

†]| [4.29]

in place of the matrix element squared given by Eq.(4.10). The sum over helicitiesτa andτb is

performed on the absolute value ofRe[MqQ
B,1a(MqQ

B,2b)
†] to ensure that there are no cancellations

that result when the sum over subprocesses occurs. The normalized distribution in the rapidity of

the veto jet measured with respect to the rapidity average ofthe tagging jets,yrel = yveto
j −(ytag 1

j +

ytag 2
j )/2, is shown for both interference given by Eq.(4.29) and the Born matrix element squared
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|MqQ
B |2 stated in Eq.(4.10) in the left panel of Figure 4.4.1 Both distributions are normalized to

total cross section due to either the Born matrix element squared or the interference. In the left

panel Figure 4.4 depicts the ratioR defined as

R(yrel) =
dσint

3 /dyrel

dσLO
3 /dyrel

. [4.30]

Hereσint
3 denotes the cross section due to the interference term givenby Eq.(4.29) whileσLO

3

denotes the cross section resulting from the Born amplitudesquared given by Eq.(4.10). The

interference term (Eq.(4.29)) is maximal foryrel = 0 when the veto jet is in the center of the

two tagging jets while the Born matrix element squared (Eq.(4.10)) is maximal foryrel = ±2.

The ratioR has a maximum value of10−4 which is quite small. The terms2 Re[M(5)†M(6)] and

2 Re[(M(1) + M(2))(M(3) + M(4))†] are then suppressed both by kinematics and color factors.

For these reasons these terms will be neglected.

The approximate matrix element square is then

|MqQ
r |2approx = d2

FC
2
F

6
∑

k=1

|M(k)|2

+ 2 Re[M(1)M(2)† + M(3)M(4)†]d2
FCF (CF − 1

2
CA)). [4.31]

The computer code for the real emission matrix elements squared |MqQ
r |2 for the subprocess

qQ → qQggH has been generated by MADGRAPH [48]. There are 24 Feynman graphs. In

order to compute Eq.(4.31) numerically from the MADGRAPH generated code, the color factors

are chosen to be

C11 = C22 = C33 = C44 = C55 = C66 = d2
FC

2
F , [4.32]

C12 = C34 = d2
FCF (CF − 1

2
CA), [4.33]

C13 = C14 = C23 = C24 = C56 = 0. [4.34]

From this point forward, it will be understood that|MqQ
r |2 is actually |MqQ

r |2approx given by

Eq.( 4.31).

1The veto cuts used here are given by Eq.(5.13).
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Figure 4.4 The normalized distribution in the rapidity of the veto jet with respect to the center of
rapidity for the two tagging jets,yrel = yveto

j − (ytag 1
j + ytag 2

j )/2, forHjjj production at LO. In
the left panel1

σ
dσ

dyrel
is plotted againstyrel for the interference term given by Eq.(4.29) (dashed

curve) and the Born matrix element squared given by Eq.(4.10) (solid curve). In the right panel
the ratioR(yrel) is plotted againstyrel.
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The soft and collinear singularities are regulated by use ofCatani-Seymour dipole subtraction

method [21]. In the approximation that is being made, one neglects color correlations between

upper and lower quark lines. Table 4.1 lists dipoles for the processqQ → qQggH for the approx-

imation being made here. In Table 4.1 the translation from the notation of Ref.[21], CS notation,

to the notation of Ref.[50], CE notation, is given. The dipolesDij,k
ff,qq are given in Appendix A

for conventional dimensional regularization (CDR) as opposed to the dimensional reduction (DR)

form given in Ref.[50]. As a check, calculations have been performed in both DR and CDR

schemes. Although there are differences that arise during intermediate stages of the NLO calcula-

tion, the final results are independent of regularization scheme. Here CDR is used throughout. The

dipoles which are proportional to the interference betweenupper and lower line Born amplitudes

are listed in Table 4.2. The4-parton contribution to the NLO cross section fromqQ → qQggH

processes is

σNLO
4 (qQ→ qQggH) =

∫ 1

0
dxa

∫ 1

0
dxbfq/p(xa, µF )fQ/p(xb, µF )

1

2ŝ
dΦ5(p1, p2, p3, p4, P ; pa + pb)

· 1

2!
{|MqQ

r |2F (4)
J (p1, p2, p3, p4; pa, pb) −

20
∑

i=1

D(i) · F (3)
J (i)} [4.35]

where the dipolesD(i) are listed in Table 4.1. The indexi specifies the momentum configuration.

For D(i) the labeli refers to the real emission kinematics and forF
(3)
J (i) the labeli refers to

the transformed Born-level kinematics. For example, usingTable 4.1 one would haveD(1) =

D14,3(1
q, 2Q, 3g, 4g; aq, bQ) for the real emission process andF (3)

J (1) = F
(3)
J (1̃4

q
, 2Q, 3̃g; aq, bQ).

Here the momentum and flavor of the parton is labeled bya andb for initial state partons and by

a whole number for final state partons. The superscriptsg andq label the flavor of the parton. For

example,(1q, 2Q, 3g, 4g; aq, bQ) represents the real emission process

q(pa) +Q(pb) = q(p1) +Q(p2) + g(p3) + g(p4) +H(P ) [4.36]

and(1̃4
q
, 2Q, 3̃g; aq, bQ) represents the Born-level process

q(pa) +Q(pb) → q(p̃14) +Q(p2) + g(p̃3) +H(P ) [4.37]

with transformed momenta,(p̃14, p2, p̃3; pa, pb). General formulae for the transformed (Born-level)

momenta can be found in Appendix A.
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The amplitude for the subprocess

g(pa) + g(pb) → q(p1) +Q(p2) + q̄(p3) + Q̄(p4) +H(P ) [4.38]

is denoted byMr(1
q, 2Q, 3q̄, 4Q̄; ag, bg). Collinear singularities occur when the initial state gluon

becomes collinear with one of the final state (anti-) quarks.Dipoles for this process are listed in

Table 4.5. All of the dipoles listed subtract initial state singularities with final state spectators. In

terms of color sub-amplitudes,

Mr(1
q, 2Q, 3q̄, 4Q̄; ag, bg) = tai1i3t

b
i2i4M(31, 42) + tbi1i3t

a
i2i4M(42, 31). [4.39]

M(31, 42) represents the the graph with the quark currentJ31 attached to gluona and quark current

J42 attached to gluonb. The matrix element squared is then

|Mr(1
q, 2Q, 3q̄, 4Q̄; ag, bg)|2 =

N2C2
F

d2
G

(|M(31, 42)|2 + |M(43, 31)|2) [4.40]

+
N2C2

F

d3
G

2 Re[M(31, 42)∗M(42, 31)].

To be consistent the second term in Eq. (4.40) is neglected since it is suppressed by color and

kinematics.|M(31, 42)|2 and|M(43, 31)|2 integrate to the same cross section contribution. This

being the case, only four dipoles need to be considered. The4-parton contribution to the NLO

cross section is then

σNLO
4 (gg → qq̄QQ̄H) =

∫ 1

0
dxa

∫ 1

0
dxbfg/p(xa, µF )fg/p(xb, µF )

1

2ŝ
dΦ5(p1, p2, p3, p4, P ; pa + pb)

· {|Mgg
r |2F (4)

J (p1, p2, p3, p4; pa, pb) −
4
∑

i=1

D(i) · F (3)
J (i)} [4.41]

whereMgg
r = tai1i3

tbi2i4
M(31, 42). The dipolesD(i) are listed in Table 4.5. Dipoles for subpro-

cessesqQ→ qQq′q̄′H andgQ→ qq̄QgH are given in Tables 4.3 and 4.4, respectively. The tensor

Tµν in Tables 4.3 and 4.4 is the uncontracted matrix element squared,

Tµν = Mµ(Mν)
∗ [4.42]

where theµ andν are gluon spin-indices. The matrix element squared is then

|M|2 =
∑

λ

Tµνǫ
µ(q, λ)ǫν∗(q, λ) = −gµνTµν [4.43]

where the sum over gluon polarizations,λ, has been performed.
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Table 4.1 Dipole factors forqQ→ qQggH processes. The color sub-amplitudes are
A = MqQ

B,2b(i) andB = MqQ
B,1a(i) with Born-level momentumi. The color coefficientsCl are

C1 = C2
F , C2 = CF (CF − 1

2
CA), andC3 = 1

2
CFCA.

Real kinematics (1q, 2Q, 3g, 4g; aq, bQ)

i Dipole factor Born kinematics

1 D14,3 = C3|B|2D14,3
ff,qq (1̃4

q
, 2Q, 3̃g; aq, bQ)

2 D13,4 = C3|B|2D13,4
ff,qq (1̃3

q
, 2Q, 4̃g; aq, bQ)

3 D34,1 = C3(−gµνD34,1
ff,gg + qµqνD̃34,1

ff,gg)BµB
∗
ν (1̃q, 2Q, 3̃4

g
; aq, bQ)

4 Da
14 = {C1|A|2 + C2|B|2}D14,a

fi,qq (1̃4
q
, 2Q, 3g; ãq, bQ)

5 Da
13 = {C1|A|2 + C2|B|2}D13,a

fi,qq (1̃3
q
, 2Q, 4g; ãq, bQ)

6 Da
34 = C3(−gµνD34,a

fi,gg + qµqνD̃34,a
fi,gg)BµB

∗
ν (1q, 2Q, 3̃4

g
; ãq, bQ)

7 Da4
1 = {C1|A|2 + C2|B|2}Da4,1

if,qq (1̃q, 2Q, 3g; ã4
q
, bQ)

8 Da3
1 = {C1|A|2 + C2|B|2}Da3,1

if,qq (1̃q, 2Q, 4g; ã3
q
, bQ)

9 Da4
3 = C3|B|2Da4,3

if,qq (1q, 2Q, 3̃g; ã4
q
, bQ)

10 Da3
4 = C3|B|2Da3,4

if,qq (1q, 2Q, 4̃g; ã3
q
, bQ)

11 D24,3 = C3|A|2D24,3
ff,qq (1q, 2̃4

Q
, 3̃g; aq, bQ)

12 D23,4 = C3|A|2D23,4
ff,qq (1q, 2̃3

Q
, 4̃g; aq, bQ)

13 D34,2 = C3(−gµνD34,2
ff,gg + qµqνD̃34,2

ff,gg)AµA
∗
ν (1q, 2̃Q, 3̃4

g
; aq, bQ)

14 Db
24 = {C1|B|2 + C2|A|2}D24,b

fi,qq (1q, 2̃4
Q
, 3g; aq, b̃Q)

15 Db
23 = {C1|B|2 + C2|A|2}D23,b

fi,qq (1q, 2̃3
Q
, 4g; aq, b̃Q)

16 Db
34 = C3(−gµνD34,b

fi,gg + qµqνD̃34,b
fi,gg)AµA

∗
ν (1q, 2Q, 3̃4

g
; aq, b̃Q)

17 Db4
2 = {C1|B|2 + C2|A|2}Db4,2

if,qq (1q, 2̃Q, 3g; aq, b̃4
Q
)

18 Db3
2 = {C1|B|2 + C2|A|2}Db3,2

if,qq (1q, 2̃Q, 4g; aq, b̃3
Q
)

19 Db4
3 = C3|A|2Db4,3

if,qq (1q, 2Q, 3̃g; aq, b̃4
Q
)

20 Db3
4 = C3|A|2Db3,4

if,qq (1q, 2Q, 4̃g; a3q, b̃3
Q
)
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Table 4.2 Dipoles forqQ→ qQggH processes that are color suppressed.

Real kinematics (1q, 2Q, 3g, 4g; aq, bQ)

i Dipole factor Born kinematics

21 Da4,b (1q, 2Q, 3g; ã4
q
, b̃Q)

22 Db4,a (1q, 2Q, 3g; ãq, b̃4
Q
)

23 Da
24 (1q, 2̃4

Q
, 3g; ãq, bQ)

24 Db
14 (1̃4

q
, 2Q, 3g; aq, b̃Q)

25 Da4
2 (1q, 2̃Q, 3g; ã4

q
, bQ)

26 Db4
1 (1̃q, 2Q, 3g; aq, b̃4

Q
)

27 D24,1 (1̃q, 2̃4
Q
, 3g; aq, bQ)

28 D14,2 (1̃4
q
, 2̃Q, 3g; aq, bQ)

29 Da
23 (1q, 2̃3

Q
, 4g; ãq, bQ)

30 Db
13 (1̃3

q
, 2Q, 4g; aq, b̃Q)

31 Da3
2 (1q, 2̃Q, 4g; ã3

q
, bQ)

32 Db3
1 (1̃q, 2Q, 4g; aq, b̃3

Q
)

33 D23,1 (1̃q, 2̃3
Q
, 4g; aq, bQ)

34 D13,2 (1̃3
q
, 2̃Q, 4g; aq.bQ)
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Table 4.3 Dipole factors forqQ→ qQq′q̄′H processes. HereT gQ
µν = MgQ

µ MgQ∗
ν and

T qg
µν = Mqg

µ Mqg∗
ν . A = MqQ

B,2b(i) andB = MqQ
B,1a(i) for Born-level momentumi.

Real kinematics (1q, 2Q, 3q′, 4q̄′; aq, bQ)

i Dipole Born kinematics

1 D34,1 = 1
2
CFTF (−gµνD34,1

ff,gq + qµqνD̃34,1
ff,gq)BµB

∗
ν (1̃q, 2Q, 3̃4

g
; aq, bQ)

2 D34,2 = 1
2
CFTF (−gµνD34,2

ff,gq + qµqνD̃34,2
ff,gq)AµA

∗
ν (1q, 2̃Q, 3̃4

g
; aq, bQ)

3 Da
34 = 1

2
CFTF (−gµνD34,a

fi,gq + qµqνD̃34,a
fi,gq)BµB

∗
ν (1q, 2Q, 3̃4

g
; ãq, bQ)

4 Db
34 = 1

2
CFTF (−gµνD34,b

fi,gq + qµqνD̃34,b
fi,gq)AµA

∗
ν (1q, 2Q, 3̃4

g
; aq, b̃Q)

5 Da1
3 = 1

2
CF (−gµνDa1,3

if,gq + qµqνD̃a1,3
if,gq)T

gQ
µν (2Q, 3̃q′, 4q̄′; ã1

g
, bQ)

6 Da1
4 = 1

2
CF (−gµνDa1,4

if,gq + qµqνD̃a1,4
if,gq)T

gQ
µν (2Q, 3q′, 4̃q̄′; ã1

g
, bQ)

7 Db2
3 = 1

2
CF (−gµνDb2,3

if,gq + qµqνD̃b2,3
if,gq)T

qg
µν (1q, 3̃q′, 4q̄′; aq, b̃2

g
)

8 Db2
4 = 1

2
CF (−gµνDb2,4

if,gq + qµqνD̃b2,4
if,gq)T

qg
µν (1q, 3q′, 4̃q̄′; aq, b̃2

g
)
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Table 4.4 Dipole factors forgQ→ qq̄QgH processes. Here the color factors:C1 = CF ,
C2 = CF − 1

2
CA, andC3 = 1

2
CA. T gQ

µν = MgQ
µ MgQ∗

ν for Born-level momentumi.

Real kinematics (1q, 2Q, 3q̄, 4g; ag, bQ)

i Dipole factor Born kinematics

1 Da3
1 = {C1|AqQ|2 + C2|BqQ|2}TFDa3,1

if,qg (1̃q, 2Q, 4g; ã3
q
, bQ)

2 Da1
3 = {C1|Aq̄Q|2 + C2|B q̄Q|2}TFDa1,3

if,qg (2Q, 3q̄, 4g; ã1
q̄
, bQ)

3 Da3
4 = C3|BqQ|2TFDa3,4

if,qg (1q, 2Q, 4̃g; ã3
q
, bQ)

4 Da1
4 = C3|B q̄Q|2TFDa1,4

if,qg (2Q, 3q̄, 4̃g; ã1
q
, bQ)

5 Da4
1 = C3(−gµνDa4,1

if,gg + qµqνD̃a4,1
if,gg)T

gQ
µν (1̃q, 2Q, 3q̄, ã4

g
, bQ)

6 Da4
3 = C3(−gµνDa4,3

if,gg + qµqνD̃a4,3
if,gg)T

gQ
µν (1q, 2Q, 3̃q̄; ã4

g
, bQ)

7 Db4
2 = C1|MgQ|2Db4,2

if,qq (1q, 2̃Q, 3q̄; ag, b̃4
Q
)

8 Db
24 = C1|MgQ|2D24,b

fi,qq (1q, 2̃4
Q
, 3q̄; ag, b̃Q)

9 Da
14 = C3|MgQ|2D14,a

fi,qq (1̃4
q
, 2Q, 3q̄; ãg, bQ)

10 Da
34 = C3|MgQ|2D34,a

fi,qq (1q, 2Q, 3̃4
q̄
; ãg, bQ)

11 D14,3 = C2MgQ|2D14,3
ff,qq (1̃4

q
, 2Q, 3̃q̄; ag, bQ)

12 D34,1 = C2MgQ|2D34,1
ff,qq (1̃q, 2Q, 3̃4

q̄
; ag, bQ)

Table 4.5 Dipole factors forgg → qq̄QQ̄H processes.

Real kinematics (1q, 2Q, 3q̄, 4Q̄; ag, bg)

i Dipole factor Born kinematics

1 Db4
2 = TF |MgQ

B |2Db4,2
if,qg (1q, 2̃Q, 3q̄; ag, b̃4

Q
)

2 Db2
4 = TF |MgQ̄

B |2Db2,4
if,qg (1q, 3q̄, 4̃Q̄; ag, b̃2

Q̄
)

3 Da3
1 = TF |Mqg

B |2Da3,1
if,qg (1̃q, 2Q, 4Q̄; ã3

q
, bg)

4 Da1
3 = TF |Mq̄g

B |2Da1,3
if,qg (2Q, 3̃q̄, 4Q̄; ã1

q̄
, bg)
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�q(k2) q(k1)

V (q)

Figure 4.5 QCD correction to theqqV vertex

�q(k2) q(k1)

g(q1)V (q2)
�q(k2) q(k1)

g(q1) V (q2)

Figure 4.6qqV vertex corrections forqq̄ → V g.

4.3.2 One-loop virtual corrections

Conventional dimensional regularization is used for computing the virtual corrections. The

Passarino-Veltman reduction is performed ind = 4 − 2ǫ space-time dimensions [49]. The virtual

corrections are split into two classes: the virtual corrections along the quark line with one weak

boson attached and the virtual corrections with a weak bosonand a gluon attached. Out of these

two classes, the virtual corrections toHjjj production via vector boson fusion can be computed.

4.3.2.1 Boxline and Triangle Corrections

The first class of virtual corrections are QCD corrections toqqV vertices which were com-

puted in Ref.[10]. The amplitude for Born-level process,q(k1) → q(k2) + V (q), is denoted by

MB(k1, k2; q). q = k1 − k2 is the four-momentum of the virtual weak bosonV of virtuality

Q2 = −q2. The virtual amplitude in conventional dimensional regularizationMV (k1, k2; q), de-

picted in Figure 4.5, is given by

MV (k1, k2; q) = MB(k1, k2; q)CF
αs(µR)

4π
(
4πµ2

R

−q2
)ǫΓ[1 + ǫ]

(

− 2

ǫ2
− 3

ǫ
+ cvirt

)

[4.44]

with cvirt = π2/3 − 8.
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�q(k2) q(k1)
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Figure 4.7 Propagator corrections forqq̄ → V g.

�q(k2) q(k1)
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Figure 4.8qqg vertex corrections forqq̄ → V g.

The second class of diagrams are the virtual QCD correctionsto the Feynman graphs where

a gluong and an electroweak bosonV (outgoing momentaq1 andq2) are attached to the same

fermion line. Feynman graphs are shown by Figures 4.7, 4.8, and 4.10. The kinematics used here

is for the process

q(k1) → q(k2) + g(q1) + V (q2), [4.45]

wherek2
1 = k2

2 = 0 and momentum conservation readsk1 = k2 + q2 + q1. As in [40], it is

convenient to use the Mandelstam variables for a2 → 2 process which is taken to bēqq → gV .

The Mandelstam variables are defined to be

s = (k1 − k2)
2 = (q1 + q2)

2,

t = (k1 − q1)
2 = (k2 + q2)

2,

u = (k1 − q2)
2 = (k2 + q1)

2. [4.46]

The gluon polarization denoted byǫ1(q1) is transverse, i.e.,ǫ1 · q1 = 0. The electroweak bosonV

is always virtual in the calculation. The effective polarization vector for the vector bosonǫ2(q2)

corresponds to a fermion current. Due to the emission of the Higgs boson off thet-channel vec-

tor boson propagator, the fermion current is not conserved.Hence, terms withǫ2 · q2 must be
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� =� +�
Figure 4.9 1-loop QCD corrections to theqqg vertex.
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Figure 4.10 Box diagrams forqq̄ → V g.
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kept throughout the calculation. Electroweak gauge invariance of the amplitude is preserved, i.e.,

Mµq
µ
2 = 0.

The Born amplitude forqq̄ → gV is

MB(k1i1τ1, k2i2τ2, q1a, q2; ǫ1, ǫ2) = δτ2,τδτ1,τ t
a
i2i1(−e)gV f2f1

τ gsū(k2)[γ
νPτ

(/k2 + /q2)

t
γµ

+ γµ (/k2 + /q1)

u
γνPτ ]u(k1)ǫ1µǫ2ν . [4.47]

i2 andi1 are color indices for the quarks anda is the color index for the gluon.τ is the chirality

index for the quark.Pτ = 1
2
(1 + τγ5) is the chirality projector.ǫ1 = ǫ1(q1) andǫ2 = ǫ2(q2) are

polarization vectors for the gluon and vector boson, respectively.

The virtual amplitude is computed ind = 4 − 2ǫ space-time dimensions. The finite part

M̃V = M̃V (k1i1τ1, k2i2τ2, q1a, q2; ǫ1, ǫ2)

can be written as

M̃V = δτ2,τδτ1,τ t
a
i2i1

αs

4π
(−e)gV f2f1

τ gs [4.48]

·
{

(CF − 1

2
CA){M̃(1)

τ (k2, q1, q2; ǫ1, ǫ2) + M̃(2)
τ (k2, q1, q2; ǫ1, ǫ2)}

− 1

2
CAM̃(3)

τ (k2, q1, q2; ǫ1, ǫ2)
}

,

with

M̃(1)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c(1)q (/q1 − /q2) + c

(1)
1 /ǫ1 [4.49]

+ c
(1)
2 /ǫ2 + c

(1)
b /ǫ2(/k2 + /q2)/ǫ1}Pτψ(k1),

M̃(2)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c(2)q (/q1 − /q2) + c

(2)
1 /ǫ1 [4.50]

+ c
(2)
2 /ǫ2 + c

(2)
b /ǫ1(/k2 + /q1)/ǫ2}Pτψ(k1),

and

M̃(3)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c(3)q (/q1 − /q2) + c

(3)
1 /ǫ1 + c

(3)
2 /ǫ2

+ c
(3)
b (/ǫ1(/k2 + /q1)/ǫ2 + /ǫ2(/k2 + /q2)/ǫ1}Pτψ(k1). [4.51]
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¯ψ(k2) andψ(k1) are quark spinors. The slashed symbols,/q = γµqµ, are four-vectors contracted

with gamma matrices. The coefficientsc(i)q , c(i)1 , c(i)2 , andc(i)b for i = 1, 2, 3 are given in terms of

Passarino-VeltmanDij functions in Appendix B.

The virtual amplitudeMV = MV (k1i1τ1, k2i2τ2, q1a, q2; ǫ1, ǫ2) for q(k1) → q(k2) + g(q1) +

V (q2) is

MV = MB
αs

4π
Γ[1 + ǫ]

{

1

2

((

4πµ2

−u

)ǫ

+

(

4πµ2

−t

)ǫ)

(−CA

ǫ2
− γg

1

ǫ
)

+
1

2

CA

CF

((

4πµ2

−u

)ǫ

+

(

4πµ2

−t

)ǫ

− 2

(

4πµ2

−s

)ǫ)

(−CF

ǫ2
− γq

1

ǫ
)

+2

(

4πµ2

−s

)ǫ

(−CF

ǫ2
− γq

1

ǫ
) + F (s, t, u) + CF cvirt

}

+ M̃V [4.52]

where

F (s, t, u) =
CA

2

(

ln2

(

−u
µ2

)

+ ln2

(

−t
µ2

))

− 1

2
(CA − 2CF ) ln2

(

−s
µ2

)

+
3

2
(CA − 2CF ) ln

(

−s
µ2

)

+ (
1

3
TRNf − 5

3
CA)

(

ln

(

−u
µ2

)

+ ln

(

−t
µ2

))

. [4.53]

The constantsγq, γg, andcvirt are

γq =
3

2
CF , γg =

11

6
CA − 2

3
TRNf , [4.54]

cvirt =
π2

3
− 8. [4.55]

Results for physical kinematic regions can be obtained by analytically continuing Eq.(4.52). For

example if the invariantu is time-like, then one would perform the following replacement in

Eqs.(4.52,4.53)

u→ u+ i0+. [4.56]

The natural logarithm foru > 0 is then

ln(−u) = ln(u) − iπ. [4.57]

The iπ factors which result from analytic continuation vanish upon squaring the sum of the Born

amplitude and the virtual amplitude. The analytic continuation for any double logarithms is dealt

with automatically by Fortran code for the finite part of the virtual amplitudeM̃V in Eq.(4.52).

The above results can then be used for any momentum configuration.
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4.3.2.2 Hexagons and Pentagons

The third class of Feynman graphs are one-loop topologies for which a gluon propagates be-

tween the upper and lower quark lines. The hexagon diagrams are shown in Figure 4.11. The

pentagon graphs which are needed to preserve gauge invariance are not shown, but would be in-

cluded in any calculations involving the hexagon graphs. The hexagon and pentagon graphs form

two gauge invariant sets. Here the virtual amplitude will bedenoted asMV,hex. It will be under-

stood thatMV,hex includes the contributions of any pentagon graphs. The hexagon amplitude can

be deposed into

MqQ
hex = tai2jt

b
ji1
tbi4i3

MqQ
hex,21 + tai4jt

b
ji3
tbi2i1

MqQ
hex,43 [4.58]

whereMhex,21 andMhex,43 denote hexagon graphs with gluon emission off the21 quark line and

43 quark line, respectively. The interference of the hexagon amplitude with the Born amplitude

MqQ
B leads to the expression

2 Re[MqQ
B (MqQ

hex)
∗] =

C2
F

dG

{

2 Re[MqQ
B,21(MqQ

hex,43)
∗] + 2 Re[MqQ

B,43(MqQ
hex,21)

∗]
}

. [4.59]

From the expression above it is evident that the QCD corrections resulting from the hexagons are

suppressed by a factor1/dG = 1/(N2 − 1) = 1/8 relative to QCD corrections to a single quark

current. The interference of the hexagons with the Born sub-amplitudes leads to soft singularities,

1/ǫ poles, which are canceled against the integrated dipoles listed in Table 4.2. The divergent piece

to 2 Re[MqQ
B (MqQ

hex)
∗] is proportional to2 Re[MB,21M∗

B,43]. As discussed in Subsection 4.3.1,

these contributions are suppressed kinematically. Hence,the hexagon and pentagon graphs will be

neglected.

4.3.3 Regularization of Divergences

Here the subprocessq(pa) + Q(pb) → q(p1) + Q(p2) + g(p3) + H(P ) is considered. Only

the virtual corrections to a single quark current is considered since the contribution of pentagon

and hexagon graphs is to be neglected. The virtual corrections needed here are exactly those of

Subsection 4.3.2. The virtual corrections can be written asMV = tc3i1iaδi2ibMV,1a+tc3i2ib
δi1iaMV,2b.
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Figure 4.11 Hexagon diagrams
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Recall, the Born amplitude takes the form,MB = tc3i1iaδi2ibMB,1a + tc3i2ib
δi1iaMB,2b. The virtual

corrections can be decomposed into a divergent part and a finite part,MV,1a = MV,1a|div +M̃V,1a.

MV,1a|div denotes the divergent part of the virtual amplitude andM̃V,1a denotes the finite part of

the virtual amplitude. Dot products of four-momentum vectors are written assij = 2pi · pj for

j = a, b, 1, 2, or 3. Below theΓ(1 + ǫ) in Eq. 4.52 is replaced by 1
Γ(1−ǫ)

. The interference of the

Born amplitude and the virtual amplitude is

2 Re[M∗
V MB] = CF |MqQ

B,2b(p1, p2, p3; pa, pb)|2
αs(µ

2)

2π

1

Γ(1 − ǫ)
[4.60]

·
{

1

2

((

4πµ2

s23

)ǫ

+

(

4πµ2

sb3

)ǫ)

(−CA

ǫ2
− γg

1

ǫ
)

+
1

2

CA

CF

((

4πµ2

s23

)ǫ

+

(

4πµ2

sb3

)ǫ

− 2

(

4πµ2

sb2

)ǫ)

(−CF

ǫ2
− γq

1

ǫ
)

+ 2

((

4πµ2

sb2

)ǫ

+

(

4πµ2

sa1

)ǫ)

(−CF

ǫ2
− γq

1

ǫ
)

− π2

6
(CA + 4CF ) + 2CF cvirt + F (sb2, sb3, s23)

}

+ CF |MqQ
B,1a(p1, p2, p3; pa, pb)|2

αs(µ
2)

2π

1

Γ(1 − ǫ)
[4.61]

·
{

1

2

((

4πµ2

s13

)ǫ

+

(

4πµ2

sa3

)ǫ)

(−CA

ǫ2
− γg

1

ǫ
)

+
1

2

CA

CF

((

4πµ2

s13

)ǫ

+

(

4πµ2

sa3

)ǫ

− 2

(

4πµ2

sa1

)ǫ)

(−CF

ǫ2
− γq

1

ǫ
)

+ 2

((

4πµ2

sa1

)ǫ

+

(

4πµ2

sb2

)ǫ)

(−CF

ǫ2
− γq

1

ǫ
)

− π2

6
(CA + 4CF ) + 2CF cvirt + F (sa1, sa3, s13)

}

+ CF (2 Re[MqQ
B,1a(M̃qQ

V,1a)
∗] + 2 Re[MqQ

B,2b(M̃qQ
V,2b)

∗]).

M̃V,1a is the finite contribution due to virtual corrections on the1a quark line. Likewise,M̃V,2b

is the finite contribution due to virtual corrections on the2b quark line. The precise form of these

finite contributions are given in Appendix B.
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Using the Catani-Seymour dipole subtraction method [21], the resulting insertion operator<

I(ǫ) > is given by

< I(ǫ) > = CF |MqQ
B,2b(p1, p2, p3; pa, pb)|2

αs(µ
2)

2π

1

Γ(1 − ǫ)
[4.62]

·
{

1

2

((

4πµ2

s23

)ǫ

+

(

4πµ2

sb3

)ǫ)

Vg(ǫ)

+
1

2

CA

CF

((

4πµ2

s23

)ǫ

+

(

4πµ2

sb3

)ǫ

− 2

(

4πµ2

sb2

)ǫ)

Vq(ǫ)

+ 2

((

4πµ2

sb2

)ǫ

+

(

4πµ2

sa1

)ǫ)

Vq(ǫ)

}

+ CF |MqQ
B,1a(p1, p2, p3; pa, pb)|2

αs(µ
2)

2π

1

Γ(1 − ǫ)
[4.63]

·
{

1

2

((

4πµ2

s13

)ǫ

+

(

4πµ2

sa3

)ǫ)

Vg(ǫ)

+
1

2

CA

CF

((

4πµ2

s13

)ǫ

+

(

4πµ2

sa3

)ǫ

− 2

(

4πµ2

sa1

)ǫ)

Vq(ǫ)

+ 2

((

4πµ2

sa1

)ǫ

+

(

4πµ2

sb2

)ǫ)

Vq(ǫ)

}

,

where

Vq(ǫ) = CF

(

1

ǫ2
− π2

3

)

+ γq
1

ǫ
+ γq +Kq + O(ǫ), [4.64]

and

Vg(ǫ) = CA

(

1

ǫ2
− π2

3

)

+ γg
1

ǫ
+ γg +Kg + O(ǫ). [4.65]

The constants,γq andγg are

γq =
3

2
CF , γg =

11

6
CA − 2

3
TRNf , [4.66]

and the constants,Kq andKg, are

Kq =

(

7

2
− π2

6

)

CF , Kg =

(

67

18
− π2

6

)

CA − 10

9
TRNf . [4.67]
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Combining Eq.(4.60) and Eq.(4.62) yields

2 Re[M∗
V MB]+ < I(ǫ) > = |MqQ

B (p1, p2, p3; pa, pb)|2
αs(µ

2)

2π
Kborn [4.68]

+ |MqQ
B,1a(p1, p2, p3; pa, pb)|2

αs(µ
2)CF

2π
F (sa1, sa3, s13)

+ |MqQ
B,2b(p1, p2, p3; pa, pb)|2

αs(µ
2)CF

2π
F (sb2, sb3, s23)

+ CF (2 Re[MqQ
B,1a(M̃qQ

V,1a)
∗] + 2 Re[MqQ

B,2b(M̃qQ
V,2b)

∗])

The constant,Kborn, is

Kborn =

(

−2π2

3
+

50

9

)

CA − 16

9
TRNf + 2CF

(

−4π2

3
+ 10 + cvirt

)

. [4.69]

Given Eq.(4.68), one obtains the finite three-parton NLO cross section forqQ → qQH pro-

cesses

σNLO
3 (qQ→ qQgH) =

∫ 1

0
dxa

∫ 1

0
dxbfq/p(xa, µF )fQ/p(xb, µF ) [4.70]

× 1

2ŝ
dΦ(p1, p2, p3, P ; pa, pb)F

(3)
J (p1, p2, p3, P ; pa, pb)

·
{

|MqQ
B (p1, p2, p3; pa, pb)|2

(

1 +
αs(µ

2)

2π
Kborn

)

+ |MqQ
B,1a(p1, p2, p3; pa, pb)|2

αs(µ
2)CF

2π
F (sa1, sa3, s13)

+ |MqQ
B,2b(p1, p2, p3; pa, pb)|2

αs(µ
2)CF

2π
F (sb2, sb3, s23)

+ CF (2 Re[MqQ
B,1a(M̃qQ

V,1a)
∗] + 2 Re[MqQ

B,2b(M̃qQ
V,2b)

∗])
}

The virtual amplitude for the gluon initiated process

g(pa) +Q(pb) → q(p1) + q̄(p3) +Q(p2) +H(P ), [4.71]

is represented byMgQ
V = MgQ

V (p1, p2, p3, P ; pa, pb). Since, only vector-boson fusion processes

are considered here annihilation graphs are neglected. Thesum of2 Re[(MgQ
V )∗MgQ

B ] and< I >

for the gluon-initiated process leads to the following three parton NLO cross section contribution

σNLO
3 (gQ→ qq̄QH) =

∫ 1

0
dxa

∫ 1

0
dxbfg/p(xa, µF )fQ/p(xb, µF ) [4.72]
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× 1

2ŝ
dΦ(p1, p2, p3, P ; pa, pb)F

(3)
J (p1, p2, p3, P ; pa, pb)

·
{

|MgQ
B (p1, p2, p3; pa, pb)|2

(

1 +
αs(µ

2)

2π
(Kborn + F (s13, sa3, sa1)

)

+
CFdF

dG
2 Re[(M̃gQ

V )∗MgQ
B ]

}

.

There is also a similar expression for the processQg → qq̄QH.

4.3.4 Finite collinear terms

In this Subsection, formulae for the finite collinear cross section are given. The formulae below

can be derived from Eq.(A.77) by first writing down the various contributions
∫ 1
0 dxσ̂

NLO{4}
ab where

ab = qQ, gg, gQ, qg. Then, the terms in
∫ 1
0 dxσ̂

NLO
ab are convoluted with the parton distribution

functions. The result can then be collected into pieces proportional to the Born matrix elements

squares,|MqQ
B |2 and|MgQ

B |2.
For the gluon initiated Born-level process,gQ→ qq̄QH, the finite collinear contribution is

σNLO
3,col (gQ→ qq̄QH) =

∫ 1

0
dxa

∫ 1

0
dxb

{

fg/p(xa;µF )fQ/p(xb;µF , µR) [4.73]

+
1

2

(

f 1,a
g/p(xa;µF , µR) + f 3,a

g/p(xa;µF , µR)
)

fQ/p(xb;µF )
}

· 1

2ŝ
dΦ(p1, p2, p3, P ; pa + pb)|MgQ

B |2F (3)
J (p1, p2, p3; pa, pb)

with

f 1,a
g/p(xa;µF , µR) =

∑

q

(f 1,a
qg;q/p(xa;µF , µR) + f 1,a

qg;q̄/p(xa;µF , µR)) + f 1,a
gg;g/p(xa;µF , µR) [4.74]

and,

f 2,b
Q/p(xb;µF , µR) = f 2,b

gq;g/p(xb;µF , µR) + f 2,b
qq;Q/p(xb;µF , µR). [4.75]

For the Born-level process,qQ→ qQgH, the finite collinear contribution is:

σNLO
3,col (qQ→ qQgH) =

∫ 1

0
dxa

∫ 1

0
dxb

1

2ŝ
dΦ(p1, p2, p3, P ; pa + pb)F

(3)
J (p1, p2, p3; pa, pb)

· {(fq/p(xa, µF )f 2,b
Q/p(xb, µF , µR) + f 1,a

q/p(xa;µF , µR))|MqQ
B |2 [4.76]

+
1

2
CAfq/p(xa;µF )(f 3,b

Q/p(xb;µF , µR) − f 2,b
Q/p(xb;µF , µR))|MqQ

B,2b|2

+
1

2
CA(f 3,b

q/p(xa;µF , µR) − f 1,a
q/p(xa;µF , µR))fQ/p(xb, µF )|MqQ

B,1a|2},



77

with

f 1,a
q/p(xa;µF , µR) = f 1,a

qq;q/p(xa;µF , µR) + f 1,a
gq;g/p(xa;µF , µR). [4.77]

Using the above expressions the finite collinear terms can becomputed as part of the 3-parton

phase space integration. Listed below are the convoluted splitting functions,f i,a
ab;a/p(xa;µR, µR).

The kernels for the convoluted splitting functions are given by Ai,a
ab (z), Bi,a

ab (z), Ci,a
ab (z), and

Di,a
ab (x). The subscriptsa and b represent the splitting of a partona to partonb. The super-

scriptsi anda are momentum labels for the momentapi andpa. Using this notation allows one

to write down general formulas for the convoluted splittingfunctions. The splitting functionsP ab

and flavor kernelsK
ab

can be found in Appendix A.

The convoluted splitting function for the splittingq → q + g is

f i,a
qq;q/p(xa, µF , µR) =

αs(µR)

2π

∫ 1

xa

dz

z
fq/p

(

xa

z
, µF

)

·
{

K
qq

(z) − γi

[

(

1

1 − z

)

+
+ δ(1 − z)

]

+ P qq(z) ln
2papi

µ2
F

}

=
αs(µR)

2π

∫ 1

xa

dz

z

{[

fq/p

(

xa

z
;µF

)

− zfq/p(xa;µF )
]

Bi,a
qq (z) [4.78]

+ fq/p

(

xa

z
;µF

)

Ci,a
qq (z)

}

+
αs(µR)

2π
fq/p(xa;µF )Di,a

qq (xa),

with kernels

Bi,a
qq (z) = CF

[

2

1 − z
ln

2papi(1 − z)

µ2
F

− γi

CF

1

1 − z

]

, [4.79]

Ci,a
qq (z) = CF

[

−(1 + z) ln
2papi(1 − z)

µ2
Fz

− 2

1 − z
ln z + (1 − z)

]

, [4.80]

Di,a
qq (x) = CF

[

2π2

3
− 5 − γi

CF

− γi

CF

ln(1 − x) + ln2(1 − x) [4.81]

+
3

2
ln

2pipa

µ2
F

+ 2 ln(1 − x) ln
2pipa

µ2
F

]

.

For the splittingq → q + g the convoluted splitting function is

f i,a
qg;q/p(xa, µF , µR) =

αs(µR)

2π

∫ 1

xa

dz

z
fq/p

(

xa

z
, µF

)

{

K
qg

(z) + P qg(z) ln
2papi

µ2
F

}

[4.82]

=
αs(µR)

2π

∫ 1

xa

dz

z
fq/p

(

xa

z
;µF

)

Ai,a
qg (z),
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with kernel

Ai,a
qg (z) = CF

[

1 + (1 − z)2

z
ln

2papi(1 − z)

µ2
F z

+ z

]

. [4.83]

Forg → q + q̄ splitting the convoluted splitting function is

f i,a
gq;g/p(xa, µF , µR) =

αs(µR)

2π

∫ 1

xa

dz

z
fg/p

(

xa

z
, µF

)

{

K
gq

(z) + P gq(z) ln
2papi

µ2
F

}

[4.84]

=
αs(µR)

2π

∫ 1

xa

dz

z
fg/p

(

xa

z
;µF

)

Ai,a
gq (z),

with kernel

Ai,a
gq (z) = TF [z2 + (1 − z)2] ln

2papi(1 − z)

µ2
Fz

+ TF 2z(1 − z). [4.85]

For theg → g + g splitting the convoluted splitting function is

f i,a
gg;g/p(xa, µF , µR) =

αs(µR)

2π

∫ 1

xa

dz

z
fg/p

(

xa

z
, µF

)

·
{

K
gg

(z) − 3

2
CA

[

(

1

1 − z

)

+
+ δ(1 − z)

]

+ P gg(z) ln
2papi

µ2
F

}

[4.86]

=
αs(µR)

2π

∫ 1

xa

dz

z

{[

fg/p

(

xa

z
;µF

)

− zfg/p(xa;µF )
]

Bi,a
gg (z)

+ fg/p

(

xa

z
;µF

)

Ci,a
gg (z)

}

+
αs(µR)

2π
fg/p(xa;µF )Di,a

gg (xa),

Bi,a
gg (z) = CA

[

2

1 − z
ln

2papi(1 − z)

µ2
F

− 3

2

1

1 − z

]

, [4.87]

Ci,a
gg (z) = CA

[

(

1 − z

z
− 1 + z(1 − z)

)

ln
2papi(1 − z)

µ2
Fz

− 2

1 − z
ln z

]

, [4.88]

Di,a
gg (x) = 2CA ln(1 − x) ln

2papi

µ2
F

+ γg ln
2papi

µ2
F

+ CA

(

2π2

3
− 50

9
+ ln2(1 − x)

)

[4.89]

+
16

9
TFNf − 3

2
CA − 3

2
CA ln(1 − x).

Here the initial state momentapa andpb are

pa = xaPa, pb = xbPb [4.90]

wherexa andxb are the Feynman-x andPa andPb are the beam momentum. The constantsγg and

γq are given by Eq.(4.54).
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4.4 Concluding Remarks

The cross section contributions discussed in the previous sections have been implemented in

a parton-level Monte Carlo program. The Born amplitudes arecalculated numerically using the

helicity amplitude formalism of Ref.[30]. These amplitudes have been taken from Ref.[10]. While

the Fortran code for the real emission amplitudes has been generated using MADGRAPH [48]. The

Monte Carlo integration is performed with a modified versionof VEGAS [31]. Gauge invariance

has been checked numerically and analytically for the virtual amplitudes. The dipole subtraction

method used here has been checked numerically in all regionsof phase space for which there are

collinear or soft singularities in the real emission graphs.
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Chapter 5

Central Jet Veto Efficiency at NLO
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5.1 Introduction

The observation of two forward tagging jets in Higgs production via VBF at the LHC is crucial

for the suppression of backgrounds [17, 25, 26, 27, 28, 29]. In addition to forward jet tagging, the

veto of any additional jet activity in the central region (central jet veto) also leads to suppression

of QCD backgrounds such asW+W−jj , tt̄jj, and gluon fusionHjj production [27, 51]. This

is caused by thet-channel exchange of quarks or gluons which tend to radiate more gluons. For

VBF processes there is suppressed jet activity in the central region which is due to color singlet

exchange in thet-channel. For the central jet veto (CJV) proposal, events are discarded if any

additional jet with a transverse momentum above a cutpT,veto is found between the tagging jets

[14, 15, 16, 17, 18, 19, 20]. Survival probabilities for the CJV have been calculated for the Higgs

boson signal and background processes using LO matrix elements [15, 27]. However, for the VBF

processpp → Hjjj the cross section suffers from scale variations on the orderof 40%. Since

survival probabilities depend on the3-jet and2-jet cross sections, any theoretical uncertainties of

these cross sections will feed into the survival probabilities and in turn the uncertainty of cou-

pling measurements at the LHC. The vector-boson fusion cutsused in simulations are described

in Section 5.2. In Section 5.3 the scale dependence of the next-to-leading order (NLO) three jet

cross section for Higgs production via VBF (VBFHjjj) is discussed. In Section 5.43-jet ratios

R = dσ3/dσ2 for Higgs production are computed to NLO accuracy using the VBF Hjjj parton-

level Monte Carlo program developed in Chapter 4 and the VBFHjj parton-level Monte Carlo

program developed in Chapter 2.

5.2 Vector-Boson Fusion Cuts

The Standard Model (SM) parameters used in all subsequent calculations are listed in Table

5.1. SM parameters are computed using LO electroweak relations. Cross sections are computed

using CTEQ6M parton distributions [33] for all NLO results and CTEQ6L1 parton distributions

for all leading order cross sections. The running of the strong coupling is evaluated at two-loop
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order, withαs(MZ) = 0.188, for LO and NLO results. In order to reconstruct jets from thefinal-

state partons, thekT algorithm [34] as described in Ref.[35] is used, with resolution parameter

D = 0.8.

Table 5.1 Standard Model input parameters

αNLO
s (MZ) αLO

s (MZ) MZ GF αQED

0.118 0.130 91.188 GeV 1.16639 × 10−5 1/128.930

ThekT algorithm is used to calculate the partonic cross sections for events with at least three

hard jets, which are required to have

pTj ≥ 20 GeV , |yj| ≤ 4.5 . [5.1]

Hereyj denotes the rapidity of the (massive) jet momentum which is reconstructed as the four-

vector sum of massless partons of pseudorapidity|η| < 5.

At LO, there are exactly three massless final state partons. The two hard jets are identified as

tagging jets provided they pass thekT algorithm and the cuts described above. At NLO these jets

may be composed of two partons (recombination effect) or four well-separated partons may be

encountered, which satisfy the cuts of Eq. 5.1 and would giverise to four-jet events. As with LHC

data, a choice needs to be made for selecting the tagging jetsin such a multijet situation. Here

the “pT -method” is chosen. For a given event, the tagging jets are defined as the two jets with the

highest transverse momentum,pTj, with

ptag
Tj ≥ 30 GeV, |ytag

j | ≤ 4.5. [5.2]

The non-tagging jets by default here are jets of lowest transverse momenta but do not necessarily

satisfy the cuts of Eq.(5.2) but satisfy the cuts of Eq.(5.1).

The Higgs boson decay products (generically called “leptons” in the following) are required

to fall between the two tagging jets in rapidity and they should be well observable. While the

exact definition of criteria for the Higgs decay products will depend on the channel considered,
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such specific requirements here are substituted by generating isotropic Higgs boson decay into two

massless “leptons” (which representτ+τ− or γγ or bb̄ final states) and require

pTℓ ≥ 20 GeV , |ηℓ| ≤ 2.5 , △Rjℓ ≥ 0.6 , [5.3]

whereRjℓ denotes the jet-lepton separation in the rapidity-azimuthal angle plane. In addition, the

two ”leptons” are required to fall between the two tagging jets in rapidity:

ytag
j,min < ηℓ1,2

< ytag
j,max. [5.4]

Note that no reduction due to branching ratios for specific final states is included in the calculation.

Backgrounds to vector-boson fusion are significantly suppressed by requiring a large rapid-

ity separation for the two tagging jets. Tagging jets are required to reside in opposite detector

hemispheres with

ytag 1
j · ytag 2

j < 0. [5.5]

with a ”rapidity gap cut” of

∆yjj = |ytag 1
j − ytag 2

j | > 4. [5.6]

QCD backgrounds for the Higgs signal typically occur at smaller invariant masses, due to the

dominance of gluons at small Feynmanx in the incoming protons [27]. The QCD backgrounds

can be reduced by imposing a lower bound on the invariant massof the tagging jets of

mjj > 600 GeV. [5.7]

5.3 Scale dependence

The cross section for Higgs production via VBF in the association of three jets (Hjjj), within

the cuts of Eqs.(5.1)-(5.7), is shown in Figure 5.1. The scale dependence of the NLO and LO cross

section is shown for fixed factorization and renormalization scales,µF andµR, which are tied to

the scaleµ0 = 40 GeV,

µR = ξRµ0, µF = ξFµ0. [5.8]
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Figure 5.1 Scale dependence of the total cross section at LO and NLO within the cuts of Eqs.
(5.1)- (5.7) for VBFHjjj at the LHC. The factorization scaleµF and the renormalization scale
µR have been taken as multiples,ξµ0, of the scaleµ0 = 40 GeV andξ is varied in the range
0.2 < ξ < 10.0. The NLO curves are forµR = µF = µ0 (solid line),µF = µ0 andµR = ξµ0

(dotted line), andµF = ξµ0 andµR = µ0 (dot-dashed line). The dashed curve shows the
dependence of the LO cross section on the renormalization scale and factorization scale with

µR = µF = ξµ0.
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Figure 5.2Hjjj production with the cuts of Eqs.(5.1)-(5.5) and Eq.(5.7). In the left panel,
dσ/d∆yjj (in fb) is shown at LO (dashed line) and NLO (solid line) forµF = µR = 40 GeV. In
the right-hand panel theK factor (solid line) and scale variations of LO (dotted lines) and NLO

(dashed lines) results are shown forµR = ξµ0 andµF = 40 GeV with ξ = 1/2 and2.

The LO cross section depends on both the factorization and renormalization scale. ForµR =

µF = ξµ0 with 0.5 < ξ < 2 the scale variation is+25% to −18% for the LO cross section. The

LO Hjjj production cross section is proportional toαs. ForHjj production, recall, there was no

such dependence at LO. At NLO three choices are shown: (a)ξR = ξF = ξ (solid line); (b)ξR = ξ,

ξF = 1 (dotted line); (c)ξR = 1, ξF = ξ (dot-dashed line). Allowing for a factor2 variation in

either direction, i.e., considering the range0.5 ≤ ξ ≤ 2, the NLO cross section changes by less

than5% in all cases.K factors forHjjj production range from1.03 to 1.06 for Higgs boson

masses ofmh = 120 GeV to 200 GeV for ξR = ξF = 1.

TheK factors shown in Figures 5.2 and 5.3 are defined by the formula,

K(x) =
dσNLO

3 (µR = µF = µ0)/dx

dσLO
3 (µR = µF = µ0)/dx

. [5.9]

In order to study scale variations, the relative change is computed according to the following for-

mula,

relative change =
dσNLO

3 (µR = ξµ0, µF = µ0)/dx

dσNLO
3 (µR = µF = µ0)/dx

[5.10]
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Figure 5.3Hjjj production with the cuts of Eqs.(5.1)-(5.5) and Eq.(5.6). In the left panel,
dσ/dmjj (in fb/GeV) is shown at LO (dashed line) and NLO (solid line) for µF = µR = 40 GeV.
In the right-hand panel theK factor (solid line) and scale variations of LO (dotted lines) and NLO

(dashed lines) results are shown forµR = ξµ0 andµF = 40 GeV with ξ = 1/2 and2.

for ξ = 1/2 and2 with µ0 = 40 GeV.

In the left-hand panel of Figure 5.2 the distributiondσ/d∆yjj is shown at LO (dashed line)

and at NLO (solid line) forHjjj production. Just as in the NLOHjj case, the peak in pushed

towards higher values of rapidity separation∆yjj. This strengthens the case for the rapidity gap

cut of ∆yjj > 4. TheK factor (solid line) in the right-hand-side of Figure 5.2 is highly phase

space dependent. The scale variationsξ = 2±1 at NLO are−24% to +12% for ∆yjj = 3 while for

tagging jet rapidity separations larger than4.4 units the scale variations are less than±6%.

In Figure 5.3 for a fixed value of renormalization and factorization scale,µR = µF = 40 GeV,

the distribution over the invariant mass of the tagging jetsmjj is shown. TheK factor (solid line)

peaks aroundmjj = 700 GeV. Theξ = 2±1 scale variations are0% to −3% over the entire range

of invariant dijet mass for NLO (dashed lines) results whilethe variations at LO (dotted lines) are

−10% to +14%.
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5.4 The Three Jet Cross Section

Here the dependence of the3-jet ratioR = σ3/σ2 on the rapidity separation,∆yjj, and the

invariant mass,mjj, of the tagging jets is investigated at NLO and LO. Hereσ3 andσ2 denote

cross sections for the Higgs plus two jet production via VBF (VBF Hjj) and Higgs plus three jet

production via VBF (VBFHjjj), respectively. In Figures (5.4, 5.5, 5.6,5.7)3-jet ratios,R(x), are

plotted with respect to various kinematic variables,x. The NLO3-jet ratio,RNLO(x), is defined as

RNLO(x) =
dσNLO

3 (µR, µF )/dx

dσNLO
2 (µR = µF = mh)/dx

, [5.11]

while the LO3-jet ratio,RLO(x), is defined as

RLO(x) =
dσLO

3 (µR, µF )/dx

dσNLO
2 (µR = µF = mh)/dx

. [5.12]

Notice, that forRNLO andRLO, theHjj distribution is computed to NLO accuracy. TheHjj

cross section is computed at NLO because it provides the mostaccurate cross section. For the

Hjj distributions, the NLO parton-level Monte Carlo program described in Chapter 2 is used with

renormalization scale,µR, and factorization scale,µF , set to the mass of the Higgs boson,mh.

TheHjjj cross section is computed using the NLO parton-level program described in Chapter 4.

Calculations are performed for Higgs boson masses ofmh = 120 GeV andmh = 200 GeV.

In Figures 5.4 and 5.6 the renormalization scale,µR, is varied while the factorization scale,µF ,

remains fixed atµ0 = 40 GeV. 3-jet ratios are plotted forµR = 20, 40, 80, and120 GeV. Applied

cuts for both Figures 5.4 and 5.6 are Eqs.(5.1)-(5.5). For Figure 5.4, the dijet invariant mass cut of

Eq.(5.7) is applied. For Figure 5.6, the rapidity gap cut of Eq.(5.6) is applied. The distribution in

the rapidity separation of the tagging jets∆yjj = |ytag 1
j − ytag 2

j | is shown for bothHjj andHjjj

production at LO and NLO in the left panel of Figure 5.4. In theright panel of Figure 5.4 the ratios

RNLO (solid) andRLO (dashed) are shown. At LO the ratiosRLO (dashed curves) reach of value

of 0.6 at∆yjj = 3 whereas at NLO the ratiosRNLO (solid curves) reach a value of0.4. The reason

is that at NLO forHjj production the peak for thedσ/d∆yjj distribution is pushed forward in

rapidity separation. The effect is to enhanceRLO in the∆yjj = 3 region. However, there is no such

effect forRNLO since forHjjj production the distribution in the rapidity separation of the tagging
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Figure 5.4 The rapidity separation of two tagging jets formh = 120 GeV within the cuts of
Eqs.(5.1)-(5.5) and Eq.(5.7). In the left panel,dσ/d∆yjj (in fb) is shown at NLO (solid curves)

and LO (dashed curves) forHjj. ForHjjj both LO (dashed curves) and NLO (solid curves) are
shown for several choices of renormalization scaleµR = 20, 40, 80, and120 GeV. In the right

panel, LO3-jet ratios,RLO(∆yjj) (dashed curves), and the NLO3-jet ratios,RNLO(∆yjj) (solid
curves) are shown forµR = 20, 40, 80, and120 GeV.

Figure 5.5 TheHjjj rapidity separation of two tagging jets formh = 200 GeV within the cuts of
Eqs. (5.1)-(5.5) and Eq.(5.7). In the left panel,dσ/d∆yjj (in fb) is shown at NLO (solid curves)

and LO (dashed curves) for bothHjj andHjjj. In the right panel, the LO3-jet ratioRLO(∆yjj)
(dashed curve) and the NLO3-jet ratioRNLO(∆yjj) (solid curve) is shown forµR = 40 GeV
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jets is also pushed forward. Additionally, one notices thatfor higher values of∆yjj renormalization

scale dependences decrease. For both LO and NLO the ratiosR(∆yjj) monotonically decrease.

In the left panel of Figure 5.5 the rapidity separation of thetagging jets is shown for bothHjj

andHjjj production at LO and NLO for a Higgs mass ofmh = 200 GeV for the cuts used in

Figure 5.4. The corresponding ratios,RLO andRNLO, are shown for a fixed renormalization and

factorization scale,µR = µF = 40 GeV in the right panel of Figure 5.5. Again, as in the case of

a Higgs mass ofmh = 120 GeV, the ratioRNLO has a steady downward slope. The ratioRLO

decreases more rapidly for a∆yjj value below5.

In Figure 5.6 the distribution in the invariant mass of the tagging jets is shown in the left panel

for a Higgs boson mass ofmh = 120 GeV for Hjj andHjjj production at LO (dashed curves)

and NLO (solid curves). Both the LO and NLOHjjj distributions are shown for several choices

of renormalization scale in the range20 GeV ≤ µR ≤ 120 GeV in Figure 5.6. The corresponding

ratios,RLO andRNLO, are shown in the left panel of Figure 5.6. The scale variations in the

RLO curves are large compared to the scale variations in theRNLO curves. The distribution in

the invariant mass of the tagging jets for a Higgs boson mass of mh = 200 GeV is shown in

the left panel of Figure 5.7 forHjj andHjjj production at LO (dashed curves) and NLO (solid

curves) for cuts used in Figure 5.6. For bothmh = 120 GeV andmh = 200 GeV there is an

enhancement inRNLO in the vicinity ofmjj = 700 GeV. However, there are slight differences for

mjj > 1500 GeV. Qualitative features remain the same in both cases.

Another interesting observable is the distribution in the rapidity of a veto jet, measured with

respect to the average rapidity of the tagging jets,yrel = yveto
j − (ytag 1

j + ytag 2
j )/2. In addition to

the cuts of Eqs.(5.1)-(5.7), the veto jet is required to havea transverse momentumpveto
Tj ≥ 20 GeV

and to reside in the gap region between the two tagging jets,

pveto
Tj ≥ 20 GeV, yveto

j ∈ (ytag 1
j , ytag 2

j ). [5.13]

In Figures 5.8 and 5.9 the distribution of the cross section over yrel is shown for the veto jet with

the highest transverse momentum,pveto
Tj . 1

1For 4-jet events there can be two veto jets. In this case, the veto jets are ordered by transverse momentum with
pveto 1

Tj > pveto 2

Tj .
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Figure 5.6 The invariant mass of two tagging jets formh = 120 GeV with the cuts of
Eqs.(5.1)-(5.5) and Eq.(5.6). In the left panel,dσ/dmjj (in fb/GeV) is shown at NLO (solid
curves) and LO (dashed curves) forHjj. In addition, results for NLO (solid curves) and LO

(dashed curves) forHjjj are shown forµR = 20, 40, 80, and120 GeV. In the right panel, LO
3-jet ratios,RLO(mjj) (dashed curves), and the NLO3-jet ratios,RNLO(mjj) (solid curves) are

shown forµR = 20, 40, 80, and120 GeV.
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Figure 5.7 The invariant mass distribution of the two tagging jets for with the cuts of
Eqs.(5.1)-(5.5) and Eq.(5.6) for a Higgs mass ofmH = 200 GeV. The chosen renormalization
and factorization scales forHjj production areµR = µF = 200 GeV and forHjjj production
areµR = µF = 40 GeV. In the left panel,dσ/dmjj (in fb/GeV) is shown at NLO (solid curves)

and LO (dashed curves) forHjj andHjjj production. In the right panel, the LO3-jet ratio
RLO(mjj) (dashed curve), and the NLO3-jet ratio,RNLO(mjj) (solid curve) are shown for

mh = 200 GeV.
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Figure 5.8 The distribution in rapidity of the highestpT veto jet with the cuts of Eqs.(5.1)-(5.7)
and Eq.(5.13), measured with respect to the rapidity average of the tagging jets,

yrel = yveto
j − (ytag 1

j + ytag 2
j )/2. In the left panel,dσ/dyrel (in fb) is shown at LO (dashed

histogram) and NLO (solid histogram) forµF = µR = 40 GeV. In the right-hand panel theK
factor (solid line) and scale variations of LO (dotted lines) and NLO (dashed lines) results are

shown forµR = ξµ0 andµF = 40 GeV with ξ = 1/2 and2.
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Figure 5.9 The distribution in rapidity of the highestpT veto jet with the cuts of Eqs.(5.1)-(5.7)
and Eq.(5.13), measured with respect to the rapidity average of the tagging jets,

yrel = yveto
j − (ytag 1

j + ytag 2
j )/2. In the left panel,dσ/dyrel ( in fb) is shown at NLO for

mh = 120 GeV (solid histogram) andmh = 200 GeV (dashed histogram) and at LO for
mh = 120 GeV (dotted histogram) andmh = 200 GeV (dash-dotted histogram). The

factorization and renormalization scales areµR = µF = 40 GeV. In the right panel, the
correspondingK factors are shown.



94

On the left-hand-side of Figure 5.8 the distribution in the rapidity of the highestpT veto jet

measured with respect to the average rapidity of the taggingjets is shown forµR = µF = 40 GeV

at LO (dashed line) and NLO (solid line) formh = 120 GeV. The scale variationsξ = 2±1 for

NLO results (dashed lines) are−15% to +7% in the vicinity of yrel = 0 and−11% to +14%

throughout the range ofyrel for LO results (dotted lines). Foryrel ≈ ±2 scale variations at NLO

are−2% to +2%. In regions where the bulk of the cross section resides, the scale dependence is

found to be reduced. TheK factor (solid line) shown in Figure 5.8 is greater than one for |yrel| > 2

and is less than one in the central region between the taggingjets corresponding toyrel = 0.

In Figure 5.9 the distribution in the rapidity of the highestpT veto jet measured with respect

to the average rapidity of the tagging jets is shown in the left panel for Higgs masses ofmh =

120 GeV andmh = 200 GeV. The right side of Figure 5.9 depicts the correspondingK factors

as a function ofyrel. For increased Higgs mass theK factor as a function ofyrel decreases. At the

center of the tagging jets the decrease inK factor is on the order of10%.

In Figure 5.10 the distribution in transverse momentum for the highestpT veto jet is shown

for µR = µF = 40 GeV at LO (dashed line) and NLO (solid line) formh = 120 GeV. The

scale variationsξ = 2±1 for NLO results ( dashed lines) are below±4% for pveto
Tj between20 and

80 GeV. At LO (dotted lines) these scale variations are−11% to +14% for all values of veto jet

transverse momentum. At NLO one sees a reduction in scale dependence. TheK factor (solid

line) monotonically decreases.

5.5 Concluding Remarks

Using both parton-level Monte Carlos forHjj andHjjj production, the3-jet ratios and scale

dependences have been computed to NLO in QCD. At LO the scale dependence is+25% to−18%

for totalHjjj production cross sections while at NLO the scale uncertainty is less than±5%. At

NLO one sees reduced scale variations in distributions compared to the LO distributions. In the

central rapidity region between the tagging jetsK factors are below one. Hence, there are fewer

veto jets than predicted by a simple LO simulation.
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Figure 5.10 The distribution in the transverse momentum,pveto
Tj , for the highestpT veto jet with

the cuts of Eqs.(5.1)-(5.7) and Eq.(5.13). In the left panel, dσ/dpveto
Tj (in fb/GeV) is shown at LO

(dashed line) and NLO (solid line) forµF = µR = 40 GeV. In the right-hand panel theK factor
(solid line) and scale variations of LO (dotted lines) and NLO (dashed lines) results are shown for

µR = ξµ0 andµF = 40 GeV with ξ = 1/2 and2.
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Chapter 6

Conclusions
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This thesis has been devoted to the one-loop QCD correctionsfor vector-boson fusion processes

involving the production of the Higgs boson at the Large Hadron Collider. In Chapter 2 the one-

loop QCD corrections for Higgs production in association with two jets(Hjj ) were presented in

the form of a fully flexible parton-level Monte Carlo program. Scale uncertainties for distributions

were shown to be on the order of less than5% and for total cross sections to be below±2% for the

typical VBF cuts.K factors were shown to be modest, on the order of5% to 10%. The modest size

of theK factor is due to a small shift of the tagging jets toward higher rapidities. As a result the

tagging jets are moved slightly further apart and hence allowing better differentiation of the Higgs

boson signal against QCD backgrounds.

In Chapter 3 the NLO calculations of Chapter 2 were repeated for a Higgs boson withCP

even andCP odd couplings to the vector bosons. It was shown that Higgs production via VBF

is sensitive to the tensor structure of theHV V (V = W,Z) couplings which distinguishes loop

induced vertices from SM vertices. The information shows upmost clearly in the azimuthal angle

correlations of the two tagging jets at the LHC. For the CP even coupling there is a dip atφjj = 90

degrees in the azimuthal angle correlation while for the CP odd coupling there is suppression at

0 and180 degrees in the azimuthal angle correlation. It was shown that gluon emission does not

significantly change these correlations.

Analytic formulas for the construction of the NLO parton level Monte Carlo program were

presented in Chapter 4 for Higgs production via vector-boson fusion in the association of three jets.

Here the approximation of neglecting virtual graphs in which a gluon propagates from the upper

quark line to the lower quark line was made since these contributions are suppressed by color and

kinematics. Working in this approximation, the NLO QCD corrections were computed. In the

subsequent chapter3-jet ratios for Higgs production via VBF were computed to NLOaccuracy

using parton-level Monte Carlo programs forHjj andHjjj production. In the same chapter the

scale dependence of theHjjj cross section was also discussed. Here it was shown that for the

NLO Hjjj cross section the scale variations are on the order of less than5%.

One cannot stress enough, how valuable having at our finger tips fully flexible NLO parton-

level Monte Carlo programs is for future efforts to measure Higgs couplings at the LHC. NLO
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Monte Carlo programs serve as powerful tools for studying Higgs physics at the LHC. In order for

particle physics to move forward our researchers must be armed with these tools. This thesis has

been part of that effort.

There are several areas in this thesis where further studiescan be made. One area involves the

computation of the hexagon and pentagon diagrams discussedin Chapter 4. These graphs were

shown to be suppressed over much of the vector-boson search region. However, a solid proof of

this would entail an exact calculation. Recently, new techniques for computing one-loop integrals

have become available [52, 53, 54]. Using these techniques it may be possible to compute the exact

NLO QCD corrections forHjjj production via vector-boson fusion in the near future.

Another area that is interesting is inclusion of anomalous Higgs couplings into the NLO calcu-

lation forHjjj production. With such a program, one could repeat calculations for the3-jet ratios

of Chapter 5 for the case in which the coupling of the Higgs boson to the vector boson is either

CP even orCP odd as was done in Chapter 3 forHjj production.
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Appendix A: Dipole Formulas

This appendix details the exact dipole functions used for the subtraction of soft and collinear

divergences in the real emission integrals. The notation ofCatani and Seymour (CS notation)

[21] is interfaced with the notation of Campbell and Ellis (CE notation) [50]. The advantage of

using CE notation is that dipole functions carry no color factors. This makes the final expressions

more compact and transparent. The integrals of the dipole functions over the one-parton subspace

are not given here. These can be found in Ref.[21]. In generalthere are four types of dipoles,

corresponding to whether the emitter and spectator are in either the initial state or final state. The

four cases are:

• final state singularities with final state spectator or final-final,

• final state singularities with initial state spectator or final-initial,

• initial state singularities with final state spectator or initial-final, and

• initial state singularities with initial state spectator or initial-initial.

In all casesĩk denotes theemitter parton emitting partonk with respect tospectator partonj.

Initial partons are denoted by1 and2. While final state partons are labeled3, . . . , n.

A.1 Final-final

Consider the case for which the emitteri and spectatorj are both in the final state. The dipole

factor in terms of CS notation is:

Dik,j(p3, . . . , pn+1) = − 1

2pipk
[A.1]

·n < 3, . . . , (ĩk), .., j̃, .., n+ 1|Tj · Tik

T2
ik

Vik,j|3, . . . , (ĩk), .., j̃, .., n+ 1 >n .

The splitting matricesVik,j in terms of CE notation are

1

2pi · pk

< s|Vqigk,j(z; y)|s′ > = CF δss′Dik,j
ff,qq, [A.2]
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1

2pi · pk
< µ|Vqiqk,j(z)|ν > = TF (−gµνDik,j

ff,gq + qµqνD̃ik,j
ff,gq), [A.3]

1

2pi · pk
< µ|Vgigk,j(z; y)|ν > = CA(−gµνDik,j

ff,gg + qµqνD̃ik,j
ff,gg). [A.4]

The dimensionless variablesy andz are defined to be

y =
sik

sik + skj + sji

, z =
sij

sij + skj

[A.5]

while the momenta of the emitter and spectator are defined to be

p̃µ
j =

1

1 − y
pµ

j , p̃µ
i = pµ

i + pµ
k − y

1 − y
pµ

j . [A.6]

The dipoles of Ref.[50] in conventional dimensional regularization (CRD) are given by,

Dik,j
ff,gg =

g2µ2ǫ

pi · pk

{

2

1 − z(1 − y)
+

2

1 − (1 − z)(1 − y)
− 4

}

[A.7]

D̃ik,j
ff,gg =

g2µ2ǫ

pi · pk
(1 − ǫ)

2

pi · pk
[A.8]

Dik,j
ff,gq =

g2µ2ǫ

pi · pk
[A.9]

D̃ik,j
ff,gq =

g2µ2ǫ

pi · pk

−2

pi · pk
[A.10]

Dik,j
ff,qq =

g2µ2ǫ

pi · pk

{

2

1 − z(1 − y)
− (1 + z) − ǫ(1 − z)

}

[A.11]

with,

qµ = zpµ
i − (1 − z)pµ

k . [A.12]

A.2 Final-initial

Consider the case of a final state emitteri with an initial state spectatorj. In terms of CS

notation the dipole factor is

Dj
ik(p1, . . . , pn+1) = − 1

2pipk

1

x
[A.13]

·n < 3, . . . , (ĩk).., n+ 1; j̃|Tj · Tik

T2
ik

V
j
ik|3, . . . , (ĩk).., n+ 1; j̃ >n .
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The splitting matricesVj
ik in terms of CE notation are

1

2pi · pk

1

x
< s|V j

qigk
(z; x)|s′ > = CF δss′Dik,j

fi,qq [A.14]

1

2pi · pk

1

x
< µ|V j

gigk
(z; x)|ν > = CA(−gµνDik,j

fi,gg + qµqνD̃ik,j
fi,gg) [A.15]

1

2pi · pk

1

x
< µ|V j

qiq̄k
(z; x)|ν > = TF (−gµνDik,j

fi,gq + qµqνD̃ik,j
fi,gq). [A.16]

Dimensionless variablesx andz are defined as

x = 1 − sik

sij + skj
, z =

sij

sij + skj
[A.17]

with transformed momenta being

p̃µ
j = xpµ

j , p̃µ
i = pµ

i + pµ
k − (1 − x)pµ

j . [A.18]

The CE dipole functions are defined as

Dik,j
fi,gg =

g2µ2ǫ

xpi · pk

{

2

1 − z + (1 − x)
+

2

1 − (1 − z) + (1 − x)
− 4

}

[A.19]

D̃ik,j
fi,gg =

g2µ2ǫ

xpi · pk
(1 − ǫ)

2

pi · pk
[A.20]

Dik,j
fi,gq =

g2µ2ǫ

xpi · pk
[A.21]

D̃ik,j
fi,gq =

g2µ2ǫ

xpi · pk

−2

pi · pk

[A.22]

Dik,j
fi,qq =

g2µ2ǫ

xpi · pk

{

2

1 − z + (1 − x)
− (1 + z) − ǫ(1 − z)

}

[A.23]

with,

qµ = zpµ
i − (1 − z)pµ

k . [A.24]
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A.3 Initial-final

Consider the emitter partoni being in the initial state and the spectator partonj in the final

state. The dipole factor in CS notation is

Dik
j (p1, . . . , pn+1) = − 1

2pipk

1

x
[A.25]

·n < 3, . . . , j̃.., n+ 1; (ĩk)|Tj · Tik

T2
ik

V
ik
j |3, . . . , j̃.., n+ 1; (ĩk) >n .

The splitting matricesVik
j in CE notation are

1

2pi · pk

1

x
< s|V qigk

j (x; u)|s′ > = CF δss′Dik,j
if,qq, [A.26]

1

2pi · pk

1

x
< s|V giq̄k

j (x; u)|s′ > = TF δss′Dik,j
if,qg, [A.27]

1

2pi · pk

1

x
< µ|V qiqk

j (x; u)|ν > = CF (−gµνDik,j
if,qg + qµqνD̃ik,j

if,qg), [A.28]

1

2pi · pk

1

x
< µ|V gigk

j (x; u)|ν > = CF (−gµνDik,j
if,gg + qµqνD̃ik,j

if,gg). [A.29]

The dimensionless variablesx andu are defined as

x = 1 − sjk

sij + sik

, u =
sik

sik + sij

. [A.30]

The momenta of the emitter and spectator are

p̃µ
i = xpµ

i , p̃µ
j = pµ

j + pµ
k − (1 − x)pµ

i . [A.31]

The dipole functions of CE in CDR are

Dik,j
if,qq =

g2µ2ǫ

xpi · pk

{

2

1 − x+ u
− (1 + x) − ǫ(1 − x)

}

, [A.32]

Dik,j
if,qg =

g2µ2ǫ

xpi · pk
(1 − ǫ− 2x(1 − x)), [A.33]

Dik,j
if,gq =

g2µ2ǫ

xpi · pk
(x), [A.34]
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Dik,j
if,gg =

g2µ2ǫ

xpi · pk

{

2

1 − x+ u
− 2 + 2x(1 − x)

}

, [A.35]

D̃ik,j
if,gq =

g2µ2ǫ

xpi · pk

1 − x

x

2u(1 − u)

pk · pj
[A.36]

D̃ik,j
if,gg = (1 − ǫ)D̃ik,j

if,gq [A.37]

D̃ik,j
if,qq = D̃ik,j

if,qg = 0 [A.38]

With,

qµ =
pµ

k

u
− pµ

j

1 − u
[A.39]

A.3.1 Initial-initial

Let i be the initial state emitter emittingk with spectatorj.

Dik,j(p1, . . . , pn+1) = − 1

2pipk

1

x
[A.40]

·n < 3̃, . . . , ˜n+ 1; (ĩk), j|Tj · Tik

T
2
ik

V
ik,j|3̃, . . . , ˜n+ 1; (ĩk), j >n

1

2pi · pk

1

x
< s|V qigk,j(x)|s′ >= δss′CFDik,j

ii,qq [A.41]

1

2pi · pk

1

x
< s|V giq̄k,j(x)|s′ >= δss′TFDik,j

ii,qq [A.42]

1

2pi · pk

1

x
< µ|V qiqk,j(x)|ν >= CF (−gµνDik,j

ii,gq + qµqνD̃ik,j
ii,gq) [A.43]

1

2pi · pk

1

x
< µ|V gigk,j(x)|ν >= CA(−gµνDik,j

ii,gg + qµqνD̃ik,j
ii,gg) [A.44]

The dimensionless variablex is defined as

x = 1 − ski + skj

sij
. [A.45]

The momenta of the emitter and spectator are

p̃µ
i = xpµ

i , p̃µ
j = pµ

j . [A.46]
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All final state four momenta are Lorentz transformed as described in Ref.[21]. The dipole functions

Dik,j are

Dik,j
ii,qq =

g2µ2ǫ

xpi · pk

{

2

1 − x
− (1 + x) − ǫ(1 − x)

}

, [A.47]

Dik,j
ii,qg =

g2µ2ǫ

xpi · pk

(1 − ǫ− 2x(1 − x)), [A.48]

Dik,j
ii,gq =

g2µ2ǫ

xpi · pk
(x), [A.49]

Dik,j
ii,gg =

g2µ2ǫ

xpi · pk

{

2x

1 − x
+ 2x(1 − x)

}

. [A.50]

The dipole functions̃Dik,j are

D̃ik,j
ii,gq =

g2µ2ǫ

xpi · pk

1 − x

x

pi · pj

pk · pjpk · pi
, [A.51]

D̃ik,j
ii,gg = (1 − ǫ)D̃ik,j

ii,gq, [A.52]

D̃ik,j
ii,qq = D̃ik,j

ii,qg = 0, [A.53]

where

qµ = pµ
k − pk · pj

pi · pj

pµ
j . [A.54]

A.4 Flavor kernels

The Altarelli-Parisi splitting functions are

P qg(x) = P q̄g(x) = CF
1 + (1 − x)2

x
, [A.55]

P gq(x) = P gq̄(x) = TF

[

x2 + (1 − x)2
]

, [A.56]

P qq(x) = P q̄q̄(x) = CF

(

1 + x2

1 − x

)

+

, [A.57]
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P gg(x) = 2CA

[

(

1

1 − x

)

+
+

1 − x

x
− 1 + x(1 − x)

]

+ δ(1 − x)
(

11

6
CA − 2

3
NfTF

)

. [A.58]

The constants obtained after integration of dipoles are

γq = γq̄ =
3

2
CF , γg =

11

6
CA − 2

3
TFNf , [A.59]

and

Kq = Kq̄ =

(

7

2
− π2

6

)

CF , Kg =

(

67

18
− π2

6

)

CA − 10

9
TFNf , [A.60]

related to the various integrals of the Altarelli-Parisi splitting functions.

K
qg

(x) = K
q̄g

(x) = P qg(x) ln
1 − x

x
+ CFx, [A.61]

K
gq

(x) = K
gq̄

(x) = P gq(x) ln
1 − x

x
+ TF2x(1 − x), [A.62]

K
qq

(x) = K
q̄q̄

= CF

[

(

2

1 − x
ln

1 − x

x

)

+
− (1 + x) ln

1 − x

x
+ (1 − x)

]

[A.63]

− δ(1 − x)(5 − π2)CF ,

K
gg

(x) = 2CA

[

(

1

1 − x
ln

1 − x

x

)

+
+
(

1 − x

x
− 1 + x(1 − x)

)

ln
1 − x

x

]

− δ(1 − x)
[(

50

9
− π2

)

CA − 16

7
TFNf

]

[A.64]

A.5 NLO cross sections at Hadron Colliders

For NLO QCD calculations involving two initial-state hadrons, it is required to introduce parton

distribution functions. Letfa/p andfb/p denote parton densities for two incoming partons. The

hadronic cross section is then given by

σ(p1, p2) =
∑

a,b

∫ 1

0
dx1fa/p(x1, µ

2
F )
∫ 1

0
dx2fb/p(x2, µ

2
F ) [A.65]

·
[

σLO
ab (x1p1, x2p2) + σNLO

ab (x1p1, x2p2;µ
2
F )
]

,

σLO
ab (p1, p2) =

∫

n
dσB

ab(p1, p2), [A.66]

σNLO
ab (p1, p2, µ

2
F ) =

∫

n+1
dσR

ab(p1, p2) +
∫

n
dσV

ab(p1, p2) +
∫

n
dσC

ab(p1, p2;µ
2
F ), [A.67]
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where the collinear counter-term is:

dσC
ab(p1, p2;µ

2
F ) = −αs

2π

1

Γ(1 − ǫ)

∑

cd

∫ 1

0
dz1

∫ 1

0
dz2dσ

B
cd(z1p1, z2p2) [A.68]

·
{

δbdδ(1 − z2)

[

−1

ǫ

(

4πµ2

µ2
F

)ǫ

P ac(z1) +Kac
F.S.(z1)

]

+ δacδ(1 − z1)

[

−1

ǫ

(

4πµ2

µ2
F

)ǫ

P bd(z2) +Kbd
F.S.(z2)

]}

.

The LO parton-level cross section is given by

σLO
ab (pa, pb) =

∫

n
dσB

ab(pa, pb) [A.69]

=
∫

dΦn(pa, pb)
1

nc(a)nc(b)
|Mn,ab(p1, . . . , pn; pa, pb)|2F (n)

J (p1, . . . , pn; pa, pb),

wherea andb label the flavors of the incoming partons,pa andpb denote their four momenta, and

nc(a) andnc(b) denote their number of colors. The matrix element,|Mn,ab|2 is the square of the

tree-level amplitude to producen partons in the final-state andF (n)
J is the jet defining function.

The full NLO partonic cross section consists of three different contributions:

σNLO
ab (pa, pb;µ

2
F ) = σ

NLO{n+1}
ab (pa, pb) + σ

NLO{n}
ab (pa, pb) [A.70]

+
∫ 1

0
dx
[

σ̂
NLO{n}
ab (x; xpa.pb, µ

2
F ) + σ̂

NLO{n}
ab (x; pa, xpb, µ

2
F )
]

.

The first contribution hasn + 1-parton kinematics and is given by the following expression

σ
NLO{n+1}
ab (pa, pb) =

∫

dΦ(n+1)(pa, pb) [A.71]

·
{

1

nc(a)nc(b)
|Mn+1,ab(p1, . . . , pn+1; pa, pb)|2F (n+1)

J (p1, . . . , pn+1; pa, pb)

−
∑

dipoles

(

D · F (n)
)

(p1, . . . , pn+1; pa, pb)







whereMn+1,ab is the tree-level matrix element withn+1 final-state partons and the sum of dipoles

is given by the following expression

∑

dipoles

(

D · F (n)
)

=
∑

pairs

i,j

∑

k 6=i,j

Dij,k(p1, . . . , pn+1; pa, pb)F
(n)
J (p1, ..p̃ij, p̃k, . . . , pn+1; pa, pb) [A.72]
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+
∑

pairs

i,j

[

Da
ij(p1, . . . , pn+1; pa, pb)F

(n)
J (p1, ..p̃ij, . . . , pn+1; p̃a, pb) + (a↔ b)

]

+
∑

i

∑

k 6=i

[

Dai
k (p1, . . . , pn+1; pa, pb)F

(n)
J (p1, ..p̃k, . . . , pn+1; p̃ai, pb) + (a↔ b)

]

+
∑

i

[

Dai,b(p1, . . . , pn+1; pa, pb)F
(n)
J (p̃1, . . . , p̃n+1; p̃ai, pb) + (a↔ b)

]

.

Integration of the above dipoles over the subspace of the unresolved parton and the subsequent

cancellation of collinear singularities by the collinear counter-term,dσC leads to the expression:

∫

n+1
dσA

ab(pa, pb) +
∫

n
dσC

ab =
∫

n

[

dσB
ab(pa, pb) · I(ǫ)

]

[A.73]

+
∑

a′

∫ 1

0
dx
∫

n

[

(K + P)a,a′ · dσB
a′b(xpa, pb)

]

+
∑

b′

∫ 1

0
dx
∫

n

[

(K + P)b,b′ · dσB
ab′(pa, xpb)

]

,

wheredσA ∼ ∑

dipoles

(

D · F (n)
)

. HereI(ǫ), Ka,a′

, andP
a,a′

are insertion operators.

For a set of parton momenta{p}, the universal insertion operatorI is defined as

I({p}; ǫ) = −αs

2π

1

Γ(1 − ǫ)

∑

I

1

T
2
I

VI(ǫ)
∑

J 6=I

TI ·TJ

(

4πµ2

2pI · pJ

)ǫ

[A.74]

whereI andJ are indices over the parton momenta. The scalar productpI · pJ is always positive.

The universal singular functionVI depends only on the flavor of the parton and is given by

VI = T
2
I

(

1

ǫ2
− π2

3

)

+ γI
1

ǫ
+ γI +KI + O(ǫ), [A.75]

where the constantsγI andKI are given in Eqs.(A.59,A.60).

The NLO contribution withn-parton kinematics is obtained by adding the virtual cross section

and first term on the right-hand-side of Eq.(A.73). The explicit result is given here in terms of the

square of the one-loop matrix element,|Mn,ab|21−loop, and the insertion operator,I(ǫ):

σ
NLO{n}
ab (pa, pb) =

∫

n

[

dσV
ab(pa, pb) + dσB

ab(pa, pb) ⊗ I

]

ǫ=0
[A.76]

=
∫

dΦ(n)(pa, pb)

{

1

nc(a)nc(b)
|Mn,ab(p1, . . . , pn; pa, pb)|21−loop

+ n,ab < 1, . . . , n; a, b|I(ǫ)|1, . . . , n; a, b >n,ab}ǫ=0 F
(n)
J (p1, . . . , pn; pa, pb).
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The second and third term of Eq.(A.73) give rise to the third term on the right-hand-side of

Eq.(A.70). Each of these contributions is obtained by integrating a cross section withn-parton

kinematics with respect to the fractionx of the longitudinal momentum carried by one of the

incoming partons. For partona, one has:

∫ 1

0
dxσ̂

NLO{n}
ab (x; xpa, pb, µ

2
F ) =

∑

a′

∫ 1

0
dx
∫

n

[

dσB
a′b ⊗ (K + P)a.a′

(x)
]

ǫ=0
[A.77]

=
∑

a′

∫ 1

0
dx
∫

dΦ(n)(xpa, pb)F
(n)
J (p1, . . . , pn; pa, pb)

·n,a′b < 1, . . . , n; xpa, pb|
(

K
a,a′

(x) + P
a,a′

(xpa, x;µ
2
F )
)

|1, . . . , n; xpa, pb >n,a′b .

The expression for̂σNLO{n}
ab (x; pa, xpb, µ

2
F ) is same as Eq.(A.77) apart from the replacements

xpa → pa, pb → xpb, and
∑

a′ → ∑

b′ .

K andP are universal insertion operators. In terms of{p} andI notation, they are given by

P
a,b({p}; xpa, x;µ

2
F ) =

αs

2π
P ab(x)

1

T
2
b

∑

I 6=b

TI · Tb ln
µ2

F

2xpa · pI

, [A.78]

and

K
a,b(x) =

αs

2π

{

K
ab

(x) −Kab
F.S.(x) + δab

∑

i

Ti · Tb
γi

T2
i

[

(

1

1 − x

)

+
+ δ(1 − x)

]}

. [A.79]

For theMS factorization schemeKF.S. = 0.

In order to evaluate the NLO cross sections withn-parton kinematics, the color-charge opera-

torsI, P, andK have to be inserted into the tree-level matrix elements. This leads to the compu-

tation of color-correlated tree-amplitudes. Let{p} denote the generic set ofN parton momenta.

The square|MI,J of the color-correlated amplitude in terms of the colored tree-level amplitude

Ma1...aN ({p}) is

|MI.J({p})|2 ≡ < {p}|TI · TJ |{p} > [A.80]

=
1

nc(a)nc(b)

[

Ma1..bI ..bJ ..aN ({p})
]∗
T c

bIaI
T c

bJaJ
Ma1..aI ..aJ ..aN ({p}).

Here thea1 . . . aN are color indices. The color-charge operator of a final-state partoni is T a
cb ≡

ifcab ( color-charge matrix in the adjoint representation) if theemitting particlei is a gluon and
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T a
αβ ≡ taαβ (color-charge matrix in the fundamental representation) if the emitting particlei is a

quark (in the case of an emitting anti-quarkT a
αβ ≡ t̄aαβ = −taβα). The color-charge operator of an

initial-state partona is defined by crossing symmetry. That is,(Ta)
c
bd = ifbcd if a is a gluon and

(Ta)
c
αβ = t̄cαβ = −tcβα if a is a quark (ifa is an anti-quark,(Ta)

c
αβ = tcαβ).
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Appendix B: Boxline virtual corrections

The finite contributions to the boxline virtual correctionsof Chapter 4 are expressed in terms

of C̃0, B̃0, andD̃ij functions.C̃0, B̃0, andD̃ij are finite parts of the Passarino-VeltmanC0,B0, and

Dij functions. TheB0, C0, andD0 functions used here are defined in Appendix C.

M̃(1)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c(1)q (/q1 − /q2) + c

(1)
1 /ǫ1 + c

(1)
2 /ǫ2 + c

(1)
b /ǫ2(/k2 + /q2)/ǫ1}Pτψ(k1) [B.1]

M̃(2)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c(2)q (/q1 − /q2) + c

(2)
1 /ǫ1 + c

(2)
2 /ǫ2 + c

(2)
b /ǫ1(/k2 + /q1)/ǫ2}Pτψ(k1) [B.2]

M̃(3)
τ (k2, q1, q2; ǫ1, ǫ2) = ψ̄(k2){c(3)q (/q1 − /q2) + c

(3)
1 /ǫ1 + c

(3)
2 /ǫ2

+ c
(3)
b (/ǫ1(/k2 + /q1)/ǫ2 + /ǫ2(/k2 + /q2)/ǫ1}Pτψ(k1) [B.3]

c
(1)
b = Box

(1)
b − 2 B̃0(t)

t
− Tb(q

2
2, t)

t
[B.4]

c
(1)
1 = Box

(1)
1 + 2 ǫ2k2Tǫ(q

2
2 , t) − 2 ǫ2q2

[B̃0(t) − B̃0(q
2
2)]

t− q2
2

[B.5]

c
(1)
2 = Box

(1)
2 + 2 ǫ1k1Tǫ(0, t) [B.6]

c
(2)
b = Box

(2)
b − 2 B̃0(u)

u
− Tb(q

2
2, u)

u
[B.7]

c
(2)
1 = Box

(2)
1 + 2 ǫ2k1Tǫ(q

2
2, u) − 2 ǫ2q2

[B̃0(u) − B̃0(q
2
2)]

u− q2
2

[B.8]

c
(2)
2 = Box

(2)
2 + 2 ǫ1k2Tǫ(0, u) [B.9]

tc
(3)
b = tBox

(3)
b − 2(tC̃0(t) + 1) + B̃0(t) + Tb(q

2
2 , t) [B.10]

uc
(3)
b = uBox

(3)
b − 2(uC̃0(u) + 1) + B̃0(u) + Tb(q

2
2, u) [B.11]

c
(3)
1 = Box

(3)
1 − 2ǫ2k2Tǫ(q

2
2, t) + 2ǫ2q2

[B̃0(t) − B̃0(q
2
2)]

t− q2
2

[B.12]

− 2ǫ2k1Tǫ(q
2
2 , u) − 2ǫ2q2

[B̃0(u) − B̃0(q
2
2)]

u− q2
2

c
(3)
2 = Box

(3)
2 +

2

t
(tC̃0(t) + 1)ǫ1k1 +

2

u
(uC̃0(u) + 1)ǫ1k2 [B.13]
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Tb(q
2, t) =

1

t− q2
{2q2[B̃0(t) − B̃0(q

2)] + tB̃0(t)

−q2B̃0(q
2)} − 2q2C̃0(q

2, t) [B.14]

Tǫ(q
2, t) =

1

t− q2
{[B̃0(t) − B̃0(q

2)]
2t+ 3q2

t− q2
+ 2B̃0(q

2) + 1 − 2q2C̃0(q
2, t)} [B.15]

Tǫ(0, t) =
1

t
(2B̃0(t) + 1) [B.16]

Tb(0, t) = B̃0(t) [B.17]

Here the coefficientsBox
j
i for j = 1, 2, 3 andi = b, q, 1, 2 are expressed in terms of the Passarino-

VeltmanD̃ij functions.

Box
(3)
q = −D̃27(q1, k2, q2)ǫ1ǫ2 − 2D̃311(q1, k2, q2)ǫ1ǫ2 + 2D̃313(q1, k2, q2)ǫ1ǫ2

− 8D̃12(q1, k2, q2)ǫ1k2ǫ2k2 + 8D̃13(q1, k2, q2)ǫ1k2ǫ2k2 − 4D̃22(q1, k2, q2)ǫ1k2ǫ2k2

− 8D̃24(q1, k2, q2)ǫ1k2ǫ2k2 + 12D̃26(q1, k2, q2)ǫ1k2ǫ2k2 − 4D̃36(q1, k2, q2)ǫ1k2ǫ2k2

+ 4D̃38(q1, k2, q2)ǫ1k2ǫ2k2 +
3

2
D̃0(q1, k2, q2)ǫ1q2ǫ2k2 +

3

2
D̃12(q1, k2, q2)ǫ1q2ǫ2k2

+ 4D̃23(q1, k2, q2)ǫ1q2ǫ2k2 − 8D̃25(q1, k2, q2)ǫ1q2ǫ2k2 + 4D̃26(q1, k2, q2)ǫ1q2ǫ1k2

− 4D̃310(q1, k2, q2)ǫ1q2ǫ2k2 + 4D̃39(q1, k2, q2)ǫ1q2ǫ2k2 −
3

2
D̃0(q1, k2, q2)ǫ1k2ǫ2q1

− 19

2
D̃12(q1, k2, q2)ǫ1k2ǫ2q1 + 8D̃13(q1, k2, q2)ǫ1k2ǫ2q1 − 12D̃24(q1, k2, q2)ǫ1k2ǫ2q1

+ 8D̃25(q1, k2, q2)ǫ1k2ǫ2q1 + 4D̃26(q1, k2, q2)ǫ1k2ǫ2q1 + 4D̃310(q1, k2, q2)ǫ1k2ǫ2q1

− 4D̃34(q1, k2, q2)ǫ1k2ǫ2q1 + 4D̃23(q1, k2, q2)ǫ1q2ǫ2q1 − 4D̃25(q1, k2, q2)ǫ1q2ǫ2q1

− 4D̃35(q1, k2, q2)ǫ1q2ǫ2q1 + 4D̃37(q1, k2, q2)ǫ1q2ǫ2q1 −
3

2
D̃0(q1, k2, q2)ǫ1k2ǫ2q2

− 11

2
D̃12(q1, k2, q2)ǫ1k2ǫ2q2 + 4D̃13(q1, k2, q2)ǫ1k2ǫ2q2 + 8D̃23(q1, k2, q2)ǫ1k2ǫ2q2

− 4D̃24(q1, k2, q2)ǫ1k2ǫ2q2 − 4D̃26(q1, k2, q2)ǫ1k2ǫ2q2 − 4D̃310(q1, k2, q2)ǫ1k2ǫ2q2

+ 4D̃39(q1, k2, q2)ǫ1k2ǫ2q2 + 4D̃23(q1, k2, q2)ǫ1q2ǫ2q2 − 4D̃25(q1, k2, q2)ǫ1q2ǫ2q2

+ 4D̃33(q1, k2, q2)ǫ1q2ǫ2q2 − 4D̃37(q1, k2, q2)ǫ1q2ǫ2q2 −
1

2
D̃12(q1, k2, q2)ǫ1ǫ2q

2
2

+
1

2
D̃13(q1, k2, q2)ǫ1ǫ2q

2
2 +

1

2
D̃23(q1, k2, q2)ǫ1ǫ2q

2
2) −

1

2
D̃24(q1, k2, q2)ǫ1ǫ2q

2
2

− D̃310(q1, k2, q2)ǫ1ǫ2q
2
2 − D̃33(q1, k2, q2)ǫ1ǫ2q

2
2 + D̃37(q1, k2, q2)ǫ1ǫ2q

2
2
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+ D̃39(q1, k2, q2)ǫ1ǫ2q
2
2 − D̃0(q1, k2, q2)ǫ1ǫ2t−

3

2
D̃11(q1, k2, q2)ǫ1ǫ2t

+
1

2
D̃12(q1, k2, q2)ǫ1ǫ2t−

1

2
D̃21(q1, k2, q2)ǫ1ǫ2t+

1

2
D̃24(q1, k2, q2)ǫ1ǫ2t

+ D̃310(q1, k2, q2)ǫ1ǫ2t− D̃35(q1, k2, q2)ǫ1ǫ2t+ D̃37(q1, k2, q2)ǫ1ǫ2t

− D̃39(q1, k2, q2)ǫ1ǫ2t−
11

2
D̃11(q1, k2, q2)ǫ1ǫ2u+

3

2
D̃12(q1, k2, q2)ǫ1ǫ2u

− D̃13(q1, k2, q2)ǫ1ǫ2u+
1

2
D̃21(q1, k2, q2)ǫ1ǫ2u+ D̃23(q1, k2, q2)ǫ1ǫ2u

+
3

2
D̃24(q1, k2, q2)ǫ1ǫ2u− 2D̃25(q1, k2, q2)ǫ1ǫ2u− D̃26(q1, k2, q2)ǫ1ǫ2u

− D̃310(q1, k2, q2)ǫ1ǫ2u+ D̃34(q1, k2, q2)ǫ1ǫ2u− D̃35(q1, k2, q2)ǫ1ǫ2u

+ D̃37(q1, k2, q2)ǫ1ǫ2u [B.18]

Box
(3)
1 = 24D̃27(q1, k2, q2)ǫ2k2 + 20D̃312(q1, k2, q2)ǫ2k2 + 22D̃27(q1, k2, q2)ǫ2q1

+ 20D̃311(q1, k2, q2)ǫ2q1 + 12D̃27(q1, k2, q2)ǫ2q2 + 20D̃313(q1, k2, q2)ǫ2q2

− 4D̃23(q1, k2, q2)ǫ2k2q
2
2 + 4D̃26(q1, k2, q2)ǫ2k2q

2
2 + 2D̃38(q1, k2, q2)ǫ2k2q

2
2

− 2D̃39(q1, k2, q2)ǫ2k2q
2
2 + D̃12(q1, k2, q2)ǫ2q1q

2
2 − D̃13(q1, k2, q2)ǫ2q1q

2
2

− 3D̃23(q1, k2, q2)ǫ2q1q
2
2 + D̃24(q1, k2, q2)ǫ2q1q

2
2 + 2D̃26(q1, k2, q2)ǫ2q1q

2
2

+ 2D̃310(q1, k2, q2)ǫ2q1q
2
2 − 2D̃37(q1, k2, q2)ǫ2q1q

2
2 − 2D̃23(q1, k2, q2)ǫ2q2q

2
2

+ 2D̃26(q1, k2, q2)ǫ2q2q
2
2 − 2D̃33(q1, k2, q2)ǫ2q2q

2
2 + 2D̃39(q1, k2, q2)ǫ2q2q

2
2

+
3

2
D̃0(q1, k2, q2)ǫ2k2t+

3

2
D̃12(q1, k2, q2)ǫ2k2t+ 4D̃13(q1, k2, q2)ǫ2k2t

+ 2D̃25(q1, k2, q2)ǫ2k2t+ 2D̃26(q1, k2, q2)ǫ2k2t+ 2D̃310(q1, k2, q2)ǫ2k2t

− 2D̃38(q1, k2, q2)ǫ2k2t+ 2D̃0(q1, k2, q2)ǫ2q1t+ 3D̃11(q1, k2, q2)ǫ2q1t

− D̃12(q1, k2, q2)ǫ2q1t+ 4D̃13(q1, k2, q2)ǫ2q1t+ D̃21(q1, k2, q2)ǫ2q1t

− D̃24(q1, k2, q2)ǫ2q1t+ 6D̃25(q1, k2, q2)ǫ2q1t− 2D̃26(q1, k2, q2)ǫ2q1t

− 2D̃310(q1, k2, q2)ǫ2q1t+ 2D̃35(q1, k2, q2)ǫ2q1t+ 4D̃13(q1, k2, q2)ǫ2q2t

+ 4D̃23(q1, k2, q2)ǫ2q2t+ 2D̃25(q1, k2, q2)ǫ2q2t− 2D̃26(q1, k2, q2)ǫ2q2t

+ 2D̃37(q1, k2, q2)ǫ2q2t− 2D̃39(q1, k2, q2)ǫ2q2t+
3

2
D̃0(q1, k2, q2)ǫ2k2u

+
7

2
D̃12(q1, k2, q2)ǫ2k2u− 2D̃13(q1, k2, q2)ǫ2k2u+ 2d22ǫ2k2u
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− 2D̃24(q1, k2, q2)ǫ2k2u+ 2D̃25(q1, k2, q2)ǫ2k2u− 2D̃26(q1, k2, q2)ǫ2k2u

+ 2D̃310(q1, k2, q2)ǫ2k2u− 2D̃36(q1, k2, q2)ǫ2k2u+
3

2
D̃0(q1, k2, q2)ǫ2q1u

+ D̃11(q1, k2, q2)ǫ2q1u+
5

2
D̃12(q1, k2, q2)ǫ2q1u− 2D̃13(q1, k2, q2)ǫ2q1u

− D̃21(q1, k2, q2)ǫ2q1u+ D̃24(q1, k2, q2)ǫ2q1u− 2D̃34(q1, k2, q2)ǫ2q1u

+ 2D̃35(q1, k2, q2)ǫ2q1u+
3

2
D̃0(q1, k2, q2)ǫ2q2u+

3

2
D̃12(q1, k2, q2)ǫ2q2u

− 2D̃23(q1, k2, q2)ǫ2q2u+ 2D̃26(q1, k2, q2)ǫ2q2u− 2D̃310(q1, k2, q2)ǫ2q2u

+ 2D̃37(q1, k2, q2)ǫ2q2u [B.19]

Box
(3)
2 = −12D̃27(q1, k2, q2)ǫ1k2 − 4D̃312(q1, k2, q2)ǫ1k2 − 6D̃27(q1, k2, q2)ǫ1q2

− 4D̃313(q1, k2, q2)ǫ1q2 − 3D̃0(q1, k2, q2)ǫ1k2q
2
2 − 7D̃12(q1, k2, q2)ǫ1k2q

2
2

+ 2D̃13(q1, k2, q2)ǫ1k2q
2
2 − 2D̃22(q1, k2, q2)ǫ1k2q

2
2 + 6D̃23(q1, k2, q2)ǫ1k2q

2
2

− 2D̃24(q1, k2, q2)ǫ1k2q
2
2 + 4D̃25(q1, k2, q2)ǫ1k2q

2
2 − 8D̃26(q1, k2, q2)ǫ1k2q

2
2

− 2D̃38(q1, k2, q2)ǫ1k2q
2
2 + 2D̃39(q1, k2, q2)ǫ1k2q

2
2 −

3

2
D̃0(q1, k2, q2)ǫ1q2q

2
2

− 5

2
D̃12(q1, k2, q2)ǫ1q2q

2
2 − D̃13(q1, k2, q2)ǫ1q2q

2
2 + 3D̃23(q1, k2, q2)ǫ1q2q

2
2

− D̃24(q1, k2, q2)ǫ1q2q
2
2 + 2D̃25(q1, k2, q2)ǫ1q2q

2
2 − 6D̃26(q1, k2, q2)ǫ1q2q

2
2

+ 2D̃33(q1, k2, q2)ǫ1q2q
2
2 − 2D̃39(q1, k2, q2)ǫ1q2q

2
2 +

3

2
D̃0(q1, k2, q2)ǫ1k2t

− 4D̃11(q1, k2, q2)ǫ1k2t+
11

2
D̃12(q1, k2, q2)ǫ1k2t− 2D̃21(q1, k2, q2)ǫ1k2t

+ 2D̃22(q1, k2, q2)ǫ1k2t− 6D̃25(q1, k2, q2)ǫ1k2t+ 6D̃26(q1, k2, q2)ǫ1k2t

− 2D̃310(q1, k2, q2)ǫ1k2t+ 2D̃38(q1, k2, q2)ǫ1k2t−
1

2
D̃0(q1, k2, q2)ǫ1q2t

− 3D̃11(q1, k2, q2)ǫ1q2t+
5

2
D̃12(q1, k2, q2)ǫ1q2t− D̃21(q1, k2, q2)ǫ1q2t

+ D̃24(q1, k2, q2)ǫ1q2t− 6D̃25(q1, k2, q2)ǫ1q2t+ 6D̃26(q1, k2, q2)ǫ1q2t

− 2D̃37(q1, k2, q2)ǫ1q2t+ 2D̃39(q1, k2, q2)ǫ1q2t+
7

2
D̃0(q1, k2, q2)ǫ1k2u

+
23

2
D̃12(q1, k2, q2)ǫ1k2u− 6D̃13(q1, k2, q2)ǫ1k2u− 2D̃21(q1, k2, q2)ǫ1k2u

+ 2D̃22(q1, k2, q2)ǫ1k2u+ 10D̃24(q1, k2, q2)ǫ1k2u− 6D̃25(q1, k2, q2)ǫ1k2u

− 2D̃26(q1, k2, q2)ǫ1k2u− 2D̃310(q1, k2, q2)ǫ1k2u+ 2D̃36(q1, k2, q2)ǫ1k2u
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+ 2D̃0(q1, k2, q2)ǫ1q2u− D̃11(q1, k2, q2)ǫ1q2u+ 5D̃12(q1, k2, q2)ǫ1q2u

− D̃21(q1, k2, q2)ǫ1q2u− 2D̃23(q1, k2, q2)ǫ1q2u+ 3D̃24(q1, k2, q2)ǫ1q2u

+ 2D̃26(q1, k2, q2)ǫ1q2u+ 2D̃310(q1, k2, q2)ǫ1q2u

− 2D̃37(q1, k2, q2)ǫ1q2u [B.20]

Box
(3)
b = (6D̃27(q1, k2, q2) +

3

2
D̃0(q1, k2, q2)q

2
2 +

5

2
D̃12(q1, k2, q2)q

2
2

− D̃13(q1, k2, q2)q
2
2 − 3D̃23(q1, k2, q2)q

2
2 + D̃24(q1, k2, q2)q

2
2

− 2D̃25(q1, k2, q2)q
2
2 + 4D̃26(q1, k2, q2)q

2
2 +

1

2
D̃0(q1, k2, q2)t

+ 3D̃11(q1, k2, q2)t−
5

2
D̃12(q1, k2, q2)t+ D̃21(q1, k2, q2)t

− D̃24(q1, k2, q2)t+ 4D̃25(q1, k2, q2)t− 4D̃26(q1, k2, q2)t−
3

2
D̃0(q1, k2, q2)u

− D̃11(q1, k2, q2)u−
9

2
D̃12(q1, k2, q2)u+ 4D̃13(q1, k2, q2)u

+ D̃21(q1, k2, q2)u− 5D̃24(q1, k2, q2)u+ 4D̃25(q1, k2, q2)u)/2 [B.21]

Box
(1)
1 = −(ǫ1q1(−8D̃27(k2, q2, q1) − 8D̃312(k2, q2, q1) − (D̃11(k2, q2, q1)

− D̃12(k2, q2, q1) + D̃13(k2, q2, q1) − 4D̃22(k2, q2, q1)

+ 4D̃24(k2, q2, q1))q
2
2 + D̃11(k2, q2, q1)s− D̃12(k2, q2, q1)s

+ D̃13(k2, q2, q1)s− 4D̃22(k2, q2, q1)s+ 4D̃24(k2, q2, q1)s

+ D̃11(k2, q2, q1)t− D̃12(k2, q2, q1)t+ D̃13(k2, q2, q1)t

− 4D̃22(k2, q2, q1)t+ 4D̃24(k2, q2, q1)t)) + ǫ2q1(8D̃27(k2, q2, q1)

+ 8D̃313(k2, q2, q1) + (D̃11(k2, q2, q1) − D̃12(k2, q2, q1)

+ D̃13(k2, q2, q1) − 4D̃22(k2, q2, q1) + 4D̃24(k2, q2, q1))q
2
2

− D̃11(k2, q2, q1)t− 3D̃12(k2, q2, q1)t+ 3D̃13(k2, q2, q1)t

− 4D̃24(k2, q2, q1)t+ 4D̃26(k2, q2, q1)t) − ǫ2k2(16D̃311(k2, q2, q1)

− 24D̃312(k2, q2, q1) − (D̃11(k2, q2, q1) − D̃12(k2, q2, q1)
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+ D̃13(k2, q2, q1) + 4D̃25(k2, q2, q1) − 4D̃26(k2, q2, q1)

− 8D̃310(k2, q2, q1) − 4D̃32(k2, q2, q1) − 4D̃34(k2, q2, q1)

+ 4D̃35(k2, q2, q1) + 8D̃36(k2, q2, q1) + 4D̃38(k2, q2, q1))q
2
2

+ 5D̃11(k2, q2, q1)s− 5D̃12(k2, q2, q1)s+ D̃13(k2, q2, q1)s

+ 4D̃21(k2, q2, q1)s− 4D̃24(k2, q2, q1)s+ 4D̃25(k2, q2, q1)s

− 4D̃26(k2, q2, q1)s− 8D̃310(k2, q2, q1)s+ 4D̃35(k2, q2, q1)s

+ 4D̃38(k2, q2, q1)s− 4D̃12(k2, q2, q1)t+ 4D̃13(k2, q2, q1)t

+ 4D̃22(k2, q2, q1)t− 8D̃24(k2, q2, q1)t+ 8D̃25(k2, q2, q1)t

− 4D̃26(k2, q2, q1)t− 4D̃310(k2, q2, q1)t− 4D̃34(k2, q2, q1)t

+ 4D̃35(k2, q2, q1)t+ 4D̃36(k2, q2, q1)t) [B.22]

Box
(1)
2 = ǫ1k2(8D̃311(k2, q2, q1) − 24D̃313(k2, q2, q1) − (D̃11(k2, q2, q1)

+ 3D̃12(k2, q2, q1) − 3D̃13(k2, q2, q1) − 4D̃22(k2, q2, q1)

+ 8D̃24(k2, q2, q1) − 4D̃25(k2, q2, q1) + 4D̃310(k2, q2, q1)

− 4D̃37(k2, q2, q1) − 4D̃38(k2, q2, q1) + 4D̃39(k2, q2, q1))q
2
2

− D̃11(k2, q2, q1)s+ D̃12(k2, q2, q1)s− 5D̃13(k2, q2, q1)s

− 8D̃25(k2, q2, q1)s+ 4D̃26(k2, q2, q1)s− 4D̃37(k2, q2, q1)s

+ 4D̃39(k2, q2, q1)s+ 4D̃12(k2, q2, q1)t− 4D̃13(k2, q2, q1)t

− 4D̃23(k2, q2, q1)t+ 4D̃24(k2, q2, q1)t− 4D̃25(k2, q2, q1)t

+ 4D̃26(k2, q2, q1)t+ 4D̃310(k2, q2, q1)t− 4D̃37(k2, q2, q1)t)

− ǫ1q2(8D̃27(k2, q2, q1) − 8D̃312(k2, q2, q1) + 24D̃313(k2, q2, q1)

+ (D̃11(k2, q2, q1) + 3D̃12(k2, q2, q1) − 3D̃13(k2, q2, q1)

− 4D̃22(k2, q2, q1) + 8D̃24(k2, q2, q1) − 4D̃25(k2, q2, q1)

+ 4D̃310(k2, q2, q1) − 4D̃37(k2, q2, q1) − 4D̃38(k2, q2, q1)

+ 4D̃39(k2, q2, q1))q
2
2 + D̃11(k2, q2, q1)s− D̃12(k2, q2, q1)s
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+ 5D̃13(k2, q2, q1)s+ 8D̃25(k2, q2, q1)s− 4D̃26(k2, q2, q1)s

+ 4D̃37(k2, q2, q1)s− 4D̃39(k2, q2, q1)s− D̃11(k2, q2, q1)t

− 7D̃12(k2, q2, q1)t+ 7D̃13(k2, q2, q1)t+ 4D̃23(k2, q2, q1)t

− 8D̃24(k2, q2, q1)t+ 4D̃25(k2, q2, q1)t− 4D̃310(k2, q2, q1)t

+ 4D̃37(k2, q2, q1)t) [B.23]

Box
(1)
q = 8D̃312(k2, q2, q1)ǫ1ǫ2 − 8D̃313(k2, q2, q1)ǫ1ǫ2 + 8D̃12(k2, q2, q1)ǫ1k2ǫ2k2

− 8D̃13(k2, q2, q1)ǫ1k2ǫ2k2 + 12D̃24(k2, q2, q1)ǫ1k2ǫ2k2 − 12D̃25(k2, q2, q1)ǫ1k2ǫ2k2

+ 4D̃34(k2, q2, q1)ǫ1k2ǫ2k2 − 4D̃35(k2, q2, q1)ǫ1k2ǫ2k2 + D̃11(k2, q2, q1)ǫ1q2ǫ2k2

+ 7D̃12(k2, q2, q1)ǫ1q2ǫ2k2 − 7D̃13(k2, q2, q1)ǫ1q2ǫ2k2 + 4D̃22(k2, q2, q1)ǫ1q2ǫ2k2

+ 8D̃24(k2, q2, q1)ǫ1q2ǫ2k2 − 4D̃25(k2, q2, q1)ǫ1q2ǫ2k2 − 8D̃26(k2, q2, q1)ǫ1q2ǫ2k2

− 4D̃310(k2, q2, q1)ǫ1q2ǫ2k2 + 4D̃36(k2, q2, q1)ǫ1q2ǫ2k2 − D̃11(k2, q2, q1)ǫ1k2ǫ2q1

+ D̃12(k2, q2, q1)ǫ1k2ǫ2q1 − D̃13(k2, q2, q1)ǫ1k2ǫ2q1 − 4D̃23(k2, q2, q1)ǫ1k2ǫ2q1

− 4D̃25(k2, q2, q1)ǫ1k2ǫ2q1 + 8D̃26(k2, q2, q1)ǫ1k2ǫ2q1 + 4D̃310(k2, q2, q1)ǫ1k2ǫ2q1

− 4D̃37(k2, q2, q1)ǫ1k2ǫ2q1 − 4D̃23(k2, q2, q1)ǫ1q2ǫ2q1 + 4D̃26(k2, q2, q1)ǫ1q2ǫ2q1

+ 4D̃38(k2, q2, q1)ǫ1q2ǫ2q1 − 4D̃39(k2, q2, q1)ǫ1q2ǫ2q1 − D̃11(k2, q2, q1)ǫ1k2ǫ1q1

+ 5D̃12(k2, q2, q1)ǫ1k2ǫ1q1 − 5D̃13(k2, q2, q1)ǫ1k2ǫ1q1 + 8D̃22(k2, q2, q1)ǫ1k2ǫ1q1

− 4D̃25(k2, q2, q1)ǫ1k2ǫ1q1 − 4D̃26(k2, q2, q1)ǫ1k2ǫ1q1 − 4D̃310(k2, q2, q1)ǫ1k2ǫ1q1

+ 4D̃36(k2, q2, q1)ǫ1k2ǫ1q1 + 4D̃12(k2, q2, q1)ǫ1q2ǫ1q1 − 4D̃13(k2, q2, q1)ǫ1q2ǫ1q1

+ 8D̃22(k2, q2, q1)ǫ1q2ǫ1q1 − 8D̃26(k2, q2, q1)ǫ1q2ǫ1q1 + 4D̃32(k2, q2, q1)ǫ1q2ǫ1q1

− 4D̃38(k2, q2, q1)ǫ1q2ǫ1q1 − 4D̃310(k2, q2, q1)ǫ1ǫ2q
2
2 − 2D̃32(k2, q2, q1)ǫ1ǫ2q

2
2

+ 2D̃36(k2, q2, q1)ǫ1ǫ2q
2
2 + 2D̃37(k2, q2, q1)ǫ1ǫ2q

2
2 + 4D̃38(k2, q2, q1)ǫ1ǫ2q

2
2

− 2D̃39(k2, q2, q1)ǫ1ǫ2q
2
2 −

1

2
D̃11(k2, q2, q1)ǫ1ǫ2s+

1

2
D̃12(k2, q2, q1)ǫ1ǫ2s

− 1

2
D̃13(k2, q2, q1)ǫ1ǫ2s− 2D̃25(k2, q2, q1)ǫ1ǫ2s+ 2D̃26(k2, q2, q1)ǫ1ǫ2s

+ 2D̃310(k2, q2, q1)ǫ1ǫ2s− 2D̃37(k2, q2, q1)ǫ1ǫ2s− 2D̃38(k2, q2, q1)ǫ1ǫ2s
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+ 2D̃39(k2, q2, q1)ǫ1ǫ2s− 2D̃22(k2, q2, q1)ǫ1ǫ2t− 2D̃23(k2, q2, q1)ǫ1ǫ2t

+ 4D̃26(k2, q2, q1)ǫ1ǫ2t+ 4D̃310(k2, q2, q1)ǫ1ǫ2t− 2D̃36(k2, q2, q1)ǫ1ǫ2t

− 2D̃37(k2, q2, q1)ǫ1ǫ2t [B.24]

Box
(1)
b = −4D̃27(k2, q2, q1) − 12D̃312(k2, q2, q1) + 12D̃313(k2, q2, q1)

+ 4D̃310(k2, q2, q1)q
2
2 + 2D̃32(k2, q2, q1)q

2
2 − 2D̃36(k2, q2, q1)q

2
2

− 2D̃37(k2, q2, q1)q
2
2 − 4D̃38(k2, q2, q1)q

2
2 + 2D̃39(k2, q2, q1)q

2
2

− 2D̃0(k2, q2, q1)s− D̃11(k2, q2, q1)s− D̃12(k2, q2, q1)s

+ D̃13(k2, q2, q1)s+ 2D̃25(k2, q2, q1)s− 2D̃26(k2, q2, q1)s

− 2D̃310(k2, q2, q1)s+ 2D̃37(k2, q2, q1)s+ 2D̃38(k2, q2, q1)s

− 2D̃39(k2, q2, q1)s+ 2D̃22(k2, q2, q1)t+ 2D̃23(k2, q2, q1)t

− 4D̃26(k2, q2, q1)t− 4D̃310(k2, q2, q1)t+ 2D̃36(k2, q2, q1)t

+ 2D̃37(k2, q2, q1)t [B.25]

Box
(2)
1 = −(ǫ2q1(8D̃27(k2, q1, q2) − 8D̃312(k2, q1, q2) + 24D̃313(k2, q1, q2)

− 4(D̃23(k2, q1, q2) − D̃26(k2, q1, q2) + D̃33(k2, q1, q2)

− D̃39(k2, q1, q2))q
2
2 + D̃11(k2, q1, q2)s− D̃12(k2, q1, q2)s

+ 5D̃13(k2, q1, q2)s+ 8D̃25(k2, q1, q2)s− 4D̃26(k2, q1, q2)s

+ 4D̃37(k2, q1, q2)s− 4D̃39(k2, q1, q2)s− D̃11(k2, q1, q2)u

− 7D̃12(k2, q1, q2)u+ 7D̃13(k2, q1, q2)u+ 4D̃23(k2, q1, q2)u

− 8D̃24(k2, q1, q2)u+ 4D̃25(k2, q1, q2)u− 4D̃310(k2, q1, q2)u

+ 4D̃37(k2, q1, q2)u)) − ǫ2q2(8D̃27(k2, q1, q2) + 16D̃313(k2, q1, q2)

− 4(D̃23(k2, q1, q2) − D̃26(k2, q1, q2) + D̃33(k2, q1, q2)

− D̃39(k2, q1, q2))q
2
2 + 4D̃13(k2, q1, q2)s+ 4D̃23(k2, q1, q2)s

+ 4D̃25(k2, q1, q2)s− 4D̃26(k2, q1, q2)s+ 4D̃37(k2, q1, q2)s
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− 4D̃39(k2, q1, q2)s− D̃11(k2, q1, q2)u− 3D̃12(k2, q1, q2)u

+ 3D̃13(k2, q1, q2)u+ 8D̃23(k2, q1, q2)u− 4D̃24(k2, q1, q2)u

− 4D̃26(k2, q1, q2)u− 4D̃310(k2, q1, q2)u+ 4D̃37(k2, q1, q2)u)

− ǫ2k2(−8D̃311(k2, q1, q2) + 24D̃313(k2, q1, q2) − (D̃11(k2, q1, q2)

− D̃12(k2, q1, q2) + D̃13(k2, q1, q2) + 4D̃25(k2, q1, q2)

− 4D̃26(k2, q1, q2) + 4D̃33(k2, q1, q2) − 4D̃39(k2, q1, q2))q
2
2

+ D̃11(k2, q1, q2)s− D̃12(k2, q1, q2)s+ 5D̃13(k2, q1, q2)s

+ 8D̃25(k2, q1, q2)s− 4D̃26(k2, q1, q2)s+ 4D̃37(k2, q1, q2)s

− 4D̃39(k2, q1, q2)s− 4D̃12(k2, q1, q2)u+ 4D̃13(k2, q1, q2)u

+ 4D̃23(k2, q1, q2)u− 4D̃24(k2, q1, q2)u+ 4D̃25(k2, q1, q2)u

− 4D̃26(k2, q1, q2)u− 4D̃310(k2, q1, q2)u+ 4D̃37(k2, q1, q2)u) [B.26]

Box
(2)
2 = −(ǫ1q2(−8D̃27(k2, q1, q2) − 8D̃313(k2, q1, q2) + (D̃11(k2, q1, q2)

+ 3D̃12(k2, q1, q2) − 3D̃13(k2, q1, q2) + 4D̃24(k2, q1, q2)

− 4D̃26(k2, q1, q2))u)) − ǫ1k2(16D̃311(k2, q1, q2) − 24D̃312(k2, q1, q2)

+ (D̃11(k2, q1, q2) + 3D̃12(k2, q1, q2) − 3D̃13(k2, q1, q2)

− 4D̃23(k2, q1, q2) + 4D̃24(k2, q1, q2) + 4D̃310(k2, q1, q2)

− 4D̃37(k2, q1, q2) − 4D̃38(k2, q1, q2) + 4D̃39(k2, q1, q2))q
2
2

+ 5D̃11(k2, q1, q2)s− 5D̃12(k2, q1, q2)s+ D̃13(k2, q1, q2)s

+ 4D̃21(k2, q1, q2)s− 4D̃24(k2, q1, q2)s+ 4D̃25(k2, q1, q2)s

− 4D̃26(k2, q1, q2)s− 8D̃310(k2, q1, q2)s+ 4D̃35(k2, q1, q2)s

+ 4D̃38(k2, q1, q2)s− 4D̃12(k2, q1, q2)u+ 4D̃13(k2, q1, q2)u

+ 4D̃22(k2, q1, q2)u− 8D̃24(k2, q1, q2)u+ 8D̃25(k2, q1, q2)u

− 4D̃26(k2, q1, q2)u− 4D̃310(k2, q1, q2)u− 4D̃34(k2, q1, q2)u

+ 4D̃35(k2, q1, q2)u+ 4D̃36(k2, q1, q2)u) [B.27]
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Box
(2)
q = −8D̃312(k2, q1, q2)ǫ1ǫ2 + 8D̃313(k2, q1, q2)ǫ1ǫ2 − 8D̃12(k2, q1, q2)ǫ1k2ǫ2k2

+ 8D̃13(k2, q1, q2)ǫ1k2ǫ2k2 − 12D̃24(k2, q1, q2)ǫ1k2ǫ2k2 + 12D̃25(k2, q1, q2)ǫ1k2ǫ2k2

− 4D̃34(k2, q1, q2)ǫ1k2ǫ2k2 + 4D̃35(k2, q1, q2)ǫ1k2ǫ2k2 + D̃11(k2, q1, q2)ǫ1q2ǫ2k2

− D̃12(k2, q1, q2)ǫ1q2ǫ2k2 + D̃13(k2, q1, q2)ǫ1q2ǫ2k2 + 4D̃23(k2, q1, q2)ǫ1q2ǫ2k2

+ 4D̃25(k2, q1, q2)ǫ1q2ǫ2k2 − 8D̃26(k2, q1, q2)ǫ1q2ǫ2k2 − 4D̃310(k2, q1, q2)ǫ1q2ǫ2k2

+ 4D̃37(k2, q1, q2)ǫ1q2ǫ2k2 − D̃11(k2, q1, q2)ǫ1k2ǫ2q1 − 7D̃12(k2, q1, q2)ǫ1k2ǫ2q1

+ 7D̃13(k2, q1, q2)ǫ1k2ǫ2q1 − 4D̃22(k2, q1, q2)ǫ1k2ǫ2q1 − 8D̃24(k2, q1, q2)ǫ1k2ǫ2q1

+ 4D̃25(k2, q1, q2)ǫ1k2ǫ2q1 + 8D̃26(k2, q1, q2)ǫ1k2ǫ2q1 + 4D̃310(k2, q1, q2)ǫ1k2ǫ2q1

− 4D̃36(k2, q1, q2)ǫ1k2ǫ2q1 + 4D̃23(k2, q1, q2)ǫ1q2ǫ2q1 − 4D̃26(k2, q1, q2)ǫ1q2ǫ2q1

− 4D̃38(k2, q1, q2)ǫ1q2ǫ2q1 + 4D̃39(k2, q1, q2)ǫ1q2ǫ2q1 − D̃11(k2, q1, q2)ǫ1k2ǫ2q2

− 3D̃12(k2, q1, q2)ǫ1k2ǫ2q2 + 3D̃13(k2, q1, q2)ǫ1k2ǫ2q2 + 8D̃23(k2, q1, q2)ǫ1k2ǫ2q2

− 4D̃24(k2, q1, q2)ǫ1k2ǫ2q2 − 4D̃26(k2, q1, q2)ǫ1k2ǫ2q2 − 4D̃310(k2, q1, q2)ǫ1k2ǫ2q2

+ 4D̃37(k2, q1, q2)ǫ1k2ǫ2q2 + 4D̃23(k2, q1, q2)ǫ1q2ǫ2q2 − 4D̃26(k2, q1, q2)ǫ1q2ǫ2q2

+ 4D̃33(k2, q1, q2)ǫ1q2ǫ2q2 − 4D̃39(k2, q1, q2)ǫ1q2ǫ2q2 − 2D̃33(k2, q1, q2)ǫ1ǫ2q
2
2

− 2D̃38(k2, q1, q2)ǫ1ǫ2q
2
2 + 4D̃39(k2, q1, q2)ǫ1ǫ2q

2
2 +

1

2
D̃11(k2, q1, q2)ǫ1ǫ2s

− 1

2
D̃12(k2, q1, q2)ǫ1ǫ2s+

1

2
D̃13(k2, q1, q2)ǫ1ǫ2s+ 2D̃25(k2, q1, q2)ǫ1ǫ2s

− 2D̃26(k2, q1, q2)ǫ1ǫ2s− 2D̃310(k2, q1, q2)ǫ1ǫ2s+ 2D̃37(k2, q1, q2)ǫ1ǫ2s

+ 2D̃38(k2, q1, q2)ǫ1ǫ2s− 2D̃39(k2, q1, q2)ǫ1ǫ2s+ 2D̃22(k2, q1, q2)ǫ1ǫ2u

+ 2D̃23(k2, q1, q2)ǫ1ǫ2u− 4D̃26(k2, q1, q2)ǫ1ǫ2u− 4D̃310(k2, q1, q2)ǫ1ǫ2u

+ 2D̃36(k2, q1, q2)ǫ1ǫ2u+ 2D̃37(k2, q1, q2)ǫ1ǫ2u [B.28]

Box
(2)
b = −4D̃27(k2, q1, q2) − 12D̃312(k2, q1, q2) + 12D̃313(k2, q1, q2)

− 2D̃33(k2, q1, q2)q
2
2 − 2D̃38(k2, q1, q2)q

2
2 + 4D̃39(k2, q1, q2)q

2
2

− 2D̃0(k2, q1, q2)s− D̃11(k2, q1, q2)s− D̃12(k2, q1, q2)s

+ D̃13(k2, q1, q2)s+ 2D̃25(k2, q1, q2)s− 2D̃26(k2, q1, q2)s
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− 2D̃310(k2, q1, q2)s+ 2D̃37(k2, q1, q2)s+ 2D̃38(k2, q1, q2)s

− 2D̃39(k2, q1, q2)s+ 2D̃22(k2, q1, q2)u+ 2D̃23(k2, q1, q2)u

− 4D̃26(k2, q1, q2)u− 4D̃310(k2, q1, q2)u+ 2D̃36(k2, q1, q2)u

+ 2D̃37(k2, q1, q2)u [B.29]
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Appendix C: Scalar integrals

In this appendix all relevant scalar integrals used for the one-loop QCD calculations are given.

All scalar integrals are computed ind = 4 − 2ǫ space-time dimensions.

For virtual corrections considered in this thesis, only theone-mass box [55, 56], is needed.

Specifically, we need the case in whichk2
1 = k2

2 = q2
1 = 0 andq2

2 6= 0. The one-mass box in the

unphysical region,−s = −(k1 − k2)
2 > 0,−t = −(k1 − q1)

2 > 0,−q2
2 > 0 is

D0(k2, q2, q1) =
∫ ddk

iπ2

1

[k2][(k − k2)2][(k − k2 − q2)2][(k − k2 − q2 − q1)2]
[C.1]

= π−ǫ(µ2)−ǫΓ(1 + ǫ)

·
{

2

st

1

ǫ2
+

2

st

1

ǫ

[

ln

(

−q2
2

µ2

)

− ln

(

−s
µ2

)

− ln

(

−t
µ2

)]

+ D̃0(k2, q2, q1) + O(ǫ)

}

where

D̃0(k2, q2, q1) =
1

st

[

ln2

(

−s
µ2

)

+ ln2

(

−t
µ2

)

− ln2

(

−q2
2

µ2

)

[C.2]

− ln

(

−s
µ2

)

+ ln

(

−t
µ2

)

− 2 Li2

(

1 − q2
2

t

)

− 2 Li2

(

1 − q2
2

s

)

− 2π2

3

]

.

For the present application, the invariant,q2
2 is always space-like while the Mandelstam in-

variants,s and t, may either be time-like or space-like. Results for physical kinematic regions

can be obtained by analytic continuation by replacing the time-like invariant byt → t + i0+ or

s→ s+ i0+.

In addition, to the one-mass box, one needs expressions for the 3-point and 2-point scalar

integrals ind = 4 − 2ǫ space-time dimensions. For the 3-point scalar integral

C0(p
2
1, p

2
2, (p1 + p2)

2) =
∫

ddk

iπ2

1

[−k2 − i0+][−(k + p1)2 − i0+][−(k + p1 + p2)2 − i0+]
[C.3]

two cases are needed.

a. The two-mass triangle. Either,p2
1 = 0 or p2

2 = 0 andp2
3 = (p1 + p2)

2 6= 0.

C0(p
2
1, 0, p

2
3) = π−ǫ(µ2)−ǫΓ(1 + ǫ) [C.4]

·
{

1

−p2
3 − p2

1

(ln(−p2
3/µ

2) − ln(−p2
1/µ

2))
1

ǫ
+ C̃0(p

2
1, 0, p

2
3) + O(ǫ)

}

C̃0(p
2
1, 0, p

2
3) =

1

2

1

−p2
3 − p2

1

(

ln2(−p2
1/µ

2) − ln2(−p2
3/µ

2)
)

[C.5]
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b. The one-mass triangle. The case for whichp2
1 = p2

2 = 0 andp2
3 = (p1 + p2)

2 6= 0.

C0(0, 0, p
2
3) = π−ǫ(µ2)−ǫΓ(1 + ǫ)

{

1

−p2
3

1

ǫ2
[C.6]

− 1

−p2
3

ln(−p2
3/µ

2)
1

ǫ
+ C̃0(0, 0, p

2
3) + O(ǫ)

}

C̃0(0, 0, p
2
3) = −π

2

6

1

−p2
3

+
1

−p2
3

1

2
ln2(−p2

3/µ
2) [C.7]

The scalar 2-point integral is

B0(q
2) =

∫

ddk

iπ2

1

[−k2 − i0+][−(k − q)2 − i0+]
[C.8]

= π−ǫ(µ2)−ǫΓ(1 + ǫ)
[

1

ǫ
+ B̃0(q

2) + O(ǫ)
]

with

B̃0(q
2) = 2 − ln

−q2 − i0+

µ2
. [C.9]
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