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Higgs production plus two jets via vector-boson fusion ipepted to provide crucial information
on the Higgs boson couplings at the CERN Large Hadron Caollitiee achievable statistical ac-
curacy demands comparison with next-to-leading order Q@&loutations, which are presented
here in the form of a fully flexible partonic Monte Carlo pragr. QCD corrections are deter-
mined for jet distributions and are shown to be modest, obtider of5%-10% in most cases, but
reaching30% occasionally. Remaining scale uncertainties range frarotder of5% or less for
distributions to belowt2% for the Higgs boson cross section in typical vector-bosasiofusearch
regions.

Higgs boson production plus two jets via vector-fusion isss&ve to the tensor of thé/V'V
(V = W, Z) couplings, which distinguishes loop induced verticesrfiSM expectations. At the
CERN Large Hadron Collider this information shows up in tlzérauthal angle correlations of
the two forward and backward quark jets which are typicalvi@ak boson fusion. The next-
to-leading order QCD corrections to this process, in thegmee of anomaloud V'V couplings
are computed. It is shown that gluon emission does not signifiy change the azimuthal jet
correlations.

For Higgs production via vector boson fusion (VBF), theresigppressed jet activity in the
central region of rapidity. Higgs production via VBF in thesaciation of three jetsi{jjj) is
computed to NLO accuracy in QCIKX factors forH j ;7 are modest, typically,.03 to 1.06. Scale

uncertainties for the total cross section at NLO are less ifia 3-jet ratios for Higgs production
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via VBF are computed at LO and NLO. The scale dependenggaifratios is shown to be reduced
at NLO.
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ABSTRACT

Higgs production plus two jets via vector-boson fusion ipaepted to provide crucial information
on the Higgs boson couplings at the CERN Large Hadron Caollifilee achievable statistical ac-
curacy demands comparison with next-to-leading order Q@loutations, which are presented
here in the form of a fully flexible partonic Monte Carlo pragr. QCD corrections are deter-
mined for jet distributions and are shown to be modest, obtider of5%-10% in most cases, but
reaching30% occasionally. Remaining scale uncertainties range fraotider of5% or less for
distributions to belowt2% for the Higgs boson cross section in typical vector-bosasiofusearch
regions.

Higgs boson production plus two jets via vector-fusion isssg&ve to the tensor of th&/V'V
(V = W, Z) couplings, which distinguishes loop induced verticesnft®M expectations. At the
CERN Large Hadron Collider this information shows up in tlzévauthal angle correlations of
the two forward and backward quark jets which are typicalvi@ak boson fusion. The next-
to-leading order QCD corrections to this process, in thegmee of anomaloug V'V couplings
are computed. It is shown that gluon emission does not signifiy change the azimuthal jet
correlations.

For Higgs production via vector boson fusion (VBF), theresigppressed jet activity in the
central region of rapidity. Higgs production via VBF in thesaciation of three jetsH{jjj) is
computed to NLO accuracy in QCIK factors forH jjj are modest, typicallyi.03 to 1.06. Scale
uncertainties for the total cross section at NLO are less ifia 3-jet ratios for Higgs production
via VBF are computed at LO and NLO. The scale dependenggaifratios is shown to be reduced
at NLO.
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Introduction



1.1 Introduction

Assuming the Higgs boson is discovered, the measuremetstadfuplings to the gauge bosons
and fermions will be of high importance to researchers ifnl@gergy physics. An exact determi-
nation of the properties of the Higgs-like resonance wilhieeded in order to definitely confirm
the discovered particle is actually the Higgs boson. Howete CERN Large Hadron Collider
(LHC) is a hadron collider. For Higgs production at the LH@rth are a large number of QCD
backgrounds. These backgrounds constitute a problem ivanés to measure Higgs boson cou-
plings or even discover the Higgs boson. Recently, therebkas a great deal of study of the
vector boson fusion (VBF) procegs) — ¢qQVV — gQH at the LHC. The-channel color sin-
glet nature of the VBF process allows for background redactwhich in turn leads to higher
sensitivity for the measurement of the coupling8/’ W and H Z Z. If one wants to maximize the
statistical accuracy of the LHC, it is imperative that ouedhetical predictions for both the total
cross section and differential cross sections involve Q@iections. This thesis will be dedicated
to the computation of one-loop QCD corrections for Higgsduetion via vector boson fusion.

In Section 1.2 a brief introduction to the Standard Model belgiven. The Glashow-Weinberg-
Salam electroweak theory will be discussed in Subsectidri1Here theHiggs Mechanism will
be presented. In Subsection 1.2.2 the theory of Quantunrm@dgnamics will be outlined. Higgs
production via vector boson fusion will be discussed in Bect.3. There will be a discussion in

Section 1.4 of th&atani-Seymour dipole subtraction method.

1.2 The Standard Model

The Glashow-Weinberg-Salam electroweak theory [1], whsch Yang-Mills theory [2], is
based on the symmetry grofd/(2), x U(1)y describing the electromagnetic and weak interac-
tions between quarks and leptons. Quantum Chromodyna@ic®}, anSU (3)- gauge theory,
describes the strong interactions of the quarks and gli&jn3 he direct product of the above two

groups,SU(3)c x SU(2) x U(1)y, is known as the Standard Model (SM).



Table 1.1 The electroweak quantum numbers for the first géinarof quarks and leptons.

T, T3 Y Q
| b3 b0
| 3 -5 -3
wl b3
@l § -3 §
er| 0 0 -1 -1
ug | 0 0 2 2
dg| 0 0 —1 —1

Essential to the SM is theliggs mechanism which was proposed forty years ago by Higgs,
Brout, Englert, Guralnik, Hagen and Kibble [4]. Thigggs mechanism provides a way in which
the gauge groupU(2), x U(1)y is spontaneously broken down &&(1)gy which describes the

electromagnetic interaction and in the process generass for gauge bosons and fermions.

1.2.1 Glashow-Weinberg-Salam Electroweak Model

The Glashow-Weinberg-Salam Electroweak model (GWS) isdbas the gauge groufi/ (2) x
U(1)y[1] . There are three generations of left-handed and rigimidled chiral quarks and leptons,
Yr.r = 3(1F 75)9. The conserved quantum number associated k), is weak isospin T/.
Theweak hypercharge quantum numbeY” is associated with the gauge grolifl)y. In order to
incorporate the electric charggand unify the weak and electromagnetic interactions in asom
gauge structurd/(1)y symmetry is essential. Weak hypercharges are specifieddicgdo the
formula

Q=T+ %Y [1.1]

Right-handed fermions are assigned to transform ufidéf, only whereas left-handed fermions

transform under botl§U (2), andU(1)y in a non-trivial fashion. Weak quantum numbers for the



first generation of quarks and leptons are shown in TableOuk to the fact that there are equal
numbers of quarks and leptons and three quark colors, dni@halies [5] are canceled [6] and
the renormalizability of electroweak theory is preservéd [

The gauge fields for the unbroken electroweak sector coofstise 5, field which corresponds
to the generator” of the U(1)y group and the thre®/ (a = 1, 2, 3) fields which correspond to
the generator™ (a = 1, 2, 3) of the SU(2),, group. The generatofE* are equivalent to half the

Pauli matrices
T L [1.2]
= =7 .
2
with commutation relations
[T, T% = ie®T*, [Y,Y]=0 [1.3]

wheree? are antisymmetric structure constants forSdn(2) group.

The unbrokertU(2), x U(1)y Lagrangian is given by

1
4

1

L= 1

WHews, — —B* B, + )iy Dy [1.4]

with a separate fermion term for each field andy . The covariant derivativ®,, is given by
1
D, =0, + z’g2W§T“ + i91§BuY [1.5]
The field strengths for thB” and B fields are

W, = 0W8—0,Wi+ gae™WWS, [1.6]
B,uzz = a,uBu - 8IJB;L [17]

wheregs is the coupling constant ¢fU (2);, andg; is the coupling constant @f (1)y.
The unbroken Lagrangian (Eg. (1.4)) is invariant under timitesimal local gauge transfor-
mations forSU(2), andU(1)y independently. The masses of the fermion and gauge fields are

taken as zero to insure gauge invariance.
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v = —iegr My (14 7)

fa

Figure 1.1 qqV vertex for fermion of chiralityr = +.

In the GWS model, thél; and B fields are linear combinations of the photon fieldand

another neutral field. The relation between these fields is

Ws cosf, sinf, Z
= : [1.8]
Z —siné,, cos6, A

whered,, is the electroweak oWweinberg mixing angle. Substituting the above relation into the

neutral termi(g,Ws, + gléBMY) of the covariant derivative yields

1 1
’i(QQWgu + 91§BHY> = ZAu[gg sin Hng + g1 COS 9w§Y] [19]

1
+ iZ,[g2 cos 0, T3 — g1 sin Hin]. [1.10]

In order to unify the electromagnetic interaction with theak interactions, the coefficient in front

of the A field must be equal teQ = ie(T3 + %Y). This implies the following coupling relations

(& (&

N sty T

[1.11]

sinf,,
The interaction of the gauge bosons and fermions shown ur&ig).1 originates from the term

Vi D, of Eq. (1.4) which can be written as

—Lint = e A, + % (JFWh 4+ T2y ) + 92052, [1.12]

Jf, Jz, and.Jgy are currents with the following definitions
St = VYT, [1.13]
Jy = 9y [Tap — 2,Q, [1.14]

Joan = 0V'QU, [1.15]



T T, ly @
1 1 1
oflz 3z 3 1
1 1 1
#lz -3 3 1

Table 1.2 Quantum numbers

with

e

S S— » = sin® 6. 1.16
9z sin 0, cos 0, o S [ ]

In the SM aSU(2) doubletd of hypercharged’s = 1/2 is introduced. Its self-interactions
provide the mechanism for spontaneous symmetry breaki®B)Q)iving rise to gauge boson and
fermion masses [4] in gauge invariant fashion. Also, as éselt of SSB, a new neutral scalar

called the Higgs bosorn{°) arises. The isodoublet is specified to be
+
o = ( ¢ ) : [1.17]
¢O

Lo = (D'®)D,® — 1i|®> + \|®|* [1.18]

with Lagrangian

whereD,® = (9, +igsWiT* + ig1Ya B,,)®. Foru? < 0 in the classical theory the ground state
of |®|? occurs af®|? = —14%/A. In quantum field theory, the fiel# develops a non-vanishing
vacuum expectation value. The appearance of this nonhiagisacuum expectation value selects
a preferred direction in weak isospin plus hyperchargeespad thereby “spontaneously breaks”
theSU(2), x U(1)y symmetry down td/(1)gy Which describes the electromagnetic interaction.
Here the modulus/v/2 = (—u2/2))2 of the vacuum expectation value (vev)|df] is intro-
duced. Since conventional perturbation theory is fornaddor fields with zero vev, it is appropri-

ate to separate out the vev and to redefine the scalar dekibket

0y + 16, i6 -7 0
5= :exp< ) , [1.19]
(1(U+H)—z'93) v ((U+H)/\/§)

V2




where the field9,, 0, 03, and H have zero vev. By a finite gauge transformation ungi€y (2)
with o = /v, the above phase factor can be removed fianThis is the “unitary gauge”. The
fields in unitary gauge become longitudinal componentseditt and Z° fields.

The covariant derivative operation on an isodoublet fiejoregsed in terms of the physicé)
W+, andZ fields is

D=0+ieQA+ ’i%gg(TJrVVJr +7 W)+ igz(%Tg —1,Q)Z, [1.20]
where the space-time indexhas been suppressed. The 2 matricesr* are defined as
0 1 00
7t =27t = : T =27 = . [1.21]
00 10
In the unitary gauge@ has only a neutral component
o = ! 0 [1.22]
V2 v+ H .
and
TigpWt(v+ H
pp— L[ weWTlrd) ) [1.23]
V2 \ 0H - Lig;Z(v + H)

By inserting Eq.(1.23) into Eq.(1.18), the Lagranganbecomes,

Lo— %(0}1)2 + ig%W*W‘(v FH? 4 éggzzw CHP -V (%(v + H)2> o [L24]
Thewv? terms providéV andZ boson mass terms
MWW~ + %Mgzz [1.25]
with
My = %gv, Mz = %QZU = (ﬁ—vgw’ [1.26]

while the photon remains massless.
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Figure 1.2 HV'V vertex

The interactions between the Higgs boséh,and the gauge bosond; andZ, are given by

the cubic and quartic terms,

1 1
(ZgZWJFW_ + gg%ZZ)(HZ +20H), [1.27]

which are completely specified by the gauge couplings. Mptie = 0 there can be no tree-level
trilinear couplings of the Higgs boson to the weak bosongui@ 1.2 shows the Feynman rule for

the HV'V interaction vertex.

1.2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is$/(3) gauge theory of quarks and gluons [3]. The
Lagrangian for QCD is

1 a rrauv — (.
‘CQCD = _EF“VF H + E qi(Z’}/uDu — mq)ijqj. [128]
q

The field strengtht;, and the covariant derivative,, are given by

Fi, = 0.A, —0,A] + gsfabcAZA,‘i [1.29]
(Du)ij = 6,70“ + ZgST‘;;AZ [130]
(mg)ij = mgdi; [1.31]

where A, are the gluon fields ang are quark fields.fe¢ are the structure constants dnhg are
the generators of the Lie group which defines the gauge syminiBte structure constanys®c

are defined by the commutation relation

[T, T =4 foeT°. [1.32]



The Lagrangian (Eq.(1.28)) is invariant under infinitedigeuge transformations

q(z) — [1—igd*(x)Tq(x), [1.33]
Al(x) — Al(z) +0,0%(x) + gs S0 () AC. [1.34]

i

The self-interactions of the gluons shown in Figure 1.3ediiem the non-Abelian structure of the
theory and has no analogue in quantum electrodynamics (QED)

Loop integrals in QCD lead to ultraviolet divergences. Thakraviolet divergences can be
absorbed through the redefinition of coupling parameterswe¥er, renormalization introduces
a dependence on an arbitrary scale couplings. The renormalization scale dependence of the

effective QCD couplingy, = g2 /4 is controlled by thes-function,

8043 . - ﬁO 2 ﬂl 3
Wan T 26(as) = o T 2% T [1.39]
2
Gy = 11— 2ny, [1.36]
19
B = 51—§nf; [1.37]

wheren; is the number of quarks less than the energy sgal8olution of the above differential

equation requires the introduction of an integration camist This integration constant must be

determined experimentally. The most sensible choice fsrabnstant is the value of, at a fixed

references scale,. The standard choice j& = m.

_ 47 - 261 In [In(p?/A?)]
Bo In(p?/A?) B8 In(u?/A?)

The solution above to the renormalization group equatidunstiates the asymptotic freedom prop-

as(p) +... [1.38]

erty: oy — 0 asuy — oo and shows that QCD becomes a strongly coupled theory forA [3].

1.3 Higgs Production via Vector Boson Fusion

The vector boson fusion procesgg — qqVV — qqH (VBF) has the second largest pro-

duction cross section to that of the gluon fusion procggs— H in the Higgs mass range

The termvector-boson fusion (VBF) and the ternweak-boson fusion (WBF) can be used interchangeably since
the Higgs production procegs) — qQV'V — ¢QH involves only the weak bosoni% andZ.



q
g"e = —1gsTo"
qb
9" (p)
(r) = igs [0 = DrGu + (P = 7)ugor + (7 = D)o gl
9""(q)
g gha
= —ig2 [ F (97090 — IroGur)
g gt + L (gauTvp — IrpGuw)

+fadefbce (g)\“gyp . g)\yg,up)]

Figure 1.3 Feynman rules for QCD. The momenta andq are incoming.
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Figure 1.4 Higgs production via vector boson fusion.

My ~ 100—200 GeV. The VBF process shown in Figure 1.4 can be visualized asdtteaage of

a vector bosoiv (V' = W, Z) in thet-channel with the Higgs boson attached to the vector boson
propagator. Even though gluon fusion has the highest cexsos, it is difficult to extract the
Higgs boson signal out of the QCD backgrounds. Besides s isf signal extraction for gluon
fusion is the issue of theoretical uncertainty of the crasgien. K-factors for gluon fusion are
typically larger thar2 with a residual uncertainty df0-20% remaining after th@-loop corrections
have been evaluated [8, 9]. However, for VBF, the situatsoquiite different with/(-factors in the
range of1.08-1.1 over the range of Higgs madg, ~ 100 — 200 GeV with scale variation on the
order of+2% [10, 11, 12].

Typical for a VBF event, is the presence of two forward taggets which at LO corresponds
to processes likgQQ — ¢gQH shown in Figure 1.4. The observation of forward tagging jets
in addition to any kinematic cuts on the Higgs decay prodigtsucial for the suppression of
backgrounds [25, 26, 28, 29]. In Chapter 2, tagging jet prigsefor Higgs production via VBF
in the association of two jets (VBH ;) are investigated at NLO in QCD and in Chapter 3, the
NLO QCD corrections for VBH{ jj are computed in the presence of anomalous Higgs couplings.
Much of the material in Chapters 2 and 3 has appeared prdyiouRefs. [10, 13].

Another useful technique for the suppression of QCD baakapls to VBF is the veto of any
additional jet activity in the central region of rapidity4,115, 16, 17, 18, 19, 20]. For VBF pro-
cesses there tends to be suppressed jet activity in theatesgion due ta-channel color singlet
exchange. Since QCD backgrounds are characterized by qughkon exchange in thechannel,

a veto of any additional jet activity in the central rapidiggion is expected to suppress more of the

backgrounds than the signal. The effect of the central jit kkas been estimated at leading order
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in Ref. [15]. In Chapter 4 the ratios for Higgs 3 jet distributions to Higgs+ 2 jet distributions

for VBF are analyzed at next-to-leading order in QCD.

1.4 The Dipole Subtraction Method

A typical NLO cross section consists of three pieces: the LO (Born-level) cross sectiéf,

the virtual loop corrections;", and the real emission corrections’;

o =oc0 4+ N0 = / do® +/ daR—i-/daV. [1.39]

+1
Phase space integrals over the® anddo" are separately divergent ihn= 4 space-time dimen-
sions. However, their sum in Eq.(1.39) is finite. In order émrgout the phase space integration
numerically, one first needs to regulate the divergencei& 6fanddos" separately. By carrying
out the integrations i@ = 4 — 2e¢ dimensions using dimensional regularization, the divecgs
are replaced by double (soft and collinear) polieg?, and single (soft, collinear, or ultraviolet)
poles,1/e. Ultraviolet divergences are absorbed into coupling cmtstthrough the renormaliza-
tion procedure. The infrared divergences of the real ctimes, do?, are subtracted off by a local
counter-termdo®. The integrated local counter-tersrt cancels the infrared divergences of the
virtual corrections. The general idea of the subtractiothme is to use the identity

oNLO — daR—/ do? +//dUA+/dUV, [1.40]

n+1 n+1 nJ1 n

wheredo“ is such that it has the same pointwise singular structurkr&s The Catani-Seymour
dipole subtraction method [21] provides a recipe for carging do* for arbitrary processes.
The dipole subtraction method uses an improved factoomdtrmula for the soft and collinear
divergences of the + 1-parton matrix elements, called dipole formulae:

dot = > do® @ dViipole [1.41]

dipoles

The notation used in Eq.(1.41) is symboli:” denotes an appropriate color and spin projection of
the Born-level exclusive cross section. The symbalenotes properly defined phase space convo-

lutions and sums over color and spin indices. The dipol®fadi/;,..., which match the singular
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behavior ofic*, are completely independent of the process. The expliait fuf the dipole factors

are not shown here but are given in Appendix A. Introducirggghase space integration,
N0 = [ [do" — do?] + / do™ + / doV, [1.42]
n+1 n+1 n

one can safely perform the limit— 0 under the integral sign of the first term on the right-hand-
side of EQ.(1.42). Now, the first term can be integrated is 4 space-time dimensions. That
being the case one, can perform the phase space integratiwerically.

At this stage, all of the singularities reside in the last tiwoms in the right-hand-side of
Eq.(1.42). Now, since a convenient choicedof' has been made in Eq.(1.41), one can carry out
analytically the integration afo* over the one-parton subspace. Again, using symbolic natati
one can write:

fdet= >

dipoles © ™

40" & [ Vipoes = [ [do” @1, [1.43]
1 n
where the universal factdris defined as

I= Z /dvdip01657 [144]

dipoles
and contains the /¢ and1/e poles. These poles can be combined with poleddh thereby
canceling all divergences. After the cancellation has loaened out, one can take the linait— 0

and perform the remaining-parton phase space integration numerically. The finatsira of the
calculation is

GNLO _ » {(dUR)E:o _ ( > do” ®dVdipoles)
e=0

dipoles

+/[dav+d03®1} .. [145]

€=

In Chapters 2 and 4 the dipole subtraction method describezlib used to compute the next-to-
leading order (NLO) QCD corrections for Higgs productiomssociation of two and three jets via
VBF.
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Chapter 2

Next-to-Leading Order Jet Distributions For Higgs Boson Pro-
duction Via Vector-Boson Fusion
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2.1 Introduction

The vector-boson fusion (VBF) procegs)—qQ H, is expected to provide a copious sources
of Higgs bosons impp-collisions at the Large Hadron Collider (LHC) at CERN. lincae visu-
alized (see Fig. 2.1) as the elastic scattering of two (aptarks, mediated by-channellV or
Z-exchange, with the Higgs boson radiated off the vectobhgsopagator. Together with gluon
fusion, it represents the most promising production pred¢es Higgs boson discovery [22, 23].
Once the Higgs boson has been found and its mass deterntieetiegasurement of its couplings
to gauge bosons and fermions will be of main interest [24}eN&F will be of central importance
since it allows for independent observation in file>77 [25], H—W W [17, 26, 27],H—~~ [28]
and H — invisible [29] channels. This multitude of channels is ¢alifor separating the effects of
different Higgs boson couplings.

The VBF measurements can be performed at the LHC with statistccuracies on cross sec-
tions times decay branching ratios,- B, reaching 5 to 10% [24]. In order to extract Higgs
boson coupling constants with this full statistical powaetheoretical prediction of the Standard
Model (SM) production cross section with error well belowd & required, and this clearly entails
knowledge of the next-to-leading order (NLO) QCD correictio

For the total Higgs boson production cross section via VBIS¢NLO corrections have been
available for a decade [12] and they are relatively smalhi-factors around 1.05 to 1.1. These
modestK -factors are another reason for the importance of Higgs bgsoduction via VBF:
theoretical uncertainties will not limit the precision dfet coupling measurements. This is in
contrast to the dominant gluon fusion channel where Rhactor is larger than 2 and residual
uncertainties of 10-20% remain, even after the 2-loop ctioes have been evaluated [8, 9].

In order to distinguish the VBF Higgs boson signal from baokmds, stringent cuts are re-
quired on the Higgs boson decay products as well as on thedweafd quark jets which are
characteristic for VBF. Typical cuts have an acceptancesd than 25% of the starting value for
o - B. The question then arises whether fkiactors and the scale dependence determined for the

inclusive production cross section [12] are valid for thgdt boson search region also. This is
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best addressed by implementing the one-loop QCD correciimoa fully flexible NLO parton-level
Monte Carlo program.

The purpose of this Chapter then is twofold. First, we useHlggs boson signal process
as our example to discuss the generic features of NLO QC[2cions to VBF processes. We
use the subtraction method of Catani and Seymour [21] throwly In Section 2.2 we describe
the handling of real emission singularities. We give expfrmulas for the finite contributions
which remain after factorization of the initial-state @go#lar singularities and after cancellation of
divergences produced by soft and collinear final-statergduagainst the corresponding terms in
the virtual corrections.

This procedure yields a regularized Monte Carlo prograntivallows us to determine infrared
safe observables at NLO. The main features of the programenaal tests, and parameters to be
used in the later phenomenological discussion are desciib&ection 2.3. In Section 2.4 we
then use this tool to address our second objective, a discusbthe QCD radiative corrections
as a function of jet observables. We determine Ah#actors and the residual scale uncertainties
for distributions of the tagging jets which represent thattsred quarks in VBF. In addition, we
guantify the cross section error induced by uncertaintiése determination of parton distribution
functions (pdf’s). Pdf errors and scale variations in thaggispace regions relevant for the Higgs
boson search turn out to be quite small (approximately 4%mwdtanbined) and thus indicate
the small theoretical uncertainties required for reliatdepling measurements. Conclusions are

presented in Section 2.5.

2.2 Subtraction terms for soft and collinear radiation

At lowest order, Higgs boson production via vector-bosasidn is represented by a single
Feynman graph, like the one depicted in Fig. 2.1(a)d@—gQQH. We use this particular pro-
cess to describe the QCD radiative corrections. Genetalizéo crossed processeg—¢q and/or
Q—Q) is straightforward. Strictly speaking, the single Feynngaaph picture is valid for differ-
ent quark flavors on the two fermion lines only. For identitabvors annihilation processes, like

qq— Z*—Z H with subsequent deca¥—qq or similar W H production channels, contribute as
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g
q— <7 a«M< g
——-H ———H
\%
Q—> —Q Qo —Q
() (b)

Figure 2.1 Feynman graphs contributingjto—gQ H at (a) tree level and (b) including virtual
corrections to the upper quark line.

well. Forqq—qqH or gG—qqH the interchange of identical quarks in the initial or finatstneeds
to be considered in principal. However, in the phase-spag®mns where VBF can be observed
experimentally, with widely separated quark jets of vergéainvariant mass, the interference of
these additional graphs is strongly suppressed by largeemtum transfer in the vector-boson
propagators. Color suppression further makes these &ffiegfligible. In the following we sys-
tematically neglect any identical fermion effects.

At NLO, the vertex corrections of Fig. 2.1(b) and the real €mon diagrams of Fig. 2.2 must
be included. Because of the color singlet nature of the exgdh vector boson, any interference
terms between sub-amplitudes with gluons attached to hethupper and the lower quark lines
vanish identically at ordet,. Hence, it is sufficient to consider radiative correctiomstsingle
qguark line only, which we take here as the upper one. Coarstio the lower fermion line are an

exact copy. We denote the amplitude for the real emissioogs®

4(pa) + Qs)—9(p1) + q(p2) + Q(ps) + H(P) [2.1]

depicted in Fig. 2.2(a) and (b) asl? = MI(p,, p1,p2;q), whereq = p; + pa — p, is the four
momentum of the virtual vector bosoW, of virtuality Q? = —¢°.
The 3-parton phase-space integral.817|? suffers from soft and collinear divergences. They

are absorbed in a single counter term, which, in the notatidRef. [21], contains the two dipole
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(d)

Figure 2.2 Real emission contributions to Higgs boson pectidn via vector-boson fusion.
Corrections for the upper quark line only are shown: gluahiatéon ((a) and (b)) and gluon
initiated processes ((c) and (d)).
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factorsDI' andDY,

1 2% 4 22
Q? (1—2z)(1—2)

whereCr = 5 andM¥% = M%(p,, po; q) is the Born amplitude for the lowest order process

M = DI + D, = 8 (ur) Cr M, \ [2.2]

sing

(Pa) + Q(ps)—q(P2) + Q(ps) + H(P) , [2.3]

evaluated at the phase-space point

Pa = ZDq Po=p1+p2—(1—2)p,, [2.4]
with
P1 D2
PR N b - T 2.5
(p1 +p2)  Pa [2.5]
s = 11— P1 - Pa _ D2 - Pa [2.6]

(1 4p2) Pa (P14D2) Do

This choice continuously interpolates between the singigla due to final-state soft gluong, (-0
corresponding ta—1 and z—1), collinear final-state partong(|p. resulting inp; - p,—0 or
x—1) and gluon emission collinear to the initial-state antadu@,;—(1 — x)p, andz—1). The

subtracted real emission amplitude squafad?|> — | M7|%, ., leads to a finite phase-space integral

sing?

of the real parton emission cross section

1 1 1
oy0 (Q—qQHg) = / d:ca/o day fagp (Tas 1r) fapp (20, 1) 57 %4 (P1:p2: 3, Pipa + py)
< {IMIP* FSY (pr,p2, ps) — ML F ><p2,p3>} : [2.7]

wheres = (p, + py)? is the center-of-mass energy. The functidﬁg) and F}z) define the jet
algorithm for 3-parton and 2-parton final states and we 0Inl';oneedF}3)—>F}2) in the singular
limits discussed above, i.e. the jet algorithm (and all oleaes) must be infrared and collinear
safe. Being finite, the phase-space integral of Eq. (2. AJatuated numerically irD = 4 dimen-

sions. Similarly, for the gluon initiated process

9(pa) + Q(py) — q(p1) + q(p2) + Q(p3) + H(P) , [2.8]
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the singular behavior fay—¢qq splitting is absorbed into the singular counter term

1 [22+(1—2)? o 2
|Mg|§ing =D§' + D = 8roy(ur) Ty 0 [# ’MqB (Pas Pa; C_I)‘
22+ (1 —2z)? L
+%IM% (pa,pz;Q)F] , [2.9]

whereTr = % andM% and M¢% denote the Born amplitudes for the leading-order (LO) psees

q(Pa) + Q(ps)—q(P2) + Q(ps) + H(P) andq(pa) + Q(ps) —~4q(p2) + Q(ps) + H(P), respectively.
The subtraction ofM?|2, . from the real emission amplitude squared leads to a cotiwibto the
subtracted 3-parton cross section analogous to the one giEy. (2.7).

The singular counter terms are integrated analyticallip ia 4—2e dimensions, over the phase
space of the collinear and/or soft final-state parton. hatiagg Eq. (2.2) yields the contribution

(we are using the notation of Ref. [21])

27 Q? 3

We have regularized the divergences using dimensionattiedu If we had used conventional

_ A\ € 2 4
< I(e) >= |MLp2UR) o ( WR> (1 + ) L_z + % 49— 2] [2.10]

dimensional regularization we would have obtained a finieze equal to(10 — 472/3). The
1/€% and1/e divergences cancel against the poles of the virtual cooratiepicted in Fig. 2.1(b).
For the case at hand, the virtual correction amplitidde is particularly simple, leading to the

divergent interference term

. 7 120s(1R) 4\ 2 3
2Re [My M) = |IM%J? o Cr < Q2R> I'(1+e) [—6—2 - + Cyirt | - [2.11]

Here we have included the finite contribution of the virtuggitam which is proportional to the
Born amplitude. In dimensional reduction this contribatis given byc,;,; = 72/3 — 7 (cyire =
7%/3 — 8 in conventional dimensional regularization).

Summing together the contributions from Eq. (2.10) and BdL1), we obtain the following

finite 2-parton contribution to the NLO cross section

1 1 1
os M9 (qQ—qQH) :/0 d%/o dxy fa/p (Tay 7)) fosp (To, fiF) %d‘bs (P2, 3, P;pa + Do)

7 |2 s a + s 4
x| ME[ 2 (pa, po) l1 1 slitna) = irs) ¢, <9 e cvirtﬂ 2.12]
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The twoa, terms, at distinct renormalization scaleg, and. g, correspond to virtual corrections
to the upper and the lower fermion line in Fig. 2.1, respetyivand we have anticipated the
possibility of using different scales (like the virtualizy the attached vector bosaf) for the QCD
corrections to the two fermion lines.

The remaining divergent piece of the integral of the coutgems in Egs. (2.2) and (2.9) is
proportional to theP% and P9¢ splitting functions and disappears after renormalizatbithe

parton distribution functions. The surviving finite colliar terms are given by

1 1
Ué%ﬁ(q@—ijH) = /Od%/o dxbch/p(xanuquRa) fQ/p(l"b,,uF)

1 12
ng(b?, (P2, 3, P;pa + pb) ‘M}]g‘ Ff) (p2,p3) [2.13]

and similarly for quark initiated processes. Here the goark function q/p(x Lr, (ir) 1S given

by

s Ld
fopla, pe, pr) = aéﬁ )/x f{fg/p (EaﬂF) A(2)
4 farn (5 ) = 2t @) B + fao (Zr) C2) )
y O e ) D). [2.14
with the integration kernels
2 2 Q*(1-2)
A(z) = Tr [z +(1—2) } In ——5—++2TF 2(1 - 2) , [2.15]
M=
B [ 2 Q*(1—-2) 3 1
B(z) = CF_l_Zln =z —51_21 , [2.16]
Clz) = Cp|l—2z— Inz—(1+2)ln Q2(1_Z)] : [2.17]
L < [i3:z
[ 2
D(z) = Cr g In % +21In(1 — 2) ln% +1In*(1 — z) + 7% — %7 — Cyirt | - [2.18]

Note thatc,;,; exactly cancels between the contributions from Eq. (2.h&)Eqg. (2.18). This fact
will be used below to numerically test our program.

The same kernels define the quark functigfg%(x, Lr, iir), Which appear with the Born am-
plitude M%(pa., p2; ¢) in the analog of Eq. (2.13) for thg)—q¢Q H processes. The gluon distribu-
tion f,/,(, uuy) thus appears twice, multiplying the Born amplitudes sogiane%|? and | M%)
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in the quark and anti-quark functions. These two terms spord to the two terms in Eq. (2.9),
after thel /e collinear divergences have been factorized into the NL@opadistributions.

Formulae identical to the ones given above for correctiortbe upper line in the diagrams of
Fig. 2.2 apply to the case where the gluon is attached to therlbne (witha < b, p, < p3). As
for the renormalization scaley in Eq. (2.12), we distinguish between the two factorizasoales
that appear for the upper and lower quark lines, calling tpegand ., when needed.

A second class of gluon initiated processes arises fronsicrgshe final-state gluon and the
initial-state quark® in the Feynman graphs of Fig. 2.2(a) and (b). The resultinggss can be
described agg—qV H with the virtual vector bosofr” undergoing the hadronic decay—QQ.
Such contributions are part of the radiative correctiongjteV H, they are suppressed in the VBF

search regions with their large dijet invariant mass, andlavaot include them in our calculation.

2.3 The NLO parton Monte Carlo program

The cross section contributions discussed above faydhe gQQ H process and crossing related
channels have been implemented in a parton-level Mont@@eshram. The tree-level amplitudes
are calculated numerically, using the helicity-amplitdiolenalism of Ref. [30]. The Monte Carlo
integration is performed with a modified version of VEGAS]31

The subtraction method requires the evaluation of reabgiom amplitudes and, simultane-
ously, Born amplitudes at related phase-space points (ge&gs. (2.7) and (2.13)). In order to
speed up the program, the contributions frefff© ando)'.{ are calculated in parallel, as part of

the 3-parton phase-space integral. Since the phase-deaveng factorizes [21],
2

1 1
/d(I)4 (p17p27p3up;pa +pb) :A dx/(] dZd(I)3 (ﬁ27p37p;xpa +pb) 1662% ) [219]

we can rewrite the finite collinear term of Eq. (2.13) as

1 1 1
NLO (- A _ .
02,0011 (QQ QQH) /0 dxa/o dflﬁ'b 2(])(1 +pb)2 d(I)4 (p17p27p37 Papa + pb)
X {fg/P(xav ,UF)A(x) + f(i/p(xav ,uF) |:B(ZE') ‘|‘ C(..'lf)}

+ oy p(aa. ) [D (eza) _ B(x)] }

1— 22,
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8o 712 N
g (v ) T |ty P ) [2.20]

wherex and z are determined as in Egs. (2.5) and (2.6). Equation (2.20)vslfor stringent
consistency checks of our program, since we can determéninite collinear cross section either
as part of the 2-parton or as part of the 3-parton phase-sptegral. For example, because of
the cancellation ot,;,; mentioned below Eq. (2.18), the final result cannot dependsovalue.
We have checked this independence numerically, aBthel0~* level. Another method to test
the program is to determine the (anti-)quark functigim(x, L, pir) by numerical integration of
Eq. (2.14), to then compute the finite collinear cross sadbgether with the Born cross section,
and to compare with the results of Eq. (2.20). For all phgeeasregions considered, our numerical
program passes this test, with relative deviations of leaa2 x 10~* of the total Higgs boson
cross section, which is the level of the Monte Carlo error.

As a final check we have compared our total Higgs boson crasigsevith previous analytical
results [12], as calculated with the program of Spira [32]e fvid agreement at or below the
1 x 1073 level which is inside the Monte Carlo accuracy for this congzm.

The cross sections to be presented below are based on CTE&® pistributions [33] with
as(Myz) = 0.118 for all NLO results and CTEQG6L1 parton distributions with( M) = 0.130 for
all leading order cross sections. ForaHexchange contributions, thequark is included as an ini-
tial and/or final-state massless parton. Dkgark contributions are quite small, however, affect-
ing the Higgs boson production cross section at3¥televel only. We chooser; = 91.188 GeV,
agep = 1/128.93 and the measured value Gf- as our electroweak input parameters from which
we obtainmy, = 79.96 GeV andsin? 8y, = 0.2310, using LO electroweak relations. In order to
reconstruct jets from the final-state partons,ithelgorithm [34] as described in Ref. [35] is used,

with resolution parametep = 0.8.

2.4 Tagging jet properties at NLO

The defining feature of vector-boson fusion events at haclotiders is the presence of two for-

ward tagging jets, which, at LO, correspond to the two soadtguarks in the procegs)—qQ H.
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Their observation, in addition to exploiting the propestad the Higgs boson decay products, is
crucial for the suppression of backgrounds [17, 25, 26, 8728]. The stringent acceptance re-
qguirements imply that tagging jet distributions must bewnagrecisely for a reliable prediction
of the SM Higgs signal rate. Comparison of the observed Hggsluction rate with this SM
cross section, within cuts, then allows us to determine Bliggson couplings [24] and, thus, the
theoretical error of the SM cross section directly feeds the uncertainty of measured couplings.

The NLO corrections to the Higgs boson cross section do nurg on the phase space of the
Higgs boson decay products because the Higgs boson, asas sloeds not induce any spin cor-
relations. It is therefore sufficient to analyze taggingdjstributions to gain a reliable impression
of the size and the uncertainties of higher order QCD cdomest Since search strategies depend
on the decay mode considered and will evolve with time, we ltensider generic vector-boson
fusion cuts only. They are chosen, however, to give a goodoappation of the cuts suggested
for specific Higgs boson search channels at the LHC. The pé@see dependence of the QCD
corrections and uncertainties, within these cuts, shdwd provide a reasonably complete and
reliable picture.

Using thekr-algorithm, we calculate the partonic cross sections fenevwith at least two

hard jets, which are required to have

Herey; denotes the rapidity of the (massive) jet momentum whicle@®mnstructed as the four-
vector sum of massless partons of pseudorapjgjty: 5. The Higgs boson decay products (gener-
ically called “leptons” in the following) are required tdifaetween the two tagging jets in rapidity
and they should be well observable. While an exact definagfaniteria for the Higgs boson decay
products will depend on the channel considered, we herdititbsuch specific requirements by
generating isotropic Higgs boson decay into two masslesgdhs” (which represent™ =~ or vy

or bb final states) and require

Pre > 20 GeV, ‘T}g‘ < 25, ARjg > 06, [222]
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whereR;, denotes the jet-lepton separation in the rapidity-azimiuahgle plane. In addition the

two “leptons” are required to fall between the two taggintg je rapidity

yj,min < 7761’2 < yj,maa: . [223]

We do not specifically require the two tagging jets to resid@pposite detector hemispheres
for the present analysis. Note that no reduction due to hiagaatios for specific final states is
included in our calculation: the cross section without amig corresponds to the total Higgs boson
production cross section by vector-boson fusion.

At LO, the signal process has exactly two massless finad-spaarks, which are identified as
the tagging jets, provided they pass thealgorithm and the cuts described above. At NLO these
jets may be composed of two partons (recombination effectye may encounter three well-
separated partons, which satisfy the cuts of Eq. (2.21) anddagive rise to three-jet events. As
with LHC data, a choice needs to be made for selecting thertggets in such a multijet situation.

We consider here the following two possibilities:

1) Define the tagging jets as the two highgsiets in the event. This ensures that the tagging
jets are part of the hard scattering event. We call this selethe “p,-method” for choosing

tagging jets.

2) Define the tagging jets as the two highest energy jets irvtikat. This selection favors the
very energetic forward jets which are typical for vectosbo fusion processes. We call this

selection the £-method” for choosing tagging jets.

Backgrounds to vector-boson fusion are significantly sepped by requiring a large rapidity sep-

aration of the two tagging jets. As a final cut, we require
Ayjj = Yi — Yl >4, [2.24]

which will be called the “rapidity gap cut” in the following.
Cross sections, within the cuts of Egs. (2.21)—(2.24), hosvs in Fig. 2.3(a), as a function of

the Higgs boson mass; ;. As for the total VBF cross section, the NLO effects are moflas
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Figure 2.3 Effect of QCD radiative corrections on the Higgsdn production cross section via
VBF, as a function of the Higgs boson mass;. Results are given at LO (black dotted) and at
NLO for thepr-method (solid red) and the-method (dashed blue) for defining tagging jets.
Panel (a) gives the total cross section within the cuts of Efjg1)—(2.24). The corresponding
scale dependence, for variationof andu. - by a factor of 2, is shown in panel (b). See text for

details.
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the cross section within cuts, amounting to a 3-5% increasthép,-method of selecting tagging
jets (solid red) and a 6-9% increase when Hyenethod is useld TheseK -factors, and their scale
dependence, are shown in Fig. 2.3(b). HereAh&actor is defined as
K- LUO(MR, 0, 7 [2.25]
ol (ur = Q)
i.e. the cross section is normalized to the LO cross sectletermined with CTEQ6L1 parton
distributions, and a factorization scale which is set touintiality of the vector boson which is
attached to a given quark line.
We have investigated two general scale choices. First weidenthe Higgs boson mass as the

relevant hard scale, i.e. we set

pr = §Fpmy , pr = ERME - [2.26]

As a second option, we consider the virtuality of the excleaingector boson. Specifically, inde-
pendent scale®), are determined for radiative correction on the upper andaiver quark line,

and we set

pri = ErQ; pri = §rQ; - [2.27]

This choice is motivated by the picture of VBF as two indepamidIS events, with independent
radiative corrections on the two electrovector boson westi In general we find the largest scale
variations when we vary the renormalization scale and tttefezation scale in the same direction.
We only show results for this case,= &z = &, in the following. The curves in Fig. 2.3(b)
correspond to the largest variations found fo= 1/2 and{ = 2 when considering both scale
choices simultaneously. The residual scale uncertairapagit-£5% at LO and reduces to below
+2% at NLO.

In addition to missing higher order corrections, the thecaterror of the VBF cross section

is dominated by uncertainties in the determination of thegpedistribution functions. We have

IThe larger cross section for thg-method is due to events with a fairly energetic extra céigta A veto on
central jets ofpr; > 20 GeV and rapidity between the two tagging jets, as suggesteithé VBF selection, lowers
the NLO cross section .97 x oo for the pr-method and).93 x oo for the E-method.
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Figure 2.4 Variation of the total cross section, within ¢ulige to errors in the parton distribution
functions, as a function of.;;. The central solid line corresponds to the “best fit” CTEQG6dA, p
while the upper and lower curves define the pdf error bandghvisidetermined from the 40 error
eigenvectors in the CTEQ6M set (CTEQ6M101-CTEQ6M140)iragidross section deviations
in quadrature.
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Figure 2.5 Transverse momentum distribution of the soégging jet for the the,-method
(solid red) and théZ-method (dashed blue) of defining tagging jets,/fof = 120 GeV. The
right-hand panels give th&-factors (black dash-dotted line) and the scale variatidh@NLO
results. Solid colored curves correspond:iio= 1z = £Q; and dashed colored curves are for
HUFp = UR = me with 5 = 1/2 and2.
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investigated this dependence by calculating the total $llggson cross section, within the cuts of
Egs. (2.21)—(2.24), for the 40 pdf’'s in the CTEQ6Mxxx (xxx 81+140) set. They correspond to
extremal plus/minus variations in the directions of the B@reeigenvectors of the Hessian of the
CTEQG6M fitting parameters [33]. Adding the maximum deviaidor each error eigenvector in

guadrature, one obtains the blue dashed lines in Fig. 2. #hvadefine the pdf error band. We find

a uniform+3.5% pdf uncertainty of the total cross section over the entingeaofm  shown.

Scale and pdf uncertainties exhibit little dependence erHiygs boson mass. We therefore
limit our investigation to a single, representative Higgsdn mass for the remaining discussion,
which we take asny = 120 GeV.

While the scale dependence of the integrated Higgs bosatuption cross section is quite
weak, the same need not be true for the shape of distributrbich will be used to discriminate
between Higgs boson signal and various backgrounds. Havfally flexible NLO Monte Carlo
program at hand, we can investigate this question. Cruwgtiloutions for the detection efficiency
of the signal are the transverse momentum and the rapidityedbgging jets. In Fig. 2.5 the cross
section is shown as a function }?ag, the smaller of the two tagging jet transverse momenta.
At LO, the tagging jets are uniquely defined, but at NLO onedinelatively large differences
between the-method (solid red curves in the top panels) andAhmethod (dashed blue curves
in bottom panels). The right-hand-side panels give theespondingk -factors, as defined in
Eq. (2.25), (black dash-dotted lines) and the ratio of NL@edential distributions for different
scale choices. Shown are the ratios

do™ O (up = pr = Qi)
do™NEO(up = pr = )
for 1 = 2+1Q; (solid lines) ang: = 2*'my (dashed lines). While th& -factor is modest for the

R =

[2.28]

pr-method, it reaches values around 1.3 in the thresholdmdgiche £-method. This strong rise
at NLO is due to hard forward gluon jets being misidentifieté@g)ing jets in théZ-method. This
problem was recognized previously in parton shower MontéoGamulations and has prompted
a preference for ther-method [36]. In spite of the larg&’-factor, however, the residual scale
uncertainty is small, ranging from -4% to +2% for the-method and -2% to +5% for th&-

method.
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Figure 2.6 Higgs boson production cross section as a fumofithe smaller of the absolute value
of the two tagging jet rapiditiesza/ol|y|}j;}jgn (in fb, for my = 120 GeV). Results are shown at LO
(dotted black) and at NLO for the--method (solid red) and the-method (dashed blue) of
defining tagging jets. The right-hand panel gives &hdactor (black dash-dotted line) and the
scale variation of the NLO result for thé-method. Colored curves for the scale dependence are

labeled as in Fig. 2.5.
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Figure 2.7 Rapidity separation of the two tagging jetsifgr = 120 GeV. In the left-hand panel,
do /dAy,; (in fb) is shown at LO (dotted black) and at NLO (solid redy, floe p--method of
defining tagging jets. The right-hand panel gives the cpording K -factor (black dash-dotted
line) and the scale variation of the NLO results. Coloredrearfor the scale dependence are
labeled as in Fig. 2.5.
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Figure 2.8 Transverse momentum distribution of the hamlgging jet, formy = 120 GeV. In
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for the pr-method of defining tagging jets. The right-hand panel giiescorresponding
K-factor (black dash-dotted line) and the scale variatiomhefNLO results. Colored curves for
the scale dependence are labeled as in Fig. 2.5.
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The more forward selection of tagging jets in themethod is most obvious in the rapidity
distributions of Figs. 2.6 and 2.7. In Fig. 2.6 the rapidifyttee more central of the tagging jets,
|y|§;ig“, is shown. At NLO, the tagging jets are slightly more forw#rdn at tree level, leading to a
K -factor which varies appreciably over phase space. ﬂ;mg‘-dependence is shown in the right-
hand panel for thé’-method, together with the residual scale dependence at ilg@in, scale
variations of less thar-4% are found over virtually the entire phase space. Foptheethod,
similar scale variations arise, as shown in Fig. 2.7 for thgidity separation between the two
tagging jets, where the cuts of Egs. (2.21)—(2.23) have eposed. Figure 2.7 demonstrates that
the wide separation of the tagging jets, which is importantéjection of QCD backgrounds, does
survive at NLO. In fact, the tagging jet separation eveneases slightly, making a separation cut
like Ay = |y;, — v;,| > 4 even more effective than at LO.

In all distributions considered so far, no clear prefereagerges on whether to choose the
vector-boson virtualityQ;, or my as the hard scale. While both choices are acceptable, the
transverse momentum distributions show somewhat smaibde yvariations for, = £Q; than
= Empy. The effect is most pronounced in the hightail of the tagging jet distributions. When
consideringdo /dpyis,, as shown in Fig. 2.8, the scale variation increases 10% at largepr
wheny = &my is taken, while the same distribution for= £Q; stays in a narrowt-2% band.
This observation provides another reason for our defaalesthoicey = Q);.

Unlike the tagging jets considered so far, distributionthef Higgs decay products show little

change in shape at NLO.

2.5 Conclusions

Vector-boson fusion processes will play an important rdléuture hadron colliders, most
notably as a probe for electroweak symmetry breaking. Femturticular case of Higgs boson
production, we have presented a first analysis of the sizeo&tite remaining uncertainties of
NLO QCD corrections to jet distributions in VBF.

As for the inclusive VBF cross section, QCD corrections stritbutions are of modest size, of

order 10%, but occasionally they reach larger values. Thesections are strongly phase-space
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dependent for jet observables and an ovekallactor multiplying the LO distributions is not an
adequate approximation. Within the phase-space regiewamt for Higgs boson searches, we find
differential K-factors as small as 0.9 or as large as 1.3. These correctemtsto be taken into
account for Higgs coupling measurements, and our NLO MomtdoCorogram, or the recently
released analogous program in the MCFM package [11, 3Aljgedhe necessary tools.

After inclusion of the one-loop QCD corrections, remainimgcertainties due to as yet un-
calculated higher order terms, can be estimated by comsgdscale variations of the NLO cross
section. Using the Higgs boson mass;, and the vector-boson virtuality);, as potential hard
scales, we find that these remaining scale dependenciegitgsiopall. Varying renormalization or
factorization scales by a factor of two away from these twired values results in typical changes
of the NLO differential cross sections 2% or less. The uncertainty bands for= {my and
= £Q; typically overlap, yielding combined scale uncertainté$ess thant-3% in most cases,
occasionally rising up to order 5% at the edges of phase spémeover, the variation in different
regions typically cancels in the integrated Higgs crosi@ecwithin cuts, leading to uncertainties
due to higher order effects af2% (see Fig. 2.3), even when considering different hard scdllee
remaining theoretical uncertainty on the measurable Haggss section, thus, is well below ex-
pected statistical errors, except for tHe—=W W search for Higgs masses around 170 GeV, where
the high LHC rate allows statistical errors as low as 3%. ldita@h, pdf uncertainties for the total
cross section are of order3.5% over the range 100 Ge¥ my < 200 GeV. This means that the
SM Higgs boson production cross section via VBF can be predij@t present, with a theoretical
error of about-4%.

The expected size of the LHC Higgs signal is enhanced sjidytthe NLO QCD corrections.
In addition to aK -factor slightly above unity due to a small shift of the taggiets to higher
rapidities, still well inside the detector coverage, taggets are moved slightly farther apart. This
allows for better differentiation of the Higgs signal fron€0Q backgrounds.

The techniques described here work in a very similar fasfoorother vector-boson fusion
processes such a8 11 ~j; production [38],Z7; production [39], and productiolj;j (V =
Z, W) [40].



Chapter 3

QCD Corrections to Jet Correlations in Vector Boson Fusion
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3.1 Introduction

The production of Higgs bosons in the vector boson fusionK)V@ocess will provide a direct
and highly sensitive probe di WW and HZZ couplings at the CERN Large Hadron Collider
(LHC) [17, 24, 25, 26, 27, 28, 41]. The determination both led strength and of the tensor
structure of these couplings is crucial for the identificatof the produced boson as a remnant of
the spontaneous symmetry breaking process which is refp@fs 1/ andZ mass generation.

Within spontaneously broken, renormalizable gauge tkedike the standard model (SM), this
coupling originates from the kinetic energy terfh),®)(D*®), of a scalar Higgs fieldp, whose
neutral component obtains a vacuum expectation value,(@8v) (v + H)/+/2. This replacement
then leads to a characteristic coupling in the interactiagrangian, of the fornd/V,V'* (V =
W, Z). The existence of the vev is necessary to produce a trilifgal” coupling at tree level:
with v = 0 all couplings to the gauge fields contain two scalar fields, i.e., onl{f HV and
HHVYV couplings would be generated. A triline&V'VV coupling may also be loop-induced,
however. The SM{~~ andH gg effective couplings are an example: they are induceld/bigoson
and/or top quark loops. Gauge invariance dictates a diffeéemsor structure of these loop-induced
couplings: the corresponding effective Lagrangian caosttie square of the field strength, i.e. the
lowest order loop-induced terms are of the foffw,, V* or HV,, V", whereV+ = L alad ™
denotes the dual field strength of the gauge field.

The task of future Higgs experiments is, then, twofold: diyneasure the overall strength of
the HV'V coupling, and (ii) to identify its tensor structure. One Wwbexpect a loop-induced
coupling to be much smaller than the expected BMV' coupling strength. However, the mea-
surement of VBF rates alone will not be sufficient to estdblisas being related to spontaneous
symmetry breaking: to give just two examples, the loop-g&tlicouplings might be substantially
enhanced by additional non-SM particles in the loop or byethistence of multiplets of large weak
isospin which couple strongly td. Or a particular LHC signature may be strongly enhanced by a

much largerH decay branching ratio than in the SM. A confirmation that#él” coupling has
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tree level strength is, thus, ambiguous: a clear identiinatf the Higgs boson also requires the
identification of the tensor structure of th&//V vertex.

It was pointed out some time ago that the azimuthal angleetadions of the two quark jets
in the weak boson fusion proceg®—qQH provide tell-tale signatures for the tensor structure
of the HV'V couplings [42]: the SM expectation is for a flat distributievhile the loop-induced
couplings lead to a pronounced dip at azimuthal separationsf the two tagging jets of 90
degrees for &V, VV*” coupling and at 0 and 180 degrees for the CP violafﬁgVVW vertex.
Observation of the tagging jets is crucial for isolating ¥8F process from backgrounds and,
therefore, their distributions will be available for all ¥Bsamples. Also, signal to background
ratios for VBF processes are expected to be very good witld@rsSiV, exceeding the 1:1 level for
wide ranges of the Higgs boson mass [24, 25, 26, 28, 41].

The analysis of Ref. [42] was performed at leading order (LYPCD. This means that addi-
tional gluon emission, which might lead to a de-correlatibthe tagging jets, was ignored in the
analysis. Subsequently it was argued [43] that such desledion effects play an important role in
a related procesgg— H gg, when the two tagging jets are widely separated in rapidibych is a
typical requirement for VBF studies. In this Chapter we gmalthis question, by calculating the
tagging jet distributions in next-to-leading order (NLOTQ, for the production of a scaldf via
VBF with an arbitrary tensor structure of tii&//V vertex. If de-correlation is important, it should
show up in the form of large radiative corrections at NLO. Vee the term “Higgs boson” as a

generic name for the produced scalar in the following.

3.2 The NLO calculation

The current calculation is an extension of the NLO QCD cdioas for the SM VBF processes
qQ—qQH (and crossing related ones) [10, 11, 12]. For the total csesfon these corrections
have been known for over a decade [12]. Recently, the QCDectad cross section has been
recalculated by developing a NLO parton level Monte Carlogpam [10] which provides the
flexibility to calculate arbitrary distributions at NLO, cgluas the azimuthal angle correlations that

are of interest here (See Chapter 2).
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Figure 3.1 Feynman graphs contributingito—qQ H at (a) tree level and (b) including virtual
corrections to the upper quark line. The momentum labeld aneintz indices for the internal
weak bosons correspond to the vertex function of Eq. (3.1).

The calculation of Ref. [10] uses a SM vertex functi@it; (¢, ¢2) = @gﬂ” forthe HVV
vertex in Fig. 3.1. Here the vertex is generalized to the rgesieral structure compatible with
Lorentz invariance. Taking into account that the quarkents in Fig. 3.1 and for the correspond-
ing gluon emission processes are conserved, all terms gimpal to ¢;' or ¢4 may be dropped,

and the most gener@d V'V vertex may be written as

T (q1,q2) = a1(q1, q2) 9" + as(q1, @2) @1 - 29" — d5qy] + as(qr, @2) € qupgas - [3.1]

Here ¢; and ¢, are the four-momenta of the two weak bosons, anddtli@, ¢-) are Lorentz-
invariant form factors, which might, for example, repressealar loop integrals in a perturbative
calculation. It is straightforward to implement the gehertex of Eq. (3.1) into the NLO QCD
Monte Carlo: the virtual amplitude of Fig. 3.1 is proport@brio the Born amplitudeM gy,
irrespective of the structure of tél/'V' vertex. Thus, all amplitudes reduce to a simple contraction
of quark (or quark-gluon) currents with the vertex functiohEq. (3.1). These currents, and
their contractions, are evaluated numerically, using tm@laude formalism of Ref. [30]. All
other aspects of the present NLO calculation are handledl Refi [10], except that Higgs boson
decays are not simulated in the following. Factorizatiod eenormalization scales are fixed to
uwr = pur = Q; for QCD corrections to the first or second quark line in Fig.. Here@; andQ,

are the virtualities of the exchanged weak bosons. We us&€X6Meparton distributions [33] with
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as(Myz) = 0.118 for all NLO results and CTEQG6L1 parton distributions forlathding order cross

sections.

3.3 Anomalous couplings and form factors

While theg#”-term in the vertex function (3.1) corresponds to a SM Higggaing, the anoma-
lous coupling termsi, andaz can be related to higher dimensional operators in an effetin-

grangian. They first appear at the dimension-5 |éaid may be written as

Gse " AT
Ly = P —mwiwow B gyt wom
A P T
95 17,00 1 92 g7, o 3.2
2A5e uv + m v ) [ . ]

where the subscript or o refers to the CP even or odd nature of the individual opesatlr the
discussion possible contributions frofy~y and HyZ couplings which can appear $U/(2) x
U(1) invariant formulations [44, 45] will be neglected. The psecmix of HWW, HZZ, H Z~
and H~~ contributions is quite irrelevant for the observable azimaliangle distributions, as long
as we do not consider interference effects between SM anehalpas vertices, and it will not
affect our conclusions about the size of NLO correctiong. dimplicity we therefore set; = 0
for the anomalous coupling case and choose relative cotitiiits fromWW W and Z Z fusion as
in the SM, by takingglWVW = glIWW = 1 gllZ2Z — 027 — 1 /cos? Gy, and by using either
As. ~480 GeV,A;, = o for the CP even case dr;, ~480 GeV,A;. = oo for the CP odd case,
which roughly reproduces SM rates for a scalar mass gf= 120 GeV.

The effective Lagrangian of Eq. (3.2) produces couplings

2 2
as(q1, q2) = _A5 95ZWW , as(q1, q2) = As géiww [3.3]

for the HW W vertex, and

2 HZZ 2 HZZ [34]

CLQ(CH,QQ) = _A se ) a3<Q17Q2) = A 950
be 50

1The dimension 5 language is appropriate for, e.g., an igtetiscalar resonandé. For a Higgs double® with
a vev, the leading operators appear at dimension 6 levelBldand the couplings in Eq. (3.2) are suppressed by an
additional factoi!VV ~ v/A.
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for the HZ Z vertex. In general, the; are form factors which are expected to be suppressed once
the momentum transfe{,/—qf, carried by the virtual gauge boson reaches the typical seas,
M, of the new physics which is responsible for these anomatouplings. Below we use the

simple ansatz

M2 M2
¢ — M? ¢ — M?
for discussing the consequences of such form factor effects

ai(Q1,Q2) = ai(ovo)

[3.5]

3.4 Results

The typical signature of a weak boson fusion event at the LBIGSIsts of the two quark jets
(tagging jets) and the Higgs decay products. The taggisggetd to be widely separated in rapid-
ity, with one quite forward (typical pseudorapidity of 3 tpahd the second one backward, but fre-
guently still located in the central detector (pseudorigyplaelow 2.5). Various Higgs decay modes
have been considered in the literature for VBF-WW [26], H—77 [25], and H—~~ [28] be-
ing the most promising ones. While optimized event selectiaries, in particular for the decay
products, the cuts on the tagging jets are fairly similarim@aalyses. Since the QCD features are
of main interest here, the NLO anlaysis is performed wittsonmulating Higgs decays, and typical
VBF cuts on the tagging jets are imposed.

In order to reconstruct jets from the final-state partons ithralgorithm [34] as described in
Ref. [35] is used, with resolution parameter= 0.8. In a given event, the tagging jets are then

defined as the two jets with the highest transverse momentkywith
prj > 20 GeV, ly;| <4.5. [3.6]

Herey, denotes the rapidity of the (massive) jet momentum whicleé®nstructed as the four-
vector sum of massless partons of pseudorapidity< 5. Backgrounds to weak-boson fusion
are significantly suppressed by requiring a large rapidépyasation of the two tagging jets. This
motivates the final cut

Ayjj = lyj — Y| >4, Yi iz <0, [3.7]

which includes the requirement that the two tagging jet&lesis opposite detector hemispheres.
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Figure 3.2 Normalized transverse momentum distributiomefhardest jet for the SM Higgs
boson (solid red line) and a scaldrof massny = 120 GeV with CP even anomalous coupling
as(q1, q2). The dash-dotted curves correspond to different form fasttales\/ = 100, 200, 400

GeVin Eq. (3.5) and., = const. (blue curves) at NLO. LO curves are shown by the dashed lines

and differ very little from the NLO results.
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The structure of théZ V'V coupling affects the production dynamics@fand we can expect
significant deviations in jet observables if, instead of #M, anomalous couplings describe the
vertex of Eq. (3.1). One example is shown in Fig. 3.2, wheaadverse momentum distributions,
do/dpr;(max), are compared between the SM (solid line) and the CP everlingug (¢, ¢2),
with different form factor scaled/ in Eq. (3.5). Herepy;(max) is the maximunp of the two
tagging jets. Only the shape of the distribution is congdesince the rate can always be adjusted
by multiplying the anomalous couplings by a constant facdso, one should note that a CP odd
coupling leads to very similar curves for a given form factoale. In all of the cases shown the
LO expectations (dashed lines) together with the NLO res@CD corrections are of order 10%,
typically, and well under control.

One finds that anomalousV' V' couplings generally lead to harder spectra of the two tag-
ging jets. Since the anomalous Lagrangian in Eqg. (3.2) esufiie Higgs boson to weak boson
field strengths, transverse polarizations of the incidéht pairs dominate the anomalous case,
while longitudinalV'V' fusion is responsible for SM Higgs production. A telltalgrsof transverse
vector boson fusion is the more central and, hence, high@roduction of the tagging jets. This
effect is enhanced by the momentum factors int#iéV anomalous vertices.

While the changed transverse momentum distributions in3=&jcould be used to rule out the
SM, the reverse is not readily possible: a jet transverse embnmn distribution compatible with
SM expectations might be faked by anomalous couplings andligipusly chosen form factor
behavior of the coefficient functions or a3 in Eq. (3.5). The different scale choices in Fig. 3.2
demonstrate this effect: a low form factor scaleMf = 100 GeV or slightly lower would be
difficult to distinguish from the SM expectation and one cartainly find a functional form of the
form factors which reproduces the SM within experimentede.

A much better observable for distinguishing the differemsor structures of thE V'V vertex
is the azimuthal angle correlation of the two tagging jets,d¢,; [42]. Hereg,; is the azimuthal
angle between the two tagging jets. The correspondinghlisions are shown in Fig. 3.3 for the
SM (solid line) and for the same choices of form factors asteef The dip aty;; = 90 degrees

for the CP even coupling and the suppression at 0 and 180etefethe CP odd coupling are
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Figure 3.3 Normalized azimuthal angle distributiopg do/d¢;; whereg,; is the azimuthal
angle separation of the two tagging jets. NLO (solid anddisthed) and LO results (dashed
lines) are shown fomy = 120 GeV in the SM (red curves) and (a) for a CP even anomalous
couplingas(qi, g2), (b) for a CP odd anomalous coupling(¢;, g») with form factor scales
M = 100, 200, 400 GeV and (blue curves) = oco.



45

clean signatures which only depend on the tensor structuhe@ouplings and not on the precise
dynamics which is responsible for the form factors. The riemg form factor dependence is
very small and can be explained by kinematic effects reltddtie higher average jet transverse
momentum for big form factor scales/: at smallp;, two highp; jets recoil against th&/ scalar,
resulting in an increased invariant mass of the event coatptar the situation with two back-to-
back jets. This leads to a more asymmetfjcdistribution for high form factor scales.

The pronounced dip at 90 degrees, which is characteristieedEP even coupling, is also found
in H 37 production via gluon fusion [46], at LO. This is not surpnigibecause, in the large top mass
limit, the Hgg vertex can be described by an effective Lagrangian prapmatito HG, G,
which exhibits the same field strength squared behavior andehthe same tensor structure as
the CP ever{ V'V coupling in Egs. (3.1,3.2). Since the two tagging jets arafart from each
other, separated by a large rapidity gap of 4 units of rapidit more, this LO behavior may
be significantly reduced by gluon radiation when higher oi@ED corrections are taken into
account. Such de-correlation effects have been studiedijitrevents at the Tevatron [47]. For
H 77 production via gluon fusion, Odagiri [43] has argued that dip structure is largely washed
out by additional gluon emission between the two taggirng jet

NLO calculations show that such de-correlation effectsimetevant for weak boson fusion,
wheret-channel color singlet exchange severely suppresses ghalation in the central region.
The LO and the NLO curves in Fig. 3.3 are virtually indistirghable. In order to better exhibit
the size of the NLO QCD effects for the VBF case the azimuthgle correlations for a pure
CP even anomalous coupling for three different Higgs massgs= 120, 200 and 500 GeV is
shown in Fig. 3.4(a). Only small changes are visible whemg@iom LO (dashed lines) to NLO
(solid lines). The differences between LO and NLO are smétian kinematical effects that can
be induced by cuts on the Higgs decay products or by varstibthe Higgs boson mass.

The small to modest size of the QCD corrections is quantifidelg. 3.4(b) where th&” factor
for the distribution is shown, which is defined as

do™N0 [dg,;

dol0/dg,; 13.8]

K(¢j5) =
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Figure 3.4 Higgs mass dependence of the azimuthal angleadigpay;; of the two tagging jets.
In (a) the normalized azimuthal angle distributions arenghat LO (dashed lines) and NLO
(solid lines) for Higgs masses oty = 120, 200, 500 GeV and a constant CP even anomalous
couplingas. Corresponding K-factors are shown in (b).
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The K -factor is belowx 1.4 even in the dip region, where the cross section is severplyressed.
Virtually identical results hold for the CP-odd case. Clgathe characteristic azimuthal angle

distributions of the jets in VBF are not affected in any sfgaint way by NLO QCD corrections.

3.5 Conclusions

The first calculation of the NLO QCD corrections to Higgs bogooduction via VBF in the
presence of arbitrary anomaloisl’V (V = W, Z) couplings has been performed. Anomalous
couplings lead to characteristic changes in the azimutigleacorrelation of the two tagging jets in
weak boson fusion events at the LHC, which provides for a sengitive test of the tensor structure
of the HV'V couplings of the Higgs boson or of any other scalar with sieffitty large production
cross section in VBF [42]. By explicit calculation, it hasgmeshown that these azimuthal correla-
tions are not washed out by gluon emission, at NLO QCD, eveugh the tagging jets are widely
separated in rapidity. This behavior can be understood aasequence afchannel color singlet
exchange in VBF which severely suppresses the central gadation which might cause tagging

jet de-correlation.
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Chapter 4

Next-to-Leading Order QCD Corrections for Higgs Production
via Vector-Boson Fusion in the Association of Three Jets
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4.1 Introduction

In this chapter the next-to-leading order (NLO) QCD corigats for Higgs production via vec-
tor boson fusion in the association of three jets (VBF;j) are computed. In Section 4.2 the
leading order (LO) cross section is discussed. In Secti8rihe Catani-Seymour dipole subtrac-
tion method [21] is used to regulate soft and collinear diaugties of the real emission corrections.
Formulae for the virtual corrections are given in Subsectic8.2. The cancellation of infrared di-
vergences of the virtual corrections is presented in Suiosed4.3.3. Formulae for finite collinear
contributions to the cross section that arise from rendeat@bn of the parton distribution func-

tions are given explicitly in Subsection 4.3.4.

4.2 The Leading Order Cross Section

The leading order (LO) cross section for the proggss~ H jjj can be computed from the real
emission graphs of the NLO QCD corrections to Higgs produnctiia vector boson fusion in the
association of two jets which was presented in Chapter 2 [@re precisely, the calculation is
exact for non-identical quark flavors on the upper and lowerklines. For processeg — qqgH
annihilation graphs likeg — Z* — ZH with subsequent decay — ¢g or W H production
channels also contribute. Fo4 — gqgH or qg — ¢ggH the interchange of two particle in the
initial or final state needs to be considered. However, irsplspace regions in which VBF can
be observed experimentally, with widely separated quaik gé very large invariant mass, the
interference of these additional graphs is strongly sigga@ by the large momentum transfer in
the weak-boson propagators. Additionally, color suppoessirther makes these effect negligible.
For these reasons, identical particle effects will be syatecally neglected. The matrix elements
for the Born-level graphs are computed numerically usirg hblicity-amplitude formalism of
Ref.[30] and the computer code developed in Ref.[10] isitgaailable for use in the current
calculation.

The Born Feynman graphs depicted in Figure 4.1 consist ottiar structures. The indext

refers to gluon emission off th&l quark-line and the index3 refers to gluon emission off th&s
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9(q) q(k1)  9(q) q(k1)
q(k2) q(k2)
H(P) ==~ H(P) --
Q(k4) Q(ks)  Q(k4) Q(ks)
q(k2) q(k1)  q(ks) q(k1)
H(P) -__ H(P) -_
Q(k4) Q (k)
9(q) Qks)  g(q) Q(ks)

Figure 4.1 Feynman graphs for the LO proce@s ) + Q(ks) — q(k2) + Q(k4) + H(P).

qguark-line. The Born amplitude can be decomposed into tiar sbructures

Mp(kyiy, koig, ksis, kaiy, qa) = t3; iz Mpo1 + 17,5, 0ini M B3 [4.1]
with
MB,21 = MB,zl(k‘z, q, ks ka, k??,) [4-2]
and
MB,43 = M43(k‘4, q, ks; ko, k‘l) [4-3]
for the generic process
q(k1) + Q(k3) — q(k2) + Q(ks) + g(q) + H(P). [4.4]

The indices, is, i3, andi4 are color indices for the external (anti-) quarks that césty momenta
k1, ko, k3, andk,, respectively. The index is the color index for the gluon. The notation being
used here will be referred to as diagrammatic notation. \Bé¢fe color sub-amplitude$tz 51 =

Mg 516, aNdMp 43 = Mg 43¢, are given explicitly. Here the space-time indeis the spin-index
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of the external gluon. For gluon emission off tiiequark line, the color sub-amplitude is

(2 +d1)
(ks + q1)2 |

P10 (k1 ) (ka) v Prytb(ks) Dy (¢3) Dy (¢3) [4.5]

Mo = 92N g gy gab(ka) [y Pry

w2 td)

T g 1)

whereq, = ki —q—ky andqy = k3 —ky. HereDy (¢?) = is the vector boson propagator

q? m +20
andP. = %(1 + 775) is the chirality projector. For gluon emission off th& quark line, the color

sub-amplitude is

0 v (it o)
Mz = 62931”1ng4f3gvags¢(k4)[V P, ——"

(ks + q2)?
p (K +q)

+ 7 (k4_'_q>27VPT3]¢(]€3)1E<]€2>’YVPT1w<k1>DV<Q%>DV<qg> [46]

whereq; = ki — ky andgs = k3 — g — k4. In both color sub-amplitudes,= ¢(q) is the gluon

polarization. The square of the amplitude averaged over sl
IMp|* = Cr(IMpa|* + Mg as|?) [4.7]

for the case that there are two initial state quarks. For &ise of an initial state gluon, one would
either drop the first or second term in the above equatioresinty VBF processes are considered.
Crossing can be used to compute the amplitudes for all otleeepses involving quarks and one
gluon. Physical momenta will be labeled pyandp, for initial partons whilep;, (i = 1,2...n)
label the momenta of the final state partons.

In terms of physical momenta, the Born amplitude for the pssc

q(pa) + Qo) — q(p1) + Qp2) + g(p3) + H(P), [4.8]

is denoted quQ = Mp(pala, P1i1, Dviv, P2ia, P3c3). Mp is the amplitude given in Eq. 4.1. The
momentum of the Higgs bosah is determined by momentum conservation, ifé+= p, + p, —
p1—p2 —ps. The Born amplitude can be decomposed into color sub- amtelﬂ/\/lB la andMB 2%

The decomposition into color sub-amplitudes is

MQQ - zua 22 ZbMB la + tzCSZb(lelanB?%‘ [49]
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and the color averaged matrix element squared is
IME* = CrMEL* + IMEY[). [4.10]

j’g?la = Mg 14(p1, 3, Da; P2, p») denotes the color sub-amplitude for graphs with gluon eioriss
off the quark line that connects the final state quayk ) to the initial state quark(p,). This will
be referred as emission off the upper line. Likewlse?g%b = Mg (P2, D3, Pv; D1, Pa) denotes
the color sub-amplitude for graphs with gluon emission b guark line that connects the final
state quark)(p2) to the initial state quark)(p,). This will be referred to as gluon emission off the
lower line. One should take note that due to the color streato interference can occur between
gluon emission off the upper and lower lines.

The contribution of;(Q — ¢QQgH processes to thA j;jj LO cross section is then

LO 1 1
ot4Q = aQgH) = [ du, [ dasfup(ea pe) fopplan ) [4.11]

1 3
2—§d<1>4(p1,p2,p3, P;pa+ py)MEPES (01, 92, 3, P Pas 1)

wheres = (p, + py)? is the center-of-mass energy squaréég.) defines the jet algorithm for the
3-parton final states.

The Born amplitude for the gluon initiated process

9(Pa) + Q(ps) — q(p1) + q(p3) + Qp2) + H(P), [4.12]

is denoted by/\/lgBQ = Mp(—psis, p1i1, Pois, P2lia, —PaCa). SiNcCe, only vector-boson fusion pro-
cesses are included there is only one color structure. sTdcteannel graphs have been neglected.

The decomposition is as follows
MY = t5%,0i0i, M B13(P1, —Pas —P33 D2, Db) [4.13]

and the matrix element square averaged over colors is

CFdF

9Q12 _
MR ==

|MB,13(P1> —Pa; —pg;pg,pb)|2 [4-14]

wheredr anddg are the number of colors for quarks and gluons respectively.
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The contribution ofy(Q — qqQ H processes téfjjj LO cross section is then

1 1
059(9Q — qqQH) = /0 dz, /0 dxp fy)p(Tas 1tr) fo p(Tb, 1ir) [4.15]

1
%d%(pl,pz,ps, P; pa + o) |ME212FS) (01, o, D3, P; pas ).

There is also a contribution due to the interchange of thalrgtate quark and gluon, i.€)g —
qqQH.

4.3 The Next-to-Leading Order Cross Section

In this Subsection analytic formulas for the Nl4&parton and-parton cross sections fpp —
Hjjj are presented. In Subsection 4.3.1 the real emission temeand the dipole subtraction

method is discussed. In Subsection 4.3.2 formulae for thealicorrections are given.

4.3.1 Real Emission Corrections and Dipole Subtraction

The real emission corrections for Higgs production in theoagtion of three jets via vector

boson fusion £ ;) consist of four subprocess classes:
(a) subprocesses in which there are two gluons and two quratks final stateq) — qQggH,
(b) subprocesses with six external qua3,— ¢Qq'q H,
(c) subprocesses which have one gluon in the initial stépe~ qqQgH, and
(d) subprocesses which have two gluons in the initial state; ¢GQQH.

The matrix elements squarésf|?, for the above subprocess classes contain both soft amalezodl

singularities. These singularities are regulated by uskedlipole subtraction method of Ref.[21].

The matrix element for the subprocess,

q(pa) + Q) — q(p1) + Q(p2) + g(p3) + g(ps) + H(P) [4.16]
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Figure 4.2 Feynman graphs far49 for which two external gluons are attached to theguark

line.
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Figure 4.3 Feynman graphs fan4® for which an external gluon is attached to both theand
2b quark lines.
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depicted in Figures 4.2 and 4.3 is denotedM/® = M99 (p1, py, ps, P4, P; pa, pp)- MIC can be

written in terms of color tensorg;®), and color sub-amplitudeg -+,

M = 26: T8 M@ F), [4.17]
k=1
with
TW = (#9495 Giniys [4.18]
T® = (#9449, Gini [4.19]
TG = (t%t%), i [4.20]
TW = (t%4%) 5, 6iis [4.21]
T = ¢ [4.22]
TO = ¢ 4 . [4.23]

It is possible to write the color tensof&*) in terms of orthogonal color tensors in order to
compute the matrix element squaréed{4?|2. However, for what follows it is sufficient to simply
square Eqgs. (4.17). Color factors are defined’as= Tr (T(’“)TT(”). Hence, the matrix element
squared takes the form,

6 6
|M§Q|2 _ Z Z CklM?Q(k)TM?Q(D. [4.24]
k=11=1

The non-zero color factors;;,;, are

Cyy = Oy = Cy3 = Cyy = Cs5 = Cgs = d3C5, [4.25]
1

Ciy = O3y = d3.Cp(Cp — §CA)> [4.26]

diCh

dg

C(13 = C(14 = C(23 = C(24 = C(56 = [427]

Hereds = N? — 1 anddr = N whereN is number of colors in a8U (N) gauge group.
The various color-sub-amplitudes can be grouped into aoglolon emission off thel quark
line, double gluon emission off the quark line, and gluon emission off both quark lines. Graphs

for which gluons are emitted off both quark lines do not ifee with graphs for which two gluons
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are emitted off a single quark line. Color sub-amplitudes® and M®), are orthogonal to the
sub-amplitudesM® for k& = 1 to 4. Inserting the color factors}; into Eq. 4.24, the matrix

element squared takes the form

|M3Q\2 = d%C%(\M(l)P + |M(2)|2 + ‘M(s)‘2 + |M(4)|2 + \M(5)|2 4 |M(6)\2)
4 2ReMOM®T £ MO MONGECp(Cr — %CA)

d3.C?
+ 2Re[(MY + M@YM® 4 MH)T] 1; F
G
d2.C?
+ dGF2R e[MP MO, [4.28]

The term® Re[M®TM )] and2 Re[(M D) + MP)(ME) + M D)1 are interference terms
that are color suppressed byd; = 1/(N? — 1). Besides being color suppressed there are kine-
matic suppressions that arise. For the VBF proegggs— ¢QggH the two forward tagging jets
are typically final state quarks. Gluon radiation typicalbcurs in the direction of the tagging jets.
Consider the case in which gluglips) is along the direction of(p; ). The fermion propagators in
MO, M and M® are enhanced while the fermion propagatord®), M@, and M© be-
come suppressed due to the large invariant mass of the tgmtaguarks jets. These interference
effects are collinear finite but do give rise to soft singtilas. In the soft limit the interference
terms are proportional to the interference of the Born smblaudesMB . and M % ‘- Using a
LO parton-level Monte Carlo program for Higgs productiortlie association with three jets via
VBF, the contribution from the above mentioned interfeeetezm to the cross section is computed
using

2

C'Fozs

S-SRl M, (M) ) [4.29]

in place of the matrix element squared given by Eq.(4.10)e 3im over helicities, and, is
performed on the absolute vaIueE:é[MB (MBS "»)'] to ensure that there are no cancellations
that result when the sum over subprocesses occurs. The lchdistribution in the rapidity of
the veto jet measured with respect to the rapidity averageeafgging jetsy,. = y;**° — (yﬁag "4

tag %)/2, is shown for both interference given by Eq.(4.29) and thenBoatrix element squared
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|/\/lj’9Q|2 stated in Eq.(4.10) in the left panel of Figure 4.8oth distributions are normalized to
total cross section due to either the Born matrix elemenausglior the interference. In the left

panel Figure 4.4 depicts the ratiddefined as

_ daii’,nt/ dyrel

) = G040y [4.30]

Here oi denotes the cross section due to the interference term giyetfg.(4.29) whilesl©
denotes the cross section resulting from the Born ampliggieared given by Eq.(4.10). The
interference term (Eq.(4.29)) is maximal fgr, = 0 when the veto jet is in the center of the
two tagging jets while the Born matrix element squared @@Q)) is maximal fory,.,, = +2.
The ratioR has a maximum value d0—* which is quite small. The ternsRe[M®TM©)] and
2 Re[(MD + M) (MO + M®)T] are then suppressed both by kinematics and color factors.
For these reasons these terms will be neglected.

The approximate matrix element square is then

6
ML = dpCE Y- |IMBP

approx
k=1

+ 2 ReMOMOT 4 MO MONECp (Cpr — %CA)). [4.31]

The computer code for the real emission matrix elementsrequa14%|? for the subprocess
q@Q — qQggH has been generated by MADGRAPH [48]. There are 24 Feynmarhgraln
order to compute Eq.(4.31) numerically from the MADGRAPHgeted code, the color factors

are chosen to be

Cy1 = Coy = C33 = Cyy = Cs5 = Cg6 = d7.C5, [4.32]
1

Ciy = Csy = d+Cp(Cp — §CA)> [4.33]

Ci3 = C1y = Coy3 = Cyy = C5 = 0. [4.34]

From this point forward, it will be understood that19%|* is actually |[MI?[2  given by
Eq.(4.31).

IThe veto cuts used here are given by Eq.(5.13).
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Figure 4.4 The normalized distribution in the rapidity o theto jet with respect to the center of
)/2, for Hjjj production at LO. In
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The soft and collinear singularities are regulated by us@aténi-Seymour dipole subtraction
method [21]. In the approximation that is being made, ondewgg color correlations between
upper and lower quark lines. Table 4.1 lists dipoles for ttecpss;(Q — qQggH for the approx-
imation being made here. In Table 4.1 the translation froemibtation of Ref.[21], CS notation,
to the notation of Ref.[50], CE notation, is given. The dif.ijﬁ}f“qq are given in Appendix A
for conventional dimensional regularization (CDR) as aggubto the dimensional reduction (DR)
form given in Ref.[50]. As a check, calculations have beerfgomed in both DR and CDR
schemes. Although there are differences that arise dunbegmediate stages of the NLO calcula-
tion, the final results are independent of regularizatidreste. Here CDR is used throughout. The
dipoles which are proportional to the interference betwagper and lower line Born amplitudes
are listed in Table 4.2. Thé&parton contribution to the NLO cross section frg@ — ¢QggH

processes is

1 1 1
NLO( Q— QQQQH) = /0 d%/o dﬁbfq/p(%,MF)fQ/p(%;MF);d%(pbp%p:’),m,P;pa+pb)
l MQQ 2F(4) . D F(3 4.35
2'{| r | J (p17p27p37p47pa7pb Z } [ . ]

where the dipole® (i) are listed in Table 4.1. The indéxpecifies the momentum configuration.
For D(7) the labeli refers to the real emission kinematics and Eﬁ the label: refers to
the transformed Born-level kinematics. For example, uJialgle 4.1 one would hav®(1) =
Dyy5(19,29,39,49; a7, b?) for the real emission process af’ (1) = F'*) (147 29, 39; a7, b9).
Here the momentum and flavor of the parton is labeled bydb for initial state partons and by
a whole number for final state partons. The superscuiptsdg label the flavor of the parton. For

example, (19,29, 39, 49; a4, b%) represents the real emission process
q(pa) + Qo) = a(p1) + Q(p2) + 9(p3) + g(ps) + H(P) [4.36]
and (14”29, 39; a?, b?) represents the Born-level process
q(pa) + Q(pp) — q(P1a) + Q(p2) + g(p3) + H(P) [4.37]

with transformed moment&p, 4, p2, P3; pa, P»). General formulae for the transformed (Born-level)

momenta can be found in Appendix A.
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The amplitude for the subprocess

9(pa) + 9(ps) = a(p1) + Qp2) + 4(ps) + Q(ps) + H(P) [4.38]

is denoted byM,.(19,29 37, 49; 9, 7). Collinear singularities occur when the initial state giuo
becomes collinear with one of the final state (anti-) quailigoles for this process are listed in
Table 4.5. All of the dipoles listed subtract initial stategularities with final state spectators. In

terms of color sub-amplitudes,

M, (19,2937 49, a9 1) =12, 12 M(31,42) + 2, t%. M(42,31). [4.39]

1113 71214 1113 "12%4

M (31, 42) represents the the graph with the quark currgnattached to gluon and quark current
J42 attached to gluoh. The matrix element squared is then

_ 2,772
M, (19,29,37, 4% 0 )2 = S MG1a2)P + [ M@3,3D)  [4.40)

_|_

2 Re[M (31, 42)* M (42, 31)].

To be consistent the second term in Eq. (4.40) is neglectex st is suppressed by color and
kinematics.| M (31,42)|> and| M (43, 31)|? integrate to the same cross section contribution. This
being the case, only four dipoles need to be considered. 49g@ton contribution to the NLO

cross section is then

1 1 1
o9 (g9 — q@gQQH) = /0 dz, /0 Ay foyp (Tas 107) Fo (s 107) 520P5 (D1, D2, D3, 1 PP+ o)
4

{|M7gﬂg|2F§4)(p17p27p37p4;pa»pb) - ZD(Z) . Fﬁg)(l)} [441]

i=1

where M99 = t¢ . t° . M(31,42). The dipolesD(i) are listed in Table 4.5. Dipoles for subpro-

1113 1214

cesseg() — qQq'qd H andg() — qqQgH are given in Tables 4.3 and 4.4, respectively. The tensor
T,, in Tables 4.3 and 4.4 is the uncontracted matrix elementrequa
Ty = Mu(M,)* [4.42]
where theu andv are gluon spin-indices. The matrix element squared is then
(MJ* = Z (¢, )) = —g" T [4.43]

where the sum over gluon polarlzatlov\s,has been performed.
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Table 4.1 Dipole factors foyQQ — qQggH processes. The color sub-amplitudes are
A= Mj’g%b(i) andB = M’ © (i) with Born-level momentun. The color coefficients); are

Cy = C%,Cy = Cp(Cp — 1C), andCy =

1CpCy.

Real kinematics

(17,29, 3,45; a7, 19)

~.

Dipole factor

Born kinematics

© o0 N O Ot ks W N

g Y SO
© 00 N O Ot B~ W NN = O

[\~
(aw]

Dus = Cs|BI"Dyyg,
D = Cs| BPDy,
D3y = CS(—QWD%[’,;Q + C.I“QVD%{;Q)BMB;
DY, = {Gi|AP + Co| BP} Dy

fiaqq
Dy = {C1]A]* + Co| B} Dy,

Dy, = C3(—g"D}e + ¢"q" Dy ) BB}
D = {C4|A|]? 4+ Cy|B2Y DI

if,qq

D® = {C4|A]? + Cy| B>} D%}

if,qq
a4 27ya4,3
Ds* = C’3|B| leqq
D = C3|BI*D}},

Davs = CYAFD,
Dy = CYAFD,

Dyt = Col gD, + 0B A
Db, = {C1|B]? + Gy AP} DY

fiaqq

D3 = {C1| B + Co| AP} D3y

fiqq
D}, = C3(—g"' Dl + ¢ Do )AL AL
Dy = {C1|B|? + Co| AP} DYy

if.aq
DE = {C1|BI* + Co| AP} Dy,
DY = Oy|APPDY?

if,qq

DY = Cs| APDY},

if,qq

(147,29, 39; a9, b9)
(137,29,49; a9, b9)
(19,29, 34%; a9, b9)
(147,29, 39; a9, b9)
(13,29, 49; a9, b9)
(19,29,34%; a9, b9)
(19,29, 39: ad”, b@)
(19,29, 49: 43", b@)
(19,29, 39; a4”, b?)
(19,29, 49; a3", b9)
(19,247, 39; a9, b9)
(19,23%,49; a9, b9)
(19,29,34%; a9, b9)
(19,247, 39; a9, b9)
(19,237, 49; a9, b9)
(19,29, 34%; 4 bQ)
(19,39, 39; a7, b4%)
(1‘1,2Q,4g;aq,63 )
(19,2939, a2, b47)
(19,29, 49; a3, 53°)

@

Q




Table 4.2 Dipoles foy(Q — qQggH processes that are color suppressed.

Real kinematics

(19,29,39,47; a1, b9)

Dipole factor

Born kinematics

21
22
23
24
25
26
27
28
29
30
31
32
33
34

Da4,b
'Db4,a
D3,
o,
Dy
DY
D24,1
D14,2
Ds,
o,
Dg3
DY
'D23,1
D13,2

19,29 39: q4? 19
19,29, 39: 49, pa”
19,24% 39 44, 12
147,29, 39; a9, b9
19,29 39; a4” b9

4 9Q 39. g1 p4°
1,94 39, qo, @
147,29 39: g4, 9
19,23%,49; 49, 12
137,29, 49: q2, 19
19,29 49; a3 b9
19,99 49. q9, p3°
17,23% 49, 09,12
137,29, 49; q9.b9

( )
( )
( )
( )
( )
(1 )
(1 )
( )
( )
( )
( )
(1 )
( )
( )
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Table 4.3 Dipole factors fojQ — ¢Qq'q'H processes. HerB? = M92 M9°* and
T = MBIMPE*. A= MB%( ) andB = M @ (i) for Born-level momentum.

Real kinematics

(19,29, 37 47 a4, b9)

i Dipole Born kinematics
1| Dyyy = 3CrTr(—g" D}y, + 0" D}y BuBy | (19,292,347 a9,09)
2 | Dyup = 2CrTr(—g" Diya, + "¢’ Dy ) AAL | (19,292,347 a9, b9)
3| Dy =iCrTr(—g"Dji, + ¢"¢’Dyis)BuB; | (19,29,34%;a9,b9)
4| DYy = 3CrTr(—g"Di0 + "¢ Din ) AAL | (19,29,34%;a9,09)
S| DY = 1R D, - e DTS | (205 ATl )
6| Df' = 1Cr(—g"Dify, + ' D) i | (29,37,37a1°,09)
7 DY = 1Cr(—g™Dira, + ¢"q"D}yo ) T4 (19, ?ﬂ’ 475 g1 52"
8| DR =1Cp(—g"Di7,,+a"¢"Diry) T (19,37,47; a7, b2")

64



Table 4.4 Dipole factors fog(Q — qqQQgH processes. Here the color factofs: = Cp,
Cy = Cp — 3Ca, andCy = 3C4. TIY = MI2 M2 for Born-level momentum.

Real kinematics (19,2937 49: a9, b9)
i Dipole factor Born kinematics
1 | D = {C1]|A%9)? + Co|BIQ P} Tp DYy, | (19,29,49; a3, 09)
2 | Dy = {C1|AR + Co| BRPYTRDIS | (29,39,49; a1, 19)
3 D$* = 3| B9PTr Dy}, (19,29,49; a3 b%)
4 D§' = C3| B1°*TpDYy o, (29,37,49; a1, b9)
5 | DIt = Cs(—g"' Dy + 0" Dipy TS | (19,29,37, a4’ b9)
6 | D§t = Cs(—g"'Diyo + q'q"Dip TS | (14,29,3%; a4’ b9)
7 Dyt = Cy|MoQ2DE2 (19,29, 37; a9, b4%)
8 DY, = C1| MO PPDT (19,247, 37, 09, %)
9 Dy, = Cs| MOPPDy (147,29,3%;: a9, 9)
10 Dy, = Cs| MO PPD}e (19,29, 34%; 49, b9)
11 Duus = CoMIQPD (147,29, 3% a9, b9)
12 Dyi1 = CoMOPDYy, (19,29, 34% a9, 19)

Table 4.5 Dipole factors fojg — ¢GgQQH processes.

Real kinematics | (19,29,37,49; a9, 9)
) Dipole factor Born kinematics
1| Dbt = Tp| MER2DY2 | (19,39, 3% 9, 4%
2 | D2 = T MIRP2DY2L | (19,37,49; a7, 12°)
3| PP = Tp|MYPDi}, | (19,29,49; 03", 19)
4| D§ =T MEPD 2 | (29,3749 a1 19)
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q(k2) q(k1)

V(g)
Figure 4.5 QCD correction to thg/V' vertex

q(k2) q(k1) q(k2) q(k1)

Vig) 9(q) 9(q1) V(gs)
Figure 4.6 ¢V vertex corrections fogg — Vg.

4.3.2 One-loop virtual corrections

Conventional dimensional regularization is used for cotimguthe virtual corrections. The
Passarino-Veltman reduction is performedlia- 4 — 2¢ space-time dimensions [49]. The virtual
corrections are split into two classes: the virtual coroe along the quark line with one weak
boson attached and the virtual corrections with a weak basdna gluon attached. Out of these

two classes, the virtual correctionsifj;jj production via vector boson fusion can be computed.

4.3.2.1 Boxline and Triangle Corrections

The first class of virtual corrections are QCD correctiong¢® vertices which were com-
puted in Ref.[10]. The amplitude for Born-level proceg&;;) — q(k2) + V(q), is denoted by
Mp(ki,ko;q). q = ki — ko is the four-momentum of the virtual weak bosbhof virtuality
Q? = —q*. The virtual amplitude in conventional dimensional regizi@ion M (k1, ko; q), de-
picted in Figure 4.5, is given by
A,
_q2

My (k1 ka3 q) = Mp(k1, k2; ¢)Cr % (1) (

e )T+ € (—3 - % + cvirt) [4.44]

€2

with ¢y = 72/3 — 8.
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q(k1)

" g(qr)

Figure 4.7 Propagator corrections fgr— Vg.

q(k2) ﬁ—é—-—%—-— q(kq1) q(k2) ﬁ—?ﬁ—é—-— q(k1)
V(g2) 9(q1) 9(q1) Vige)

Figure 4.8 qqg vertex corrections fogg — Vg.

The second class of diagrams are the virtual QCD correctmtise Feynman graphs where
a gluong and an electroweak bosdn (outgoing momentg; andg,) are attached to the same
fermion line. Feynman graphs are shown by Figures 4.7, 4d844l0. The kinematics used here

is for the process

q(k1) — q(k2) + 9(q1) + V(g), [4.45]

wherek? = k2 = 0 and momentum conservation redds= k, + ¢ + ¢;. As in [40], it is
convenient to use the Mandelstam variables f@r-a 2 process which is taken to jg — gV'.

The Mandelstam variables are defined to be

s= (k1 —k2)* = (1 + @)*,
t= (k1 — ql)2 = (ko + Q2)27

u= (k1 — @)= (k2 +q)* [4.46]

The gluon polarization denoted ly(q;) is transverse, i.e¢; - ¢; = 0. The electroweak bosdr
is always virtual in the calculation. The effective polatipn vector for the vector bosan(¢.)
corresponds to a fermion current. Due to the emission of tiggddoson off theé-channel vec-

tor boson propagator, the fermion current is not conseridence, terms with, - ¢ must be
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Figure 4.9 1-loop QCD corrections to theg vertex.

q(k2) q(k1)

V(g2) " 9(q1)

q(ka2)

V(g2)

Figure 4.10 Box diagrams faig — Vg.
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kept throughout the calculation. Electroweak gauge ilawvare of the amplitude is preserved, i.e.,
M, g5 = 0.
The Born amplitude fogg — ¢V is

. . (et
Mp(kyinTy, kaioTo, ra, gos €1, €2) = gy 207, 2 (—€) gy 1 gsti(ko) [y Pr i ; 42)7”

+ V“MVVPT]UUQ)GWQV- [4.47]

15 andi, are color indices for the quarks ands the color index for the gluonz is the chirality
index for the quark.P, = %(1 + 77°) is the chirality projectore; = ¢,(q1) ande; = €x(g0) are
polarization vectors for the gluon and vector boson, retbgady.

The virtual amplitude is computed ih= 4 — 2¢ space-time dimensions. The finite part
My = My (kvirTi, kaiaTo, 41, g3 €1, €2)

can be written as

s

MV = 57’2 7'57'1 T zzzl 41 (_e)gyhflgs [448]
(Cr — §CA){M9)(]€27 0, 425 €1, €2) + MP (ka, g1, go; €1, €2) }

1 -
- §CAM£3)(]€27 q1,42; €1, 62)} )

with
MOk, iere2) = Dk (e (s — o) + i) [4.49]
+ s+ ¢ ol + do)h } Prb (),
MO (kg giere2) = Dk (e (s — o) + i) [4.50]
+ s+ AP + )} P (),
and

Ms—g)(k27q17q2; €1,6) = 1;(752){0((]3)@1 — ) + 01 ¢1 + 02 ¢2
+ At (Ko + di)o + do(Bo + do)dh } P (k). [4.51]
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¥(ky) and(k,) are quark spinors. The slashed symb¢|& y*q,, are four-vectors contracted
with gamma matrices. The coefﬁciemf]é?, cgi : (:2 , andc fori = 1,2,3 are given in terms of
Passarino-Veltma®,; functions in Appendix B.

The virtual amplitUde/\/lv = Mv(k‘l’ilTl, ]{?Q’iQTQ, 14, ga; €1, 62) for q(kl) — q(k’g) + g((h) +

Vig)is
B Qg 1 (4np\* 4p®\ ¢ Ca 1
MV—MBEF[1+€]{§ << o ) —|—< — (—6—2—’792)
104 ([ 4mp®\° 4\ ¢ 4rp®\© Cr 1
+2C'F << —u ) +< —1 2 —s ( €2 %6)
drp®\° C 1 -
+2 < - ) (5 —%7) + Fls.tu) + chVm} + My [4.52]
where
F(S,t,u):7 ln ? —|—ll’l ﬁ §(CA—2CF)1 F
3 —5 1 —t
+=-(Cs —2CF)In <—2> + (zTrNy — —C’A < ( ) +In <—2>> . [4.53]
2 W 3 7
The constants,, v,, andc,;; are
3 11 2
Ye = §CF, Vg = FCA - gTRN]% [4.54]
2
Come = % ~ 8. [4.55]

Results for physical kinematic regions can be obtained layéioally continuing Eq.(4.52). For
example if the invariant; is time-like, then one would perform the following replacam in
EQs.(4.52,4.53)

u— u+i0T. [4.56]
The natural logarithm for, > 0 is then
In(—u) = In(u) — in. [4.57]

Theiw factors which result from analytic continuation vanish nguaring the sum of the Born
amplitude and the virtual amplitude. The analytic conttiarafor any double logarithms is dealt
with automatically by Fortran code for the finite part of thetwal amplitudeM in Eq.(4.52).

The above results can then be used for any momentum confayurat
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4.3.2.2 Hexagons and Pentagons

The third class of Feynman graphs are one-loop topologiewicch a gluon propagates be-
tween the upper and lower quark lines. The hexagon diagraensheown in Figure 4.11. The
pentagon graphs which are needed to preserve gauge irc@aas not shown, but would be in-
cluded in any calculations involving the hexagon graphse fixagon and pentagon graphs form
two gauge invariant sets. Here the virtual amplitude wildemoted as\y .. It will be under-
stood thatMy 1.« includes the contributions of any pentagon graphs. Thedgmxamplitude can

be deposed into

thx ta tb tb Mhox21+ta tb tb thx43 [458]

1277 j%1 1413 1477 J13 1211

whereM e, 21 and My, 43 denote hexagon graphs with gluon emission offzhguark line and
43 quark line, respectively. The interference of the hexagoplaude with the Born amplitude
M% leads to the expression

CZ

2 RelMEP (MI2)] = =L
G

{2 Re[ M 21(Ml}11?x,43) ] +2 Re[ M’ as( ﬁ?x,m)*]} . [4.59]

From the expression above it is evident that the QCD coomestiesulting from the hexagons are
suppressed by a factéyds = 1/(N? — 1) = 1/8 relative to QCD corrections to a single quark
current. The interference of the hexagons with the Bornauplitudes leads to soft singularities,
1/e poles, which are canceled against the integrated dipatesilin Table 4.2. The divergent piece
to 2 Re[M%(MI%)*] is proportional to Re[Mp 21 M7 43]. As discussed in Subsection 4.3.1,
these contributions are suppressed kinematically. Hehedyexagon and pentagon graphs will be

neglected.

4.3.3 Regularization of Divergences

Here the subprocesgp,) + Q(py) — q(p1) + Q(p2) + g(ps) + H(P) is considered. Only
the virtual corrections to a single quark current is congdesince the contribution of pentagon
and hexagon graphs is to be neglected. The virtual correctieeded here are exactly those of

Subsection 4.3.2. The virtual corrections can be writteNvgs = ¢33, 0;,;, My.1a+1t:%; 0iyi. Mv.2p.

i11q i21p



7;1 b ig
. b . . .
7 .
3 iy

a
rﬁa

le b Z'Q

b
13 14

Figure 4.11 Hexagon diagrams
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Recall, the Born amplitude takes the form{z = ;% 6;,i, MpB1a + tis;, 0i1i, M B,26- The virtual

121p

corrections can be decomposed into a divergent part andeiait My 1, = My.14aiv +/\;lv,1a.

My 1.]aiv denotes the divergent part of the virtual amplitude aﬁq},la denotes the finite part of

the virtual amplitude. Dot products of four-momentum vestare written as;; = 2p; - p; for

j =a,b,1,2, 0r3. Below thel'(1 + ¢) in Eq. 4.52 is replaced byﬁ. The interference of the

Born amplitude and the virtual amplitude is

2 RG[M*VMB]

+

2 s (17) 1
2r T(1—¢) [4.60]

1 ([4np\* 4rp®\© Ca 1
{2 (( S93 ) +< Sp3 ( €2 nyge)
1C Arp?\ € Arp®\ € A2\ € C 1
(B () o)) o0
F 523 Sb3 Sb2 € €
AP\ (Arp?\© C 1
o((5) + () ) -
Sb2 Sal € €

2
E(CA +4CF) + 2Cpcyire + F (02, So3, 823)}

Cp|ME%(P1. P2. P3; Pas Db)]

2
0 _ 205(1°) 1 4.61
CF|MB71a(p17p27p37paapb)| I I‘(]_ —E) [ . ]

1 ([ [4np?\* drp®\ ¢ Ca 1

() () )%

1C VIR 4\ 4y C 1

(5] () ()
F 513 Sa3 Sa1 € €
4rp®\© 4rp®\© Cr 1

(5 + () ) S -

2
E(CA +4CF) + 2Cpcyire + F (541, Sas, 513)}

Cr (2 Re[ M, (MY3,)"] + 2 Rel M, (M{7%,)]).

MV,M is the finite contribution due to virtual corrections on thequark line. Likewise,/\;lmb

is the finite contribution due to virtual corrections on ttbequark line. The precise form of these

finite contributions are given in Appendix B.
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Using the Catani-Seymour dipole subtraction method [21d,resulting insertion operater

I(e) > is given by

<I(e) > = Cp|ME%(p1,02, D3 Pas Pb)
1/ 4n2\©
HEYE
2 S93

104 [ (4mp®\°
* 2CF (( S93 ) +

|2063(LL2) 1
2 T (1—c¢)

(5) o
() (5] )7

() (55) o)

+ CplME o (p1. P2, D35 Pas Db
1 A\ €
2 513

104 [ (4mp®\°
(.

)‘2a8(:u2) 1
2r T'(1—¢)

(7))t
() () v

() + (50w

where

1 2

3

1
V,(e) = Cp <6—2 — —) + vqg + 7, + K, + O(e),

and

1 2

1
Vy(€) = Cy (6—2 - §> T Tt K, + O(e).

The constantsy, and~, are

3
Yq = §CF7 Yg =

and the constantdy, and K, are

7w
Kq:<§—€>CF, Kg:

11 2
—Cy — =TrN
6 A 3 RAV S,

67 w2 10
— | Cu— =TrNy.
<18 6) AT gt

[4.62]

[4.63]

[4.64]

[4.65]

[4.66]

[4.67]
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Combining Eq.(4.60) and Eq.(4.62) yields

2
* Qg
2 RG[MVMB]—I- < I(E) > = |M%Q(p1,p2,p3;pa,pb)|2 2(:: >Kborn [468]
as(u?)C
+ |MqBC,21a(pl7p27p3;paa]%)ﬁ%}?(salaSa37513)
as(p?)C
+ |M(113Q2b(p1,p2,p3;pmpb)P%F(Sb% 553, 523)

+ Cp(2 RG[MB la(MV1a> ] +2 RG[MB 2b(MV2b) 1)

The constantKy,o, IS

272 50 16 4qr?
Kiom = (-% 5 ) Ca— 5 TNy +2CF (—% + 10 + Cv1rt> : [4.69]

Given EQ.(4.68), one obtains the finite three-parton NLGssreection foyQ — ¢QH pro-

cesses

o"0Q — 4QoH) = [ d, [ drsfyp (o, ur) forpl i) [4.70]
q<g 0 a 0 bJq/p\Ta, LF)]Q/p\Tb, WF .

1 3
X 2—§d<1>(p1,pz,p3,P;pa,pb)F§)(pl,pz,ps,P'pa,pb)

{\M%Q(pl,pmps;pmpb)\ <1+ 2(7r )Kborn>

Qg CF

+ |MqBC,21a(plap27p3;pa7pb)|2 (,;L ) F(Sa17$a37$13)
s(1?)Cr

+ |M(113Q2b(p1,p2,p3;pa>Pb)|2%F(5b2,8b3,$23)

+ Cr(2 RelME, (MI3,)"] + 2 Re[ M, (M%) }

The virtual amplitude for the gluon initiated process

9(pa) + Q(ps) — a(p1) + a(ps) + Qp2) + H(P), [4.71]

is represented by\9% = M%Q(pl,pg,pg, P;pa,pp). Since, only vector-boson fusion processes
are considered here annihilation graphs are neglectedsitheof2 Re[(M{?)* M%?] and< I >

for the gluon-initiated process leads to the following ghparton NLO cross section contribution

o0 (0Q — qaQH) = [ dro [ dwfyp (o, mr) (e ) [4.72
g qq 0 a 0 bJg/p\Las LF)]JQ/p\Lb, HF .
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1 3
X 2—§d<1>(p1,p2,p3,P;pa,pb)F§)(pl,pz,ps,P;pa,pb)

o (12
{|M9BQ(p17p27p3;pa7pb)|2 <1 + <Iu )<Kborn + F(8137 Sa3, Sal))

2w
Crdp
dg
There is also a similar expression for the proa@gs— qqQ H.

_|_

2 RengQ)*MgBQ]} .

4.3.4 Finite collinear terms

In this Subsection, formulae for the finite collinear crossteon are given. The formulae below
can be derived from Eq.(A.77) by first writing down the vasaontributionsf, dmaN Lo where
ab = ¢Q, g9, 9@, qg. Then, the terms irfy dzo Y C are convoluted with the parton distribution
functions. The result can then be collected into piecesqtammal to the Born matrix elements
squares|M%?|2 and| M%?)2.

For the gluon initiated Born-level procegs) — ¢gQ H, the finite collinear contribution is

1 1
N (9Q = qaQH) = [ dra [ dw { fupai ) Sagplwni or un) [4.73]

1 a a
+ 3 (fgl/’p(%; R iR) + f;)p(l"a; HF, ,UR)) fam(ay; MF)}

1
2—§d<1>(p1,p2,p3, P;pa + o) [IMEPEP (91, D2y D3 Das o)
with

Fyin(@as s i) = D (Fyoe o (Tas s i) + oo (@ai s pim)) + fovy o (Tai o, i) [4.74]
q

and,

foo s e, wr) = Fon (@5 s 11R) + Foo (63 s 1iR). [4.75]

For the Born-level process®) — qQgH, the finite collinear contribution is:

1 1 1
ohe (qQ — qQgH) = /Od:ra/o dxb2—§d<1>(p1,pz,p3,P;pa+pb)F§3)(p1,p2,p3;pa,pb)
{(farp(Xar 10) £57, (o, o, i) + fof(as o, i) M) [4.76]

1
+ §Cqu/p(xa; ,uF)(fgfp(xh KHF, :uR) fQ/p(xbu HF, MR))‘MB 2b|2

1
+ §CA(fj/7?)(xa;ﬂFauR) fq/p(xav,anuR))fQ/P(xbnuF”MB1a| }7
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with
Fo(wa s pr) = oo (T s ir) + Fr (ol fors 1i). [4.77]

Using the above expressions the finite collinear terms catobguted as part of the 3-parton
phase space integration. Listed below are the convolutlsiatdjm;pfunctions,fé;ja/p(xa; LRy LR)-
The kernels for the convoluted splitting functions are givey A% (z), B4 (z), C%¥(z), and
D% (z). The subscripts. and b represent the splitting of a partento partonb. The super-
scriptsi anda are momentum labels for the momemteandp,. Using this notation allows one
to write down general formulas for the convoluted splittfagctions. The splitting function®
and flavor kerneldZ™ can be found in Appendix A.

The convoluted splitting function for the splitting— ¢ + g is

i,a O‘s(:“R) Ldz Lq
qu;q/p(xa"uF"uR) = o /_fq/p <;7MF>

Tqg <
7799 A L) o qq 2papz
{K (2) = [(1—2’ +6(1—2)| + P¥(2)In 2
as(/’l/ ) ! dZ 1,a
= S [ (Sn) = shpleaie) | Big () 14.78)
2,a Qs i,a
S (Zr) i)} + O g ) D),
with kernels
; 2 2papi(1 — 2) 7o 1
1,a — 1 - .
Biiz) = Cr|y— =t i) [4.79]
. [ 2p,pi(1 — 2
Ci(z) = Cp|—(142)In p“p;(zz ?) _ ——lnz 4 (1- z)] , [4.80]
L F o
ia _ 2 Vi Vi 2
Dyi(r) = Cp ?—5— Cr Oy In(1 —2)+In*(1 —2) [4.81]
L §1 2iPa | 51001~ )i 2pzpa1.
I i

For the splitting; — ¢ + g the convoluted splitting function is

i) = 0 [ g () (K70 P e a2

2m 13
as(pr) [Ldz Tq ia
= ( ) / _fq/p (?a ,uF) Aq7g (Z),

271' Tq
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with kernel

[4.83]

, L+ (1—2)?2  2papi(l—
A;;(z)ch[ L=y, 2eamil Z>+z].

z Uz

Forg — q + g splitting the convoluted splitting function is

,a as(MR) L dZ a9 T.-99 2pap2
fgq;g/p(za’uF"uR) = o /ma ?fg/p (?»MF) K7 (2) + P%(2)In /~LF [4.84]
as(pugr) [ dz Tq ia
= 27T ~/xa ;fg/p (;JI’LF) A‘dq(z)7
with kernel
ia _ 2 2 2papi(]- - Z)
At (2) = Tp[z" + (1 — 2)°] In ———— + Tr22(1 — 2). [4.85]

KRz

For theg — ¢ + g splitting the convoluted splitting function is

i,a QS(UR) Ldz Lq
fgg;g/p(x“’“F’“R) = /x_fg/p (;MLF)

2T 0w 2
7799 3 1 2pap2
K7 (2) ~ 5Cs < ) 4 61— 2)| + P9(2)In 4.86]
1=2/4 2
O‘s(:u ) Ldz 2,a
= 2 [ (i) = =l )] Big )
Lq i.a Qs 2,0
b o (D) O3} + O g ) D),
i 2 2papi(1 B Z) 3 1
1,a — 1 S .
B (2) Ca ll—z n ) 5T 5| [4.87]
i B 1—-2 2papi(1 — 2) 2
Coa(z) = Ca l( . 1+2(1 z)> In 2 1_Zlnz , [4.88]
; 2 ali 2 ali
Dyo(x) = 204In(1 —z)ln p2p + 7 lnp—2p
Mg Mg
2 50
+ Oy (% -5 (- @) [4.89]
16 3 3
Here the initial state momentg andp, are
Do = xaPaa Po = szb [490]

wherez, andz;, are the Feynman-and P, and P, are the beam momentum. The constagtand

v, are given by Eq.(4.54).
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4.4 Concluding Remarks

The cross section contributions discussed in the previeasons have been implemented in
a parton-level Monte Carlo program. The Born amplitudescateulated numerically using the
helicity amplitude formalism of Ref.[30]. These amplitsdeave been taken from Ref.[10]. While
the Fortran code for the real emission amplitudes has bewraged using MADGRAPH [48]. The
Monte Carlo integration is performed with a modified verstdVEGAS [31]. Gauge invariance
has been checked numerically and analytically for the alrumplitudes. The dipole subtraction
method used here has been checked numerically in all regiguisase space for which there are

collinear or soft singularities in the real emission graphs



Chapter 5

Central Jet Veto Efficiency at NLO
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5.1 Introduction

The observation of two forward tagging jets in Higgs produrtiia VBF at the LHC is crucial
for the suppression of backgrounds [17, 25, 26, 27, 28, 2%ddition to forward jet tagging, the
veto of any additional jet activity in the central regiaeitral jet veto) also leads to suppression
of QCD backgrounds such & W ~j; , ttjj, and gluon fusionH j; production [27, 51]. This
is caused by thé-channel exchange of quarks or gluons which tend to radiate mluons. For
VBF processes there is suppressed jet activity in the dengiygon which is due to color singlet
exchange in the-channel. For the central jet veto (CJV) proposal, evergsdacarded if any
additional jet with a transverse momentum above apgut,, is found between the tagging jets
[14, 15, 16, 17, 18, 19, 20]. Survival probabilities for th@&\Chave been calculated for the Higgs
boson signal and background processes using LO matrix alsrfib, 27]. However, for the VBF
processpp — Hjjj the cross section suffers from scale variations on the atief%. Since
survival probabilities depend on tl3get and2-jet cross sections, any theoretical uncertainties of
these cross sections will feed into the survival probaesiand in turn the uncertainty of cou-
pling measurements at the LHC. The vector-boson fusionusgs in simulations are described
in Section 5.2. In Section 5.3 the scale dependence of thetoideading order (NLO) three jet
cross section for Higgs production via VBF (VBF; ;) is discussed. In Section 534jet ratios
R = dos/do, for Higgs production are computed to NLO accuracy using tB&\ jj; parton-
level Monte Carlo program developed in Chapter 4 and the VBF parton-level Monte Carlo

program developed in Chapter 2.

5.2 Vector-Boson Fusion Cuts

The Standard Model (SM) parameters used in all subsequenti@izons are listed in Table
5.1. SM parameters are computed using LO electroweak aakatiCross sections are computed
using CTEQ6M parton distributions [33] for all NLO resultsctaCTEQ6L1 parton distributions

for all leading order cross sections. The running of thengtrooupling is evaluated at two-loop
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order, witha,(Mz) = 0.188, for LO and NLO results. In order to reconstruct jets from final-
state partons, thé; algorithm [34] as described in Ref.[35] is used, with resiolu parameter
D =0.2..

Table 5.1 Standard Model input parameters

a0 (My)  al®(My) My Gr QQED
0.118 0.130 91.188 GeV 1.16639 x 10~° 1/128.930

The k7 algorithm is used to calculate the partonic cross sectionsvents with at least three

hard jets, which are required to have
prj > 20 GeV, ly;| <4.5. [5.1]

Herey; denotes the rapidity of the (massive) jet momentum whicle@®mnstructed as the four-
vector sum of massless partons of pseudorapjgijty: 5.

At LO, there are exactly three massless final state partone.tWo hard jets are identified as
tagging jets provided they pass the algorithm and the cuts described above. At NLO these jets
may be composed of two partons (recombination effect) or feeil-separated partons may be
encountered, which satisfy the cuts of Eq. 5.1 and would gsesto four-jet events. As with LHC
data, a choice needs to be made for selecting the tagginjstsch a multijet situation. Here
the “pr-method” is chosen. For a given event, the tagging jets diratkas the two jets with the

highest transverse momentup,;, with
pre > 30 GeV, Y| < 4.5. [5.2]

The non-tagging jets by default here are jets of lowest tr@rse€ momenta but do not necessarily
satisfy the cuts of Eq.(5.2) but satisfy the cuts of Eq.(5.1)

The Higgs boson decay products (generically called “legtam the following) are required
to fall between the two tagging jets in rapidity and they dtidue well observable. While the

exact definition of criteria for the Higgs decay productslwiépend on the channel considered,
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such specific requirements here are substituted by gemgiatitropic Higgs boson decay into two

massless “leptons” (which represeritr— or 4 or bb final states) and require
pre > 20 GeV | Ine) < 2.5, ARjp> 0.6, [5.3]

whereRR;, denotes the jet-lepton separation in the rapidity-azi@lahgle plane. In addition, the

two "leptons” are required to fall between the two taggintg je rapidity:

t t
yj,ariin < Ney 2 < yj?r%mm' [54]

Note that no reduction due to branching ratios for specifed Bitates is included in the calculation.
Backgrounds to vector-boson fusion are significantly sepged by requiring a large rapid-
ity separation for the two tagging jets. Tagging jets areuneql to reside in opposite detector

hemispheres with
y;ag ! ~y;ag 2 <0. [5.5]
with a "rapidity gap cut” of
Ayji = |yt — ;™7 > 4. [5.6]

QCD backgrounds for the Higgs signal typically occur at demahvariant masses, due to the
dominance of gluons at small Feynmarn the incoming protons [27]. The QCD backgrounds

can be reduced by imposing a lower bound on the invariant ofakg tagging jets of

mj; > 600 GeV. [5.7]

5.3 Scale dependence

The cross section for Higgs production via VBF in the assameof three jets 7 ;;7), within
the cuts of Egs.(5.1)-(5.7), is shown in Figure 5.1. Theesdabendence of the NLO and LO cross
section is shown for fixed factorization and renormalizasoales..» and .z, which are tied to

the scalguy = 40 GeV,

tr = Ero, pr = Epflo- [5.8]
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Figure 5.1 Scale dependence of the total cross section ahH®IBO within the cuts of Egs.
(5.1)- (5.7) for VBFHjj; at the LHC. The factorization scalg- and the renormalization scale
1r have been taken as multipl€g,,, of the scalg:y = 40 GeV and¢ is varied in the range

0.2 < £ < 10.0. The NLO curves are fotr = pup = 1o (solid line),ur = po andugr = pg
(dotted line), and.r = &up andur = o (dot-dashed line). The dashed curve shows the
dependence of the LO cross section on the renormalizateda aad factorization scale with

pr = i = o
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do/dAy;[fb]
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Figure 5.2 Hjjj production with the cuts of Egs.(5.1)-(5.5) and Eq.(5./A)tHe left panel,
do /dAy;; (in fb) is shown at LO (dashed line) and NLO (solid line) for = g = 40 GeV. In
the right-hand panel th& factor (solid line) and scale variations of LO (dotted lipasd NLO

(dashed lines) results are shown foy = £pp andur = 40 GeV with € = 1/2 and2.

The LO cross section depends on both the factorization amormealization scale. Fotipz =

ur = Epo With 0.5 < £ < 2 the scale variation is-25% to —18% for the LO cross section. The
LO Hjjj production cross section is proportionaktQ For Hjj production, recall, there was no
such dependence at LO. At NLO three choices are showgi(a&) £ = £ (solid line); (b)ég = &,

&r = 1 (dotted line); (cr = 1, & = £ (dot-dashed line). Allowing for a factar variation in
either direction, i.e., considering the rangé < ¢ < 2, the NLO cross section changes by less
than5% in all cases. K factors for H;j; production range from.03 to 1.06 for Higgs boson
masses ofn;, = 120 GeV t0 200 GeV for £ = Ep = 1.

The K factors shown in Figures 5.2 and 5.3 are defined by the formula

K(z) = doy " O (g = pp = po)/dx
dog®(ur = pr = po)/dz

[5.9]

In order to study scale variations, the relative change iisprded according to the following for-

mula,

dUéVLO(MR = & o, ip = Ho)/dx
dog O (ur = pr = po) /dx

relative change = [5.10]
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Figure 5.3 Hjjj production with the cuts of Egs.(5.1)-(5.5) and Eq.(5.6)tHe left panel,
do /dm; (in fb/GeV) is shown at LO (dashed line) and NLO (solid line) fir = g = 40 GeV.
In the right-hand panel th& factor (solid line) and scale variations of LO (dotted linhasd NLO

(dashed lines) results are shown foy = {pp andur = 40 GeV with € = 1/2 and2.

for £ = 1/2 and2 with py = 40 GeV.

In the left-hand panel of Figure 5.2 the distributidn/dAy;; is shown at LO (dashed line)
and at NLO (solid line) forH jjj production. Just as in the NL& j; case, the peak in pushed
towards higher values of rapidity separatin;,. This strengthens the case for the rapidity gap
cut of Ay,;; > 4. The K factor (solid line) in the right-hand-side of Figure 5.2 igltly phase
space dependent. The scale variatiors2*! at NLO are—24% to +12% for Ay;; = 3 while for
tagging jet rapidity separations larger than units the scale variations are less thiaé{/.

In Figure 5.3 for a fixed value of renormalization and factation scalejr = i = 40 GeV,
the distribution over the invariant mass of the taggingjefsis shown. Thek factor (solid line)
peaks aroundh,; = 700 GeV. The¢ = 2*! scale variations aré’ to —3% over the entire range
of invariant dijet mass for NLO (dashed lines) results wiile variations at LO (dotted lines) are
—10% to +14%.
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5.4 The Three Jet Cross Section

Here the dependence of tBget ratio R = o3/0, on the rapidity separation)y;;, and the
invariant mass;;, of the tagging jets is investigated at NLO and LO. Hegeand o, denote
cross sections for the Higgs plus two jet production via VBBFE H j7) and Higgs plus three jet
production via VBF (VBFH jjj), respectively. In Figures (5.4, 5.5, 5.6,53#kt ratios,R(z), are

plotted with respect to various kinematic variablesThe NLO3-jet ratio, V29 (), is defined as

dol O (g, pr)/du

RNLO () — , 5.11
)= T8 i = o = ma) .
while the LO3-jet ratio, R*“(x), is defined as
LO
RLO(Z') _ dUS (:uRv IUF)/d:E [512]

Ao (ur = pp = my)/dx’
Notice, that forRV° and R*©, the Hj; distribution is computed to NLO accuracy. TH#E&j;
cross section is computed at NLO because it provides the avasirate cross section. For the
H jj distributions, the NLO parton-level Monte Carlo progransciéed in Chapter 2 is used with
renormalization scaleyr, and factorization scaler, set to the mass of the Higgs boson,.
The Hjjj cross section is computed using the NLO parton-level pragtascribed in Chapter 4.
Calculations are performed for Higgs boson masses;of 120 GeV andm;, = 200 GeV.

In Figures 5.4 and 5.6 the renormalization scalg,is varied while the factorization scaley,
remains fixed ati, = 40 GeV. 3-jet ratios are plotted fonz = 20, 40, 80, and120 GeV. Applied
cuts for both Figures 5.4 and 5.6 are Egs.(5.1)-(5.5). Fguréi 5.4, the dijet invariant mass cut of
Eq.(5.7) is applied. For Figure 5.6, the rapidity gap cut qf(&.6) is applied. The distribution in
the rapidity separation of the tagging jetg,; = \y;ag - y;ag ?| is shown for bothH jj and H jjj
production at LO and NLO in the left panel of Figure 5.4. In tight panel of Figure 5.4 the ratios
RNLO (solid) andR™© (dashed) are shown. At LO the ratié®© (dashed curves) reach of value
of 0.6 at Ay;; = 3 whereas at NLO the ratid3"“© (solid curves) reach a value 0ft. The reason
is that at NLO forH j; production the peak for théo /dAy;; distribution is pushed forward in
rapidity separation. The effect is to enhatit®’ in the Ay;; = 3 region. However, there is no such

effect for RVL9 since forH jj; production the distribution in the rapidity separationtod tagging
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do/dAy;[fb]
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Figure 5.4 The rapidity separation of two tagging jetsifor = 120 GeV within the cuts of
Egs.(5.1)-(5.5) and Eq.(5.7). In the left pan&t,/dAy,; (in fb) is shown at NLO (solid curves)
and LO (dashed curves) féf jj. For Hjjj both LO (dashed curves) and NLO (solid curves) are
shown for several choices of renormalization sgaje= 20, 40, 80, and120 GeV. In the right
panel, LO3-jet ratios, R (Ay;;) (dashed curves), and the NLJet ratios, RV (Ay;;) (solid
curves) are shown fqrz = 20, 40, 80, and120 GeV.

do/dAy;[fb]

300_||||||||||||||||||||||||_ —||||||||||||||||||||||||—
r T 0.6 —

250 — —] i 7
B dashes: LO = e -
C solid: NLO N solid: NLO m; = 200 GeV -

200 — — = -\ dashes: LO m, = 200 GeV T
C ] > 04— \ —
L - < | \ .
- — N

150 — — m = \ _
C Hjj 3 - |

100_— —] 0.2 — ]
= — ~
C Hjj ] B ]
50_— ] ~
0’ - 0.0""|""|""|""|""
3 4 5 [¢] 7 8 3 4 5 6 7 8

Ayj; Ay

Figure 5.5 TheH jjj rapidity separation of two tagging jets for, = 200 GeV within the cuts of
Egs. (5.1)-(5.5) and Eq.(5.7). In the left pan&t,/dAy,; (in fb) is shown at NLO (solid curves)
and LO (dashed curves) for bothjj andH jjj. In the right panel, the LG-jet ratio R“° (Ay,;)
(dashed curve) and the NL®jet ratio RV-C(Ay,;) (solid curve) is shown forz = 40 GeV
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jetsis also pushed forward. Additionally, one notices thahigher values ofAy;; renormalization
scale dependences decrease. For both LO and NLO the ftidg;;) monotonically decrease.

In the left panel of Figure 5.5 the rapidity separation oftdgging jets is shown for botH ;5
and Hjjj production at LO and NLO for a Higgs massqaf, = 200 GeV for the cuts used in
Figure 5.4. The corresponding ratids:©® and RV£9, are shown for a fixed renormalization and
factorization scaleur = ur = 40 GeV in the right panel of Figure 5.5. Again, as in the case of
a Higgs mass ofn;, = 120 GeV, the ratioRV-© has a steady downward slope. The rafitf’
decreases more rapidly for/sy;; value belows.

In Figure 5.6 the distribution in the invariant mass of thggiag jets is shown in the left panel
for a Higgs boson mass of;, = 120 GeV for Hjj and Hjj; production at LO (dashed curves)
and NLO (solid curves). Both the LO and NL&)jj; distributions are shown for several choices
of renormalization scale in the range GeV < ur < 120 GeV in Figure 5.6. The corresponding
ratios, R“© and RVLO, are shown in the left panel of Figure 5.6. The scale vaniatim the
RO curves are large compared to the scale variations inhe” curves. The distribution in
the invariant mass of the tagging jets for a Higgs boson méss, 0= 200 GeV is shown in
the left panel of Figure 5.7 fok jj and Hj;j; production at LO (dashed curves) and NLO (solid
curves) for cuts used in Figure 5.6. For bathh = 120 GeV andm; = 200 GeV there is an
enhancement if®¥2© in the vicinity ofm,; = 700 GeV. However, there are slight differences for
mj; > 1500 GeV. Qualitative features remain the same in both cases.

Another interesting observable is the distribution in tapidity of a veto jet, measured with
respect to the average rapidity of the tagging jgis,= v} — (v, t y;® ?)/2. In addition to
the cuts of Egs.(5.1)-(5.7), the veto jet is required to Fetransverse momentupi® > 20 GeV

and to reside in the gap region between the two tagging jets,

Pr° 2 20GeV, gt e (g7, [5.13]

In Figures 5.8 and 5.9 the distribution of the cross secti@r ¢,.; is shown for the veto jet with

the highest transverse momentuysf;°.

LFor 4-jet events there can be two veto jets. In this case, the eaaye ordered by transverse momentum with

veto 1 veto 2

brj > brj
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Figure 5.6 The invariant mass of two tagging jetsioy = 120 GeV with the cuts of
Egs.(5.1)-(5.5) and Eq.(5.6). In the left pangt,/dm;; (in fb/GeV) is shown at NLO (solid
curves) and LO (dashed curves) fdrjj. In addition, results for NLO (solid curves) and LO

(dashed curves) fat 557 are shown fopz = 20, 40, 80, and120 GeV. In the right panel, LO
3-jet ratios, R (m;;) (dashed curves), and the NLIJet ratios,R¥C (m;;) (solid curves) are
shown forur = 20, 40, 80, and120 GeV.
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Figure 5.7 The invariant mass distribution of the two taggets for with the cuts of
Egs.(5.1)-(5.5) and Eq.(5.6) for a Higgs massgf = 200 GeV. The chosen renormalization
and factorization scales fdf jj production are.z = ur = 200 GeV and for Hjjj production
areur = pp = 40 GeV. In the left paneldo/dm;; (in fb/GeV) is shown at NLO (solid curves)

and LO (dashed curves) féf jj and H jjj production. In the right panel, the L®jet ratio
RE9(m;;) (dashed curve), and the NLjet ratio, R¥° (m;;) (solid curve) are shown for
my, = 200 GeV.
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Figure 5.8 The distribution in rapidity of the highest veto jet with the cuts of Eqs.(5.1)-(5.7)
and Eq.(5.13), measured with respect to the rapidity agesathe tagging jets,

Yol = Y3 — (18 'y y;e %)/2. In the left paneldo /dy,; (in fb) is shown at LO (dashed
histogram) and NLO (solid histogram) for- = ur = 40 GeV. In the right-hand panel th&
factor (solid line) and scale variations of LO (dotted linasd NLO (dashed lines) results are

shown forug = {po andur = 40 GeV with £ = 1/2 and2.



do/dy e fb]

93

RO [T T T T T T T T T T T | T T 1] [T T T T [T T T T [ T T T T[T 1T 7T]
L n N dashes: NLO m; =200 GeV
- = 1.50 —

B I_! ] = solid: NLO m,=120 GeV -1
B | i C i
- |—||J;[L‘ 1 ~ 15— ]
: i | L!| : T‘_“’ - -
- ST 1 > C ]
- Ir 1l 3 X 1o —
- I - — ]
n Jl' - - ’
- = | | - |
— M H— 0.75 — —
| L = - - - -
I r L1 | =" 0.50 oo g | IRV I N R A R
0 2 4 —4 -2 0 2 4

Yrel Yrel

Figure 5.9 The distribution in rapidity of the highest veto jet with the cuts of Eqs.(5.1)-(5.7)
and Eq.(5.13), measured with respect to the rapidity aeesfthe tagging jets,
Yot = Y — (4 1 4+ 45 ) /2. In the left paneldo /dy.. (in fb) is shown at NLO for
my, = 120 GeV (solid histogram) andh;, = 200 GeV (dashed histogram) and at LO for
my, = 120 GeV (dotted histogram) anah;, = 200 GeV (dash-dotted histogram). The
factorization and renormalization scales age= ur = 40 GeV. In the right panel, the
correspondingy factors are shown.
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On the left-hand-side of Figure 5.8 the distribution in tapidity of the highesp; veto jet
measured with respect to the average rapidity of the taggisds shown fopigp = pur = 40 GeV
at LO (dashed line) and NLO (solid line) far;, = 120 GeV. The scale variationg = 2*! for
NLO results (dashed lines) arel5% to +7% in the vicinity of . = 0 and —11% to +14%
throughout the range af.; for LO results (dotted lines). Fay., ~ +2 scale variations at NLO
are—2% to +2%. In regions where the bulk of the cross section resides,dake slependence is
found to be reduced. ThE factor (solid line) shown in Figure 5.8 is greater than ormggQ,| > 2
and is less than one in the central region between the taggimgorresponding tg,., = 0.

In Figure 5.9 the distribution in the rapidity of the highestveto jet measured with respect
to the average rapidity of the tagging jets is shown in thegahel for Higgs masses of,; =
120 GeV andm;, = 200 GeV. The right side of Figure 5.9 depicts the correspondihéactors
as a function ofy,.;. For increased Higgs mass thefactor as a function of,., decreases. At the
center of the tagging jets the decreaséiffiactor is on the order of0%.

In Figure 5.10 the distribution in transverse momentum & highesi veto jet is shown
for up = purp = 40 GeV at LO (dashed line) and NLO (solid line) for, = 120 GeV. The
scale variationg = 2*! for NLO results ( dashed lines) are belaw% for py;° betweer20 and
80 GeV. At LO (dotted lines) these scale variations arel % to +14% for all values of veto jet
transverse momentum. At NLO one sees a reduction in scalendepce. The factor (solid

line) monotonically decreases.

5.5 Concluding Remarks

Using both parton-level Monte Carlos féfjj and H jj5 production, the3-jet ratios and scale
dependences have been computed to NLO in QCD. At LO the sepkndence is25% to —18%
for total H;;jj production cross sections while at NLO the scale uncestasniess thant5%. At
NLO one sees reduced scale variations in distributions emetpto the LO distributions. In the
central rapidity region between the tagging jéffactors are below one. Hence, there are fewer

veto jets than predicted by a simple LO simulation.
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Figure 5.10 The distribution in the transverse momentuifit, for the highesp, veto jet with
the cuts of Egs.(5.1)-(5.7) and Eq.(5.13). In the left padel dpy° (in fb/GeV) is shown at LO
(dashed line) and NLO (solid line) forr = ur = 40 GeV. In the right-hand panel th& factor
(solid line) and scale variations of LO (dotted lines) andON{dashed lines) results are shown for
pur = Epo andup = 40 GeV with £ = 1/2 and2.
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This thesis has been devoted to the one-loop QCD corredtorsctor-boson fusion processes
involving the production of the Higgs boson at the Large téadCollider. In Chapter 2 the one-
loop QCD corrections for Higgs production in associatiothviwo jets( 57 ) were presented in
the form of a fully flexible parton-level Monte Carlo prograB®cale uncertainties for distributions
were shown to be on the order of less thhé&hand for total cross sections to be belex@% for the
typical VBF cuts.K factors were shown to be modest, on the ordéi%to 10%. The modest size
of the K factor is due to a small shift of the tagging jets toward higiagidities. As a result the
tagging jets are moved slightly further apart and hencevatig better differentiation of the Higgs
boson signal against QCD backgrounds.

In Chapter 3 the NLO calculations of Chapter 2 were repeateé fHiggs boson witlC' P
even and”' P odd couplings to the vector bosons. It was shown that Higgdymtion via VBF
is sensitive to the tensor structure of the/V (V' = W, Z) couplings which distinguishes loop
induced vertices from SM vertices. The information showsngst clearly in the azimuthal angle
correlations of the two tagging jets at the LHC. For the Chhesaupling there is a dip at;; = 90
degrees in the azimuthal angle correlation while for the @& @oupling there is suppression at
0 and 180 degrees in the azimuthal angle correlation. It was shownglu®n emission does not
significantly change these correlations.

Analytic formulas for the construction of the NLO parton ééWonte Carlo program were
presented in Chapter 4 for Higgs production via vector-bdasion in the association of three jets.
Here the approximation of neglecting virtual graphs in viahécgluon propagates from the upper
quark line to the lower quark line was made since these dariions are suppressed by color and
kinematics. Working in this approximation, the NLO QCD @mtions were computed. In the
subsequent chapté&rjet ratios for Higgs production via VBF were computed to Na€curacy
using parton-level Monte Carlo programs fdrjj and Hj;; production. In the same chapter the
scale dependence of thé;jj; cross section was also discussed. Here it was shown thdtdor t
NLO Hjjj cross section the scale variations are on the order of lass .

One cannot stress enough, how valuable having at our fingefully flexible NLO parton-

level Monte Carlo programs is for future efforts to measurggd couplings at the LHC. NLO
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Monte Carlo programs serve as powerful tools for studyinggidiphysics at the LHC. In order for
particle physics to move forward our researchers must bedrmith these tools. This thesis has
been part of that effort.

There are several areas in this thesis where further stadrebe made. One area involves the
computation of the hexagon and pentagon diagrams discuss&abpter 4. These graphs were
shown to be suppressed over much of the vector-boson sesgidnr However, a solid proof of
this would entail an exact calculation. Recently, new tégives for computing one-loop integrals
have become available [52, 53, 54]. Using these techniquesyi be possible to compute the exact
NLO QCD corrections for{ jjj production via vector-boson fusion in the near future.

Another area that is interesting is inclusion of anomaloiggklcouplings into the NLO calcu-
lation for H 5 production. With such a program, one could repeat cal@natfor the3-jet ratios
of Chapter 5 for the case in which the coupling of the Higgsoba® the vector boson is either
C'P even orC' P odd as was done in Chapter 3 férj; production.
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Appendix A: Dipole Formulas

This appendix details the exact dipole functions used ferstlibtraction of soft and collinear
divergences in the real emission integrals. The notatio@atani and Seymour (CS notation)
[21] is interfaced with the notation of Campbell and Ellis5{@otation) [50]. The advantage of
using CE notation is that dipole functions carry no colotdas. This makes the final expressions
more compact and transparent. The integrals of the dipoletifuns over the one-parton subspace
are not given here. These can be found in Ref.[21]. In gerbesit are four types of dipoles,
corresponding to whether the emitter and spectator arg¢herdihe initial state or final state. The

four cases are:
e final state singularities with final state spectator or fifirad,
o final state singularities with initial state spectator oafimitial,
e initial state singularities with final state spectator atiakfinal, and
e initial state singularities with initial state spectatorimitial-initial.

In all casesik denotes thesmitter parton emitting partort: with respect tospectator parton ;.

Initial partons are denoted dyand2. While final state partons are labelgd . . , n.

A.1 Final-final

Consider the case for which the emitieand spectatoj are both in the final state. The dipole

factor in terms of CS notation is:

1
Dir.i(p3y ..., Pn = — A.l
k.j (p3 Pnt1) 2piDr [A.1]
737 ~ T . TZ ~ ~
<3y, (k). g, .. ,n+ 1| ]T2k kVik,j|3, ooy (k) g+ 1>,
The splitting matriced/**J in terms of CE notation are
1 e

< 8| Vagi(z19)ls" > = CF(SsS’Df]}’,]qq’ [A.2]

2p; - P
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! vtk vNik,j
2p; -+ P < M|V;1i%,j(z)|y > = TF( " foqu —|—q‘uq fo?gq)? [A3]

L vyik vANik.j
2p; - Pk = MV%QkJ(z; y)|1/ - = CA( 8 fojgg +q"q fo,jgg)‘ [A-4]

The dimensionless variablgsandz are defined to be

S; Sii
oS sy AS
Sik + Skj + Sji Sij + Skj

while the momenta of the emitter and spectator are defined to b

. 1 .
pi—l_yﬁ,lﬁzmqﬂi—f%zﬁ- [A.6]
The dipoles of Ref.[50] in conventional dimensional regiziation (CRD) are given by,
2,,2¢ 2 2
piti —IH —4 A7
R N (A e R A
Dl — SH (g2 [A.8]
DPi - Pk Dbi - Pk
ik g :u
foqu — [A.9]
i g :u —2
DI — [A.10]
1590 pi - pipi - pi
piki _ M —(1+2) —e(l— A1l
ffaqa — D; - pk{l—z(l—y) ( +Z) 6( Z)} [ ]
with,
¢" = zp; — (1= 2)pg. [A.12]

A.2 Final-initial

Consider the case of a final state emittevith an initial state spectator. In terms of CS
notation the dipole factor is

1 1
2p2pk X

Dh(p1s- - Pos1) = — [A.13]

o <3, (ik).. n+1ﬂ



The splitting matriced/7, in terms of CE notation are

1 1 j / ik,j
ST <s|VZ (z2)|s' > = CréeDyy,

1 1 j vik,J vNik,J
i peT WVgg (z @)l > = Cal=g""Dyigy +a"¢"Dyiy,)
]' 1 / vayik,j vaNik,j
2p; -pk; < M|qu“7k (Z; :c)|y - = TF<_9H ,Dfi,?ﬂl + quq ,Dfi,fzq>'

Dimensionless variablesandz are defined as

p=1— "% %
Sij ‘l‘Skj Sij ‘l‘Skj

with transformed momenta being

P =apf, Py =pi +pp— (1 —x)p).

The CE dipole functions are defined as

2, ,2¢
g°p 2 2
Dk — —4
Figg xpi~pk{1—Z+(1—x)+1—(1—z)+(1—x) }

. 2, 2¢ 2
Dzk,g - g u 1—¢

Th99 = g, -pk( )pi - Di

leJ _ g2u2e
Tho TP - Pk
Dikd g =2
11,99 TDi - Pr Di - Pk
2,,2¢
ik,j g u 2 1
oy = —(1+2z2)—€l—-2
fiag xp,--pk{l—w(l—x) (d+2)-el=2)

with,

¢" = zp — (1= 2)pk-
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[A.14]
[A.15]

[A.16]

[A.17]

[A.18]

[A.19]

[A.20]

[A.21]

[A.22]

[A.23]

[A.24]
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A.3 Initial-final

Consider the emitter partonbeing in the initial state and the spectator parjan the final

state. The dipole factor in CS notation is

, 1 1
D;'k(ph oy Pg1) = — - [A.25]
2pipr x
- - T Tye - -
B Je o 1 (i) EVRIS, L Je i 1 (k) >,
ik
The splitting matriceé»/’;l’C in CE notation are
Ll gvrr@u)ls > = CroLDRY A.26
2p2 pk; < S| 7 (1’7U)|S > = FUss' &5 f aq» [ . ]
1 1 " ik,j
2p2 Plc; < S|V}g Qk(x;uﬂsl > = TFass’Dif,ém [A27]
1 1 . v 7 ] 1% ~’i ]
oy <MV @y > = Cr(=¢"Dif, + ¢ Dif,) [A.28]
11 _ . Dk
2 ‘pkE < u‘x/;ﬂzgk(x;uﬂy > = CF(—g“ ,Di?:z]g +¢tq Dilj,’;g>' [A.29]
The dimensionless variablesandu are defined as
O L Y - [A.30]
Sij + Sik Sik + Sij
The momenta of the emitter and spectator are
Py =apf, Py =pf+p,— (1 —2)p). [A.31]
The dipole functions of CE in CDR are
2,,2¢
ik,j g 2
piki { (7)€l - } A.32
if,qq oo e \1—z +u (1+x) —e( T) e, [ ]
wj 9
R,y
Dias = ypr e L~ €~ 221 = 7)), [A.33]
2,,2¢
ik,j g
g = (@), [A.34]

Tp; * Pk
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Dk g { 2 —2+2x(1—a¢)} [A.35]
199 gp o \1— 24 u ’ '
- 22 1 — z2u(l —
Dy, = 1wzl —u) [A.36]
’ Tpi P X Pk - Dj
~Nik.j Nik,J
Dif,gg — (1 - E)Dif,gq [A.37]
~Nik.J ik
Difas=Difss =0 [A.38]
With,
" A
o=t B [A.39]
U 1—u
A.3.1 Initial-initial
Leti be the initial state emitter emittingwith spectator;.
ik,j 11
D™ (p17"'7pn+1) = _2 - [A4O]
PiPk T
N . - T, Tiheo i s = . o
n<3,...,n+1; (i/{:)vj|j'1\72lek’3\3, coon+ 15 (ik), § >n
ik
L 1 gveoci(a))s = 6,,CpDitd (A.41]
2p; - prx i
1 1 o o
— < §|VI%I ()|s >= 585/TFD2f’qjq [A.42]
2p; - pr T ’
]_ ]_ i , y v ik, j 14 I ik7 ]
2 pr < p|VEmIN )|y >= Cp(—g"" Dy, + ¢"¢" Dyiy,) [A.43]
1 ]_ i , y v ik, j 14 I ik7 ]
0, _pk; < p|VIII () |y >= Ca(—=g"" Dy + ¢"q" Diiyy) [A.44]
The dimensionless variableis defined as
p 1 Ktk [A.45]
Sij

The momenta of the emitter and spectator are

pi =y, Py = [A.46]
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All final state four momenta are Lorentz transformed as diesdiin Ref.[21]. The dipole functions

Diki are

2, .2¢
ki _ 9 2
ki _ { C(lta) el } A.47
itia = oo o \T— 2 (1+2) —€e(l—-x) [A.47]
o g2lu2e
D = (1—e€—2x(1—2x)), [A.48]
’ IP; - Pk
2,,2¢
ki G
Difd — ), A.49
= (@) [A.49]
2, 2¢
ik,j g K 2z
DikI { 92 (1 — } A.50
W99 T n Dk 1—x+ x( z) [ ]

The dipole function®**-/ are

o 2,,2¢ _ o
U L ek B 1 [A51]
’ TP; Pk X Pk PiPk " Di
Difay = (1 - €)Dif, [A.52]
Nikj kg
Dii,q]q - Dii,q]g - 07 [A53]
where
¢ =pf - 2L [A.54]
Pi - Dj
A.4 Flavor kernels
The Altarelli-Parisi splitting functions are
; 14 (1—z)?
PU(z) = P¥(x)= CFM, [A.55]
X
P(z) = P%(z) =T [2* + (1-2)?], [A.56]

99 _ pad(,) — 1+
Pi(z) = P (x)—CF<1_x>+, [A.57]
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1—
T

P99(x) = 204 [(1 ! x)+ T - x)] +5(1—2) (%CA - %NfTF)  [A58]

The constants obtained after integration of dipoles are
3 11 2

Yg =g = §CF> Y9 = ECA 3 F Ny, [A.59]
and
7T 7 67 7w 10
— K. =L _ T == - S — A.60
K, =K, <2 6>CF’ K, <18 6>CA 9 F N, [ ]

related to the various integrals of the Altarelli-Pariditsipg functions.

1—=x

K¥%z) = K¥@x)=P%9@x)n + Cpr, [A.61]

K'%2z) = ng(x) = P9%(z)1n l—x

+ Tp2z(1 — x), [A.62]

2 1—=x
In
-z T

Kz) = quchl(l )+—(1+x)ln x—i—(l—x)] [A.63]

i

— 6(1—2)(5—7*)Chp,
T(z) — chl(ll lnl_x>++(l_x—l—i-x(l—x))lnl_x]

— X T T T

— S(1-a) {(59—0 - 7r2> Ca — 1—76TFN4 [A.64]

A.5 NLO cross sections at Hadron Colliders

For NLO QCD calculations involving two initial-state hadis) it is required to introduce parton
distribution functions. Letf,/, and f;,, denote parton densities for two incoming partons. The

hadronic cross section is then given by

1 1
U(P17p2) = Z/o dxlfa/p(xlmu%)/o d932fb/p(932jﬂ%) [A.65]
a,b

LO

{Uab (1p1, T2p2) + U%LO($1P17$2P2§ M%)} )

do b (p1, p2), [A.66]

daﬁa(pl,m) +/d0[‘z/z;(p17292) +/d0[%(p1>292;,u§7)7 [A.67]

n

Ufbo(phm) =

U(%LO (pb b2, :u%‘) =

S

+1
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where the collinear counter-term is:

o 1 1 1
) d / dzday, A.68
2r (1 —¢) %;/0 S N Oca(21D1, 22p2) [ ]

1 (4ru®\°©
{@5(1 ) [—— ( s ) Pe(zy) + Kfﬁ@.(zﬂ]
€\ HFp
1 (4mp?
+ 0400(1 —21) |——
(1-2) [ € < 52

do-(gl;(plup2; M%)

) Pt st}

The LO parton-level cross section is given by

L0 (paspp) = /n Aol (pa, pv) [A.69]
1

= /dq’n(Pa,Pb)m|Mn,ab(ph Pt Pas POPPES (P, P Pas 1),
wherea andb label the flavors of the incoming partons,andp, denote their four momenta, and
n.(a) andn.(b) denote their number of colors. The matrix elemént,, ., |* is the square of the
tree-level amplitude to produeepartons in the final-state arid,") is the jet defining function.

The full NLO partonic cross section consists of three dédfgrcontributions:

NLO NLO{n+1} NLO{n}

N (paypr; ) = oy (Pas o) + 0, " (Das D) [A.70]

1
~NLO{n ~NLO{n
+ /0 dx [Uab ) (@ wpapy, i) + G }(x;pa,pr,u%)} :

The first contribution has + 1-parton kinematics and is given by the following expression

am U (pa,py) = / A"V (p,, py) [A.71]
1 n
{n (CL)TZ (b) |Mn+1,ab(p17 e 7pn+1;pa7pb)|2F§ +1) (pl; . 7pn+1;pa’pb)
- Z (DF(N)) (pla--'vpn-‘rl;paapb)}
dipoles

whereM,, ;4 4 IS the tree-level matrix element with+ 1 final-state partons and the sum of dipoles
is given by the following expression

Z (D . F(n)) - Z Z Dij,k(pla s 7pn+1;pa7pb)F§n)(pla '-ﬁijaﬁka cee 7pn+l;pa7pb) [A72]

dipoles pairs k7£1,j
17J



107

+ Z [ (p1, - 7pn+1;pa,pb)F§n)(p17 <Dijs s Pt Das o) + (@ b)}

palrs

+ ZZ {Dgi(ph B 7pn+1;pa7pb>F§n)(pl7 "ﬁk? B 7pn+1;ﬁaiapb) + (a — b):|
i ki
+ Z [Dai’b(plu s 7pn+1;pa7pb)F§n)(ﬁl7 e 7]§n+1;ﬁaiapb) + (a — b)} .

Integration of the above dipoles over the subspace of thesohred parton and the subsequent

cancellation of collinear singularities by the collineauater-termc° leads to the expression:

/n+1 doﬁ,(Pmpb)%-/ndo(% = /[dO‘ (pa’pb) I( )} [A.73]
b3 [Lao [ [0+ P dotapa )
+ ;/0 dx/n {(K +P)" . doB, (pa,pr)} ,

wheredo? ~ 3 ginoles (D - F(”)). Herel(¢), K¢, andP*" are insertion operators.

For a set of parton momen{a}, the universal insertion operatbis defined as

dru? \©
I({p}ie) = — 27rF ZTQVI %Tz TJ(2prLpJ> [A.74]

wherel and.J are indices over the parton momenta. The scalar prqgugi; is always positive.

The universal singular functio¥i; depends only on the flavor of the parton and is given by

1 2 1
Vi =T3 (e_2 — %) + g + 1 + K1 + O(e), [A.75]
where the constantg and K; are given in Egs.(A.59,A.60).

The NLO contribution withz-parton kinematics is obtained by adding the virtual cressien
and first term on the right-hand-side of Eq.(A.73). The eciptesult is given here in terms of the

square of the one-loop matrix elemepy,, .s|7_;,,,» and the insertion operatdie):

NLO{n}

Oab (pavpb> = /[dO' (paapb)+d0 (pa,pb)@)l} [A76]
1

=0
= /dq)(”)(pa,pb){ OLAC )‘Mn,ab(plu . -wpn;paapb)ﬁ—loop

o < Lo a, L, n5a,b >nawt g FY (01, - - Pui Pas Db)-
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The second and third term of Eq.(A.73) give rise to the th@ant on the right-hand-side of
Eq.(A.70). Each of these contributions is obtained by irdggg a cross section with-parton
kinematics with respect to the fractianof the longitudinal momentum carried by one of the

incoming partons. For partan one has:

1 1 )
/0 di, " (@) apa, po, 1) = Z/O dm/ |doly ® (K+P)(2)] [A.77]

1
= ZA d;)j/d(l)(n) (xpmpb)F}N)(pl) s 7pn;pa7pb)
‘n,a’b < 17 A I xpmpb‘ (Ka,a’(x> + P(Lal(xpm X :u%')) |17 -y N TPqy Po >n,a’b .

The expression foﬁg)w{"}(x;pa,pr,u%) is same as EQ.(A.77) apart from the replacements

TPa — Pa, Po — TPy, ANAY., — Dy
K andP are universal insertion operators. In termgpf and/ notation, they are given by

1 2
P ({p): apy. 1 12) = <2 P (2)— S T, . Tpln — P A.78
({p},l’p 7'1'7:UF) 27'(' (‘T) Tg I;) I p 1 pra _p[a [ ]
and
a, _ Qs | 7=ab a a Vi
K*(z) = % {K (z) — K& (x) +6 bzi:TZ- : TbT—Z2 [(1 — x)+ +6(1 — x)] } . [A79]

For theMS factorization schemé&’p g = 0.

In order to evaluate the NLO cross sections witparton kinematics, the color-charge opera-
torsI, P, andK have to be inserted into the tree-level matrix elementss ads to the compu-
tation of color-correlated tree-amplitudes. Het} denote the generic set 6f parton momenta.
The squardM?*” of the color-correlated amplitude in terms of the coloregbitevel amplitude
Mar-ax ({p}) is

M ({1 <A{pHT;-T;{p} > [A.80]

m [M(ll..bl..bj..a]\r ({p})} * TbcIaITchaJMal..aI..aJ..aN ({p})

Here theq; . ..ay are color indices. The color-charge operator of a finakspairtor: is 75 =

if.a ( COlor-charge matrix in the adjoint representation) if #reitting particle: is a gluon and
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Ty = tgs (color-charge matrix in the fundamental representatibtf)eé emitting particle is a
quark (in the case of an emitting anti-quark; = t%,; = —t4,). The color-charge operator of an
initial-state partoru is defined by crossing symmetry. That (3,)5, = i fuq if a is a gluon and

(Ta)is = oz = —th, if ais a quark (ifa is an anti-quark(T,); 5 = t5)-
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Appendix B: Boxline virtual corrections

The finite contributions to the boxline virtual correctiooisChapter 4 are expressed in terms
of Cy, By, andD;; functions.Cy, By, andD;; are finite parts of the Passarino-Veltm@g By, and

D;; functions. TheB,, Cy, andD, functions used here are defined in Appendix C.
MO (ka, 1, a5 €1, €2) = PlRa){c) (= o) + 461 + 47 + oo + do)ga } Prip(ky) [B.1]
MO (ks qu, go; €1, €2) = D(ka) [P (s — o) + h + Do + 21 (o + dh o} P (Ka) [B.2]
MP (ks q1, g e1,2) = D(ka){cP(h — ) + 1 + S

+ (e + di)o + oo + do)ds ) P () [B.3]

1) 2 Bo(t) ~ Ty(g3,1)

o = Boxl(,l) — : [B.4]
By(t) — By(g?
40 = Boxt! + 2k (g2 1) — 2 eage! O(tz fo(a2) [B.5]
— g3
SV = Box$ +2 ek T.(0,1) [B.6]
2B T (g2
c£2) _ Boxl(f) _ o(u) _ b(g3, u) [B.7]
Uu u
Bo(u) — By (g2
cgz) = Boxgz) + 2 ek T (g3, u) — 2 62q2[ o) 20(q2)] [B.8]
U —q3
& = Box$? +2 €k, T.(0, u) [B.9]
el = tBox\” — 2(tCo(t) + 1) + Bo(t) + Tp(g3, 1) [B.10]
uct? = uBox{® — 2(uCy(u) + 1) + Bo(u) + Ty(¢2, u) [B.11]
By(t) — By(¢2
¢V = Box{Y — 2k, To(¢2, 1) + 2635 20 1 ;’(‘12)] [B.12]
— g3
Bo(u) — Bo(q2
_ 262/€1Tﬁ(q§,u)—262q2[ o(u) 20(%)]
U —q3
(3) @), 20,7 2, =
Cy = BOX2 + Z(tC()(t) + 1)61]{31 + E(UCO(U) + 1)61/{52 [813]
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2 (Bo(t) — Bule?)] + Bl
—¢*Bo(4*)} — 24°Co(¢*, 1) [B.14]
) 1 - = 52t + 3¢ - o5 1 o
T(q,t) = P qg{[BO(t) — Bo(q7)] I +2By(¢”) + 1 —2¢°Co(q", ¢)} [B.15]
T.(0,t) = 1(21?30(16) +1) [B.16]
T,(0,t) = By(t) [B.17]

Here the coefficientBox’ for j = 1,2, 3 andi = b, ¢, 1, 2 are expressed in terms of the Passarino-

Veltman D;; functions.

Box[(;’)

—D27(Q1, k2, q2)€1€2 — 2D311(Q1, k2, q2)€1€2 + 2D313(Q1, ka, q2)€162

8D12(q1, ka, q2)erkaeaks + 8D13(qu, ka, qo)erkaeaks — 4Das(qu, ka, qo)erkaeaks
8D24(Q1, ka, Q2)€1]€2€2k2 + 12[)26((]17 ka, Q2)€1]f2€2/€2 - 4D36(Q17 ka, Q2)€1k2€2]€2
ADss(q1, k2, g2)e1kaeaks + gbo(%, k2, g2)€1qa€aks + 2[712(611, k2, q2)€1q2€0k2
AD03(q1, k2, 2)€1q2€2ks — 8 D5 (1, k2, @2) €122k + 4Da6 (1, k2, g2)€1q2€1 ks

- N 3 -
4D310(Q17 ks, Q2)€1Q2€27€2 + 4D39(Q1, ko, Q2)€1Q2€27€2 - §D0(QI7 ko, Q2)€1k2€26h

19 -~ - -
—D1o(q1, k2, g2)€1ko€aqn + 8D13(qu, ko, q2)€1kaeaqr — 12Doy(qu, ko, g2)€1ko€aqn

2
8[725(6]1, ko, Q2)€1k2€2Q1 + 4[726(6]1, ko, Q2)€1k2€291 + 4D310(Q1, ko, Q2)€1k2€291
4[734(611, ko, Q2)€17€2€2Q1 + 4[723((11, ko, Q2)€1Q2€2Q1 - 4[725(611, ko, Q2)€1Q2€2Q1

- - 3 .
4D35(Q1, ko, Q2)€1Q2€2Q1 + 4D37(Q17 ko, Q2)€1Q2€2Q1 - _DO(QIa ko, Q2)€1k2€2Q2

2
11 -~ . .
?Dm((h, ko, q2)e1koeaqe + 4D13(q1, k2, G2)€1ka€2go + 8Dag(q1, ko, q2)€1ka€ago

4[724(611, ka, g2 )€1 kacagqs — 4D26(Q17 ka2, q2)€1ko€aqa — 4[7310(611, ko, q2)€1k2€2q2
4[739(611, ks, Q2)€17€2€2Q2 + 4[723(611, ko, Q2)€1Q2€2Q2 - 4[725(611, ko, Q2)€1Q2€2Q2

. . 1.
4D35(q1, k2, g2)€1q2€2q2 — 4D37(q1, ka, q2)€1G2€2q2 — §D12(CI1> k2, g2)€1€2G5

1~ 1~ 1~
§D13(Q1, ko, Q2)€1€2qg + §D23(Q1, ko, Q2)€1€2qg) - §D24(Q1, ko, Q2)€1€2qg

D310(Q1, ko, Q2)€1€2qg - D33(Q1, ko, Q2)€1€2qg + D37(Q17 ko, Q2)€1€2qg



. . 3
Dio(q1, ko, g2)€162q5 — Dolqu, ka, g2)€1€at — §D11(Q1> ko, q2)er€at

2

1= 1~ 1.
—Dho(qu, k2, g2)€1€at — §D21(Q1, ko, q2)€r€at + §D24(Q1, ko, q2)€1€at

D310(Q1> ko, q2)€1€0t — D35(CI1, ks, g2)€1€at + D37(Q1, ks, q2)€1€at

N 11 - 3 ~
Dsg(qu, k2, g2)€1 €2t — ?Dll(fha ks, g2)e1€2u + §D12(Q1> ko, q2)e1€au

. 1. .
Dis(q1, ko, g2)€1€2u + §D21(Q1, ka, g2)€1€au + Doas(qu, ka2, q2)€1€2u

3 . - -
—D24(CI1, ko, C_I2)€1€2U - 2D25(Q1, ko, Q2)€1€2U - D26(CI1, ko, C_I2)€1€2U

2

D310(Q1, ko, Q2)€1€2U + D34(Q1, ks, Q2)€1€2U - D35(Q1, ko, Q2)€1€2U

D37(Q17 ko, Q2)€1€2u

24Dy7(qu, ks, g2)€2ka + 20D315(qu, ki, g2)eaka + 22 Doz (qu, ki, o) €2y
20[7311((11, k2, g2)€2q1 + 12[)27((11, k2, q2)€2q2 + 20D313(Q1, k2, q2)€2q2
ADo3(q1, k2, g2)eakaqs + 4Dog(q1, ka, g2)€2kaqs + 2Dss (1, ka, go)€2king)
2Ds9(q1, k2, q2)e2kaqs + Dia(ar, k2, a2)e20105 — Dis(qu, ko, @2)e21G3

3[)23(611, K, Q2)€2Q1qg + D24(Q1, ks, Q2)€2Q1qg + 2[)26(Q1> ko, C_I2)€2CI1C]§

2[)310(611, ko, Q2)€2Q1qg - 2[)37((117 K, Q2)€2Q1qg - 2D23(Q1, ko, Q2)€2Q2qg

2D26(Q17 ka, Q2)€2Q2qg - 2D33(Q1, ka, Q2)€2Q2qg + 2[)39((11, ka, Q2)€2Q2qg
—Do(fh, k2, q2)€akiat + 3D12(Q1> ko, qa)eskat + 4D15(q1, k2, q2)eakat
2Dys5(q1, ks, q2)eakat + 2Dag(qu, ko, g2)eakat + 2D310(q1, ki, g2)€xkint
2D35(q1, k2, g2)eakat + 2D (g1, k2, g2)eaqt + 3D11 (1, ko, @2) 20t
Dio(i1, k2, go)eaqut + 4D13(qu, ko, @2)e2q1t + Do (01, ko, g2) 201
Das(q1, k2, 2)e2q1t + 6Das5 (1, ko, g2)€2qut — 2Dog (1, ka2, g2)eant
2D310(q1, ko, @2)eaqit + 2D35(q1, ka, @2 )e2qit + 4D13(qu1, k2, g2 ) €2t
ADo3(q1, k2, g2)eagat + 2Das(q1, ka, g2 )€2gat — 2Da6 (g1, k2, g2)€agot
2D37(qu, ks, @2)eagat — 2Ds9(qu, kz, go) €200t + §[70(%, k2, q2)e2kou

2

7. 3
§D12(CI1, ko, qa)eakow — 2D13(q1, ko, q2)€2kau + 2d22€kou
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[B.18]
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2D24(Q1, ko, g2)€eakou + 2D25(Q1, ko, q2)€eakou — 2D26(Q1, k2, q2)€2kau

N N 3 -
2D310(Q1, ko, Q2)€2]€2U - 2D36(Q17 ko, Q2)€2]€2U + §D0(Q1, ko, Q2)€2Q1u

Dn(qh K, Q2)€2Q1U + gDm(qh ka, Q2)€2Q1U - 2D13(Q1, ka, Q2)€2Q1U
Day(q1, k2, g2)e2q1t + Day(qr, k2, q2)eaqru — 2Ds4(qu, k2, go)e2qru
2D35(q1, k2, g)E2q1u + %bo(fh, k2, qa)€2qou + gblz(ﬁh, ka2, g2)€ag2u
2D03(1, k2, g2)€agqott + 2D (g1, k2, g2)eagort — 2D310(q1, ka2, g2)eagou

2Ds37(q1, ko, ga)€2gou

—12D07(q1, k2, g2 )€1k — 4D315(q1, k2, qo)erka — 6 Doz (g1, k2, g2 )€1
4D313(Q1, k2, q2)€1q2 — 3[70(611, ka, Q2)€1k2qg - 7[)12(611, ka, Q2)€1k2qg
2D13(Q1, ka, Q2)€1k2qg - 2[722(611, ka, Q2)€1k2qg + 6D23(Q1, ka, Q2)€17€2qg
2[724(%, ka, Q2)€1k2qg + 4[)25((11, ka, Q2)€17€2qg - 8D26(Q17 ka, Q2)€17€2qg

. . 3 .
2Dss(qu, ko, g2)€1kaqs + 2D39(q1, ka, g2)€1kaqs — §DO(Q1, k2, 42)€10205

5 - . _

§D12(Q1, k2, q2)€10205 — Dis(qu, ko, q2)€192G5 + 3Das(qu, k2, q2) €125

D24(Q1, ks, Q2)€1Q2qg + 2[725((117 ko, Q2)€1Q2qg - 6D26(Q17 ks, Q2)€1Q2qg
. B 3 -

2D33(q1, k2, g2)€10245 — 2D39(q1, k2, @2)€142G5 + §D0(CI1> ko, q2)e1 kot
. 11 ~ .

4D11(qu, k2, g2)€1kat + ?D12(Q1a ko, q2)erkat — 2Dy (g1, ka, q2)€1kat

2[722(%, ko, q2)€1kat — 6D25(Q17 ko, q2)€1kot + 6D26(Q17 ko, q2)e1 kot

5 3 1.
2D310(q1, k2, q2)€rkat + 2D3s(q1, ka, q2) €1 kot — §D0(Q1, ko, q2)€1qat

. 5 . .
3D11(q1, k2, @2)€1¢2t + §D12(Q1, ka, g2)e1qat — Doy (qu, ka, g2)€1gat
D24(Q1, k2, q2)€1qat — 6[)25((117 ko, q2)€1q0t + 6D26(Q17 ko, q2)€1q0t

. . 7 .
2D37(q1, ka, g2)€1Gat + 2D39(qu, ka2, q2)€1qat + §D0(Q1, ko, q2)€1kou
23 -~ - N
?Dlz(QM ko, q2)e1kou — 6D13(qu, ka2, g2)erkow — 2Do1 (1, k2, g2)€1kau

2[722(%, ko, g2)€1kou + 10[)24(611, ko, q2)€1kou — 6[725(611, ko, q2)€1kau

2D26(Q17 ks, g2)€1kou — 2[7310(611, ko, q2)€1kou + 2D36(Q17 ko, q2)€1kou
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[B.19]
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2Do(q1, ko, g2)€1q2t — D1y (qu, k2, @2)€1qatt + 5D1a(q1, ko, g2)€1qau
D21(Q1, ko, g2)€1q2u — 2D23(Q17 ko, q2)€1qou + 3D24(Q1, ko, g2)€1q2u
2D26(Q17 ks, g2)e1qau + 2D310(Q17 k2, g2)€1qou

2D37(qu, ko, g2) 1ot [B.20]

- 3~ 5 ~
(6Dor(qu, k2, q2) + §DO(Q1, k2, q2)q5 + §D12(Q1, k2, q2)q5
D13(Q1> ko, qz)qi - 3[723(6]1, ko, Q2)q§ + D24(Q1, ko, Q2)CI§

. . 1.

2Do5(q1, ko, 2)q5 + 4Das(qu, k2, q2) 5 + §D0(Q17 ko, q2)t
~ 5 - ~

3D11(q1, k2, g2)t — §D12(Q1, k2, o)t + Do1(qu, k2, q2)t

. _ . 3
Dou(q1, k2, q2)t + 4D2s5(qu, ka2, g2)t — 4D (q1, ko, q2)t — = Do(qu, ka2, g2)u

2
N 9 . 5
D1 (qu, k2, g2)u — §D12(Q1, ko, go)u + 4D13(q1, k2, g2)u
D21(q1> ko, g2)u — 5D24(Q1, ks, ga)u + 4[)25(611, ko, qa)u)/2 [B.21]

= —(€1q1(—8Dar(ks, @2, q1) — 8Ds12(ka, g2, q1) — (D11 (k2. g2, q1)
—  Dia(ka, g2, q1) + Dis(kz, g2, 1) — 4Da2(k2, g2, 1)

+ 4Doy(ka. 42,q1))@5 + Diy(ka, g2, q1)s — Dia(ka, g2, q1)s

+  Dis(ka, g2, q1)s — 4Das(ka, g2, q1)s + 4Das(ka, g2, q1)s

+  Dui(ka, g2, 1)t — Dia(ka, g2, 1)t + Dis(k2, g2, )t

—  4Das(ka, g2, 1)t + 4Das(ka, g2, 1)) + €21 (8 Doz (k2. g2, 1)
+ 8[7313(]472, G, 1) + (Dn(/@, Q@ Q1) — D12(]€27 2, q1)

+ Dis(ka, g2, q1) — 4Dos(ka, g2, 1) + 4D24(ka, g2, 1)) g5

—  Dui(ka, g2, 1)t — 3D1a(ks, g2, q1)t + 3D13(k, g2, qu )t

— 4Dsy(ks, g2, 1)t + 4Dsg(ks, @2, 1)t) — €2k2(16 D31y (K, g, 1)

- 24[)312(]?27 q2, Ch) - (Dn(/@, q2, Ch) - D12(k27 q2, Ch)
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Dls(km ¢, q1) + 4[725(1% 9, q1) — 4D26(k‘2> a2, )
8[7310(]472, Q@,q1) — 4[732(7?27 @, q1) — 4D34(]€2, q2,q)

4D35(k?27 q2, Ch) + 8D36(k527 q2, Ch) + 4D38(k27 q2, Ch))q

5D11(k2, 42, q1)s — 5D1a(k2, g2, q1)s + Dis(k2, g2, q1)s

4Dy (k2. 42, q1)s — ADau(k2, g2, 1) s + 4D (k2, g2, 1) s

ADog(ka, g2, 41)s — 8Ds10(ka, g2, q1)s + 4D35(ka, g2, q1)s

ADss(ka, 2, q1)s — AD12(ka, g2, q1)t + 4D13(ka, g2, q1 )t

4D (k2. g2, 1)t — 8Dau(ka, G2, 1)t + 8Dos(ka, g2, @1 )t

4Ds(ka, g2, 1)t — 4Ds10(ka, @2, @1 )t — 4Dsa(ka, g2, qu )t

4Ds5(ka, g2, 1)t + 4D36(k2, g2, q1)t) [B.22]

e1k2(8 Ds11 (ka, g2, ¢1) — 24Ds15(ka, g2, ¢1) — (D11 (k2. g2, 1)
3D15(ka, Go, @1) — 3D13(ka, @2, q1) — 4Doa(ka, g2, q1)
8[)24(]{52, G2, 1) — 4[)25(]?27 G2, q1) + 4[7310(]{52, G2, q1)
4D37(k2, 42, q1) — 4Dss(ka, G2, @1) + 4Dsg (K2, @2, 1)) G5
Du1(k2, g2, @1)s + Dia(k2, g2, ¢1)s — 5D13(k2, g2, ¢1)s
8Das(ka, g2, 41)5 + 4Dsg(k2, g2, 01)s — 4D37(k2, g2, 1)
4D3(k2, 42, q1)s + 4D1a(k2, g2, 1)t — AD13(k2, g2, 1)t
4Da3(ka, 2, 1)t + 4D24 (K2, 2, 1)t — 4D (ka, 2, @1 )t
4Dog(ka, g2, 1)t + 4D310(ka, g2, 1)t — 4D37(ka, g2, q1)t)
€142(8 Dar(ka, g2, q1) — 8D312(ka, g2, 1) + 24D315(ka, g2, q1)
(D11 (ks @2, q1) + 3D1a(k2, g2, 1) — 3D13(ka, g2, 1)

4D (ka, g2, q1) + 8Da4(ka, g2, ¢1) — 4Dos(ka, g2, 1)
4Ds10(ka, g2, 1) — 4Ds7(ka, g2, ¢1) — 4Dss(ka, g2, 1)

4D39(ky, G2, q1))q% + Di1(ka, g2, q1)s — Dia(ka, g2, q1)s
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+ 5D13(ka, 2, q1)s + 8Das(k2, g2, q1)s — 4Dsg(ka, g2, 1) s

+ 4Ds7(ks, g2, q1)s — 4Dsg(ka, g, q1)s — D11 (ka, g2, )t

— TD1a(ka, g2, 1)t + TD13(ka, g2, 1)t + 4Da3(ka, g2, q1 )2

— 8Dau(ks, g2, 1)t + 4D (ks @2, 1)t — 4D310(ko, g2, @1 )1

+ 4Ds7(ka, g2, 1 )1) [B.23]

8D315(ks, @2, q1)€1€2 — 8Ds13(ka, ga, g1 €162 + 8D1a(ka, ga, @1 )erkaeaks

8D13(ks, g2, q1)e1kaeaks + 12Doy(ka, g, 1 )erkaeaks — 12Das (ka, ga, @1 )€1 ka€akn
4[)34(]{?2, G2, 1) €1kacaky — 4[735(7?27 G2, q1)€1kaerky + Dn(]fz, @2, q1)€1G2€2k2
TD1a(ks, g2, q1)€1qa€2ks — TD13(k2, go, 1) €1qzeaka + 4Daz (K2, g, @1 )€1 qaeaks
8Ds4(ks, 42, q1)€1ga€2ks — ADas5 (2, 4o, 1) €1q2€2ks — 8 Dag (K2, ga, 1 )€1qzeaky
4[)310(]?27 @2, q1)€1G2€2ko + 4D36(k27 @2, 1) €1262k2 — Dn(k&, @2, q1)€1k2e2q1
Dm(]fz, @2, q1)€1kacaqr — D13(k¢2, G2, q1)€1kac2qy — 4D23(7f27 G2, 1) €1k262q1

4Dy ko, g2, q1)€1ka€2q1 + 8D26(k‘2, Q2, q1)€r1ko€2qn + 4D310(k27 @2, 1 )€1k262q1
4Dg7(ky, @2, @1 )e1kae2qr — 4Das(ka, qo, q1)€1G2€2q1 + 4D (ka, g2, 1) €1q2€2qn

4D38 ks, 1)€1G2€2G1 — 4[)39 k2, g2, q1)€1q2€2q1 — D11(7<727Q27Q1)€17€261Q1

5D12 k27

q2,q
4Dys5 (ks @2, 1) e1kaerqr — 4Ds10(ka, g2, 1 )€1 ka1

)

)

q1)erkaerqn + 8D (ka, g, 1 )erkaern
1)erkz1q1 — 4D26 ko @)
0)

(

(
1)erkaerqr — 5D13(ka,

(

(

(

8D22 k??

42,9
42,9
a2, q
42,9
G2, @1 )e10261G1 — 8Dag(k2, g2, @1 )erqeerqy + 4Ds2(ka, @2, 1) 12611
a2, q

4[)38 ko, 1)€192€141 — 4D310(k27Q27€I1)€1€2C]§ - 2D32(k2>Q2>Q1)€1€2qg

(
(
(
(
(
4 D3 (ks
(
(
2D36(k2, G2, @1 )€162G5 + 2D37(k27 G2, @1 )€1€205 + 4Dss(ka, @2, q1)€1€245
(

0)
0)
)
q)erkserqr + 4D1s(ka, go, 1) erqaer1qn — 4D13(ka, g, 1) erqeeran
)
)
)
)

2D39 k2, g2, n 6162Q2 D11(7€2,Q27Q1)€1€28 + §D12(/€2,Q27Q1)€162S

1~ N _
§D13(k¢2, @2, q1)€1€25 — 2Dos(ka, qa, q1)€1€28 4+ 2Das(k2, g2, q1)€1€258

2[)310(]?2, Q2. q1)€1€25 — 2[)37(]{52, Q2, q1)€1€25 — 2D38(k52> Q2. q1)€1€25
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+ 2[739(]{52, Q2, q1)€1€25 — 2[722(]{?2, q2, q1)€1€2t — 2[723(]{?2, Q2. q1)€1€2t

+ 4D26(k27 Q2, q1)€1€at + 4[)310(]?27 Q2, q1)€1€2t — 2D36(k27 ¢, q1)€162t

— 2[)37(]{?27 Q2. q1)€1 €2t [B.24]

Boxl(,l)

2
Boxg )

—A4Do7(k2, g2, 1) — 12D512(ka, g2, ¢1) + 12D515(k2, g2, 1)

4[7310(]{?2, qz, Q1)qg + 2[)32(7?2, q2, Q1)Q§ - 2D36(k27 q2, Ch)qg

2D37(k2, 42, q1)@5 — 4Ds3s(k2, g2, 41) 43 + 2Dso(ka, @2, 01) G5

2Do(k2, 42, q1)s — D11(k2, g2, q1)s — Dia(ka, g2, ¢1)s

Di3(ka, g2, @1)s + 2Da5(k2, g2, ¢1)s — 2Dag(ka, g2, 1)

2D310(k2, G2, 01)8 + 2D37(k2, g2, 41)s + 2D3s (k2 g0, 1) s

2D39(ks, 42, q1)s + 2Daa(k2, g2, q1)t + 2Da3(k2, g2, qu )t

4Dsg(ka, @2, 1)t — 4D510(ka, @2, q1)t + 2Ds6(ka, g2, q1 )t
2[737(]{?2,([27611)15 [B.25]

—(e2q1(8Dar(ka, @1, ¢2) — 8D312(ka. 41, G2) + 24D315(ka, 41, G2)
A(Das(ka, q1,42) — Das(k2, a1, @2) + D3 (k. q1, g2)

Dsg(ka, q1,42))@ + Dri(ka, g1, g2)s — Dia(ka, g1, g2)s
5D13(k2, a1, q2)s + 8Das(ka, a1, q2)s — 4Dag(ka, q1, g2 )s
AD37(ka, q1, ¢2)s — ADsg(k2, q1, 2)s — D1 (ka, q1, @2)u
TD1s(ka, g1, g2)u + TD13(k2, a1, go)u + 4Do3(ka, 1, g2)u
8Da4(k2, q1, @2)u + 4Das (k2. q1, g2)u — 4 D310 (K2, @1, g2)u
ADs37(ka, q1, q2)u)) — €2g2(8Dar(ka, @1, ¢2) + 16D315(ka, 1, ¢2)
A(Das(k2, q1,¢2) — Dag(ka, @1, @2) + Das(k2, a1, ¢2)

Dso(ka, q1,¢2))q5 + 4D13(k2, q1, 42)s + 4Do3(ka, q1, g2)s

4[725(]{?2, Q,q2)S — 4D26(k27 ¢, q2)s + 4[737(7?27 ¢, q2)s
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4Dsg(k2, q1, ¢2)s — D11 (ka, q1, @2)u — 3D12(k2, q1, @2)u
3D13(ka, q1, g2)u + 8Da3(k2, g1, g2)u — 4Doy (2, q1, g2)u
4Dog(ka, q1, g2)u — 4D310(ka, 1, g2)u + 4Ds7(k, q1, g2 )u)
e2ka(—8Ds11(ka, g1, g2) + 24Ds15(ka, 1, g2) — (Dui (K2, a1, ¢2)
Dua(kz, q1, ¢2) + Dis(k2, a1, @2) + 4Dos(ka, q1, @2)

ADa6(ka, q1, q2) + 4Ds3(ka, g1, g2) — 4Ds9(k2, 41, ¢2)) G5
Di1(ka, q1,@2)s — Dia(ka, q1, q2)s + 5D13(k2, q1, @2)s
8Ds5(k2, a1, q2)s — ADag(k2, a1, ¢2)s + 4D37 (k2. a1, g2 )
4Dsg(k2, q1,¢2)s — 4D12(ka, q1, @2)u + 4D13(k2, 41, 2)u
ADo3(ka, q1, g2)u — 4Dy (ka, g1, g2)u + 4Das (k2, q1, g2 )u
4Dog(ka, q1, g2)u — 4D310(ka, g1, g2)u + 4Ds7(ks, q1, go)u) [B.26]

—(e1¢2(—8Dar (k2. 41, 42) — 8D313(ka, a1, ¢2) + (D11 (K2, q1, o)
3D1s(ka, q1, q2) — 3D13(k2. q1. q2) + 4Das(ka, q1, g2)

4Dsg(ka, q1,2))u)) — €1ka2(16Dsy1 (ka, g1, g2) — 24Ds12(ka, g1, o)
(D11(ks, g1, ¢2) + 3D1a(ka, q1, 42) — 3D1s(ka, q1, 42)

ADo3(ks, q1, o) + 4Do4(ks, 1, g2) + 4Ds10(ka, g1, g2)
4Ds7(ka, 1, q2) — 4Dss(ka, q1, ¢2) + 4Dso(k2, 41, 42)) 45
5D11(k2, q1,q2)s — 5D12(k2, q1, g2)s + Diz(ka, @1, g2)
G2)s — 4D (K2, q1, 42)s + 4D (K2, g1, g2 ) s

4D26 k27

4D3s(ky, q1,q2)s — 4D1o(ka, g1, g2)u + 4D13(ka, @1, g2)u

1;
1,
1;
1,
1,9
1,

4D (ka, g1, g2)u — 8Daa(ka, q1, g2)u + 8Das (k2. q1, g2)u

ADoK, 1, @) u — 4D310(]€27Q17Q2)u — 4D34(7€2,Q17Q2)U

4Ds5(ka, q1, go)u + 4Dsg(ka, q1, g2)1) [B.27]

q2

(
(k2,q
(k2,q
(k2,q
(k2,q
4Dy (ka, q
(k2,q
(k2,q
(k2,q
(
(

G2)

@)

7y

@)

@)
¢2)s — 8Ds10(ks, q1, 42)s + 4D35(ka, 41, 42) s
%)

G2)

)

)
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—8Ds12(ks, @1, @2) €162 + 8Ds13(ka, @1, g2)er62 — 8D1a(ka, qu, @2) €1 kacaks
8D13(k2, q1, q2)erkaeaks — 12Da4(ka, q1, q2)erkaeaks + 12Da5 (ka, q1, g2)e1kaeks
4D34(]€2, Q1, G2)€1kacakn + 4[)35(]?27 q1, @2)€1kacakn + Dn(ké, q1, G2)€1G2€2k
Dia(ka, q1, g2)e1q2€2ks + Dis(ka, q1, g2)e1qaeaks + 4Ds3(ka, qu1, g2)€1q2€2k
4[)25 k2, q1, q2)€1Ga€2ka — 8D26(k2, Q15 q2)€1G2€2ks — 4[7310(]{52, Q15 G2)€1G2€2k2
4D37 k2, qu, q2)€1Ga€2ka — Dn(k&, q1, G2)€1haerqn — 7[712(]{?2, Q1, G2)€1kaeoq
7D13(ks,

4[)25 ko 9)€e1kaeaqr + 8[)26 ko, g1, q2)€1ko€2q1 + 4D310(k2,Q1,Q2)€1k2€2Q1

4D (ks 2)erkoeaqy + 4Dos(ka, q1, @2 )e1qoeaqs — A Do (Ko, q1, @2 )€1qea

4
a1, q2)€192€241 — Du(]f2,Q1,Q2)€1k2€2Q2
3Dy (ks q
q

o)erkaeaqr — 4Dy ko, q1, g2)€1ka€aqn — 8D24(7<72,Q17Q2)€1k262%
e1ko€aqa + 8D23(k?2, q1, q2)€1k2€2G2
q2)

4[)24 ko 9)€1ka€aqa — 4[)26 ko, q2)€1ka€2q2 — 4[7310(]{52,%76]2)61]{52626]2

1

4D (ks

(

(

(
g2)€1q2€2q1 + 4[739(]{?27

(

(
2)erkaeaqs + 4Das(ka, a1, g2)€1g2€2G2 — 4Dog (K2, q1, G2) €102

(

)
1¢2)
1,9 2)

)

)

(
(
(k2,q1, ¢
(k2,q1, ¢
(k2,q1, ¢
4[)38(]{527%7
(k2,q1, ¢
(2,1, ¢
(2,1, ¢
4Ds3(ka, q1, g2)€192€2G2 — 4Dsg(ka, q1, G2)€1g2€2G2 — 2D33(ka, q1, 2) €162
(

q2)
)
)
)
@2)€1ka¢e2G2 + 3D13(ka,
)
)
)
)

- - 1 .
2Ds5(k2, q1, @2 €1€2€I§ + 4D39(7f27 q1, Q2)€1€2qg + §D11(k527 q1, Q2)€1€28

1~ 1=~ -
—Dia(ka, q1, q2)€1€25 + §D13(k2, ¢1,q2)€1€25 + 2Do5(ka, g1, g2)€1€28

2

2Ds(k2, q1, @2) €162 — 2D310(k2, q1, @2) €162 + 2D37(ka, q1, g2) 1625

2D35(ka, q1, g2)€1€25 — 2D3g(ka, g1, g2)€1€25 + 2D (ka, g1, g2)€162u

2[)23(]{52, Q15 Ga) €162 — 4D26(k52> Q15 Ga) €162 — 4[7310(]?2, q1, @2)€162U
( )

2D (ka, q1, g2) €162 + 2D37(k2> q1, q2)€1€2U [B.28]

BOXI(,Z) = —4D27(k2> ¢, Q) — 12[)312(]?2, ¢, q2) + 12[)313(]{?2, ¢, q2)

- 2[)33(]{?27 q1, qz)qi - 2D38(k27 q1, Q2)q; + 4D39(k27 q1, q2)q§
- 2[)0(]?27 ¢, q2)s — Dn(]fz, ¢, q2)s — Dl?(k27 ¢, G2)s

+ Dlg(k2, ¢1,q2)s + 2D25(k2, ¢, q2)s — 2D26(k52> q,q2)s
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2D310(k2, q1, G2)8 + 2Ds7(ka, q1, q2)s + 2Dss(k2, 1, ¢2)s
2[)39(]{?27 Q,G2)S + 2[)22(7472, ¢, q2)u + 2[723(]{?27 a1, G2)u
4D26(k27 qQ, q2)u — 4[7310(]{?27 a1, q2)u+ 2D36(k27 ¢, @)U

2D37(k2>Q1>Q2)U [B.29]
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Appendix C: Scalar integrals

In this appendix all relevant scalar integrals used for the-lmop QCD calculations are given.
All scalar integrals are computed = 4 — 2¢ space-time dimensions.

For virtual corrections considered in this thesis, only dme-mass box [55, 56], is needed.
Specifically, we need the case in whith= k3 = ¢ = 0 andg3 # 0. The one-mass box in the

unphysical region;-s = —(k; — k9)? > 0,—t = —(k1 —q1)* > 0,—¢2 > 0 is

dik 1
Do(ka, g2, q1) = /m [K2][(k — ko) [(k — ko — ¢2)?][(k — ko — g2 — q1)?] e

= 7 (1) T(L+e)

21 21 —q3 —s —t s
Lo, 22 —2) _n|—)-In|—
{8t62+st6 lln<u2> n(u2> n(ﬁﬂﬂ +D0<k2’q2’ql)+0(€)}
where

Do(k =D e () e () e (22 C.2
o(k2, @2, 1) = o | 2 +In 2 n 2 [C.2]

—s —t . % . g3\ 2’

For the present application, the invariag,is always space-like while the Mandelstam in-

variants,s andt¢, may either be time-like or space-like. Results for phylskiaematic regions
can be obtained by analytic continuation by replacing thetlike invariant byt — ¢ + 0™ or
s — s+1i07.

In addition, to the one-mass box, one needs expressionfiéoB-point and 2-point scalar

integrals ind = 4 — 2¢ space-time dimensions. For the 3-point scalar integral
dk 1

Colpi, i, (pr +p2)%) = / i LR =0T p)? — 0=k £ pr F o) —i07] &3
two cases are needed.
a. The two-mass triangle. Eithe = 0 or p3 = 0 andp? = (p; + p2)? # 0.
Colpt,0,p3) = 7 (1) T(1+e¢) [C.4]
(s /i) ~ s + Cat0.) + 010 |
Colt 0.09) = 3z (/o) ~ (/) [C.5]



b. The one-mass triangle. The case for whi¢h= p3 = 0 andp? = (p; + p2)? # 0.

—€ —€ 1 1
Co(0,0,p3) = 7 (u?) F(1+6){—2—2
—D3€

1 I

Co(0,0,p3) = ———2+?—1H2(—P§/ﬂz)

The scalar 2-point integral is

with
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[C.6]

[C.7]

[C.8]

[C.9]
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