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Abstract

This thesis consists of an introduction, four chapters, a discussion and an appendix.
The introduction will provide the background to the work covered in this thesis,

as well as an outline of the structure of the thesis.
Chapter 1 presents a study related to fermion zero modes. The aim is to prove

the existence of a zero mode that Klinkhamer and Lee observed in their study of a
fermion doublet coupled to a chiral SU(2) gauge field. The proof comprises analytical
and numerical analysis on the stability of the solutions obtained in the study of the
Dirac equation of the fermion.

Chapter 2 sketches a new mechanism for deriving a discrete and bounded fermion
mass spectrum, based on the work of Klinkhamer and the present author. The model
theory used consists of two fermion fields interacting with a Higgs-like scalar field.
An open extra dimension is introduced to this theory so that a set of explicit classical
solutions to the equations of motion is obtained. When the wave functions are required
to be normalizable in the extra dimension, the masses of the four-dimensional fermions
naturally become bounded and discrete.

Chapter 3 consists of an investigation of a theory on the gauged Lorentz group.
In Minkowskian space-time, the pure Yang-Mills theory of this group, with spherical
symmetry imposed on the gauge field, reduces to a new theory in a two-dimensional
space-time. The reduced theory has a scalar field with four degrees of freedom and a
quartic potential, and two abelian gauge fields. A problem that remains to be solved,
however, is that the potential of the scalar field is not bounded from below.

In Chapter 4, a method for deriving a set of identities of the correlation functions
in quantum field theories is presented. It can be used to obtain a variational equation
(resembling a differential equation) for the generating functional of a given theory.
When the generating functional is expanded into a Taylor series in terms of the source
field(s), the variational equation makes it possible to relate the correlation functions
of different processes to one another. The calculation here is non-perturbative. One
of the identities derived for the λ− φ4 theory is tested and verified.

The thesis ends with a discussion in order to address the questions left unanswered
in the previous chapters. Some reflections and ideas are given here, in hope that they
can stimulate interest in future research.





Zusammenfassung

Diese Arbeit umfasst eine Einleitung, vier Kapitel, ein Fazit, sowie einen Anhang.

Die Einleitung beinhaltet eine Veranschaulichung der Grundlagen und eine Zusammen-
fassung der in dieser Arbeit präsentierten Ausarbeitungen.

Kapitel 1 stellt Untersuchungen zu fermionischen Nullstellen vor. Das Ziel ist es, die
Existenz der von Klinkhamer und Lee in ihren Untersuchungen einer Theorie mit einem
Fermiondublett, gekoppelt an ein chirales SU(2) Eichfeld gefundenen Nullstellen zu be-
weisen. Der Beweis umfasst analytische und numerische Untersuchungen der Stabilität
der Lösungen der Diracgleichung der Theorie.

Kapitel 2 skizziert einen neuenMechanismus zur Herleitung eines diskreten und beschränkten
Fermionmassenspektrums, basierend auf der Arbeit von Klinkhamer und meiner selbst.
Das verwendete Modell besteht aus zwei fermionischen Feldern und einem mit ihnen wech-
selwirkenden, Higgs-ähnlichen skalaren Feld. Nach der Einführung einer zusätzlichen, offe-
nen Dimension, können explizite Lösungen der Bewegungsgleichungen hergeleitet werden.
Durch die Bedingung der Normalisierbarkeit der Wellenfunktionen in der zusätzlichen Di-
mension, werden die Massen der vierdimensionalen Fermionen auf ganz natürliche Weise
beschränkt und diskretisiert.

Kapitel 3 beinhaltet Untersuchungen einer Theorie mit geeichter Lorentzgruppe. In der
Minkowskischen Raumzeit, lässt sich die reine Yang-Mills-Theorie dieser Gruppe, unter
Beschränkung auf sphärisch symmetrische Felder, auf eine Theorie in zwei Raumzeitdi-
mensionen reduzieren. Die hieraus gewonnene Theorie ist die eines skalaren Feldes mit
vier Freiheitsgraden und einem quartischen Potential, sowie zwei abelschen Eichfeldern.
Das Potential ist jedoch nicht von unten beschränkt, welches ein noch zu lösendes Problem
darstellt.

In Kapitel 4 wird eine Methode zur Herleitung diverser Korrelationsfunktionsiden-
titäten in Quantenfeldtheorien präsentiert. Diese ermöglicht es uns für die erzeugende
Funktion einer beliebigen Theorie eine Variationsgleichung (in Form einer Differentialgle-
ichung) herzuleiten. Wenn die erzeugende Funktion in den Quellenfeldern Taylorentwick-
elt wird, ermöglicht es die Variationsgleichung Korrelationsfunktionen unterschiedlicher
Prozesse in Bezug zu setzen. Die vorliegende Rechnung ist nicht perturbativ. Eine Iden-
tität der λ− φ4 Theorie wurde explizit verifiziert.

Im Fazit werden die Probleme angesprochen, welche in den vorigen Kapiteln offen
gelassen wurden. Es werden zudem einige Gedanken und Ideen vorgestellt, mit der Hoff-
nung, Interesse an zukünftiger Forschung auf diesem Gebiet anzuregen.
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Introduction

Introduction

The main body of this thesis is divided into four chapters, with each chapter covering
a different topic. These topics describe a sequence of problems that I have worked on in
the past three years. They also reflect the course I have followed exploring the field of
topology of gauge fields.

First, let me introduce the background of the research on these topics.

When I started the PhD program, the problem I was given was to determine the spectral
flow in the study of fermion number violation. The interest in this problem traces back to
anomalies, one of the most peculiar features of quantum field theory. Consider a special
quantum field theory of electrodynamics, where the electron field is massless. This theory
possesses two types of U(1) gauge symmetries: one vector gauge symmetry, and one chiral
(also called axial) gauge symmetry, which means that the left and right handed fermions
transform differently. Classically, it is straightforward to verify that the Nöther currents
associated to both symmetries are conserved. However, upon quantization it turns out that
the two currents cannot be simultaneously conserved, when quantum effects are included.
This phenomenon was so puzzling that it deserved a striking name: anomaly. Three
physicists in particular dedicated a great deal of research to this subject, so that it became
known as the “Adler-Bell-Jackiw anomaly”, after them. Since then, different methods have
been invented to evaluate the quantum divergence of the axial current, i.e. to quantify to
what degree the conservation of the axial current is violated. They all, of course, led to
the same result: the divergence is a topological term totally depending on the gauge field.
It is worth to note the three most prominent of these methods, as they provide different
perspectives to understanding the nature of the anomaly: the perturbative calculation of
the triangle diagram, the point separation method in operator calculations, and the path
integral method [1].

The concept of anomalies found its first application in clarifying the confusion from
the Sutherland-Veltman paradox, which arose in the context of the decay process of a
pion into two photons. A clear discussion of this issue can be found in [2]. Later, physi-
cists realized that anomalies typically imply a disturbing phenomenon: fermion number
non-conservation. ’t Hooft was the first to carry out the difficult calculation and showed
that the amplitude of a fermion number violating process is indeed not zero [3]. In fact,
the amplitude is typically very small and cannot be calculated perturbatively. ’t Hooft’s
calculation was done in Euclidean space-time by making use of the instanton solution to
the gauge field equations. The process involved is called vacuum tunneling. The mysteri-
ous expression, vacuum tunneling, indicates that there can be many vacua (although they
all have zero energy, they are nevertheless different). What then tells the different vacua
apart is a topological quantity of the non-abelian gauge fields associated to the vacua. A
common illustration of this concept makes use of a pure Yang-Mills theory with the gauge
group SU(2) in the four-dimensional Minkowskian space-time R(1,3). The fact that the
vacuum has zero energy means that the gauge field strength must vanish everywhere in
the three-dimensional space. This implies that the gauge field is in pure gauge, i.e. it
takes the form ig−1(x)∂g(x) for some gauge function g : R3 → SU(2). At infinity in the
space R3, the map is topologically equivalent to one from the two-sphere, S2, to the gauge
group. Topologically the gauge group SU(2) is the three-dimensional unit hypersphere
S3. Therefore, the map g restricted at infinity is one from S2 to S3. According to a known
result of topology (π2(S

3) ≃ 0) this restricted map can be continuously deformed to the
identity map, thus extended to the whole space R3 without inducing any singularity. This
implies, as far as only the topological properties of the map g(x) are concerned, that we
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Introduction

can identify all the points at infinity in R3 as one single point. With this identification R3

becomes S3. Mathematically this procedure is called one-point compactification. Now the
gauge function can be viewed as a map from one S3 to another S3. This map possesses
a nontrivial topological property, called the winding number, which is an integer number.
This property is shared by the gauge field and the corresponding vacuum. Vacuum tunnel-
ing, then, can be described as the transition of a vacuum with a certain winding number
number into another vacuum with a different winding number, at a tiny probability called
tunneling rate. For the transition from one vacuum to another the physical system has to
overcome a positive energy barrier (in principle it is the energy of the sphaleron [4]) which
obviously exceeds the available energy possessed by the vacuum, thus the name tunneling.
In the anomaly equation of this illustration, the divergence of the axial current is propor-
tional to the Pontrjagin density, which, upon integration over the four space-time, gives
exactly the change in winding number. From the anomaly equation we conclude that a
charge corresponding to the spatial integration of the axial current, the fermion number,
must be violated. The violation of fermion number is given precisely by the change of
winding number. In other words, when the vacuum tunneling occurs, (anti) fermions are
created, equal to the change in the winding number between vacua in number.

It is natural to guess that anomalies also occur in the standard model theory. This
indeed happens. The story is, however, a bit more complicated. In the standard model the-
ory there are several types of fermionic fields, which are grouped as leptonic and baryonic
fields. Both leptonic and baryonic fields have anomaly equations for their axial currents.
Miraculously, when we take the difference of leptonic and baryonic axial currents, the net
divergence vanishes. This phenomenon is called anomaly cancellation. It occurs in the
standard model theory because of the special structure of the theory: the number of the
leptonic fields, that of the baryonic fields, and the quantum charges associated with these
fields come in such a way, that the cancellation is possible. The anomaly cancellation im-
plies that the charge, which is the difference of the baryon number and the lepton number,
is conserved. It is, however, still possible to get an anomaly equation with non-vanishing
divergence, by taking the sum of the two equations. This manipulation has a physical
implication: it suggests that the sum of the baryon and lepton numbers is not conserved.
Put in a nutshell, in the standard model theory, the anomaly causes the violation of the
lepton and baryon numbers, while the difference of the two is still conserved due to the
anomaly cancellation.

As stated earlier, ’t Hooft’s calculation on the vacuum tunneling rate was done in Eu-
clidean space-time. The method was based on an extrapolation of the WKB approximation
in quantum mechanics: the tunneling rate can be approximated by using the classical so-
lution to the equation of motion in imaginary time. This idea is physically plausible,
however, not totally convincing for the following reason. Many topological results on the
gauge fields are obtained in Euclidean space-time. Their counter-part in Minkowskian
space-time is, however, either not known or very different. One example of this is that,
the winding number of gauge fields takes integer number values in Euclidean space-time,
while in Minkowskian space-time it can be an arbitrary fractional number [5]. Another
example is the index theorem. In Euclidean space-time without boundaries, the degree
of fermion number violation is quantified by the index of the Dirac operator in question,
according to the Atiyah-Singer index theorem. In Minkowskian space-time the Dirac op-
erator is no longer elliptic. As a result, its index cannot be defined in this case. These
facts warn us not to rely on the calculation performed in Euclidean space-time. Instead,
we should search diligently for a direct calculation in Minkowskian space-time.

To quantify the fermion number violation, a more general term, has been introduced:
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spectral flow. Suppose, on a time interval we can track all the fermionic states in the theory
under question, i.e. the eigenmodes of the Dirac operator. We know how their eigenvalues
change over time. It might be that the eigenvalue of a mode turns from negative to
positive, or the other way around. Now imagine that the state corresponding to this mode
is occupied by an anti-fermion (or fermion). Such a scenario is then physically interpreted
as an anti-fermion becoming a fermion or vice versa, accompanied by a change of 2 (or
-2) in fermion number. The net change in fermion number, taking into account all the
fermion modes, is called spectral flow over the given time interval. Similar to the index
of the Dirac operator, the spectral flow is also a topological quantity associated to the
Dirac operator and the gauge fields, in Euclidean space-time with boundaries (the spaces
at the initial and the final time make up the boundaries here). A formula for computing
the spectral flow in a compact Euclidean space-time with boundaries is provided in the
Atiyah-Patodi-Singer index theorem [6].

Although Dirac operators in Minkowskian space-time are not elliptic, their spectral
flow on a time interval can be defined unambiguously, given that the space in question
is compact. Unfortunately, in Minkowskian space-time there is no elegant result for the
spectral flow, comparable to the Atiyah-Patodi-Singer index theorem. Instead, a different
approach can be taken. Since the fermion number violation occurs when the eigenvalue of a
fermionic state crosses zero, necessarily when a fermion zero mode occurs, we can focus on
studying the zero modes. We first find all the fermion zero modes of the theory in a specific
time interval, then study the direction of the level crossing at the vicinity of each zero
mode. Summing up all the information on the level crossings gives the spectral flow. While
this approach seems less efficient than the elegant topological approach, it is practical and
provides a clear physical account of the fermion number violating phenomena.

The previous text describes the background of the research I conducted over the last
three years. With this background knowledge we can appreciate better the interest in the
following topical discussion and agree that following these directions was indeed a natural
choice.

Chapter 1 is the most directly related to the background I have discussed. Klinkhamer
and Lee studied the fermion zero modes in the chiral theory containing a gauge group
SU(2) and a fermion doublet [7]. All the fields of their model are constrained to be
spherically symmetric in three dimensional space. It is worthwhile to add some comments
here on the spherical symmetry condition. Spherical symmetry was originally imposed on
gauge fields for the purpose of simplifying the Yang-Mills field equations, so that some ex-
act solutions could be obtained. However, Witten observed that a pure Yang-Mills theory
for the SU(2) gauge group in a flat space-time with dimension four, upon the imposition
of spherical symmetry, reduces to an abelian Higgs theory in a two dimensional curved
space-time [8]. The phase of the Higgs-like complex scalar field carries the topological
information of the original SU(2) gauge field, i.e. its winding number. Klinkhamer and
Lee showed that the change of this winding number is accompanied with the occurrence
of fermion zero modes. In addition, they observed from numerical analysis that, there
might be a fermion zero mode which is not associated to a change of winding number.
In the following I will address this special fermion zero mode as a “non-topological” one.
Apparently, all these fermion zero modes are crucial for determining the spectral flow.
The work presented in the first chapter is a continuation of Klinkhamer and Lee’s work.
It consists mainly of a proof to the existence of a “non-topological” fermion zero mode
in the theory studied by Klinkhamer and Lee. The proof consists of both analytic and
numeric studies. The analytic result obtained here can help to find more fermion zero
modes in theories where the equations of motion assume a similar form.
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The fermion zero modes themselves are of great interest. Their appearance is closely
related to the topological property of the background field coupled to the fermion field.
The connection between fermion zero modes and the topology of the background field is
best illustrated in a simple model of a fermion coupled to a scalar field in two dimensional
space-time. Jackiw and Rebbi showed that the kink solution of the scalar field in this
model is necessarily accompanied with the occurrence of a fermion zero mode [10]. From
the straightforward calculation we can gain some insight about the topological fermion
zero mode. A peculiar property of the fermion zero mode discovered by Jackiw and Rebbi
is, that in the presence of one fermion zero mode the background field will necessarily
carry 1/2 or −1/2 fermion number. A deeper understanding of this observation involves
the discussion of the quantization of a field theory, which goes beyond the scope of this
thesis.

It’s natural to consider the model studied by Jackiw and Rebbi in a higher dimensional
space-time and seek new solutions carrying topological properties. However, there is no
intrinsically new fermion zero mode in higher dimensions, unless gauge fields are introduced
to the theory. At least, no nontrivial static solution to the equations of motion for a
Higgs-like scalar field in two or three dimensional space (no gauge fields) has been found.
However, we noticed an interesting byproduct of this investigation. We can find a bounded
and discrete mass spectrum for fermions living in Minkowskian space-time, by making use
of the kink solution in an extra dimension. It has been proposed that fermions living in
the ordinary 4-d space-time are zero modes trapped in a brane in a 5-d space-time [11].
This idea inspired the speculation on a possible mechanism to determine the spectrum of
fermion masses in four dimensional space-time. In the second chapter I present a working
theory for such a mechanism. The simple model of a fermion coupled to a scalar field
with a double well potential is modified slightly. Then it is possible to find a set of exact
solutions to the classical equations of motion. To obtain these solutions, two Ansätze for
the fermion solutions have been made. It will be seen that these Ansätze have a fitting
interpretation. Moreover, a surprising feature of the fermion solutions was noticed. They
make it possible to distinguish left- and right- handed components of a Dirac spinor in the
five dimensional space-time, while the counter parts of the two spinor components in the
four dimensional space-time appear symmetric.

The third chapter presents a small investigation of the topic of spherically symmetric
gauge fields. It was mentioned previously, that the spherically symmetric SU(2) Yang-
Mills theory exhibits interesting features such as the arising of a Higgs-like field. Forgacs
and Manton have shown that imposing space-time symmetries on the gauge field would
necessarily result in Higgs-like scalar fields [12]. This striking phenomenon naturally gives
rise to the question: can the Higgs field in the electroweak theory be derived from some
pure Yang-Mills theory? First of all, such a possibility is mathematically appealing. The
theory would have a compact and unified form and the Higgs field would acquire a geomet-
rical interpretation. Second, from the physics point of view, such a theory would also be
more fundamental. It could also provide a possibility to unify the four fundamental forces.
But life is not that easy. It is hard to tell of this question possesses a positive answer.
First, the space-time symmetry of the field results in a dimensional reduction. To obtain a
final theory with Higgs field in four dimensional space-time, naively we need to start with
a theory in a space-time with more than four dimensions, such as in [13], where two extra
dimensions were introduced. Is it necessary to introduce extra dimensions to understand
the origin of the Higgs field? If yes, are the extra dimensions physical? From a certain
perspective, obtaining the Higgs field from some gauge field is similar to the Kaluza-Klein
mechanism for unifying gravity and electromagnetism. In both cases, the extra dimen-
sions play a key, if not an indispensable role. In Chapter 3 I will offer a different point of
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view on the issue of dimensional reduction. I will argue for the possibility that there is no
extra dimension. Besides this issue, we need to find a gauge group to start with, which
physically makes sense and which leads to a final theory that matches the gauge sector
in the electroweak theory. Manton used the group G2 and obtained a theory with many
nice aspects. However, there was no explanation why this group was chosen and in which
representation of this group the fermions fields lived. The investigation presented in this
chapter uses the Lorentz group. I will gauge this group and find the spherical symmetric
gauge field associated to it.The investigation focuses on the mathematical structure of the
theory after the spherical symmetry is imposed. In spite of its failure to reproduce the
Higgs field and SU(2) × U(1) gauge group in the electroweak theory, it may serve as a
starting point for further investigations.

Chapter 4 presents a set of identities of the correlations functions of a given quantum
field theory. The method for deriving these identities is similar to that used for proving
the Ward-Takahashi identity. These identities are interesting because they are obtained
using a non-perturbative method. I have tested one of these identities in the λ − φ4

theory by computing the same correlation functions using the perturbative method. The
result of the test is positive. However, no attempt has been made to compute any specific
correlation functions using this method, since it is estimated to be very difficult, if not
impossible. Interestingly, the same method for obtaining these identities can be applied
to theories with gauge fields where the gauge fixing becomes unnecessary. Therefore, it
might provide a new avenue to study the anomaly-related problems.

Finally, in the discussion which ends this thesis I will reflect on the results presented
in each chapter and give some thoughts and ideas for further study.

Throughout this thesis, the physical constants, the speed of light c and the Plank
constant ~, are set to one, unless otherwise specified.
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1 AN EXTRA FERMION ZERO MODE IN THE CHIRAL SU(2) THEORY

1 An extra fermion zero mode in the chiral SU(2) theory

1.1 Introduction

In a quantum field theory with dynamical fermion fields subjected to some static ex-
ternal gauge field, fermion zero modes may occur, i.e. when we attempt to solve the Dirac
equation with certain gauge background fields, we may find solutions associated with zero
value of the Dirac Hamiltonian. If the external gauge field is time dependent, we can solve
the Dirac equation for each time instant and find a time dependent fermion energy spec-
trum, i.e. the eigenvalues of the Dirac Hamiltonian as functions of time. We can speak
of flows of the eigenvalues of the Dirac Hamiltonian. Curiously, the following phenomena
may be observed: a particular flow goes from a negative value to a positive one or the
other way around, i.e. it crosses zero as time elapses. When the corresponding state is
occupied, the physical interpretation of such phenomena is: an anti-fermion turns into a
fermion or vice verse. That is to say, the fermion number is violated. Suppose all the
states are occupied, the net change of the fermion number in this course is called spectral
flow. We may then ask ourselves if we can determine the spectral flow by tracking the
evolution of the external gauge field?

To answer this question, we should constrain ourselves to a specific space-time. In
fact, when the space-time is Euclidean, the question is already answered by the renowned
Atiyha-Singer-Patodi index theorem [6]. In this theorem the spectral flow is given using
“η” invariant, evaluated on the boundaries of the space-time manifold. This means, the
net change of fermion number in question concerns only the topological properties of the
initial and final background fields, provided that the background fields evolve smoothly.
However, in Minkowskian space-time such a neat result has not yet been obtained. An
alternative approach must be taken. We can find all the possible zero modes occurring
in the time interval and study the level crossing at the vicinity of each zero mode. The
spectral flow can be computed by synthesizing the information of level crossing at each
zero mode. We might even be able to find some general rule in this approach so that an
elegant quantity can be found to determine the spectral flow. Klinkhamer and Lee took
took this approach in [7]. They investigated the Dirac equation in the background of the
spherically symmetric SU(2) gauge field. These gauge fields are solutions to the Yang-
Mills equations discovered by Luescher and Schechter [16]. Imposing spherical symmetry
makes the 1+3-d SU(2) gauge field reduce to a single component complex scalar field with
a Higgs-like potential and a U(1) gauge field in 1+1-d curved space-time [8]. These special
fields can be expressed in terms of elliptic functions [16]. If we make spherical symmetric
Ansatz for the spinor field coupled to the gauge field as well, the corresponding Dirac
equation also reduces to one in 1+1- space-time [17]. The zero mode equation will be a
system of two coupled first order ordinary differential equations. These equations together
are equivalent to a Schroedinger equation with a complex potential in one dimensional
space. A very nice result has been obtained for this reduced theory: in the presence of
a zero in the scalar field, which corresponds to a change of the winding number of the
background field, a so-called inverse symmetry of the background fields (scalar and U(1))
emerges. One particular consequence of this symmetry (corresponding to the change of
the winding number of the gauge field) is the occurrence of a fermion zero mode [7]. This
result becomes valuable when we consider it is one of the very few concrete examples in
Minkowskian space-time, which clearly displays the link between the topological property
of the gauge field and the occurrence of fermion zero modes. Since the interplay between
the fermion zero modes and the topological property of the gauge background field is often
seen in Euclidean space-time (e.g. in theories with vortex or instanton solutions), we tend
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1 AN EXTRA FERMION ZERO MODE IN THE CHIRAL SU(2) THEORY

to assume that these are all the possible zero fermion modes.

Curiously, besides the zero modes accompanied with the change of winding number
of the gauge fields, Klinkhamer and Lee also claimed that another fermion zero mode
exists [7]: one that is not linked to the appearance of the zero in the complex scalar
field (component of the spherically symmetric gauge field), hence not to the change of
the winding number in the gauge background. It seems that this additional fermion zero
mode is not associated to any topological property of the background gauge fields. More
precisely, it seems that this fermion zero mode can appear or disappear under continuous
deformation of the background gauge fields. If ture, this would be a peculiar phenomenon
indeed. However, the evidence for the existence of this extra fermion zero mode provided
in [7] was insufficient. Thus it is important to investigate if this extra fermion zero mode
exists; and if it does, can it be identified as non-topological? In this chapter, only the first
question will be answered firmly. I will prove that the extra fermion zero mode claimed by
Klinkhamer and Lee in [7] does exist. First, some analytic properties of a general solution
to the Dirac equation will be proven rigorously. Once certain numerical conditions are
satisfied, these analytic properties then allow us to draw firm conclusions regarding the
existence of the extra fermion zero mode. The existence of this extra fermion zero mode is
the main focus of this chapter. Whether or not if this extra fermion zero mode interlocks
with a topological quantity of the background gauge field is a question that, for now,
remains unanswered.

In addition to the determination of the spectral flow, there are three more aspects of
fermion zero modes worth noting. First, in the presence of a single fermion zero mode, the
corresponding background field acquires fractional fermion number. This can be argued
rigorously using the standard field quantization method [10]. This is a peculiar feature
and its deep implication remains to uncover. Second, fermion zero modes are also found
in the topological band theory in the field of condensed matter physics. If the system
has a topologically non-trivial bulk-surface structure, a fermion zero mode in the edge
states must occur. This zero mode can connect the valence and conduction bands. In
other words, the gap existing in a insulator, which confines the electrons in the valence
band at low energy, is closed. As a result, with a little extra energy (corresponding to
low temperature) electrons can move from valence band to the conduction band. This
then makes the system a conductor [14]. At last, fermion zero mode are often related to
Majorana particles. A Majorana particle is its own anti-particle. A particle occupying a
fermion zero mode necessarily carries zero charge. This enables us to form a Majorana
state using the fermion zero mode. In the theory of topological superconductors Kitaev
has made use of this idea [15].

This chapter is organized as follows. First, I will present a brief review of the origin of
the extra zero mode claimed by Klinkhamer and Lee. Second, I will prove a theorem about
the analytic properties of the solutions to the Dirac equation we are studying. Third, I
will discuss the full condition for the existence of a fermion zero mode, and prove the
existence of the extra fermion zero mode claimed by Klinkhamer and Lee. Fourth, I will
briefly touch on a small case where we could apply the theorem proven in part two. I will
end this chapter with a short discussion and conclusion will be made.

1.2 A brief review of Klinkhamer and Lee’s result on the extra fermion
zero mode

The theory studied by Klinkhamer and Lee is a chiral theory with one fermion coupling
to SU(2) gauge fields. With the spherically symmetric Ansätze for the gauge field and
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spinor, the fermion zero mode equation can be reduced to Eq.(3.9) in [7], i.e. :

∂rΨ(t, r) =

(

−λ(t, r) R(t, r)
−R(t, r) λ(t, r)

)

Ψ(t, r), (1.1)

where Ψ is the two-component spinor field, λ and R are quantities formed of the spherically
symmetric SU(2) gauge fields. They are invariant under the gauge rotation of the reduced
U(1) gauge group (upon imposing the spherical symmetry, the gauge group SU(2) is
reduced to U(1) [8]). These two quantities will be specified later. At the moment only
two important properties are relevant here:

lim
r→0

R

λ
= lim

r→∞
R

λ
= 0, (1.2)

and λ is always non-negative.

Taking the two-component spinor as a complex number and expressing it in its modulus-
phase form as:

Ψ(t, r) = |Ψ(t, r)|eiσ2Θ(t,r)

(

0
1

)

, (1.3)

with σ2 the second Pauli matrix, we can bring Eq. (1.1) into the following form:

∂rΘ = −λ sin 2Θ +R, (1.4a)

∂r|Ψ| = λ|Ψ| cos 2Θ, (1.4b)

with the boundary (initial) conditions:

Θ(t, 0) = 0 mod π, (1.5a)

|Ψ(t, 0)| = 0. (1.5b)

Klinkhamer and Lee studied the solutions to Eq. (1.4a) and noticed that they all fall into
two classes: one with Θ(t,∞) = mπ called stable class; and the other with Θ(t,∞) =
nπ+ π

2 called unstable class, where both m and n are integers. Furthermore, if a solution
occurs in the unstable class, there has to be a zero mode solution to the original Dirac
equation in question, because the solution to Eq. (1.4b) would, in this case, necessarily
be normalizable, as |Ψ| would vanish exponentially at r = ∞ and the boundary condition
Eq. (1.5b) would also be satisfied.

In [7] Klinkhamer and Lee also pointed out, if the solution to Eq. (1.4a) makes a
discontinuous jump at r = ∞ by π at some time t∗, then an unstable solution with
Θ(t∗,∞) = π

2 mod π must exist. This consequently follows the existence of a fermion
zero mode at t = t∗. Klinkhamer and Lee found a numerical value for t∗ = −2.924 and
observed that Θ(t,∞) jumps from π to 0 around t = −2.924. The relevant parameters to
specify the gauge fields relevant for this observation are given in the caption of Fig. 8 in
[7]. In this figure numerical solutions to Eq. (1.4a) at different time around t = −2.924
are plotted using Mathematica. From the plot we can derived that as r becomes large,
different solutions approach different limits, differed by π. Following the intuition of
“continuity” an unstable solution at t = −2.924 must exist. Furthermore, the occurrence
of such a fermion zero mode cannot be due to the change in the winding number of the
background field, because around t = −2.924 there cannot be zero in the modulus of the
complex scalar field (this can be concluded from Eq.s (5.8) and (5.9) in [7]; discussion on
the locations of zeros can also be found in [9]). As follows, this zero mode is not related
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to the change of the winding number of the background gauge field. From now on it will
be referred to as the extra fermion zero mode.

However, to convince ourselves about the existence of the extra fermion zero mode, the
numerical evidence and intuitive continuity argument are insufficient. At the very most,
we can draw use the numerical evidence to draw the conclusion that there is a jump in the
solution, Θ(t,∞), around t = −2.924. The reasoning is twofold: no matter how closely
the solution at a particular time approaches an unstable limit on a finite interval of r, it
is not sufficient to exclude the possibility that it leaves the unstable limit and approaches
a stable one when r gets bigger. In addition, numerical solutions necessarily involve
errors. A small error can make an unstable solution stable in certain circumstances. The
continuity argument, on the other hand, is, strictly speaking, invalid. We can construct a
function Θ(t, r) that is continuous at any finite (t, r) yet Θ(t,∞) takes only two values, π
and −π. To construct such a counter example, it is better to think of the graph of Θ(t, r)
as a beam of flows, parameterized by the time t. Imagine those flows in the middle of the
beam (corresponding to values of t in the middle of the time interval) splitting smoothly
into three groups as r increases. The upper and lower groups flow towards the limits π
and −π respectively, while the middle group of flows splits again at larger r. The upper
and lower groups can be considered as the stable classes of flows. As we can safely say that
all the flows eventually fall in these two classes, it is necessary to have a more rigorous
argument for the existence of the unstable solution.

Besides the behavior of the solutions to Eq. (1.4a) at r = ∞, at r = 0 their behavior
needs to be examined more carefully as well. This is necessary to fully establish the
existence of the fermion zero modes.

1.3 More on the stability

Due to the asymptotic behavior of the function R
λ , it is possible for us to get more

information about solutions to Eq. (1.4a).

Since R
λ (t, r)

r→∞−−−→ 0, there exists such a large r∗ that if r > r∗,|Rλ (t, r)| is smaller
than a small positive number ǫ. In the following discussion R

λ is taken to be positive. For
the case where it is negative the discussion will be similar and the conclusion will not be
altered.

Consider the value of Θ(t, r∗). Suppose sin 2Θ(t, r∗) > ǫ, i.e. 2Θ(t, r∗) is in the range
[2nπ+δ, (2n+1)π−δ] with δ = arcsin ǫ. From Eq. (1.4a) we can see that the derivative of
Θ(t, r), ∂rΘ(t, r∗), is negative in this situation. In a small interval (r∗, r∗+α) with α small,
2Θ(t, r) gets smaller as r increases. In this interval as long as the condition sin 2Θ(t, r∗) ≥ ǫ
holds true, 2Θ decreases monotonously, until hitting the value 2nπ + δ.

Now consider that 2Θ(t, r∗) is close to but still bigger than 2nπ + δ. ∂rΘ(t, r∗) is still
negative, so 2Θ(t, r) continues to decrease in a short interval starting from r∗. But it
is certain that 2Θ(t, r) cannot get smaller than 2nπ − δ, as ∂rΘ(t, r) would have turned
positive and 2Θ(t, r) would have started growing back towards 2nπ. Likewise, once 2Θ(t, r)
becomes smaller than 2nπ+ δ it cannot grow bigger than 2nπ+ δ, as the ∂rΘ(t, r) would
have already turned negative and 2Θ(t, r) would move toward 2nπ again. As r grows, Rλ
becomes ever smaller, we can expect that 2Θ(t, r) stabilizes around 2nπ, with some tinier
and tinier oscillations.

At r∗ it could also occur that sin 2Θ(t, r∗) < −ǫ, i.e. 2Θ is in the range ((2n − 1)π +
δ, 2nπ − δ) for some integer n and the same δ as defined above. In a similar manner, we
can conclude that in either case, 2Θ(t, r) will first grow a bit and then stabilize around
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2nπ.

The complex situation occurs when 2Θ(t, r∗) falls in the interval [(2n + 1)π − δ, (2n +
1)π + δ]. In this case an unstable solution might arise. In order to convince ourselves of
the appearance of the unstable solution, we need more input. In section 1.4.1, a rigorous
proof will be presented based on this analysis, provided that there are two solutions to
Eq. (1.4a) at t1 and t2 with 2Θ(t1,∞) = 0 and 2Θ(t2,∞) = 2π, which are equivalent to
the condition 2Θ(t1, r

∗) ≤ π − δ and 2Θ(t2, r
∗) ≥ π + δ for some appropriate r∗ and δ.

We can sum up the above analysis as follows, at a large r with |R/λ| < ǫ if for the
solution to Eq. (1.4a) 2Θ(t, r) is in the range [(2n − 1)π + δ, (2n + 1)π − δ], the solution
will converge to 2nπ at r = ∞. For 2Θ(t, r) in the range [(2n−1)π−δ, (2n−1)π+δ], there
is a possibility that the solution can converge to the unstable value (2n − 1)π at r = ∞.

1.4 The occurrence of extra zero modes

1.4.1 Proof for the existence of unstable solutions to the phase equation

In this subsection, I will prove rigorously the existence of the unstable solution to Eq.
(1.4a) under some special condition. It is necessary to clarify beforehand that, here, an
unstable solution means a solution to Eq. (1.4a), with a proper initial value condition,
which at r = ∞ falls in the unstable class, regardless of its value at r = 0. Before we can
claim the extra fermion zero mode exists, however, we must examine the behavior of the
solution at r = 0 carefully. This will be discussed in section section 1.4.2.

The proof will be derived through two steps. A particular property of continuous
functions will be shown in the first step as the following lemma.

Lemma1 Suppose a function f(x) is continuous on an interval [a, b] and f(a) < f(b),
then for any two numbers α and β with f(a) < α < β < f(b), there are always such two
numbers s and t with a < s < t < b that f(s) = α, f(t) = β and for any y ∈ [s, t] the
inequality α ≤ f(y) ≤ β holds true.

Proof. Since f(x) is continuous on [a, b] and f(a) < α < β < f(b), the set {x|f(x) =
α and x ∈ [a, b]} is not empty. In particular, this set is closed and hence compact
because f(x) is continuous. Therefore, the greatest number in this set exists, which is
denoted as s.Now consider the set {x|f(x) = β and x ∈ [s, b]}. For a similar reason this
set is also closed and hence compact. Therefore, the smallest number in this set exists,
which is defined as t. The two numbers, s and t, chosen this way satisfy the requirement
in the hypothesis. On the one hand, f(x) ≥ α whenever x ∈ [s, b]. If this weren’t true, we
would be able to choose another s′ in this interval with f(s′) = α, which contradicts that
s is the largest in the previously defined set. On the other hand,following the same logic,
we may also conclude that f(x) ≤ β whenever x ∈ [s, t].

Given that the functions λ(t, r) and R(t, r) are smooth, we can conclude that the
solution to Eq. (1.4a) with initial value Θ(t, ro) = Θi, denoted as Θ(t, r), has continuous
first order derivative with respect to t and r when both parameters are finite. This follows
from Theorem 6.1 in [18]. Therefore, lemma 1 applies to Θ(t, r) as a function of t on any
interval [t1, t2], once r is fixed to a finite value. We will use this fact frequently in the
proof of the following theorem.

Theorem2 In the differential equation Eq. (1.4a) with initial value condition Θ(t, ro) =
Θi (we must assume ro is different than 0 for reasons explained in section 1.4.2), suppose
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the smooth functions λ(t, r) and R(t, r) have the properties as were specified in Eq. (1.2).
If there are two solutions at t1 and t2 with Θ(t1,∞) = 0 and Θ(t2,∞) = π, then there
must be such a solution at some t∗ ∈ [t1, t2] that Θ(t∗,∞) = π

2 .

Proof. We can prove the theorem using a contradiction. The idea is to show that there is
a t∗ such that 2Θ(t∗, r) is bounded in an interval [π− δ, π+ δ] for arbitrarily small positive
number δ and arbitrarily large r.

Step 1. Since λ(t, r) and R(t, r) are smooth functions of finite t and r, and R
λ

r→∞−−−→ 0,
for any small positive number ǫ there must be such a large but finite r∗ that |Rλ | ≤ ǫ
for all (t, r) ∈ [t1, t2]×[r∗,∞). Note that this r∗ can be chosen independent of t, since
R/λ

r→∞−−−→ 0 for all t in the compact interval [t1, t2]. Thus, according to the previous
analysis on the stability of the solutions, we conclude that for (t, r) ∈ [t1, t2]×[r∗,∞),
if 2Θ(t, r∗) is in the interval [π+arcsin ǫ, 3π−arcsin ǫ] or [−π+arcsin ǫ, π−arcsin ǫ],
Θ(t, r) will converge to π or 0 at r = ∞ (note that sometimes a factor 2 is included
to save words). In the following text arcsin ǫ will be denoted as δ.

Step 2. Since 2Θ(t1,∞) = 0 and 2Θ(t2,∞) = 2π, for any small positive δ it is
possible to find a number r1 such that 2Θ(t1, r1) < π−δ and 2Θ(t2, r1) > π+δ. Since
Θ(t, r1) is continuous on the interval [t1, t2], by lemma 1 there exist such two numbers
a1 and b1 with t1 < a1 < b1 < t2 that 2Θ(a1, r1) = π − δ and 2Θ(b1, r1) = π + δ,
and π − δ ≤ 2Θ(t, r1) ≤ π + δ for t ∈ [a1, b1]. According to the discussion in
step 1, we conclude that the solutions at a1 and b1 both fall into stable classes, i.e.
2Θ(a1,∞) = 0 and 2Θ(b1,∞) = 2π.

Step 3. Now consider the value of 2Θ(a1+b12 , r). There are three cases.

Case 0: 2Θ(a1+b12 ,∞) = π, theorem is proven.

Case 1: 2Θ(a1+b12 ,∞) = 2π,

We consider this condition together with 2Θ(a1,∞) = 0. There must be such a
number r2 > r1 + 1 that 2Θ(a1, r2) < π − δ and 2Θ(a1+b12 , r2) > π + δ. By lemma 1

there must be such two numbers, a2 and b2, that a1 < a2 < b2 <
a1+b1

2 , 2Θ(a2, r2) =
π − δ, 2Θ(b2, r2) = π + δ, and π − δ ≤ 2Θ(t, r2) ≤ π + δ for all t ∈ [a2, b2].

Case 2: 2Θ(a1+b12 ,∞) = 0.

We consider this condition together with 2Θ(b1,∞) = 2π. There must be such
a number r′2 > r1 + 1 that 2Θ(a1+b12 , r′2) < π − δ and 2Θ(b1, r2) > π + δ. By

lemma 1 there must be such two numbers, a′2 and b′2 that a1+b1
2 < a′2 < b′2 < b1,

2Θ(a′2, r
′
2) = π−δ, 2Θ(b2, r

′
2) = π+δ, and π−δ ≤ 2Θ(t, r′2) ≤ π+δ for all t ∈ [a′2, b

′
2].

Case 1 and case 2 cannot occur simultaneously. It is possible to define a unique set
(a2, b2, r2) when case 0 does not occur.

Step 4. Now repeat step 3 and define (a3, b3, r3), (a4, b4, r4)..., unless case 0 in step 3
is encountered, in presence of which the theorem is already proven and the sequence
terminates. In the following discussion we will assume that an infinite sequence has
been constructed. We claim that the two sequences {an} and {bn} converge to the
same limit, denoted by t∗. This is because t1 < an < bn < t2, an ≤ an+1, bn+1 ≤ bn
and in particular the gap sequence {bn−an} converges to 0 faster than the geometric
sequence {2−n}.

It is clear from step 2 and step 3, that t∗ is in the interval [an, bn] for arbitrary positive
integer n, hence t∗ ∈ [t1, t2]. We also conclude, rn > r∗+n−1 and π−δ ≤ 2Θ(t∗, rn) ≤ π+δ.
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Evidently, if Θ(t∗,∞) 6= π
2 we would run into a contradiction because we know that

Θ(t∗,∞) can only be integer multiples of π/2.

1.4.2 Another condition for the existence of fermion zero modes

If a fermion zero mode were to exist, it would not only put constraint on the asymptotic
behavior of Θ(t, r) at large r, but also on its behavior at r = 0. It was noted in [7] that
for a regular function for |ψ| at r = 0, the necessary boundary condition is

Θ(t, 0) ≡ 0 mod π. (1.6)

This boundary condition should be examined carefully. Since λ(t, r) is divergent as
1/r at r = 0, Eq. (1.6) cannot be taken as an initial value condition because it cannot
determine a unique solution to Eq. (1.4a). A proper way to treat this problem is to set
the value for Θ(t, r) at a nonzero finite ro (here t is taken as a constant parameter):

Θ(t, ro) = Θi. (1.7)

Eq. (1.4a) and Eq. (1.7) together form a proper initial value problem for a first order
differential equation. The study on ODE (e.g. Theorem 6.1 [18]) says that there is a
unique solution to this problem. However, the boundary condition specified in Eq. (1.6)
is not likely to be satisfied by this solution. To see why Eq. (1.6) does not serve as a
proper initial condition, we should make a change of variable: x = ln r. Then Eq. (1.4a)
becomes

∂xΘ = −ρ sin 2Θ + exR. (1.8)

Now x ranges in the interval (−∞, ln ro] and x = −∞ corresponds to r = 0. The
requirement that Θ(t, 0) ≡ 0 mod π translates into Θ|(t,x=−∞) ≡ 0 mod π. An analysis
similar to that in section 1.3 shows that the value of a solution to Eq. (1.8) at x = −∞
(or the value of a solution to Eq. (1.4a) at r = 0) necessarily falls into two classes:
Θ|(t,x=−∞) ≡ 0 mod π and Θ(t, x = −∞) ≡ π

2 mod π. This means that if we attempt to
determine a unique solution to Eq. (1.8), especially in a numerical way, it is insufficient
to require Θ(t, x = −∞) (Θ(t, r = 0)) to take some specific value. More importantly, the
analysis shows that the class with Θ|(t,x=−∞) ≡ 0 mod π is unstable: any perturbation
would make it fall into the class of Θ|(t,x=−∞) ≡ π

2 mod π. Therefore, for a fermion zero
mode to exist, it is necessary that the solution to Eq. (1.4a) approaches to a value in the
unstable class not only at r = ∞, but also at r = 0.

Even if we find a particular value for Θi in Eq. (1.7) that makes the corresponding
solution satisfy the condition at r = ∞, then in general this solution would not satisfy
the condition at r = 0; or the other way around. Thus the numerical evidence provided
in [7] bears one more defect: because of its numerical nature it does not give information
about the stability of the solution at r = 0. In other words, the value of that solution
at r = 0 probably falls into the stable class, thereby ruining the normalizablity of the
corresponding spinor field at r = 0. For this reason, it is necessary to revise the condition
on the existence of the extra fermion zero mode discussed in [7].

In general, it is hard to establish the occurrence of such a solution, because we simply
cannot solve the corresponding Dirac equation (equivalent to a Schrödinger equation with
general complex potential). One alternative is to combine analytic analysis and numerical
study. In the following I will introduce a method combining the the analytic and numeric
analysis.
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For a given time to, let Θ(to, r,Θi) denote the solution to Eq. (1.4a) with the initial
value condition as in Eq. (1.7). Now Θ(to, r,Θi) + π = Θ(to, r,Θi + π) is also a solution
with a different initial value, Θi + π. Comparing these two solutions at r = ∞, there is a
change by π. If Θi changes smoothly, the solution Θ(to, r,Θi) would change smoothly at
finite r as well. Thus, according to theorem 2 (we have to assign the role played by t to
Θi) there must be such a Θ∗ in the interval [Θi,Θi + π] that the corresponding solution
to Eq. (1.4a) satisfies Θ(to, r = ∞,Θ∗) = π

2 mod π. There could be more than one value
in this interval that satisfies the same condition. When the smallest value in this interval
is chosen, a function Θ∗(t) can be defined: Θ∗(t) equals the smallest value in the interval
[Θi,Θi+π] that Θ(t, ro) in Eq. (1.7) has to take at time t, so that Θ(t, r = ∞,Θ∗(t)) = π

2
mod π. Furthermore, it can be proven that this function is continuous, provided that
R(t, r) and λ(t, r) have proper continuity properties (see lemma 3 in the appendix). Those
values that differ by an integer multiple of π to the Θ∗ chosen here will lead to the same
spinor solution, and will therefore not be of interest.

Using the function Θ∗(t) the following corollary of theorem 2 can be obtained:

Corollary3 There exists such an interval

[− arcsin |R(to, ro)
λ(to, ro)

|, arcsin |R(to, ro)
λ(to, ro)

|], (1.9)

defined for a sufficiently small ro and some to ∈ [t1, t2], that if Θ∗(t1) and Θ∗(t2) fall on
different sides outside this interval, there must exist such a t∗ ∈ [t1, t2] that Θ(t∗, r =
0,Θ∗(t∗)) = 0 mod π. Consequently, a fermion zero mode exists at t∗.

Proof. In the proof of theorem 2, we recall that at some sufficiently large r, if the value
of Θ(t, r) falls outside a certain small interval ([π/2 − δ/2, π/2 + δ/2]), the solution will
necessarily fall into a stable class as r → ∞. Moreover, those solutions whose values at r
fall on different sides of the interval will end up in different stable classes. We can make
a similar observation on the behavior of the solutions to Eq. (1.4a) around r = 0. We
can first find a sufficiently small ro and some to ∈ [t1, t2] so that arcsin |R(to, ro)/λ(to, ro)|
attains the maximal value on the domain [t1, t2]× (0, ro]. If the hypothesis in the corollary
is satisfied, Θ(t1, r = 0,Θ∗(t1)) and Θ(t1, r = 0,Θ∗(t2)) will differ by π. Therefore, there
is a Θ∗(t∗) ∈ [Θ∗(t1),Θ∗(t2)] with the desired property. In addition, we can argue that
t∗ ∈ [t1, t2] using lemma 1.

Corollary 3 provides theoretical validation and guidance for the numerical search for
fermion zero modes. It is possible to obtain a numerical plot for the function Θ∗(t) with
high precision. The stability of the stable solutions to Eq. (1.4a) enables us to predict
their behavior as r → ∞ with certainty by knowing their values at some finite (possibly
large) r. We can then test a pair of initial values in the interval [Θi,Θi + π] for some Θi,
and see if they give solutions in different stable classes. If this is the case by theorem 2 we
know that the initial value corresponding to an unstable solution is bounded by this pair
chosen in the interval. By testing pairs that are getting closer and closer, the estimation
of the desired initial value can be made more and more accurate (it is possible to write a
program in mathematica to do this work). Once the numerical plot for the function Θ∗(t)
is made, we can check if the hypothesis in corollary 3 is true. As soon as it is known to
be true, the existence of a fermion zero mode is established.
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1.5 Evidence for the existence of the extra fermion zero mode

I have clarified that the condition for a fermion zero mode to exist consists of two sides:
the corresponding solution to Eq. (1.4a) falls both in the unstable class at r = 0 as well
as in the unstable class at r = ∞. According to the analysis in the previous sections, the
condition can be realized on each side separately. Klinkhamer and Lee discussed in [7]
in case of change in the winding number of the spherically symmetric field, there is an
additional symmetry, the inverse symmetry. This symmetry ensures that if the condition
is fulfilled on one side, it will also be fulfilled on the other side. But can the condition
hold true on both sides simultaneously without this symmetry?

The answer is yes in the case of the Luescher-Schechter solutions. It is crucial to observe
the following numerical fact: there exists such a continuous interval t∗ ∈ [−2.9245,−2.9235],
that for any t∗ in this interval Θ(t∗, r = ∞,Θi) = π/2 mod π, for some initial value around
Θi = 0.138 at ro = 0.8 (in comparison, in [7] only a single time point t∗ = −2.924 was
mentioned). If we take a moment to reflect upon the problem for a moment, the existence
of this continuous interval, instead of a single value, is not surprising. This is due to
the continuous property of λ(t, r) and R(t, r). Precisely because of the existence of this
continuous critical time interval, the probability of finding an extra fermion zero mode
in this neighborhood in the parameter space is increased substantially. We can assume
without loss of generality that in this time interval, for a given Θi there is only one t∗ with
Θ(t∗, r = ∞,Θi) = π/2 mod π. Intuitively, when Θi varies continuously, the function
t∗(Θi) also varies continuously. In the appendix, a proof for this continuity is provided
(lemma 2). This continuity will turn out to be essential for the existence of the extra
fermion zero mode that I am going to prove.

The full analytic and numerical evidence for the existence of this solution is presented
below. I will assume that the difference between the numerical solutions to Eq. (1.4a)
and the true solutions is bounded by a small error at finite r. I assume that this error
is small enough that it won’t affect the stability of a truely stable solution. As long as
this assumption is accepted (more evidence can be obtained by checking the numerical
calculation with a different parameterization of the equation), I will be able to conclude
that the extra fermion zero mode must occur.

1.6 Luescher and Shechter solutions and the numerical method

The claim for the existence of the extra fermion zero mode is only for a particular
type of gauge background, namely the Luescher-Shechter solutions to the Yang-Mills field
equations. In this section, these special gauge backgrounds are specified first. In order
to carry out the numerical calculations, the parameters in λ(t, r) and R(t, r) will also be
specified. At the end of this section, numerical results will be presented that will prove
the existence of the extra-fermion mode.

The spherically symmetric solutions to the SU(2) Yang-Mills equations in the 4-D
Minkowskian spacetime, discovered by Luescher and Schechter separately [16], are ex-
pressed as follows (the same notations are taken as in [7]):

α =ρ cosϕ = 1 + q(τ) cos2 w,

β =ρ sinϕ =
1

2
q(τ) sin 2w,

ar =q(τ)∂rw,

(1.10)
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with

τ ≡sgn(t) arccos(
1 + r2 − t2

√

(1 + t2 − r2)2 + 4r2
),

w ≡ arctan(
1− r2 + t2

2r
).

(1.11)

The function q(τ) is a solution to the following E.O.M for a Higgs-like field:

d2q

dτ2
+ 2q(q + 1)(q + 2) = 0. (1.12)

The last equation can be solved exactly and the solution q(τ) is essentially a Jacobian
elliptic function of the type dn(τ) or cn(τ). The complex scalar field Φ = α + iβ ≡ ρeiϕ

with ϕ(t, 0) = 0 is the Higgs like field, and ar is the spatial component of the reduced
abelian gauge field. α, β, ar, ρ and ϕ are all real. In addition, ρ is non-negative.

The parameter functions used before, λ(t, r) and R(t, r), are related to the above quan-
tities in the following way:

λ(t, r) = ρ(t, r)/r, (1.13)

R(t, r) = (ar − ∂rϕ)/2. (1.14)

Once λ(t, r) and R(t, r) are specified, Eq. (1.4a) can then be numerically solved with
a choice for the initial value for the solution according to Eq. (1.7). However, it will be
convenient to define a new quantity to solve Eq. (1.4a):

φ(t, r) ≡ 2Θ(t, r) + ϕ(t, r). (1.15)

With some algebra Eq. (1.4a) can then be transformed into the following equation:

∂rφ =
2

r
(α sinφ− β cosφ) + ar. (1.16)

Before we begin to numerically solve this equation for φ, we need to first fix the function
q(τ). The numerical study presented in this chapter is done for the same q(τ) as in [7],
namely,

q(τ) = −1 + (1 +
√
2ǫ)1/2cn[(8ǫ)1/4(τ + (8ǫ)−1/4)K(m)|m], (1.17)

where m = 1+
√
2ǫ

2
√
2ǫ

is the modulus, K(m) is the complete elliptic integral of the first kind

(for more information on elliptic functions, please see [7] and references therein), and
ǫ = 20.

At first glance, it appears that theorem 2 cannot be applied to Eq. (1.16). However,
we will see this is not true. Since there is no zero in the complex scalar field in the
neighborhood of t = −2.924, the winding number of complex scalar field, i.e. ϕ(t,∞) does
not change in this neighborhood. Hence we can conclude that, a change of π in Θ(t,∞)
is equivalent to a change of 2π in φ(t,∞), in the neighborhood of t = −2.924 according
to Eq. (1.15). Suppose under some suitable conditions, applying theorem 2 we obtain an
unstable solution to Eq. (1.4a). The substitution of this solution into Eq. (1.15) will result
in an unstable solution to Eq. (1.16). Thus we can derive a similar result for Eq. (1.16) as
theorem 2: if the solution to Eq. (1.16) with some fixed initial value has such a property
that its value at r = ∞ changes discontinuously by 2π around a time point t∗, then there
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must exist an unstable solution at t∗ with the same initial value and φ(t∗,∞) = π. The
following analysis is based on this fact.

Numerical study prompts us to focus on these two intervals: [φ1, φ2] = [0.13977, 0.14007],
for the initial value φi at ro = 0.8, and [t1, t2] = [−2.9245,−2.9235], for the time. This data
is found in the following way: in [7] numerical result was obtained that suggested a solution
Θ(t = −2.924, r) to Eq. (1.4a) with Θ(−2.924, r ∼ 0) = 0 and Θ(−2.924, r → ∞) → π/2
mod π. Equivalently, this implies that there is a solution φ(t = −2.924, r) to Eq. (1.16)
with φ(−2.924, r ∼ 0) = 0 and φ(−2.924, r → ∞) → π mod 2π. On closer inspection I
found that around t = −2.924 for a wide range of initial values φi at r ∼ 0, the solution
quickly converges to 0.13980 at r ∼ 0.8. Thus, it is better to zoom into the initial value at
around r = 0.8 to have a closer look. Therefore, I came to the choice of parameter space
mentioned at the beginning of the paragraph.

Numerical study shows that for whatever initial value taken at r = 0.8 in the interval
[0.13977, 0.14007], at time t = −2.9235, the solutions to Eq. (1.16) fall in the same
stable class: φ(−2.9235, r = ∞, φi) = −2π (see Fig. 1.1-a). On the other hand, at
time t = −2.9245, the solutions for all initial values in the same interval fall in another
stable class: φ(−2.9245, r = ∞, φi) = 0 (see Fig. 1.1-b). This implies that there is a
continuous function, t∗(φi), defined on the interval [0.13977, 0.14007] with t∗ takes values
in the interval [−2.9245,−2.9235] according to lemma 2 in the appendix. Note that t∗(φi)
is conceptually the same as the function t∗(Θi) defined before.

2 4 6 8 10
1000 r

-6.25

-6.20

-6.15

Φ
Φi=0.14007

Φi=0.13977

1-Ha L, t=-2.9235

2 4 6 8 10
1000 r

-0.4

-0.3

-0.2

-0.1

Φ Φi=0.14007

Φi=0.13977

1-HbL, t=-2.9245

Figure 1.1: The function t∗(φi) of the initial value φi can be defined on the interval
[0.13977, 0.14007]. Four solutions to Eq. (1.16) at different times with different initial
values of φi are plotted. It can be predicted that the two solutions in 1-(a) will converge
to the limit −2π, while those in 1-(b) will converge to the limit 0, as r → ∞.

Now look at the other direction r → 0. Numerical study shows that for whatever value
of t in the time interval, as long as the initial value at r = 0.8 is taken to be 0.13977, the
solutions to Eq. (1.16) fall into the same stable class, −π, at r = 0 (Fig. 1.2-a). On the
other hand, when the initial value is taken to be 0.14007, the solutions for all t in the time
interval fall into the same stable class, π, at r = 0 (Fig. 1.2-b). This implies that there
is a continuous function, φ∗i (t), defined on the interval [−2.9245,−2.9235] with φ∗i taking
value in the interval [0.13977, 0.14007] according to lemma 3 in the appendix. Note that
the function φ∗i (t) is of the same concept as of Θ∗

i (t) defined before, the only difference
being that φ∗i (t) is defined according to the behavior of the solutions at r = 0 while Θ∗

i (t)
according to that at r = ∞.

17



1 AN EXTRA FERMION ZERO MODE IN THE CHIRAL SU(2) THEORY
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Figure 1.2: The function φ∗i (t) can be defined on the time interval [−2.9245,−2.9235].
Four solutions to Eq. 1.16 at different times with different initial values of φi are plotted.
It can be predicted the two solutions in 2-(a) will converge to the limit −π, while those in
2-(b) will converge to the limit π as r → 0.

φ1

φ2

t1 t2

(tc, φci)

Figure 1.3: Two random curves corresponding to φi(t) and t(φi) are plotted in the same
rectangle. The intersection point is denoted as (tc, φci ).

If graphs of the two functions, t∗(φi) and φ∗i (t), are drawn on the same plane t − φi,
there must be at least one intersection point (tc, φci ) (here c stands for ‘critical’). A typical
picture of such a case is shown in Fig. 1.3.

Our intuition suggests that the two curves must intersect. Rigorous analytic proof
for this fact is tedious and not necessary here. A relatively intuitive argument exists
that may serve as a proof. Observe that the two graphs have to fall in the same rectangle,
[t1, t2]× [φ1, φ2], and that each curve connects a pair of edges of the rectangle continuously.
Now suppose there is no intersection point, the rectangle could be cut along one of the
curves, say the graph of t∗(φi). The rectangle would then be separated into two disjoint
parts, with each containing an edge that is connected to the other curve. Since there was
no intersection point, the other curve would not be cut and should still connect the two
edges from the two disjoint parts continuously. This is a contradiction.

According to the previous discussions in this section, it is clear that the solution
φ(tc, r, φci ) to Eq. (1.16) falls into an unstable class at both r = 0 and r = ∞. From
Eq. (1.15) we can obtain a solution Θ(tc, r) to Eq. (1.4a). It will have the property that
Θ(tc, 0) = 0 mod π and Θ(tc,∞) = π/2 mod π. From the solution Θ(tc, r), a fermion
zero mode can be constructed. As was mentioned before, around tc (close to t = −2.924)
the winding number does not change, this fermion zero mode is not apparently related to
the topological number (winding number) of the gauge fields, and is thus referred to as
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the extra fermion zero mode. If we slightly adjust the parameters in the numerical study,
e.g. the energy of the gauge field, we could find other fermion zero modes that share the
same nature as this extra fermion zero mode. But this is not going to be pursued.

1.7 A special case where fermion zero modes can be predicted

It is surprising that the chiral abelian Higgs model in 1 + 1 dimension displays a large
similarity to the spherically reduced SU(2) theory. Therefore, it is straightforward to
apply the methods used in the previous sections to the chiral abelian Higgs model. The
action of this theory is [19]:

S =

∫

R
1,1
d2x(−1

4
FµνF

µν+|Dµχ|2−V (|χ|2)+fψ̄|χ|eiγ5φψ(x)+ψ̄γµ(∂µ+iAµγ5)ψ, (1.18)

where χ = |χ|eiφ is the complex scalar field with the double well potential V (|χ|2), γ5 is
chosen to be the second Pauli matrix, σ2. Note that the Yukawa coupling between the
fermion and the Higgs fields is chiral. The Lagrangian density of this theory is invariant
under the following gauge transformation:

ψ → e
i
2
αγ5ψ,

φ → e−iαφ,

Aµ → Aµ −
1

2
∂µα,

Fµν → Fµν .

The transformation rule indicates that the charge of the fermion is half of that of the
Higgs particle. The other gamma matrices are chosen to be:

γ0 = iσ1, γ1 = −σ3. (1.19)

Now the zero mode Dirac equation reads as:

γ1∂1ψ + iγµAµγ
5ψ + f(Reχ+ iImχγ5)ψ = 0. (1.20)

By using the explicit expressions for the gamma matrices here, this equation is trans-
formed into

∂1ψ = −[iA0 + iA1γ
5) + f(Reχγ1 + iImχγ0)]ψ. (1.21)

The time component of the gauge field contributes only a phase factor to the fermion field,
and can therefore be left out. Now this equation looks almost identical to Eq. (3.5) in [7].

Following the same procedure carried out in [7] we multiply to both sides of Eq. (1.21)
the unitary matrix

−iγ0eiφ
γ5

2 . (1.22)

Then the equation is transformed into

∂1ψ = [−|χ|σ3 + i(A1 − ∂1φ)σ
2]ψ. (1.23)

By using Eq. (1.3) this equation is equivalent to:

∂1Θ = −|χ| sin 2Θ +A1 − ∂1φ,
∂1|ψ| = |χ| cos 2Θ. (1.24)
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These equations are exactly the same as Eq. (1.4) by expressing them in terms of
x = ln r, even the boundary conditions become correspondent. Therefore, the results
obtained in the previous sections are applicable to Eq. (1.24) as well. In case χ is real and
has opposite signs at x = −∞ and x = ∞ , there is necessarily a fermion zero mode. This
special case is essentially the same as fermions interacting with a kink background. The
difference is that here the presence of gauge field makes the problem more complicated.
Thus it is necessary to invoke theorem 2 in order to prove the existence of the fermion
zero mode.

1.8 Conclusion and discussion

The main result presented in this chapter functions as a rigorous proof for the existence
of the extra fermion zero mode discovered by Klinkhamer and Lee [7]. The stability of
solutions to the nonlinear ordinary differential equation, Eq. (1.4a), is studied carefully.
The results of this study may be useful for searching for fermion zero modes in other
theories.

What makes the extra fermion zero mode so important is that it may change the
spectral flow, which is directly linked to fermion number violation. How exactly this
extra fermion zero mode influences the spectral flow has yet to be investigated. Such
investigation requires us to keep track of the zero mode and to examine how its energy
changes smoothly with the variation of the background gauge field. This is generally a
difficult problem. However, in the case of 1+1-d theory, Kaufhold found a very elegant
method to determine the global spectral flow without having to track each individual
fermion zero modes [19]. Kaufhold’s method inspires us with a new approach to the difficult
problem of fermion number violation. It deserves attention, and effort for generalization
to the higher dimensional spaces.

Whether or not there exists a topological quantity of the background field responsible
for the appearance of this extra fermion zero mode is another hard question to answer.
On the one hand, results in [7] show that most of the fermion zero modes in the theory
studied there are related to the change of the topological quantity, the winding number of
the gauge field, via the appearance of zeros in the complex scalar field Φ (page 16). On
the other hand we can assert that at the time when the extra fermion zero mode appears,
there is no zero in the complex scalar field. From this we can only conclude that, the extra
fermion zero mode is not related to the winding number. But in principle, there could
be some other topological number of the background gauge field associated to the extra
fermion zero mode.
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2 A bounded and discrete fermion mass spectrum

In this chapter I will present a mechanism to determine a fermion mass spectrum, based
on my work with F. Klinkhamer [20]. This presentation will compact. For more details
please refer to [20].

As far as we know, matter (dark matter is not considered) in our world consists of
fundamental fermions such as electrons, neutrinos as well as up and down quarks. The
rest mass, as a property of a specie of fundamental fermions, is as important as the
electric charge and the spin. After quantum mechanics was discovered, we have made
great progress in understanding these properties of fermions. Dirac’s research on magnetic
monopoles provides a probable explanation of the quantization of electric charges, carried
by the fermions. We also know that the spins of fermions must take half odd integer
values from the theory of group representation. The special values of the mass parameters
of fermions, however, remain a puzzle to solve. Although people believe that the Higgs
mechanism of the standard model theory explains how the fermions acquire masses, it is
clear that the mechanism does not determine the mass value of a given fermion.

In spite of their shortcomings, some mechanisms help to derive fermion mass spectra.
One such mechanism makes use of Kaluza and Klein’s idea of extra dimensions. In this
mechanism one introduces a compact extra dimension and writes down a Klein-Gordon
equation for a ”zero-mass” particle of the five dimensional space-time. The fifth component
of the momentum is interpreted as the mass and its value is quantized due to the boundary
condition in the fifth dimension. The prediction is, that there are an infinite tower of
particles with evenly gaped masses. The other prediction was made by Dirac. In his study
on field theory in conformal space, an equation of motion with conformal symmetry was
obtained. From this equation he was able to obtain a similar fermion mass spectrum as
given by the first mechanism.

If we believe that the masses of fermions can be predicted by some mechanism at all,
we would probably hope that the mechanism provides a finite spectrum. More pleasing
would be one where the values in the spectrum have some interesting structure. Ideally,
the values should match with measurement. The new mechanism to be introduced here
does provide a finite spectrum and the values in the spectrum do have an interesting
structure. Unfortunately the values do not match with the experiment.

2.1 Theoretical derivation

The theory we start with describes a pair of fermionic fields interacting with a Higgs-
like scalar field in a five dimensional spacetime. The two fermionic fields are assumed to
have opposite coupling constants and the fifth dimension is open. The Lagrangian density
for this theory reads as follows:

L5 = Ψ̄ i/∂Ψ+ Ω̄ i/∂ Ω− f Ψ̄Ψφ+ f Ω̄Ωφ+
1

2
∂aφ∂

aφ− λ2

2

(

φ2 −M2
)2
. (2.1)

We can readily write down the equations of motion for the two fermionic fields Ψ and Ω,
and for the scalar field φ.

The equation of motion for the scalar field contains a source contribution from the
fermionic fields. In the absence of this contribution, the equation admits the well-known
kink solution, which in this case is chosen to depend solely on the coordinate of the fifth
dimension, w:

φ(w) =M tanh(λMw). (2.2)
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In the following approach we assume that the fermionic source terms cancel consistently.
We then find solutions to the equations of motion for the fermionic fields, and verify that
the fermionic source terms indeed cancel for the solutions we find.

Substituting the kink solution into the equation of motion for the fermionic field, say,
Ψ, we obtain:

(

iγµ∂µ + iΓ5∂w
)

Ψ = +f M tanh(cw)Ψ, (2.3)

where we introduced a new gamma matrix: Γ5 = −iγ5. Upon writing Ψ as

Ψ =

(

ψl
ψr

)

(2.4)

Eq. (2.3) becomes
iσµ∂µψr − ∂wψl =f M tanh(cw)ψl ,

iσµ∂µψl + ∂wψr =f M tanh(cw)ψr .

(2.5)

It is necessary for us to make two Ansätze to proceed further:

ψl = vl(w)χ(x), ψr = vrξ(x) (2.6)

and
iσµ∂µξ(x) = m4χ(x), iσ̄µ∂µχ(x) = m4ξ(x), (2.7)

where x stands for the coordinates in the four dimensional space-time, and σµ and σ̄µ are
four vectors made of the identity and the three Pauli matrices. It is natural to interpret the
spinors χ(x) and ξ(x) as the left and right handed components of the Dirac spinor in the
four dimensional space-time. The parameter m4 then acquires the natural meaning of the
mass of the Dirac spinor. With these Ansätze the vl(r) factors are decoupled from the χ(x)
and ξ(x) functions. We obtain equations for vl and vr with straightforward calculations:

(1− s2)
d2vl(s)

ds2
− 2s

dvl(s)

ds
+

[

F (F + 1)−
F 2 −m2

f

1− s2

]

vl(s) = 0 ,

(1− s2)
d2vr(s)

ds2
− 2s

dvr(s)

ds
+

[

F (F − 1)−
F 2 −m2

f

1− s2

]

vr(s) = 0 ,

(2.8)

where s = tanhw, mf = m4/(λM) and F = f
λ . From these equations we can conclude

that, in the case F ≥ 2 being an integer (for non-integer F > 2 similar result can be
obtained, see the appendix of [20]), mf can only take values in the following set:

mf ∈
{

±
√

F 2 − 12,±
√

F 2 − 22,±
√

F 2 − 32, ... , ±
√

F 2 − (F − 1)2
}

, (2.9)

which gives us a fermion mass spectrum upon multiplication of λM . The zero mass should
also be included in the mass spectrum. This can be seen by setting m4 = 0 in Eqs. (2.6)
and (2.7) .

Let’s also write down the solutions for vl and vr explicitly:

vl(s) = P
±
√

F 2−m2

f

F (s) , (2.10a)

vr(s) = P
±
√

F 2−m2

f

F−1 (s) . (2.10b)
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Eq. (2.10) exhibits a curious fact: the left and right handed-fermions are associated
with different factors living in the fifth dimension. An explanation of this is: the matrix Γ5

involved in the previous calculation has two roles: it is both the gamma matrix associated
with the fifth dimension and the gamma matrix used to define the left- and right- handed-
ness of a spinor. Via Γ5, the chirality and the scalar field living in the fifth dimension are
connected. Now the scalar field is specified to be the kink solution which distinguishes the
positive and negative direction in the fifth dimension. This discrimination translates into
the discrimination between the handedness of fermions in the four-dimensional space-time
via Γ5.

We can do the same calculations for the field Ω and obtain solutions that are pairwise
matched to those for Ψ. This matching guarantees the fermion-source cancellation in the
equation of motion for the scalar field.

2.2 Discussion

Having sketched the derivation of a discrete and bounded fermion mass spectrum, let me
identify the key ingredients responsible for such a spectrum. Obviously, the discreteness
comes from our requirement that the vlr factors of the fermion wave functions are square-
integrable. This means, the “scattering states” in the fifth dimensions are excluded. Why
could this be a plausible assumption? To answer this question, it is necessary to have
some insight into the fifth dimension. In spite of its similarity to the other three spatial
dimensions, the fifth dimension is different — it’s an effective dimension which merely
represents a new degree of freedom. We may speculate that the fifth dimension is related
to some energy and the integration of the square of the vl(r) factor is some sort of physical
energy which must be finite. As for the boundedness of the spectrum, further analysis
shows that the “vacuum expectation value” of the scalar field φ provides an upper bound
for the fermion mass, in the same way as the potential barrier does for the eigenvalues of
the Hamiltonian of the bounded states in quantum mechanics.

Let me also comment briefly on the fermion-source cancellation in the equation of
motion of the scalar field:

∂a∂
aφ = Ψ̄Ψ− Ω̄Ω− 2λ2(φ2 −M2)φ. (2.11)

The two fermionic fields were assigned opposite coupling constants to facilitate the
fermion-source cancellation. This made it possible for us to obtain a set of classically
exact solutions to the equations of motion of the theory. Eq. (2.11) as it stands is a
classical equation. Once quantum effects are taken into account, it should be modified
slightly. We can modify it in the following way:

∂a∂
aφ+ 2λ2(φ2 −M2)φ =< Ψ̄Ψ− Ω̄Ω > . (2.12)

The modified equation can be interpreted as follows: the scalar field is a classical
background field (i.e. it is an effective field), only the fermionic fields are treated as
quantum fields. The modified equation is a semi-classical equation that we hope can
capture the essential dynamics of the scalar field. Even if the quantum effects are taken
into account, the fermion source cancellation still occurs due to the pairwise matching
between the Ψ and Ω modes.
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3 The spherically symmetric gauge field of the Lorentz group

In July 2012, scientists at CERN announced the discovery of a new particle. It wasn’t
immediately said to be the long awaited Higgs particle. But most people assumed it was
(as time is passing by, more and more evidence has been collected in favor of a Higgs
particle). There was undoubtedly a huge excitement in the community of particle physics.
I believe physicists in the other fields also shared this joy. Discussions on the discovery have
been going on since then and will continue for a long time. Reactions to this discovery are
twofold. On the one hand, many physicists have been expecting the particle for a long time,
seeing the discovery as a natural outcome. Their argument is: without the field of Higgs
field the standard model theory does not work; the theory is beautiful, so the particle must
be there. On the other hand, some physicists do not feel comfortable with the introduction
of a unique scalar field by hand. Therefore they are surprised that a bold prediction from
such an ugly theory in the end turned out to be correct. Consequently, they believe that
there must be something more fundamental behind the Higgs mechanism! Of course,
these two opposite opinions are both subjective and none is wiser than the other. Today
those holding the first opinion focus on detecting phenomenological discrepancy between
experiment and theory, those insisting on the second opinion delicately look for a more
natural and “beautiful” explanation for the structure of the standard model theory. I find
myself in the group having the second opinion, to me there is at least one hint that implies
there might be something more fundamental. In [8] Witten presented a calculation which
bears a surprisingly beautiful feature: starting with a pure Yang-Mills theory of SU(2)
in a four dimensional space-time, one imposes spherical symmetry on the gauge field and
sees that the original theory reduces to one that describes a Higgs-like complex scalar field
coupled to the gauge field of U(1), a subgroup of the original SU(2). The most prominent
two features are, the derived scalar field receives a double-well potential and the covariant
derivative associated to the U(1) gauge field comes about naturally. Later, Bergmann,
Forgacs and Manton proved that the occurrence of this surprising phenomenon can be
generalized: A theory with a Higgs-like scalar field subjected to some gauge group can be
obtained from a pure Yang-Mills theory of a larger gauge group, in higher dimensional
spacetime, by imposing some spacetime symmetry [12] [22].

In this chapter, following Forgacs and Manton, the special case of the Lorentz group is
investigated. The interest in this group originates from the following consideration: the
Higgs field in the electro-weak theory is a complex doublet and has four degrees of freedom.
Thus the group to start with must be big enough. Also, the Higgs doublet only couples to
the left handed fermion doublets. Since the Lie algebra of the Lorentz group has a natural
left-right decomposition. Thus the Lorentz group is a good candidate as the gauge group
of a “fundamemtal” theory (of course, one has to be aware that the spin representation
of the Lorentz group here corresponds to the physical concept of “isospin”). Due to the
same considerations the group SO(4), which is locally isomorphic to SU(2) × SU(2)), is
equivalently a good candidate group to start with as the Lorentz group. One might wish
to identify the origin of the group as space-time symmetry transformations. Due to this
heuristic argument, the Lorentz group has more priority. By gauging the Lorentz group
we are led to a theory of gravity. This is beyond the scope of this thesis and we are not
going to make speculative comments at this point. In fact, the resulted theory from the
pure Yang-Mills theory of the Lorentz group will differ from the Electroweak theory in
several ways, it makes little sense to speculate further. I present the calculation, note
some theoretically interesting points and hope that it can inspire some further ideas.
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3.1 The basic formalism

In this section I will sketch Forgacs and Manton’s study very briefly. Also, I will stick
to the notations used by them as much as possible while substituting the Lorentz group
in the place a generic group is referred to.

The four dimensional space-time has a Minkowsian metric:

hµν = diag(1,−1,−r2,−r2 sin2 θ), (3.1)

where the spherical coordinate system(r, θ, φ) for the spatial section has been chosen.
The space-time symmetry considered here is simply the spherical symmetry of the space,
corresponding to the SO(3) rotation group. Now let’s define what is actually meant when
speaking of gauge fields possessing spherical symmetry.

Suppose a symmetry transformation of the space is generated by the vector field ξµ. It
is an active transformation: a point x is transformed to another point x̄ = x + ǫξ, where
ǫ is an infinitesimal number. This is equivalent to a passive transformation, a coordinate
transformation T . The gauge field, Aµ, transforms as a vector field under T and the
transformed gauge field is denoted as A

′

µ(x
′ν) [here, x′ν denotes the new coordinates of

the point x]. Now suppose that due to the transformation T the point x acquires the
coordinates x̄ had in the old coordinate system, i.e. x′µ = x̄µ. The symmetric gauge field
will satisfy the following equation:

A
′

µ(x
′ν) = Aµ(x̄

ν). (3.2)

This condition translates to the following equation in terms of the symmetry generator
ξµ

LξAµ := (∂µξ
ρAρ + ξρ∂ρ)Aµ = 0. (3.3)

The condition can be relaxed to that the gauge field is symmetric up to an infinitesimal
gauge transformation generated by g = 1 + iǫW aT a, i.e.

Aµ(x̄
ν) = Ag

′

µ (x
′ν) = [gAµg

−1 + i(∂µg)g
−1]

′

. (3.4)

Note that on the right hand side of the equation, gauge transformation is done before
coordinate transformation. The order can certainly be reversed, there would be no real
difference caused. Then the following symmetry equation is obtained:

LξAµ = ∂µW − [Aµ,W ] := DµW. (3.5)

At this point Forgacs and Manton made a further observation: if a set of symme-
try generators, ξµm (for the case of SO(3), m runs through 1, 2 and 3) are considered
simultaneously, the corresponding Wm must satisfy the following constraint:

LξmWn − LξnWm − [Wm,Wn]− fmnpWp = 0, (3.6)

where the Lie derivative of Wn is defined as for a coordinate scalar and fmnp are the
structure constants of SO(3).

The whole point of Forgacs and Manton’s article is then to solve Eqs. (3.5) and (3.6)
using a smart trick which makes use of invariant vector fields on the Lie group manifold.

Since the spacetime symmetry of the gauge field in our context is the rotation group
in three space, the generators of the group can be represented by tangent vectors fields
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on a sphere centered at the origin, with the common coordinate system (θ, φ). The other
two coordinates of spacetime, namely time and the radius of the sphere, can be, at the
moment, ignored. This is because in Eqs. (3.5) and (3.6) the Lie derivatives concern only
variation of the quantities on the same sphere.

Now notice that there is a subgroup SO(2) of SO(3) that fixes a point (actually two
antipodal points). Via this subgroup, the sphere introduced in the previous paragraph can
be identified as the coset space SO(3)/SO(2). This identification reminds of the principle
bundle map SO(3) →֒ S2 with the fiber SO(2) ∼= U(1). However, for the purpose of
solving the equations, only the local property of this map is concerned. Further details of
this identification can be found in Forgacs and Manton’s article. They then embedded the
coset space into the full space of the group, i.e. they considered Eq. (3.6) on the space of
SO(3) with coordinates (χ, θ, φ). After this embedding, it can be seen from the definition
of the Lie algebra that the Lie derivatives in Eq. (3.6) become normal derivatives with
respect to the coordinates of on the SO(3) space. At this point, defining a new quantity:

Wα̂ = ξmα̂Wm (3.7)

will be of help, where α̂ ranges through (χ, θ, φ), and ξmα̂ is the matrix-inverse of the vector
fields, generators ξα̂m, defined on the space of SO(3). It turns out that Wα̂ is a pure gauge
field on the full SO(3) space, which can be brought to zero by a gauge transformation.

The gauge field Aµ is dealt with in a similar manner. For the moment we consider only
the components Aθ and Aφ, which are also viewed as quantities defined on the coset space.
Then adding one trivial component: Aχ = 0, it is seen that Eq. (3.5) can be brought to

LξmAα̂ = 0, (3.8)

by a gauge transformation on the space of the symmetry group, SO(3). Eq. (3.8) looks
much simpler and can be solved exactly. However, to obtain a solution to the original
symmetry equation, Aα̂ has to bear such properties that it can be gauge transformed to
a case where Aχ = 0 and where neither Aθ nor Aφ depends on χ.

The solutions to Eq. (3.8) are the matrix inverse of vector fields ξ̃α̂n which generate
left translations on SO(3)(in comparison the vector fields ξα̂n generate right translations)
defined via:

ξ̃mα̂ξ̃
α̂
n = δmn, (3.9)

with
ξ̃1α̂ =(0,− cos ξ,− sin θ sin ξ),

ξ̃2α̂ =(0,− sin ξ, sin θ cos ξ),

ξ̃3α̂ =(−1, 0,− cos θ).

(3.10)

Thus the most general solution for Aα̂ is:

Aα̂ = Φmξ̃mα̂, (3.11)

where Φx = ΦamT
a and Φam are constants on the space SO(3), thus they can only be

functions of space-time coordinates t and r. The gauge field A also has components At(t, r)
and Ar(t, r). Then we consider the condition that there exists a gauge transformation on
SO(3) which brings Aα̂ into a form with Aχ = 0 and neither Aθ nor Aφ depending
on χ. This condition is equivalent to requiring some field strength components, namely
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Ftχ, Frχ, Fθχ and Fφχ to vanish. Then Forgacs and Manton were able to simplify the
condition to the following:

∂iΦ3 − [Ai,Φ3] = 0, for i = t or r,

f3mnΦn + [Φ3,Φm] = 0, for n = 1, 2, or 3,
(3.12)

where the number 3 comes from the third generator of SO(3), which served as the generator
of the subgroup SO(2) identified previously. Solving these contraints gives the desired
gauge field. It is possible to make a gauge rotation which depends on t and r only,
such that Φ3(t, r) becomes constant. Then, Ai commutes with Φ3, which simplifies the
constraints further.

3.2 The reduced Yang-Mills theory of the Lorentz group

Forgacs and Manton have found the general solutions for gauge fields with space-time
symmetries. In this section I make use of their result to investigate the special case of
the Lorentz group. There are 6 group generators: 3 rotations J1, J2, J3 and 3 boosts
Σ1,Σ2,Σ3. The Lie algebra is defined by the following commutation relations:

[J i, J j ] = iǫijkJk, [Σi,Σj] = −iǫijkJk and [J i,Σj ] = iǫijkΣk, (3.13)

where ǫijk is the Levi-Civita tensor with ǫ123 = 1 and the index i and imaginary unit i
should not be mixed, despite the abuse of notations. In the later calculation I will also
use the following Weyl representation of the Lie algebra:

J i =
1

2

(

σi 0
0 σi

)

and Σi =
−i
2

(

σi 0
0 −σi

)

(3.14)

and the γ matrices:

γ5 =

(

−I 0
0 I

)

, γ0 =

(

0 I

I 0

)

, (3.15)

and

γr =

(

0 σ1

−σ1 0

)

, γθ =
1

r

(

0 σ2

−σ2 0

)

and γφ =
1

r sin θ

(

0 σ3

−σ3 0

)

, (3.16)

where the σis are Pauli matrices, I is the rank two identity matrix and the γ matrices are
already scaled according to the metric in polar coordinates.

To solve Eq. (3.12), it is necessary to identify Φ3 first. In the following calculation the
choice is made as Φ3 = J3. It is then found that:

Φ1 = φ1J
1 + φ2J

2 + η1Σ
1 + η2Σ

2

Φ2 = φ2J
1 − φ1J

2 + η2Σ
1 − η1Σ

2
(3.17)

From this and Eq. (3.11) the following can be obtained:

Aθ =(−φ1 cosχ− φ2 sinχ)J
1 + (−φ2 cosχ+ φ1 sinχ)J

2+

+ (−η1 cosχ− η2 sinχ)Σ
1 + (−η2 cosχ+ η1 sinχ)Σ

2,

Aφ =sin θ[(φ2 cosχ− φ1 sinχ)J
1 + (−φ1 cosχ− φ2 sinχ)J

2+

+ (η2 cosχ− η1 sinχ)Σ
1 + (−η1 cosχ− η1 sinχ)Σ

2],

Aχ =− J3.

(3.18)
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It can be verified that by a gauge rotation U(χ, θ, φ) = e−iχJ
3

, according to

A′
µ = UAµU

−1 + i(∂µU)U−1, (3.19)

the above gauge field components are transformed to:

A′
θ =− φ1J

1 − φ2J
2 − η1Σ

1 − η2Σ
2,

A′
φ =sin θ

[

φ2J
1 − φ1J

2 + η2Σ
1 − η1Σ

2
]

− cos θJ3,

A′
χ =0.

(3.20)

With the choice made for Φ3, four real scalar fields and two abelian gauge fields are
obtained. Only the number of degrees of freedom of the scalar fields is acceptable when
these fields are compared to the field content of the Eletroweak theory. A second choice of
Φ3 is Σ3, but this would result in a similar gauge field A with the same number of degrees
of freedom. Thus this possibility will not be investigated further.

Now the Lagrangian density for the spherically symmetric Lorentz gauge field can
be computed. However, it must be noted that Weinberg gives a proof in [24] that for
non-compact gauge group, there is no gauge invariant Lagrangian density with a positive
definite metric on the associated Lie algebra, while such a Lagrangian density always
exists for a compact gauge group. For the latter the Lagrangian density typically takes
the following form:

L = −1

4
trFµνF

µν =
1

2
(E2 −B2) or L = ǫµναβtrFµνFαβ , (3.21)

where the last expression is a topological term of the gauge field configuration, which after
integration over four space-time becomes a constant. The first expression, upon Legendre
transformation gives the correct Hamiltonian density:

H =
1

2
(E2 +B2). (3.22)

What Weinberg’s proof then suggests is that for non-compact gauge groups the gauge
invariant Lagrangian density will lead to a problematic Hamiltonian (most likely not
bounded from below). But let’s ignore this difficulty and move on.

The time and radial components of the gauge field are also obtained from Eq. (3.12):

At = at(t, r)J
3 + bt(t, r)Σ

3 and Ar = ar(t, r)J
3 + br(t, r)Σ

3. (3.23)

From the components of the gauge field we can compute the field strength. The La-
grangian density is:

−1

4
trFµνF

µν =− 1

2
tr

[

−FtrFtr +
1

r2
(−FtθFtθ + FrθFrθ) +

1

r2 sin2 θ
(−FtφFtφ + FrφFrφ)+

+
1

r4 sin2 θ
FθφFθφ

]

.

(3.24)
The terms relevant for calculating the Lagrangian density are listed below:
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trFtrFtr =(∂tar − ∂rat)
2 − (∂tbr − ∂rbt)

2,

trFtθFtθ =(−∂tφ1 − atφ2 + btη2)
2 + (−∂tφ2 + atφ1 − btη1)

2+

− (∂tη1 + atη2 + btφ2)
2 − (−∂tη2 + atη1 + btφ1)

2,

trFrθFrθ =(−∂rφ1 − arφ2 + brη2)
2 + (−∂rφ2 + a1φ1 − brη1)

2+

− (∂rη1 + arη2 + brφ2)
2 − (−∂rη2 + arη1 + brφ1)

2,

trFθφFθφ =sin2 θ
[

(1 + η21 + η22 − φ21 − φ22)
2 − 4(φ1η1 + φ2η2)

2
]

.

(3.25)

as well as

trFtφFtφ = sin2 θ trFtθFtθ and trFrφFrφ = sin2 θ trFrθFrθ. (3.26)

Clearly the above expressions exhibit a pattern which indicates that there are two
abelian gauge transformations associated with the gauge fields aµ and bµ. In the case
treated by Witten [8][12] where the Lorentz group would have to be replaced by SU(2),
there would be only one gauge field (in the above expressions we would have to set bµ = 0
and ηi = 0). In Witten’s case, the expression can be put in a more elegant form by defining
the following:

φ = φ1 + iφ2 and Diφ = ∂iφ− iaiφ. (3.27)

Then the relevant terms can be rewritten as, for instance:

trFtrFtr =FtrFtr,

trFtθFtθ =Dtφ(Dtφ)
∗ = |Dtφ|2,

trFθφFθφ =sin2 θ(1− |φ|2)2,

(3.28)

and the reduced action, after integration over θ and φ is performed, corresponds to an
abelian Higgs theory in a two dimensional spac-time with constant negative curvature (the
original space-time was Euclidean in that case)[8].

The fact that the term trFtθFtθ could be written as a covariant derivative term reflects
the following coincidence. The adjoint representation of J3 in the subspace of the su(2) Lie
algebra spanned by J1 and J2 coincides with the complex number multiplication structure.
More explicitly, the coefficient of J1 can be identified as the real component while that of
J2 as the imaginary one; and the action of J3 on the subspace has the effect equivalent to
multiplying the coefficients by the imaginary unit i. Now to generalize the above definition
for covariant derivative of the scalar fields a new vector can be defined:

Φ =









φ1
φ2
η1
η2









with the norm defined by gij = diag(1, 1,−1,−1). (3.29)

Here a special quadratic form is introduced for computing the norm of the vector formed
by the four scalar fields. One could also make η1 and η2 pure imaginary so that the special
quadratic form becomes unnecessary. However, this alternative notation is not adopted
because later later a second quadratic form on the same vector space will be defined and
it cannot be replaced by making use of the alternative trick.
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These scalar fields denote coefficients of a vector in the subspace of Lorentz algebra
spanned by J1, J2, Σ1 and Σ2. The representation of J3 and Σ3 on this subspace are
respectively:

R(J3) =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









and R(Σ3) =









0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0









. (3.30)

Corresponding to the gauge transformation U = eiαJ
3+βΣ3

the covariant derivative of
Φ should then be defined as:

DtΦ = ∂t − atR(J
3) + btR(Σ

3), (3.31)

while the covariant derivative of the scalar fields with respect to r can be defined simply
by replacing t by r in the above equation. The gauge transformation is done according to
the following rules:

Φ →eαR(J
3)+βR(Σ3),

ai →ai + ∂iα,

bi →bi + ∂iβ.

(3.32)

The component trFtθFtθ, for example, can be written as: gij(DtΦ)i(DtΦ)j. Now let me
introduce a second quadratic form on the vector space with coordinates (φ1, φ2, η1, η2)

T :

ĝij =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, (3.33)

using which the last term in trFθφFθφ can be written as:

ĝijΦiΦj . (3.34)

Then the Lagrangian density can be put in the compact form:

L =− 1

4
trFµνF

µν

=− 1

2
{−(fatr)

2 + (f btr)
2 +

2

r2
gij [−DtΦiDtΦj +DrΦiDrΦj] +

+
1

r4
[

(1− gijΦiΦj)
2 − 4(ĝijΦiΦj)

2
]

},

(3.35)

where fatr = ∂tar − ∂rat and f btr = ∂tbr − ∂rbt. A salient feature of this Lagrangian
density, as is expected, is that it does not depend on the coordinates θ and φ. Thus upon
integration in the action, the theory becomes a two-dimensional one.

Looking at the quartic term of the Lagrangian density in Eq. (3.35), one is tempted to
compare it to the mexican hat potential of Higgs field in the unified Electro-weak theory.
However, there is a serious problem with the potential obtained here: it is not bounded
from below. Actually this was already predicted from Weinberg’s proof mentioned previ-
ously. The problem comes from the fact that the generator Σ3 is anti-Hermitian. Cur-
ing this problem for the Lorentz group would be difficult, if not impossible. However,
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a way around is obvious: instead of the Lorentz group one uses the the group SO(4),
which is compact. With this group, a possible reduced theory may have the gauge group
SU(2)× U(1)! Moreover, the pseudo-scalar Lagrangian density also exists for this choice
of group and it can be used to tell apart the gauge fields belonging to the left and right
SU(2) groups.

If one insists on using the Lorentz group, there could be a possibility to cure the above
mentioned problem. If the Lorentz group is interpreted as the symmetry group of the
space-time, gauging it means gravity is involved. Then the already existing Lagrangian
density for gravity, for example the Einstein-Hilbert action, can be made use of. The
Hilbert-Einstein action can also be formulated in terms of Yang-Mills gauge fields [25].
However, there is an essential difference between the Yang-Mills action and the Einstein-
Hilbert action: the former is quadratic in terms of curvature (field strength), while the
latter is of first order in curvature. Thus, a Yang-Mills action can provide a quartic
potential of the derived scalar fields, but the Einstein-Hilbert action cannot. What one
can do then is to assume that there is a quadratic term of curvature in Einstein-Hilbert
action with a small pre-factor, or simply to start with the square of the Ricci curvature
RµνR

µν . Investigations in this direction will however not be pursued in this thesis.

Now let me add a bit of discussion on the understanding of the space-time symmetry of
the gauge field. For simplicity let me focus on the U(1) gauge theory of electro-magnetism.
It is easy to tell that the space-time symmetry of the gauge field implies the same symmetry
on the electromagnetic field, hence the same symmetry of the sources of these fields,
i.e. the charges and currents. The classical result on solving the Maxwell equations in
the presence of sources is that, the electromagnetic potentials receive contributions from
electric monopole, electric and magnetic multi-pole structures in the sources [23]. Clearly,
the symmetry is getting weaker from monopole to dipole and so on and the contribution
is also getting smaller in general as the symmetry weakens. For example, considering the
spherical symmetry leaves only the electric monopole contribution in the electromagnetic
potentials. It is conceivable that the monopole contribution is mostly of leading order
at low energy (of course there are exceptional cases where the monopole contribution
to the source vanishes and the dominant contribution comes from e.g. electric dipole).
How is this observation in classical physics connected to quantum physics? It is perhaps
useful to think in term of the path integrals. Suppose there is quantum state describing
a collection of electrons and photons interacting with each other at time t, denoted as
|ψ(t), A(t) >. The probability to find the system in the state |ψ(T ), A(T ) > at some later

time T is the square of the modulus of < ψ(T ), A(T )|ei
∫ T

t
H(ψ,A)|ψ(t), A(t) >. Switching

to path integral, this quantity equals the supposition of the amplitudes of all the paths
that connect the two states. It is a known fact that the contribution from those solutions
to the Maxwell equations (classical paths) dominates the superposition. According to the
previous arguments, the configurations with certain symmetry can be used to approximate
the classical solutions to the Maxwell equations at low energy. Therefore, in path integral
the integration on the U(1) gauge configurations with certain space-time symmetry gives
the major contribution to the quantum amplitude at low energy. Of course, the above
discussion is only an intuitive understanding. It is far from a proof. It is tempting to
hypothesize that a similar conclusion holds true for the non-abelian gauge fields as well.
If this hypothesis is true, proving it rigorously could result in useful simplifications in the
computation of S-matrix elements.
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3.3 A pseudo-scalar term in the Lagrangian density

With the Weyl representation of the Lie algebra of the Lorentz group, Eq. (3.14),
one can construct another gauge invariant term which may also appear in the Lagrangian
density:

Lpseudo = κtrFµνγ
5Fµν , (3.36)

where the subscript, pseudo, in the Lagrangian density indicates that it is a pseudo-scalar
under Lorentz transformations, because of the appearance of γ5, κ is a free parameter.
In the expression above, γ5 multiplies with the group generators in the normal manner of
matrix multiplication. The gauge invariance comes from the fact that γ5 commutes with
all the generators J i and Σi. As a quick exercise, this Lagrangian density in the case of
spherically symmetric gauge field is also calculated.

The relevant terms for calculating this Lagrangian density are:

trFtrγ
5Ftr =− i · 2(∂tar − ∂rat)(∂tbr − ∂rbt),

trFtθγ
5Ftθ =− i · 2 [(∂tφ1 + atφ2 − btη2)(∂tη1 + atη2 + btφ2)+

(−∂tφ2 + atφ1 − btη1)(−∂tη2 + atη1 + btφ1)] ,

trFrθγ
5Frθ =− i · 2 [(∂rφ1 + arφ2 − brη2)(∂rη1 + arη2 + brφ2)+

(−∂rφ2 + arφ1 − brη1)(−∂rη2 + arη1 + brφ1)] ,

trFθφγ
5Fθφ =i · 4 sin2 θ(1 + η21 + η22 − φ21 − φ22)(η1φ1 + η2φ2),

(3.37)

as well as

trFtφγ
5Ftφ = sin2 θ trFtθγ

5Ftθ and trFrφγ
5Frφ = sin2 θ trFrθγ

5Frθ. (3.38)

With the previously defined notations the pseudo-scalar Lagrangian density can be rewrit-
ten as:

Lpseudo =κtrFµνγ
5Fµ

=4iκ

[

−fatrf btr +
2

r2
ĝij(−DtΦiDtΦj +DrΦiDrΦj)

]

+

− 2

r4
(1− gijΦiΦj)ĝlmΦlΦm.

(3.39)

It is clear that the free parameter κ needs to be purely imaginary so that the Lagrangian
density is real. The first term in the square brackets in the equation above deserves
some attention. This term says that the the gauge fields from the two gauge groups are
interacting. If the equation of motion for either gauge field is derived, it will be seen that
its dynamics is influence by the other. In standard model theory, gauge fields interact
with each in two ways: first, they can interact indirectly via fermions; second the SU(2)
gauge fields interact with electro-magnetic field via the Higgs mechanism, i.e. the gauge
bosons W± acquire electric charges while becoming massive via the Higgs mechanism.
This new term describing the interaction between two gauge fields arising from the pseudo-
scalar Lagrangian density of spherically symmetric gauge field is interesting and its further
suggestion is perhaps worth to investigate.

This pseudo-scalar Lagrangian density displays another peculiarity in the Yang-Mills
theory with gauge group SU(2) × SU(2). First, the Yang-Mills action of this theory
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can be written down as the sum of that for the two SU(2)s. One notices the fact that
so(4) ∼= su(2)L ⊕ su(2)R and that SO(4) admits a spin representation which allows a
similar term as in Eq. (3.36). Then this pseudo-scalar term is added to the Yang-Mills
action obtained previously and a new action is obtained. This procedure is explicitly
carried out in the following text.

The Lie algebra of SO(4) and its spin representation can be obtained with a slight
modification from Eqs. (3.13) and (3.14). In the following expressions of so(4) elements a
prime is added to indicate the difference from those of so(1, 3).

The Lie algebra so(4) is defined by the following commutation relationships:

[J
′i, J

′j ] = iǫijkJ
′k, [Σ

′i,Σ
′j ] = iǫijkJ

′k and [J
′i,Σ

′j ] = iǫijkΣ
′k. (3.40)

The Weyl representation of this algebra is:

J
′i =

1

2

(

σi 0
0 σi

)

and Σ
′i =

1

2

(

σi 0
0 −σi

)

. (3.41)

The decomposition of this algebra into su(2)⊕ su(2) is obtained by defining the following
new basis:

T i =
1

2

(

J
′i +Σ

′i
)

, Si =
1

2

(

J
′i − Σ

′i
)

. (3.42)

Then it is straightforward to calculate the following commutators:

[T i, T j ] = iǫijkT k, [Si, Sj ] = iǫijkSk and [T i, Sj ] = 0. (3.43)

These commutators suggest that T i can be identified as generators of SU(2)L and Si of
SU(2)R. Now the gauge fields belonging to SU(2)L and SU(2)R can be written as:

AµL = AiµLT
i and AµR = AiµRS

i. (3.44)

The gauge field of SO(4) can be simply identified as the sum of the above two fields:

A′
µ = AµL +AµR. (3.45)

For the field strength a similar relation holds:

F
′

µν =∂µA
′

ν − ∂νA
′

µ +
i

g
[A

′

µ, A
′

ν ]

=∂µ (AνL +AνR)− ∂ν (AµL +AµR) +
i

g
[AµL +AµR, AνL +AνR]

=∂µAνL − ∂νAµL +
i

g
[AµL, AνL] + L↔ R

=FµνL + FµνR,

(3.46)

where the fact [T i, Sj ] = 0 has been used in deriving the third equation, the coupling
constants for left and right gauge fields have been assumed to be both g.

The pseudo-scalar term can be computed explicitly now:

trF
′

µνγ
5F

′µν =tr(FµνL + FµνR)γ
5(FµνL + FµνR )

=trFµνLF
µν
L − trFµνRF

µν
R .

(3.47)

34



3 THE SPHERICALLY SYMMETRIC GAUGE FIELD OF THE LORENTZ GROUP

Eq. (3.47) shows clearly the effect of the pseudo-scalar Lagrangian density: it discriminates
the gauge fields belonging to the left and right SU(2) sub-groups of SO(4) by altering the
weights of their contribution to the total action. In the extreme case, the contribution
from either the left or the right subgroup gauge field can be totally removed, leaving a
Lagrangian density for a chiral theory.

At the end let me add a general remark. For any spin group Spin(2n), a representation
can be constructed via the Clifford algebra [26]. In this construction, there is a special
matrix γ2n+1 playing the same role as γ5 in the four dimensional case. Therefore, a
pseudo-scalar gauge invariant Lagrangian density term can be written down.
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4 Some identities of the correlation functions

In this chapter I will present a method to derive a set of identities among the correlation
functions. This method makes use of the generating functional in path integral formula-
tion. Its prominent feature is non-perturbative. However, it does not help to determine
any specific correlation function.

The method exploits the polynomial structures of the Lagrangian densities. It is seen
that, in almost all well-studied theories, the Lagrangian density is a polynomial function
of the fields and their first order derivatives, where the field can be a scalar, a spinor, or
a vector. Despite that the discussion will focus on a scalar field theory, the result can be
easily extended to theories consisting of spinor and vector fields. One of the important
equations obtained is Eq. (4.11), a variation equation satisfied by the generating functional
of λφ4- theory. It should be noted that a similar equation in Euclidean space has been
derived by Witten using a mathematically more rigorous method [27]. Witten called this
equation another type of Ward-Takahashi identity. Indeed, the technical details in the
derivation of the Ward-Takahashi identies and the one presented in this chapter are quite
similar.

This chapter is outlined in the following way: first, a simple illustration of the idea
is given in term of one variable integral; then the method will be demonstrated through
the application to the λφ4 scalar theory and the result will be tested using perturbative
calculations; after that theories with fermion fields and gauge fields will be considered.
When the number of fields in the theory is increased, the complexity in the expression of
the identities of correlation functions will also increase drastically. Checking the identities
of the theories with spinor and vector fields will therefore be spared in this chapter.

After completing this chapter, I have been informed that these relations of correlation
functions are Dyson-Schwinger identities.

4.1 One variable integral case

The method used for the deriving the main results in this chapter can be best illustrated
in term of a single variable integral:

∫ ∞

−∞
dxe−i(ax

2+bx3+cx4), (4.1)

where a, b, and c are constant real numbers while c 6= 0. To make this integral well-
defined, we can introduce a regulator, −ǫx2, in the the exponential. −ǫ is assumed to
be a small positive real number, which eventually will be set to zero. This regulator is
sufficient to make all the integrals in the following text well-defined. Now define

F (α) =

∫ ∞

−∞
dxe−i(ax

2+bx3+cx4+αx)−ǫx2 (4.2)

for a real number α. Noting that

i
d

dα
F (α) =

∫ ∞

−∞
dxxe−i(ax

2+bx3+cx4+αx). (4.3)

It is straightforward to derive the following equations:

[4c(i
d

dα
)3 + 3b(i

d

dα
)2 + (2a− iǫ)i

d

dα
+ α]F (α)
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=

∫ x=∞

x=−∞
d(ax2 + bx3 + cx4 + αx− iǫx2)e−i(ax

2+bx3+cx4+αx)−ǫx2

≡
∫

d[y(x)]e−iy(x), (4.4)

where the domain of the new variable, y(x), is (∞− i∞,∞− i∞) [(−∞− i∞,−∞− i∞)]
when c is positive [negative]. Suppose c = 0, y(x) will vary in (−∞ − i∞,∞ − i∞)
[(−∞− i∞,∞− i∞)] if b is positive [negative]. In general, the situation will be the same
as in the previous two cases depending on the order of the highest power of x in y is even
or odd. Note that the new variable y has a non-vanishing imaginary part in the domain
of the integration. This imaginary part makes the last integral well-defined. From now
on, we will suppress the regulator in all expressions.

The last integral in the above equation vanishes. In case of even-order highest power
as discussed above, the integration domain starts and ends with the same value (+∞ or
−∞), thus the integral is zero. In case the order of the highest power is odd, the integral is
equal to the Dirac delta function evaluated at 1. Its value is also zero. This integral is the
same as a Fourier transformation of a constant function. The mathematical rigor should
follow from that of Fourier transformation but will not be pursued here. The following
equation is obtained:

[4c(i
d

dα
)3 + 3b(i

d

dα
)2 + 2ai

d

dα
+ α]F (α) = 0. (4.5)

Of course, this equation cannot be used to determine F (α). However, the specific
value of F (α) is of no interest here. The interesting quantities are the coefficients of
the powers of α in the series expansion of F (α), assuming that F is a smooth function
of α in a small interval around zero. Expressing F (α) in terms of Taylor expansion,
the differential equation gives the iterative relations of the coefficients. It is not hard to
imagine, when F (α) is replaced by the generating functional in the path integral formalism,
the coefficients will be replaced by the correlation functions. Therefore, the counterpart
of the iterative relations will be some identities among the correlation functions. Next,
this method will be applied to the λφ4 theory.

4.2 Application to scalar theory

The Lagrangian density of the λφ4 theory is

L = −1

2
φ∂µ∂

µφ− 1

2
m2φ2 − λ

4!
φ4. (4.6)

The generating functional of this theory is:

Z(J) =

∫

Dφei
∫

d4x[L+J(x)φ(x)], (4.7)

where J(x) is the source field. The variation of Z(J) with respect to J(x) is given by:

δZ(J)

δJ(x)
=

∫

Dφ iφ(x)ei
∫

d4x[L+J(x)φ(x)]. (4.8)

Similarly, the n-th order variation gives:

δnZ(J)

δJn(x)
=

∫

Dφ[iφ(x)]nei
∫

d4x[L+J(x)φ(x)]. (4.9)
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One property of these expressions that will be used later is that, any local operator
applied to them can be moved into the path integral:

Ox
δnZ(J)

δJn(x)
=

∫

Dφ[Ox(iφ(x))
n]ei

∫

d4x[L+J(x)φ(x)]. (4.10)

With this preparation it is straightforward to perform an integration by part to obtain
the following equation:

+
λ

3!

δ3Z(J)

δJ3(x)
− [∂µ∂

µ +m2]
δZ(J)

δJ(x)
+ iJ(x)Z(J) = 0. (4.11)

The above equation could be understood as a partial differential equation for Z(J) as a
function of an infinite number of variables with each space time point x corresponding to
one variable. This interpretation is consistent to that the integration over the field φ(x)
is understood as over an infinite number of variables, φ(x)s, for each x. As a result, the
operator ∂µ∂

µ +m2 can be interpreted as a matrix with an infinite rank.

In the last equation above if λ is taken to be zero, which corresponds to the free scalar
theory, the equation can be solved in a straightforward way:

δZ(J)

Z(J)
= i[∂µ∂

µ +m2]−1J(x)δJ(x) (4.12)

and therefore
Z(J) = Z(0)ei

∫

d4x 1

2
J(x)[∂µ∂µ+m2]−1J(x), (4.13)

which agrees with the result obtained by completing the square for φ(x) in the Lagrangian
density and then evaluating an infinite number of Gaussian integrals.

Eq. (4.11) is not solvable explicitly when λ 6= 0. Nevertheless, it contains rich infor-
mation about the n−point correlation functions. Previously it was mentioned that Z(J)
should be interpreted as a function of an infinite number of variables, in the sense explained
there. Assume that Z(J) is a smooth function of these variables in the neighborhood of
zero, up to a numerical factor which is infinite. This factor has been encountered in per-
turbation calculations. It corresponds to the sum of all the disconnected graphs. Of course
this argument does not serve as an adequate justification. In fact, Eq. (4.13) provides a
verification for this point.

Now a smooth function can be written in Taylor expansion form:

Z(J) = Z0(0) +
∑

i

Zi1(0)Ji +
1

2!

∑

i,j

Zij2 (0)JiJj +
1

3!
Zijk3 (0)JiJjJk + ......, (4.14)

where, in the expression Zijk...l (0), the lower index l indicates the order of the term in
the expansion, which is the number of external points in a correlation function, the upper
indices, i, j, k..., are short notations of the points in the space-time (suppose the space-time
has been discretized and each discrete cell is assigned a unique integer number), and the 0
in the parentheses means the expansion is done around the source configuration J(x) = 0.

In a more usual way, with continuous variables, the functional Z(J) can be written as
follows:

Z(J) = Z0(0) +
1

1!

∫

dx1Z1(0)(x1)J(x1) +
1

2!

∫

dx1dx2Z2(0)(x1, x2)J(x1)J(x2) + ......

(4.15)
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where the zero in the parentheses again means the expansion is around J(x) = 0 (in the
later text the zero will be omitted), and the xis are the space-time coordinates variables
(note that each xi denotes a space-time point, instead of a coordinate component). The
term, Z0, is the value of the original path integral. The ratios between the Zn(x1, ..., xn)
and Z0 have physical meaning. Now let’s connect them to the n-point correlation functions,
which is defined as:

Gn(x1, x2, ..., xn) =
1

Z0

δnZ(J)

δJ(x1)...δJ(xn)
. (4.16)

It is easy to see that in Eq. (4.15) one can make the coefficients Zn(x1, x2, ..., xn) totally
symmetric under the permutation of the variables x1, x2, ..., xn. This option makes use of
the bosonic nature of the source field J(x) (in case of spinor field theory, the source field
would be fermionic and the coefficient Zn could be made totally anti-symmetric). Then it
is straightforward to check that the n-point Green functions coincide with the coefficients
divided by Z0, i.e.

Gn(x1, x2, ..., xn) = Zn(x1, x2, ..., xn)/Z0. (4.17)

Careful readers might have noticed that in the above expression uncountably many points
in a continuous space-time are represented by the countable many integer numbers. This
is indeed ad-hoc. One explanation is, Z(J) is in general an integral of J over the domain
of the space-time. Now taking J(x) to be a smooth function, the integral can be approxi-
mated by a sum with J(x) represented by values at a discrete set of points. This is then
in the same spirit as of field theory on a lattice. An alternative approach could be taken
to avoid this problem. One can constrain the space-time to be compact with periodic
boundary condition imposed on the fields. Now going to the Fourier modes of the fields,
the spectrum is discrete, one then deals with countable infinite variables.

Substituting Eq. (4.15) into Eq. (4.11) and comparing the powers, one then obtains
a set of identities relating correlation functions with different numbers of external points.
To get rid of the integrals in the identities it is necessary to make the integrand totally
symmetric under permutation of variables and make use of the following fact:

∫

dx1dx2...dxnf(x1, x2, ..., xn)J(x1)J(x2)...J(xn) = 0 (4.18)

holds true for arbitrary function J(x) implies

f(x1, x2, ..., xn) = 0. (4.19)

This can be shown by making a series of special choices for the function J(x) in terms
of simple combinations of Dirac delta functions. The strategy can be illustrated with
the case of three variables. In the first step, one takes J(x) = δ(x − xo) to conclude
that f(x, x, x) = 0; in the second step one sets J(x) = δ(x − xo) + δ(x − yo) and then
J(x) = δ(x − xo)− δ(x− yo) to obtain f(x, x, y) = 0; lastly, one uses J(x) = δ(x − xo) +
δ(x− yo) + δ(x − zo) to obtain f(x, y, z) = 0.

Since Eq. (4.11) is linear, one can divide both sides by Z0(0). Then the identities will
involve only the normalized correlation functions. In the following Z0(0) will be set to one
and all the correlation functions will be understood as normalized ones. The results are
listed below:

0-th order in J :

λ

3!
G3(x, x, x) − (∂µ∂

µ +m2)G1(x) = 0, (4.20a)

1-st order :
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λ

3!
G4(x, y, y, y) − (∂yµ∂

yµ +m2)G2(x, y) + iδ(x − y) = 0, (4.20b)

n-th order :

λ

3!
Gn+3(x1, x2, ...xn, y, y, y)− (∂yµ∂

yµ +m2)Gn+1(x1, x2...xn, y)

+i

n
∑

k=1

Gn−1(x1, x2...x̂k, xn)δ(xk − y) = 0, (4.20c)

where in the last equation the hat above x indicates that the corresponding variable xk
is skipped. Due to the symmetry φ ↔ −φ of the Lagrangian density, the odd order
correlation functions are all vanishing, i.e. G2n+1 = 0 for n = 0, 1, 2... Only the identities
of even order correlation functions are non-trivial. At this point some comments are worth
noting. The identities are obtained using a non-perturbative method. Neither the concept
of regularization nor of renormalization has been encountered. Also, we do not have to
assume that the original Lagrangian density is “bare”. Instead, we can take everything
in the identities to be physical. This is to say, the mass and coupling parameters, and
the correlation functions are all physical quantities, hence finite. If we wish to apply
these identities as constraints to the correlation functions obtained using the perturbative
method, we would have to substitute some finite quantities obtained from the perturbative
calculation into the identities. Therefore, only the renormalized correlation functions could
be used. In the following text, a test of the identity involving the two-point and 4-point
correlation functions, Eq. (4.20b), is presented.

The first thing to do is to express the correlation functions in momentum space, using
the following identity:

Gn(x1, x2, ..., xn) =

∫

dp1...dpn
(2π)4n

ei(p1·x1+...+pn·xn)Ĝn(p1, ..., pn)(2π)
4δ(p1 + ...pn). (4.21)

where Ĝ denotes a Green function in momentum space. With the aid of this identity,
after getting rid of integration over one momentum variable by Fourier transformation,
Eq. (4.20b) can be brought into the following form:

λ

3!

∫

dp1dp2
(2π)8

Ĝ4(−p, p1, p2, p− p1 − p2)− (−p2 +m2)Ĝ2(p,−p) + i = 0. (4.22)

As stated in the discussion following Eq. (4.20b), the four- and two-point correlation
functions here should be understood as renormalized. These two quantities have been
computed explicitly in many text books. We take the results from Cheng and Li [28]. To
one-loop level, the renormalized 2-point Green function is:

Ĝ2R(p,−p) =
−i

p2 −m2 − Σ̃(p2) + iǫ
:= i∆R(p), (4.23)

where Σ̃(p2) is the finite part of the self-energy term in the Talyor expansion of the self-
energy in powers of p2. To one loop level, order-λ, Σ̃(p2) is zero. Note there is an extra
minus sign in the propagator stated above compared to that in Cheng and Li’s book. This
is correct for the signs adopted in the Lagrangian density and path integral used in the
present text. The renormalized 4-point correlation function to one-loop level, order-λ2, in
momentum space is:

Ĝ4R(p1, p2, p3, p4) = Π4
j=1(i∆R(pj))[−iλ + Γ̂(s) + Γ̂(t) + Γ̂(u)], (4.24)
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p1

p2

p3

p4

Figure 4.1: The one loop four-point diagram. When the external legs are amputated, this
diagram corresponds to the Feynman integral Γ̂(s), where s = (p1 + p2)

2.

p1

p− p1 − p2

p2

p
p

Figure 4.2: The two-loop one particle irreducible diagram. The external legs are ampu-
tated. Its contribution to the correction of the propagator is iΣ(p2).

where the letter R in the subscript stands for “Renormalized”, and the function Γ̂(s) stands
for the amplitude of the Feynman diagram in Fig. 4.1 with the Mandelstam variable s.

To the level of one-loop, Ĝ2R and Ĝ4R are approximated to different orders of λ. This
means that Eq. (4.22) should be checked order by order. To the first order of λ, the term
containing Ĝ4R can be thrown away since it is at least of order two in λ. The rest terms
are easily seen to cancel each other. Therefore, to the first order of λ, the identity, Eq.
(4.22), is verified.

When we go to the second order of λ in the calculation, the situation becomes com-
plicated. The one-loop computation for Ĝ4R is still sufficient. Actually, only the first
term in the square brackets on the right hand side of Eq. (4.24) is involved. However, for
Ĝ2R 2-loop corrections must be included. The only contributing one particle irreducible
diagram (amputated) in this case (Prob. 10.3, page 345 of [1]) is shown in Fig. (4.2). The
associated integral is

iΣ(p2) =
−λ2
3!

∫

dp1dp2
(2π)8

−i
p21 −m2

· −i
p22 −m2

· −i
(p− p1 − p2)2 −m2

, (4.25)

where the factor 3! is the symmetry factor associated to this diagram. Again, in the
definition of Σ(p2) there is an extra minus sign compared to that in Cheng and Li. Denote
the corresponding renormalized quantity as Σ̃(p2). Substituting it into Eq. (4.23) one
obtains a correction to the two point correlation function:

Ĝ2R(p,−p) =
−i

p2 −m2 − Σ̃(p2) + iǫ
=

−i
p2 −m2 + iǫ

+
−i

(p2 −m2 + iǫ)2
Σ̃(p2) +O(λ3)

(4.26)
The λ2−order term coming from the integral of Ĝ4R in Eq. (4.22) is:

−iλ
2

3!

∫

dp1dp2
(2π)8

Π4
j=1(i∆R(pj)) (4.27)

which is precisely the opposite of the term arising from the non-renormalized 2-loop cor-
rection to Ĝ2R:

−(−p2 +m2)
−i

(p2 −m2 + iǫ)2
Σ(p2) =

i

−p2 +m2
Σ(p2). (4.28)
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⇒

x x

x
y

y x

Figure 4.3: The four-point tree diagram becomes an one particle irreducible two-loop
diagram when three of the four external points are identical.

Therefore, the corresponding renormalized quantities should cancel each other. Thus to the
second order of λ, the identity, Eq.(4.22), holds true as well. The verification involving the
higher order terms of λ is getting more and more complicated. Nevertheless, some intuition
can be gained via Feynman diagrams. The four-point correlation function in the identity
is evaluated at three identical points and one distinct point. In any one particle irreducible
Feynman diagram with four external points, if three of them are identified, the diagram
becomes one with two external points and two extra loops. The previous calculation for
the λ2 order corresponds to the case where the 4-point tree diagram becomes an one
particle irreducible diagram with two external points and two loops, as is illustrated in
Fig. (4.3). To be precise, all the external legs in both diagrams should be amputated so
that the corresponding Feynman integrals will match with the previous calculations.

4.3 Theories with spinor and vector fields

4.3.1 Application to spinor field

In this section some identities of the correlation functions for theories with spinor fields
will be derived. While scalar fields and vector fields satisfy certain commutation relations,
the spinor fields satisfy anti-commutation relations. The consequence is that the rules
for integration in path integral over these fields are different. First, let us recall a few
properties of integration over Grassmanian variables (applicable for spinor fields). The
most basic rules are:

∫

dη 1 = 0,

∫

dη aη = a and

∫

dη

∫

dη̄ η̄η = 1, (4.29)

where η and η̄ are two independent real Grassmanian variables, and a is an ordinary real
number. For more properties of integral involving Grassmanian variable, the reader is
referred to [1]. With these properties the following can be derived:

∫

dη η̄eiηη̄ = 0. (4.30)

In the following derivation let’s work with QED. The gauge field (electric-magnetic
potential) will be taken as external field. The Lagrangian density can be written as:

LQED = ψ̄(x)[i /D +m]ψ(x), (4.31)

where ψ is the 4-component Dirac spinor representing the electron-positron field and the
co-variant derivative is Dµ = ∂µ − iAµ(x). The generating functional of this theory is:

Z(η, η̄) =

∫

Dψ̄Dψ ei
∫

d4x[LQED+η̄(x)ψ(x)+ψ̄(x)η(x)]. (4.32)
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Following the same spirit one can derive:

( /D +m)
δZ

δη̄
+ iηZ = 0. (4.33)

A second equation can also be derived, but it is equivalent to the previous one:

( /D +m)
δZ

δη
− iη̄Z = 0. (4.34)

where the minus sign is due to switching two Grassmanian variables.

Eq. (4.33) can be solved in a similar manner as was done for Eq. (4.12). First, one
obtains from Eq. (4.33) the following equation:

δZ

Z
= −iδη̄( /D +m)−1η. (4.35)

Since η̄ and η are independent, η in the above equation can be viewed as a fixed function.
Then the integration with respect to η̄ can be performed and the result is:

Z = const. e−i
∫

d4xη̄( /D+m)−1η. (4.36)

This result can also be obtained directly by integrating out the ψ̄ and ψ fields. In addition,
the constant factor in the above equation is known to be det( /D + m). However, in the
derivation of the identities among the correlation functions, this factor is again playing no
role.

In the standard model theory, terms in the Lagrangian density contain either two spinor
fields or no spinor field. This implies that the spinor fields can be easily integrated out.
Therefore, the method discussed here won’t give better results when it is applied only to
the spinor fields.

4.3.2 Application to gauge field

As far as the derivation of the variation equation is concerned, the vector fields (gauge
fields) differ from the scalar field only in the sense there are more fields and more indices.
This difference makes the derivation more complicated and errors can easily occur. Here,
a simpler and more general trick is introduced:

∫

Dφ
[

δL(φ)

δφ

∣

∣

∣

∣

x=xo

+ J(xo)

]

e−i
∫

dx[L(φ)+Jφ]

=Πx 6=xo

∫

dφ(x)

∫

dφ(xo)

[

δL(φ)

δφ
|x=xo + J(xo)

]

e−i
∫

dx[L(φ)+Jφ]

=Πx 6=xo

∫

dφ(x)

∫

d
[

L̂(φ(xo)) + J(xo)φ(xo)
]

e−i[L̂(φ(xo))+J(xo)φ(xo)]+Lrest

=0,

(4.37)

where xo indicates a fixed space-time point, L̂(φ(xo)) is the part of the Lagrangian density
that depends on φ(xo) and Lrest is independent of φ(xo). This trick can be understood in
the following way: the field φ(x) can be represented by an in finite number of variables
associated to each space-time point; the differential operators ∂x can then be represented
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by a matrix of infinite rank. As a result, the Lagrangian density becomes a polynomial of
an infinite number of variables. The terms in the Lagrangian density can be grouped in to
two, one with each term depending on φ(xo), denoted as L̂(φ(xo)), and the other totally
independent of φ(xo), denoted as Lrest.

In theories with gauge fields, discretizing the space-time is accompanied with the issue
of gauge invariance, just as discussed in lattice gauge theory. However, the matrix rep-
resentation introduced in the intermediate steps will be replaced again by the differential
operators later in the derivation, i.e. the continuum limit will be taken. Therefore, the
gauge invariance will be restored. This argument serves as a justification for the trick
introduced in the previous paragraph.

Next, in the expression δL(φ(xo))
δφ |x=xo + J(xo) we can replace φ(xo) by δ/δJ(xo) and

the differential operators (or their matrix representation) can be pulled out of the path
integral. As a result, the desired variation equation is obtained. In the following an
example will be given for the pure SU(2) gauge theory. The Lagrangian density for this
theory is:

LSU(2) = −1

4

(

∂µA
a
v − ∂νA

a
µ + igfabcAbµA

c
ν

)(

∂µAaν − ∂νAaµ + igfabcAbµAcν
)

(4.38)

It is then straightforward to obtain

δLSU(2)

δAaµ(xo)
= −∂νF aµν − igfabcF cµνAbν =

(

−δac∂ν − igfabcAbν

)

F cµν . (4.39)

Replacing the fields by the corresponding variation operators will give:

(

−δac∂ν − igfabcAbν

)

F cµν →
(

−δac∂ν + gfabc
δ

δJbν

)(

i∂µ
δZ(J)

δJcν
− i∂ν

δZ(J)

δJcµ
− igf cbe

δ2Z

δJbµδJ
e
ν

)

.

(4.40)
Thus the desired differential equation will be

i

(

−δac∂ν + gfabc
δ

δJbν

)(

∂µ
δZ(J)

δJcν
− ∂ν

δZ(J)

δJcµ
− gf cbe

δ2Z(J)

δJbµδJ
e
ν

)

+ JaµZ(J) = 0. (4.41)

Similar to the case of the scalar field, the generating functional can be expanded into the
Taylor series of the sources Jaµ(x) and the identities among the correlation functions in
principle can be obtained. However, this will not be done in this thesis since it involves
only tedious but straightforward calculations.

In the above derivations, theories involving only scalar field, spinor fields, or vector
fields are considered. The method can of course be applied to cases where all types of
fields are present. This direction will not be pursued in this thesis.
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Discussion

The work presented in this thesis comprises the main results obtained during my PhD
study in the past three years. Four topics were covered, all of them closely related, yet
each individual topic could thrive from further extensive research.

In Chapter 1, I proved the existence of a special fermion zero mode, insofar as it is
not related to the winding number of the background gauge field. Despite this unique
feature, it is only one among many fermion zero modes that are essential for determining
the spectral flow. The next step in determining the spectral flow is to study the level
crossing behavior at the vicinity of each zero mode. Although this strategy is a practical
one, it does not come without technical difficulties. Klinkhamer and Lee observed that
in the case of one-dimensional space the phase of the fermion wave function at spatial
infinity has a discontinuous change in the presence of a zero mode. They introduced the
concept “twist number” as a tool to study this phenomenon[7]. For a given wave function,
the twist number is defined as the difference between the phase at infinity and that at
the origin. A discontinuous change in the twist number signifies the presence of a fermion
zero mode. When the space is open, this phenomenon can be understood in the following
way: in the eigenvalue equation of the Hamiltonian for the Dirac fermion interacting with
gauge field, we can always set the eigenvalue to zero. There should always be at least one
solution to the resulting linear differential equation. Yet such a solution is not necessarily
a valid fermion zero mode, in spite of its zero eigenvalue. In order to be a valid zero mode,
the solution has to meet a stringent condition: it must be square-integrable in the space.
Such solution typically assumes the following exponential form:

ψ(x) ∼ e
∫ x
0
dsf [A(s),m] (4.42)

where the function f depends on the background gauge field, as well as on other param-
eters such as mass and charge. The exponential factor will grow or damp as the gauge
background field changes. For a solution to be square-integral, the exponential factor must
damp, which will only happen when the gauge background fields possess certain properties.
In this sense, we can perceive the underlying principle of the “twist number” to be identi-
cal to that of Levinson’s theorem, in which the number of the square-integrable solutions
(i.e. the bounded states) of the Schrödinger equation is related to the asymptotic phase
of the solutions [29]. Levinson’s theorem also exists for the Dirac equations [30][31]. In
both the Schrödinger and the Dirac equations, the phases of the solutions are functionals
of the potentials in the equations (be it a generic potential or a specific gauge potential).
Aware of this principle, Kaufhold studied the phase change of solutions to the Dirac equa-
tion on a compact space and gained deep insight and proved that there is a monotonous
dependence of the phase on the energy of the eigen-modes [19]. In one-dimensional space
when the periodic (or phase periodic) boundary condition applies, he was able to obtain
a concise formula for the spectral flow by tracking the phase change of the eigen-modes.

Generalizing Kaufhold’s result to higher dimensional space might seem straightforward.
But when we attempt to define a unique phase change for each solution to the eigenvalue
equation, a problem arises. In one-dimensional space this can be done by tracking the
phase varying along the only non-self-intersecting curve. In two- and three- dimensional
space, however, a unique curve does not exist. Alternatively, we might examine the phase
flux on the boundary of the space, which is the integral of the divergence of the phase on
the bulk space. When the space has no boundaries, the phase flux will be zero and the
problem will have to be reconsidered.

Two new problems arise when we attempt to generalize Kaufhold’s result to open
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spaces. First, we must take into account the normalizability of the solutions in correspon-
dence to the boundary condition in compact spaces. In order to determine if the solutions
are normalizable, we have to examine their asymptotic behavior, a technically demanding
task. This problem is echoed in the index theorem. The Atiyah-Singer and Atiyah-Singer-
Patodi index theorems are both obtained for compact space-times. Although an index
theorem for open space-times exists,in the form of the Callias index theorem [32], the
derivation is made complex by the analysis on the normalizablity of the wave-functions.
Second, in the case of open spaces the spectrum of the Dirac-Hamiltonian equation will
no longer be discrete. As an alternative, we might be able to define the level crossing
unambiguously by making use of the mass gap (the zero eigenvalue is isolated when it
occurs). This makes determining the spectral flow more complicated.

In Chapter 2, we looked at a new mechanism for determining the fermion mass spec-
trum. I wish to address a number of issues related to this mechanism here. The first
issue concerns Rubakov’s observation of the universality problem that occurs when extra
dimensions are introduced into theories where fermions interact with non-abelian gauge
fields [11]. The dependence of the fields on the extra dimensions will be integrated out,
so that the action of the original theory will reduce to an action of a new theory in the
ordinary four-dimensional space-time. The coupling constants in the four-dimensional
theory are determined by a few parameters in the original five-dimensional theory. The
fermionic fields in the four-dimensional theory are living in certain representations of the
gauge group. Therefore, we expect to see that their charges in this representation attain
integer values up to some common factor, after integrating out the extra dimensions. It is
not yet clear how these integers can be simultaneously obtained from a higher dimensional
theory.

We recall that the new mechanism for determining the fermion mass spectrum has a
byproduct: the left- and right-handed fermions can be distinguished via a function living
in the fifth dimension. This leads us to wonder if the asymmetry between the left and
right SU(2) gauge fields can be explained a similar way. We can assume that there is
a fundamental theory with two SU(2) acting in a symmetric manner on the left- and
right-handed fermion doublets. We can further assume that this theory is defined in a
five-dimensional space-time. We might then ask ourselves if we can use a scalar field
living in the fifth dimension to break this symmetry, so that only the left SU(2) remains
in the reduced four-dimensional theory.

The third issue relates to the mass spectrum. Beyond making the spectrum bounded
and discrete, we wish to have some freedom to adjust the values in it. The values we
obtained in Chapter 2 are essentially determined by the tangent hyperbolic function.
An essentially different function would lead to a numerically different mass spectrum.
Unfortunately, we have not found any new functions apart from those derived from trivial
variation of the tangent hyperbolic function. According to a general argument there are
plenty of them, but it would be nice to have a specific one.

In Chapter 3, we investigated a theory on the gauged Lorentz group. This investigation
may serve as a starting point from which future research can be conducted and new ideas
can be explored. For one, the Lorentz group could be replaced by the Poincare group,
gauging the Poincare group makes more sense than gauging the Lorentz group when we
hope to formulate a theory that relates to gravity. Starting with a different space-time
could also be an idea worth exploring. Manton started with the space-time R1,3 × S2

and obtained a theory comparable to the Winberg-Salam model [13]. The constraints on
the gauge field in Manton’s theory come from the spherical symmetry of the two-sphere.
Another possible starting point could be the anti-de Sitter space-time.
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In Chapter 4, I presented a method for deriving a variational equation for a given
quantum field theory. Such an equation typically results in a set of non-perturbative
identities of correlation functions in theory. As it is unlikely to be solved, such an equation,
by itself, cannot determine the individual correlation functions. We can, however, explore
the symmetries of the Lagrangian density and exploit the constraints these symmetries
imposed on the correlation functions. These constraints can help simplify the identities
of the correlation functions. For example, the reflection symmetry φ → −φ discussed
in Chapter 4 following Eq. (4.20c) tells us that all the correlation functions with odd
numbers of external points vanish.

By briefly touching upon four different topics, I hope this thesis has given way for new
ideas for further research. While we wait for the next exciting experimental discovery to
be made, there are quite a few interesting theoretical problems to keep ourselves occupied
with.
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A TWO CONTINUOUS FUNCTIONS DEFINED IN CHAPTER 1

A Two continuous functions defined in Chapter 1

The continuity property of the two functions defined in Chapter 1 are to be proven
in this appendix. It should be made clear beforehand that I shall use the Weierstrass’
definition of continuity of a function in the following text, i.e. a real function f(x) defined
at a point x0 in a real domain is continuous if and only if for any small positive number ǫ
there is such a small positive number δ that |x− x0| < δ implies |f(x)− f(x0)| < ǫ.

Lemma2 : The function t∗(Θi) defined in page 15 is continuous in its domain.

Proof. This statement is true, primarily because the function Θ(t, r) is continuous at any
point (t, r) with finite distance from the origin (Theorem 6.1[18]). The interval of t is
irrelevant in this proof, although it was specified in the main text where the lemma was
applied.

Suppose t∗(Θi) is defined for Θi, denoted as t0 for simplicity. We can assume without
loss of generality that the following holds true: Θ(t0, r = ∞,Θi) = π/2, Θ(t0 + ǫ, r =
∞,Θi) = π, and Θ(t0 − ǫ, r = ∞,Θi) = 0. Now for any small positive number ǫ, there
exists such a large enough but finite rc that Θ(t0+ǫ, r = rc,Θi) > π/2+2δ and Θ(t0−ǫ, r =
rc,Θi) < π/2−2δ, where δ is defined as in the proof of theorem 2. δ serves as the criterion
so that as soon as π ≥ Θ(t, r = rc,−) ≥ π/2 + δ or 0 ≤ Θ(t, r = rc,−) ≤ π/2 − δ, we will
necessarily have Θ(t, r = ∞,−) = π or Θ(t, r = ∞,−) = 0 respectively, where the hyphen
symbol stands for an arbitrary value in a small neighborhood of Θi. Note that the choice
of δ can be made independent of t and Θi.

Consider Θ(t0+ǫ, r = rc,Θ
′
i). This is a continuous function of Θ′

i. So there exists such a
small positive number ∆1 that Θ(t0+ ǫ, r = rc,Θ

′
i) > Θ(t0+ ǫ, r = rc,Θi)−δ > π/2+δ for

any Θ′
i ∈ (Θi−∆1,Θi+∆1). Similarly, there exists such a small positive number ∆2 that

Θ(t0 − ǫ, r = rc,Θ
′
i) < Θ(t0 − ǫ, r = rc,Θi) + δ < π/2− δ for any Θ′

i ∈ (Θi−∆2,Θi+∆2).
Denote the smaller one between ∆1 and ∆2 as ∆. These facts can be summarized as
follows: for any Θ′

i ∈ [Θi −∆,Θi +∆], Θ(t0 + ǫ, r = rc,Θ
′
i) ≥ π/2 + δ, thus Θ(t0 + ǫ, r =

∞,Θ′
i) = π; Θ(t0 − ǫ, r = rc,Θ

′
i) ≤ π/2 − δ, thus Θ(t0 − ǫ, r = ∞,Θ′

i) = 0. Therefore, we
conclude that t∗(Θ′

i) ∈ (t0 − ǫ, t0 + ǫ) as long as Θ′
i ∈ (Θi−∆,Θi+∆), or in other words,

t∗(Θ′
i) is continuous at Θi.

We also observed that at r = 0.0001, for any t ∈ [t1, t2], there is such a Θ∗
i ∈ [Θi1 ,Θi2 ]

that Θ(t, r = 0,Θ∗
i ) = 0, Θ(t, r = 0,Θ∗

i + ǫ) = π/2 and Θ(t, r = 0,Θ∗
i − ǫ) = −π/2 for

arbitrarily small ǫ. This Θ∗
i for a given t is unique for the monotonous dependence of

Θ(t, r = 0,Θi) on Θi. Thus a function Θ∗(t) can be defined. By intuition we expect that
this function is continuous. A rigorous proof is presented below.

Lemma3 : The function Θ∗
i (t) defined in page 14 is continuous on the interval [t1, t2].

Proof. This proof largely resembles that of lemma 2. At time t0 ∈ [t1, t2] suppose Θ
∗(t0) =

Θi, without loss of generality we can say the following is true: Θ(t0, r = 0,Θi + ǫ) = π/2
and Θ(t0, r = 0,Θi − ǫ) = −π/2, for an arbitrarily small positive number ǫ. Thus, there
is a small enough rc (or large negative x, as was introduced in Eq. (1.8), page 13) that
Θ(t0, r = rc,Θi + ǫ) > 2δ and Θ(t0, r = rc,Θi − ǫ) < −2δ. Here δ is again such a criterion
that if Θ(t, r = rc,−) > δ or Θ(t, r = rc,−) < −δ, we must have Θ(t, r = 0,−) = π/2
or Θ(t, r = 0,−) = −π/2 respectively. The hyphen sign can be replaced by an arbitrary
value around Θi.
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Now let us consider Θ(t, r = rc,Θi + ǫ). As a function of t it is continuous in the
interval [t1, t2]. Thus, there exists such a small positive number ∆1 that as soon as
t ∈ (t0−∆1, t0+∆1) it must be true that Θ(t, r = rc,Θi+ ǫ) > Θ(t0, r = rc,Θ0+ ǫ)− δ >
δ. Thus Θ(t, r = 0,Θ0 + ǫ) = π/2 for t ∈ (t0 − ∆1, t0 + ∆1). Similarly, there must
be such a small positive number ∆2 that for t ∈ (t0 − ∆2, t0 + ∆2) it must be that
Θ(t, r = rc,Θi− ǫ) < Θ(t0, r = rc,Θi− ǫ)+ δ < −δ, thus Θ(t, r = 0,Θi− ǫ) = −π/2. If we
denote the smaller between ∆1 and ∆2 as ∆, the above facts then can be summarized as
follows: for t ∈ (t0 −∆, t0 +∆), Θ(t, r = 0,Θi + ǫ) = π/2 and Θ(t, r = 0,Θi − ǫ) = −π/2.
Therefore, Θ∗(t) ∈ (Θi−ǫ,Θi+ǫ) for t ∈ (ti−∆, ti+∆), i.e. Θ∗

i (t) is continuous at t0.

Although the lemmas in the appendix are proved for t∗(Θi) and Θ∗
i (t), it is clear that

the exact same statements can be made for t∗(φi) (defined on page 17) and φ∗i (t) (page 17).
The continuity property of the two functions defined in the main text are to be proven
in this appendix. It should be made clear beforehand that I shall use the Weierstrass’
definition of continuity of a function in the following text, i.e. a real function f(x) defined
at a point x0 in a real domain is continuous if and only if for any small positive number ǫ
there is such a small positive number δ that |x− x0| < δ implies |f(x)− f(x0)| < ǫ.

Lemma2 : The function t∗(Θi) defined in page 15 is continuous in its domain.

Proof. This statement is true, primarily because the function Θ(t, r) is continuous at any
point (t, r) with finite distance from the origin (Theorem 6.1[18]). The interval of t is
irrelevant in this proof, although it was specified in the main text where the lemma was
applied.

Suppose t∗(Θi) is defined for Θi, denoted as t0 for simplicity. We can assume without
loss of generality that the following holds true: Θ(t0, r = ∞,Θi) = π/2, Θ(t0 + ǫ, r =
∞,Θi) = π, and Θ(t0 − ǫ, r = ∞,Θi) = 0. Now for any small positive number ǫ, there
exists such a large enough but finite rc that Θ(t0+ǫ, r = rc,Θi) > π/2+2δ and Θ(t0−ǫ, r =
rc,Θi) < π/2−2δ, where δ is defined as in the proof of theorem 2. δ serves as the criterion
so that as soon as π ≥ Θ(t, r = rc,−) ≥ π/2 + δ or 0 ≤ Θ(t, r = rc,−) ≤ π/2 − δ, we will
necessarily have Θ(t, r = ∞,−) = π or Θ(t, r = ∞,−) = 0 respectively, where the hyphen
symbol stands for an arbitrary value in a small neighborhood of Θi. Note that the choice
of δ can be made independent of t and Θi.

Consider Θ(t0+ǫ, r = rc,Θ
′
i). This is a continuous function of Θ′

i. So there exists such a
small positive number ∆1 that Θ(t0+ ǫ, r = rc,Θ

′
i) > Θ(t0+ ǫ, r = rc,Θi)−δ > π/2+δ for

any Θ′
i ∈ (Θi−∆1,Θi+∆1). Similarly, there exists such a small positive number ∆2 that

Θ(t0 − ǫ, r = rc,Θ
′
i) < Θ(t0 − ǫ, r = rc,Θi) + δ < π/2− δ for any Θ′

i ∈ (Θi−∆2,Θi+∆2).
Denote the smaller one between ∆1 and ∆2 as ∆. These facts can be summarized as
follows: for any Θ′

i ∈ [Θi −∆,Θi +∆], Θ(t0 + ǫ, r = rc,Θ
′
i) ≥ π/2 + δ, thus Θ(t0 + ǫ, r =

∞,Θ′
i) = π; Θ(t0 − ǫ, r = rc,Θ

′
i) ≤ π/2 − δ, thus Θ(t0 − ǫ, r = ∞,Θ′

i) = 0. Therefore, we
conclude that t∗(Θ′

i) ∈ (t0 − ǫ, t0 + ǫ) as long as Θ′
i ∈ (Θi−∆,Θi+∆), or in other words,

t∗(Θ′
i) is continuous at Θi.

We also observed that at r = 0.0001, for any t ∈ [t1, t2], there is such a Θ∗
i ∈ [Θi1 ,Θi2 ]

that Θ(t, r = 0,Θ∗
i ) = 0, Θ(t, r = 0,Θ∗

i + ǫ) = π/2 and Θ(t, r = 0,Θ∗
i − ǫ) = −π/2 for

arbitrarily small ǫ. This Θ∗
i for a given t is unique for the monotonous dependence of

Θ(t, r = 0,Θi) on Θi. Thus a function Θ∗(t) can be defined. By intuition we expect that
this function is continuous. A rigorous proof is presented below.

Lemma3 : The function Θ∗
i (t) defined in page 14 is continuous on the interval [t1, t2].
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Proof. This proof largely resembles that of lemma 2. At time t0 ∈ [t1, t2] suppose Θ
∗(t0) =

Θi, without loss of generality we can say the following is true: Θ(t0, r = 0,Θi + ǫ) = π/2
and Θ(t0, r = 0,Θi − ǫ) = −π/2, for an arbitrarily small positive number ǫ. Thus, there
is a small enough rc (or large negative x, as was introduced in Eq. (1.8), page 13) that
Θ(t0, r = rc,Θi + ǫ) > 2δ and Θ(t0, r = rc,Θi − ǫ) < −2δ. Here δ is again such a criterion
that if Θ(t, r = rc,−) > δ or Θ(t, r = rc,−) < −δ, we must have Θ(t, r = 0,−) = π/2
or Θ(t, r = 0,−) = −π/2 respectively. The hyphen sign can be replaced by an arbitrary
value around Θi.

Now let us consider Θ(t, r = rc,Θi + ǫ). As a function of t it is continuous in the
interval [t1, t2]. Thus, there exists such a small positive number ∆1 that as soon as
t ∈ (t0−∆1, t0+∆1) it must be true that Θ(t, r = rc,Θi+ ǫ) > Θ(t0, r = rc,Θ0+ ǫ)− δ >
δ. Thus Θ(t, r = 0,Θ0 + ǫ) = π/2 for t ∈ (t0 − ∆1, t0 + ∆1). Similarly, there must
be such a small positive number ∆2 that for t ∈ (t0 − ∆2, t0 + ∆2) it must be that
Θ(t, r = rc,Θi− ǫ) < Θ(t0, r = rc,Θi− ǫ)+ δ < −δ, thus Θ(t, r = 0,Θi− ǫ) = −π/2. If we
denote the smaller between ∆1 and ∆2 as ∆, the above facts then can be summarized as
follows: for t ∈ (t0 −∆, t0 +∆), Θ(t, r = 0,Θi + ǫ) = π/2 and Θ(t, r = 0,Θi − ǫ) = −π/2.
Therefore, Θ∗(t) ∈ (Θi−ǫ,Θi+ǫ) for t ∈ (ti−∆, ti+∆), i.e. Θ∗

i (t) is continuous at t0.

Although the lemmas in the appendix are proved for t∗(Θi) and Θ∗
i (t), it is clear that

the exact same statements can be made for t∗(φi) (defined on page 17) and φ∗i (t) (page
17).
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