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Abstract

VBFNLO is a flexible parton level Monte Carlo program for the simulation of vector
boson fusion (VBF), QCD induced single and double vector boson production plus two
jets, and double and triple vector boson production (plus jet) in hadronic collisions at
next-to-leading order (NLO) in the strong coupling constant, as well as Higgs boson
plus two jet production via gluon fusion at the one-loop level. For the new version —
VERSION 2.7.0 — several major enhancements have been included into VBFNLO. The
following new production processes have been added: W~jj in VBF, HHjj in VBF,
W, Wi, WH, WHj, pp — Spin-2jj in VBF (with Spin-2 — WW/ZZ — leptons)
and the QCD induced processes W Zjj, W~jj, WEWjj and Wjj production. The
implementation of anomalous gauge boson couplings has been extended to all triboson
and VBF VVjj processes, with an enlarged set of operators yielding anomalous
couplings. Finally, semileptonic decay modes of the vector bosons are now available
for many processes, including VVjj in VBF, VVV and V'V~ production.

April 1, 2014
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1 INTRODUCTION

The physics potential of the LHC depends heavily on our ability to provide accurate
cross section predictions for both signal and background processes. The latter are often
generated by parton radiation from processes with weak bosons in the final state. A
precise description of such hard QCD production processes is needed, as well as a method
for simulating the measurable hadronic final states. Reaching these goals requires next-
to-leading order (NLO) QCD calculations presented in the form of parton level Monte
Carlo (MC) generators, which are an efficient solution when it comes to final states
characterized by a high number of jets and/or identified particles. When kinematic cuts
are imposed, as is mandatory for processes involving QCD radiation, analytic phase-space
integration becomes impractical and implementation of results in the form of Monte Carlo
programs becomes the method of choice.

VBFNLO is a flexible MC program for vector boson fusion (VBF), QCD induced single
and double vector boson production plus two jets, and double and triple vector boson (plus
jet) production processes at NLO QCD accuracy. Furthermore, the electroweak corrections
to Higgs boson production via VBF (which are of the same order of magnitude as the QCD
corrections in the experimentally accessible regions of phase-space) have been included.
Since real emission processes are part of the NLO cross sections, VBFNLO provides the
means to calculate cross sections for the corresponding process with one additional jet
at leading order (LO) in the strong coupling. In addition, the simulation of CP-even
and CP-odd Higgs boson production in gluon fusion, associated with two additional jets,
is implemented at LO QCD. The full top- and bottom-quark mass dependence of the
one-loop contributions in the Standard Model (SM), in the Minimal Supersymmetric
Standard Model (MSSM) and in a generic two-Higgs-doublet model is included. VBFNLO
can be run in the MSSM (with real or complex parameters), and anomalous couplings of
the Higgs boson and gauge bosons have been implemented for a multitude of processes.
Additionally, two Higgsless extra dimension models are included — the Warped Higgsless
scenario and a Three-Site Higgsless Model — for selected processes. These models can be
used to simulate the production of technicolor-type vector resonances in VBF and triple
vector boson production. Diboson plus two jets production via VBF can also be run in a
spin-2 model and in a model with two Higgs resonances.

Arbitrary cuts can be specified as well as various scale choices. Any currently available
parton distribution function (PDF) set can be used through the LHAPDF library. In
addition, CTEQ6L1 for LO and CT10 for NLO calculations, as well as MRST2004qed and
MSTW2008, are hard-wired into the code. For most processes implemented at leading
order the program is capable of generating event files in the Les Houches Accord (LHA)
and the HepMC format. When working in the MSSM, the SUSY parameters can be input
via a standard SLHA file.

This manual supersedes the previous versions |1H3| released with VBFNLO VERSION 2.0,
VERSION 2.5.0 and VERSION 2.6.0.

The new release, VBFNLO 2.7.0, extends the following parts of VBFNLO VERSION 2.6.3:

e The list of new processes includes the following EW processes: W~j7 in VBF, HHjj
in VBF, W, W4, WH and W Hj production

e The following QCD-induced processes have been included: W 27355, W~jj, WEW*jj
and W7 production



e The VBF processes with two massive gauge bosons can now be calculated in a model
with two CP-even Higgs resonances with arbitrary couplings to the gauge bosons.

e The production of a spin-2 resonance in VBF processes is now available not only
in the diphoton channel, but also for WW — 2[2v, ZZ — 4l and ZZ — 2[12v
production.

e For several processes semileptonic decays of the vector bosons have been implemented.
This means that one vector boson decays hadronically, while the other(s) decay
leptonically. The complete list of processes which is available is WTW~= / W*Z /
Z 7 production, WTW = /W*W=/W=*Z/ZZ production + two jets in vector boson
fusion, Higgs boson production + two jets in VBF with decays into W*W ™~ or ZZ
and all triple vector boson production processes with zero or one final state photon.

e Anomalous triple and quartic gauge boson couplings are now included for all V'V jj
production processes via VBF.

e Anomalous triple and quartic gauge boson couplings are now included for ZZZ
production and all triple vector boson production processes containing a final state
photon.

e The set of operators leading to anomalous triple gauge boson couplings has been
extended for the processes WW Z, ZZW and WWW production.

e VBFNLO can now output results not only for a specific choice of final state leptons, but
also results summed over all possible combinations of two or three lepton generations.

e Higgs plus two jets production via gluon fusion, with the Higgs boson decaying into
WW or ZZ, can now be run with anomalous HV'V couplings in the decay as well
as for a mixed CP-even — CP-odd Higgs being produced.

e [t is now possible to specify a desired number of unweighted events for event output.
In case it is not possible to achieve the desired number of unweighted events due to
single events with very large weights one can opt for “partially unweighted events”,
where most of the weights will have weight 1, while a few will have larger weights.

Several bugfixes and smaller improvements have also been included. The complete list can
be found in the NEWS file included in the tarball.

The VBFNLO webpage — http://www.itp.kit.edu/vbfnlo/ — contains, in addition
to the latest version of the code, extra information such as the explicit implementation of
the electroweak parameters and couplings, as well as optimised grid files for all processes
for a set of standard cuts. To enable a simple installation test VBFNLO is shipped with a
complete set of example results, together with input files, in the regress directory. On the
webpage, users can subscribe to a low-traffic mailing list, where new versions of VBFNLO
are announced.


http://www.itp.kit.edu/vbfnlo/

2 INSTALLING VBFNLO

The source code of the current version of VBFNLO can be downloaded from the VBFNLO
webpage

http://www.itp.kit.edu/vbfnlo/

and includes a GNU conforming build system for portability and an easy build and
installation procedure.

2.1 Prerequisites

The basic installation requires GNU make, a FORTRAN 95 E] and a C++ compiler. VBFNLO
offers the possibility of using the LHAPDH [4] library (versions 5 and 6) for parton
distribution functions. In order to include the electroweak corrections to VBF Higgs
production, the program LOOPTOOLﬂ [5,16] is required. Additionally, FEYNHIGGf]
[7510] can be linked to the code in order to calculate the Higgs boson sector of the MSSM,
although a SLHA file can be used as an alternative. If the simulation of Kaluza-Klein
resonances is enabled, an installation of the GNU Scientific Library (GSL)P]is required.
VBFNLO can also be linked to ROOTﬁ and HEPM(ﬂ to produce histograms and event files
in those formats.

2.2 Compilation and installation

After unpacking the source archive and entering the source directory, the configure
script can be invoked with several options, a complete list of which are available via
./configure --help. Among these, the most important ones are:

e --prefix=[path]
Install VBFNLO in the location given by [path]. If not specified, VBFNLO is installed
in the root directory.

e --enable-processes=[1list]
By default, the code for all available processes except those involving hexagon
contributions (i.e. triboson plus jet and QCD-induced Vjj/VVjj processes) is
compiledﬁ. Optionally, [1ist] gives a comma-separated list of selected process
classes to be compiled. Possible choices are:

lgfortran and ifort have been tested. Pure FORTRANT77 compilers like g77 are no longer supported.
2http://lhapdf .hepforge.org/

3http://www.feynarts.de/looptools/

“http://www.feynhiggs.de/

Shttp://www.gnu.org/software/gsl/

Shttp://root.cern.ch/

"http://lcgapp.cern.ch/project/simu/HepMC/

8This is simply due to the relatively long time required to compile the hexagon routines.


http://www.itp.kit.edu/vbfnlo/
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http://www.feynarts.de/looptools/
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vbf Vector boson fusion processes

qcdvj QCD-induced vector boson plus two jet production

qcdvvijj QCD-induced vector boson pair plus two jet production

diboson Double gauge boson production, including W and W H
production

triboson Triple gauge boson production

dibosonjet Double gauge boson production with a hadronic jet, includ-
ing W7 and W Hj production

tribosonjet Triboson production in association with a hadronic jet

hjjj Higgs boson plus three jet production via vector boson
fusion

ggf Higgs boson plus two jet production via gluon fusion

all_except_hexagons All the above processes except those with hexagon contri-
butions (default)
all All the above processes

e FC=/path/to/fortran/compiler
With the FC option a specific FORTRAN 95 compiler can be requested. Otherwise a
default compiler will be used, which will be most probably gfortran.

e —-disable-NLO
Disable the next-to-leading order QCD corrections.

e --enable-kk
Enable simulation of Kaluza-Klein resonances. Disabled by default, the Kaluza-Klein
option requires the installation of the GNU Scientific Library, which can be specified
via --with-gsl.

e --enable-spin2
Enable simulation of spin-2 models. Disabled by default.

e --enable-quad
Enable quadruple precision for difficult phase space points. Enabled by default, if
QCD-induced vector boson (pair) plus two jet processes are requested, otherwise

disabled by default.

e --with-gsl=[path]
Enable the use of the GNU Scientific Library. [path] specifies the location of the
GSL installation. If the GSL is available directly from the system libraries this flag
can be omitted.

e --with-LHAPDF=[path]
Enable the use of LHAPDF in addition to the built-in PDF sets. Disabled by default.
[path] specifies the location of the LHAPDF installation.

e --with-LOOPTOOLS=[path]
Enable the use of LOOPTOOLS in order to calculate the electroweak corrections. If
this option is not specified, the electroweak corrections cannot be included. Disabled
by default. [path] specifies the location of the LOOPTOOLS installation.



e --with-FEYNHIGGS=[path]
Enable the use of FEYNHIGGY to calculate the MSSM Higgs sector parameters.
Disabled by default. [path] specifies the location of the FEYNHIGGS installation.

e —-with-root=[path]
Enable the use of ROOT for histograms. [path] specifies the location of the RooT
installation.

e --with-hepmc=[path]
Enable the production of HEPMC format event files. [path] specifies the location
of the HEPMC installation.

Note that, by default, both LooPT0OLS and FEYNHIGGS are installed as static libraries.
If this is the case, configure must be run with the option --enable-shared=no. Also note
that, in order to link to an external program such as LHAPDF, the external program needs
to have been compiled using the same compiler (e.g. gfortran) as VBFNLO. If no path
is specified, VBFNLO will attempt to find the desired program in the system directories.
Once configure has finished successfully, the make and make install commands will
compile and install VBFNLO, respectively.

If at any point include files, with a file name suffix .inc, are changed, the command
make clean must be run so that the changes are picked up correctly. For normal program
usage, this will not be necessary, but two cases where options can be altered in the
file global.inc will be mentioned later. When changing only Fortran source code files,
running make clean first is not mandatory. In both cases, make all install must be
run afterwards in the main directory to recompile and reinstall the altered code.

2.3 Source and installation directory layout

The VBFNLO source tree contains the following subdirectories:
e amplitudes/: Routines to calculate matrix elements for the processes provided.
e doc/: The source of this manual.
e helas/: HELAS [11] subroutines used to calculate helicity amplitudes.
e loops/: One-loop tensor integrals up to six-point functions [12].

e PDFsets/: Built-in parton distributions (CTEQ6L1 [13]| for LO and CT10 |14] for
NLO calculations, as well as MRST2004qed [15] and MSTW2008 [16]).

e phasespace/: Specialized phase-space generators for the processes provided.

e regress/: Folder containing example results, together with input files, for all
processes.

e src/ and lib/: Source code of the main programs and input files.

e utilities/: Routines for administrative tasks, cuts, scale choices and interfaces.

9Note that different versions of FEYNHIGGS give slightly different results as more corrections are added
to the calculations. VBFNLO has been tested with FEYNHIGGS versions 2.6.x, 2.7.x, 2.8.0 and 2.8.3.



The source does not need to be modified to change the simulation parameters. VBFNLO
offers several kinematic cuts and scale choices. This is illustrated in Sec. 4l In ad-
dition, it provides a few basic histograms. Cuts, histograms and scale choices not al-
ready provided may be added in the utilities/cuts.F, utilities/histograms.F and
utilities/scales.F files.

The installation is performed in a standard UNix-layout, i.e. the directory specified
with the --prefix option of the configure script contains the following directories:

e bin/: vbfnlo and ggflo executables.
e include/VBFNLO/: VBFNLO header files.

e 1ib/VBFNLO/: VBFNLO modules as dynamically loadable libraries. These can also
be used independently from one of the main programs.

e share/VBFNLO/: Input files and internal PDF tables.

2.4 Running the program

Both the vbfnlo and ggflo executables contained in the bin directory of the installation
path look for input files in the current working directory. An alternative path to input files
may be specified explicitly by passing the --input=[path] argument to the programs,
with path denoting the full path where input files are located. I.e. in order to run VBFNLO
from the installation (prefix) directory, the command is

./bin/vbfnlo --input=[path]

The input files contained in the share/VBFNLO directory are meant to represent default
settings and should not be changed. We therefore recommend that the user copies the
input files to a separate directory. Here, special settings may be chosen in the input files
and the program can be run from that directory without specifying further options.
VBFNLO outputs a running ‘log’ to the terminal, containing information about the
settings used. In addition, a file (named, by default, xsection.out) is produced, which
contains only the LO and NLO cross sections, with the associated statistical errors.
Histograms and event files, in various forms, can be output as described later.
The version number of VBFNLO can be obtained by appending the argument --version.
This will print out the string VBFNLO followed by the release number and then exit the
program.

2.4.1 Parallel jobs and optimised grids

Owing to the complexity of the calculations involved, some of the processes implemented
in VBFNLO (in particular the spin-2 processes and triboson plus jet processes) require
a significant amount of time in order to obtain reasonable results. There are, however,
methods which can be used in order to reduce the necessary run time.

By using an optimised grid, the number of iterations needed in order to improve
the efficiency of the MC integration can be reduced. Optimised grids are provided on
the VBFNLO webpage for all processes using standard cuts and parameter settings. The
variables used to set the input grid files and number of iterations are described in Sec. [4.1.1]

Another method of improving the run time is to run several jobs in parallel and
then combine the results. In order to do this several input directories need to be set



up containing all the necessary .dat input files for the process. The variable SEED in
random.dat (Sec. needs to be set to a different integer value in each directory. A
short example of the results of a parallel run, together with their combination, is provided
in the regress directory regress/100_Hjj_parallel. On the VBFNLO website there is a
shell script which can be used to combine the cross sections and histograms from parallel
runs.

2.5 MacOSX

The current version of VBFNLO has been compiled successfully on the current MacOSX
version (10.9.2) as well as on an older one (10.6.8), if only static libraries are used. This can
be requested with the configure-option --enable-shared=no . However, linking with the
library LOOPTOOLS, which is only needed for the calculation of the electroweak corrections
in the Hjj process, was not successful.

2.6 Bug reports

Please report any problems to
vbfnlo@itp.kit.edu

with a short report including the configure options used to build VBFNLO, as well as the
versions of compilers and external libraries used.

2.7 License

VBFNLO is distributed under the GNU General Public License (GPL) version 2. This
ensures that the source code will be available to users, grants them the freedom to use
and modify the program and sets out the conditions under which it can be redistributed.
However, it was developed as part of an academic research project and is the result of
many years of work by the authors, which raises various issues that are not covered by the
legal framework of the GPL. It is therefore distributed together with a set of guidelineq'}
which were originally formulated and agreed on by the MCnet collaboration for event
generator software. In particular, the original literature on which the program is based
should be cited along with the reference to VBFNLO.

Some parts of the VBFNLO matrix elements are based on automatically generated code
from MADGRAPH [17,/18] and FEYNARTS/FORMCALC [5,6,{19-24]. The routine which
reads in SLHA [25] files is largely based on SLHALIB-2.2 [26]. VBFNLO ships with a copy
of FF 2.0 |27| for the evaluation of one-loop integrals.

10These guidelines are contained in the GUIDELINES file distributed with the release.
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3 PROCESSES

In the following sections, we describe all production processes and decay modes implemented
in VBFNLO, together with references to more detailed discussions of the underlying
calculations.

In the phase-space regions that are accessible at hadron colliders, VBF reactions are
dominated by t-channel electroweak gauge boson exchange. In this class of processes in
VBFNLO s-channel exchange contributions and kinematically suppressed fermion inter-
ference contributions [28-30] are therefore disregarded. “Final state” weak bosons decay
into massless leptons or quarks, depending on the process ID set. Numerically small
contributions from Pauli-interference effects for identical charged fermions in the final
state are neglected. For final-state identified photons we employ the isolation criterion
of Ref. [31]. This ensures that divergences from collinear emission of a photon from a
final-state massless quark or anti-quark are avoided, while the cancellation of the infrared
divergences between the virtual and the real part is kept intact. With the inclusion of
semileptonic diboson and triboson production processes the missing s-channel gauge boson
exchange contributions of several VBF processes can be calculated within VBFNLO as well.
This topic is described briefly in Section

Higgs contributions (and interference effects) are included in all appropriate processes,
using a fixed Higgs width. The Higgs propagator is given by

1
. 1

In VBFNLO external quarks are treated as massless. By default, external bottom quarks
are excluded in those processes where their inclusion could lead to the presence of a top
quark. L.e. in charged current processes such as WW diboson production, external bottom
quarks are not allowed, as this would lead to a (massless) ¢-channel top quark, but in ZZ
diboson production external bottom quarks are included. In the VBF processes such as
pp — Hjj there are both neutral and charged current components (when the external
quark lines emit Z and W bosons respectively) — by default, external bottom quarks are
excluded from this class of processes. A message is printed in the log file stating whether
external bottom quarks are included or excluded. In neutral current processes, bottom
quarks in the final state are at present treated no differently from other final state quarks.
The number of external quark flavours considered is set in the file utilities/global. inc.
By changing the parameter nfl from 5 to 4, bottom quarks will not be included in any
processes. By changing the parameter vbfNFLb from false to true, external bottom
quarks will be included in the neutral current diagrams in VBF processes if nfl is set to

Ll

3.1 VBF Higgs boson production in association with two jets

H j7 production via VBF mainly proceeds via electroweak quark-quark scattering processes
such as q¢' — ¢q¢'H and crossing-related reactions. In VBFNLO, tree level cross sections,
NLO QCD corrections and one-loop electroweak corrections (in the Standard Model and
the MSSM) to the ¢-channel production process are provided. The subsequent decay
of the Higgs boson is simulated in the narrow width approximation (NWA). For the

HNote that, if these parameters are changed, make clean must be run in the folders utilities and
amplitudes, and then make all install must be run for the VBFNLO code.
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H — W*W~ and the H — ZZ modes, full off-shell effects and spin correlations of the
decay leptons are included. The available production process and decay modes are listed
with the corresponding process IDs in Table [I] Anomalous couplings between a Higgs
boson and a pair of vector bosons are implemented in the code and can be input via the
file anom_HVV.dat. Details of the calculations can be found in Refs. [32-34].

Furthermore, semileptonic decay modes of the vector bosons are implemented for the
WW and ZZ decay modes [35].

ProcIbp | PROCESS BsMm

100 | pp — Hjj \
101 | pp — Hjj —77jj
102 | pp — Hijj — ptp jj
103 | pp — Hijj— vt jj
104 p(ﬁ) s H jj— bbjj anomalous HVV couplings, MSSM
105 | pp — Hjj— WIW™jj = (Fvg, by, jj
106 | pp — Hjj— ZZjj — (F07050; jj

107 | pp = Hjj— ZZjj — (7 v, jj

108 | plp — Hjj = WHW= jj = qql 7]
() .. .. _ ..

109 pp = Hjj = WTW™jj = (Tvpqqjj anomalous HVV couplings, MSSM

1010 | pp — Hjj — ZZjj — qql+0 jj

Table 1: Process IDs for p([?) — Hjj production via vector boson fusion at NLO (QCD
and electroweak) accuracy in the SM and MSSM. Anomalous couplings between the Higgs
boson and vector bosons are implemented for all decay modes.

3.2 VBF Higgs boson production in association with three jets

Adding an extra parton to the Higgs production processes of Sec. gives rise to Hjjj
final states. The corresponding cross sections are implemented at NLO QCD accuracy
(with certain approximations) in VBFNLO. A list of all available modes and corresponding
process IDs is given in Table [2] Details of the calculation can be found in Ref. [36].

3.3 VBF Higgs boson production with a photon and two jets

The emission of an additional photon in VBF Higgs boson production (Sec. results
in H~jj final states. These are implemented at NLO QCD accuracy in VBFNLO, with
process IDs as given in Table |3| Details of the calculation can be found in Ref. [37].
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ProcIp | PROCESS

110 | pp — H jjj

111 | pp = H jjj = vviji

112 | pp = Hjjj = ptp jjj

113 | pp = Hjjj — vt jjj

114 | pp — Hjjj — bbjjj

115 | pp = Hjjj — WHW= jjj — 6 ve, 5 v, jj7
116 | pp — Hjjj = 22 jjj — (06505 jjj

117 | pp = Hjjj = ZZjjj — 06 ve,ip, i)

Table 2: Process IDs for p(ﬁ) — Hjjj production via VBF at NLO QCD accuracy.

ProcIp | PROCESS

2100 | pp — H~jj

2101 | pp — Hyjj — vyvij

2102 | pp — Hyjj — whp )

2103 | pp — Hyjj — mHr v jj

2104 | p'P — Hryjj — bbyjj

2105 | pp — Hyjj — WEW =y jj — € v, by 00,y i
2106 | pp — Hyjj — ZZvjj — L0650y ]
2107 | pp — Hyjj = Z2yjj — 0 6 viybe,y

Table 3: Process IDs for p(j)) — H~jj production via VBF at NLO QCD accuracy.

3.4 VBF production of a single vector boson and two jets

Vector boson fusion processes can also produce final states with two leptons plus two jets,
which are generically referred to as “VBF Zjj and W¥jj production”. These reactions
and the one with a photon plus two jets in the final state are implemented to NLO QCD
accuracy in VBFNLO, with the process IDs given in Table dl Anomalous triboson couplings
are input via anomV.dat and can be included in all processes in this class. Details of the
calculations can be found in Refs. [38,39].
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ProcIp | PROCESS Bswm

120 | plp = Zjj — 6 jj
121 | pp = Zjj — v jj
130 p(p ) W ij = i anomalous couplings
140 | pp = W jj — -5 jj

(=) .
150 pp — V73]

Table 4: Process IDs for vector boson + 2 jet production via vector boson fusion at NLO
QCD accuracy.

ProcIp | PROCESS Bsm

191 | pp = Sojj — 773

195 | pp = Sojij — WHIW ™ jj — £ ve, by g, jj
196 p(B Sy — 274 — fffff;f; ij spin-2 resonant production
197 | pp = Sojj — ZZ jj — U vy, G

Table 5: Process IDs for a spin-2 particle So+2 jet production via vector boson fusion at
NLO QCD accuracy.

3.5 VBF production of a spin-2 particle

VBFNLO can simulate the production of a spin-2 particle via VBF, which then decays
into two photons, with the process ID 191 (see Table . This process is only available
if it has been enabled at compilation (using the configure flag --enable-spin2), and
will only run if the switch SPIN2 in vbfnlo.dat is set to true. Furthermore, spin-2
production is also available in the WW and ZZ modes given in Table [3 if the switch
SPIN2 in vbfnlo.dat is set to true. If SPIN2 is set to false, VBF Higgs production is
simulated instead, similarly to the processes 105, 106 or 107 of Table[I|for a SM Higgs. The
parameters of the spin-2 model are input via spin2coupl.dat. Details of the calculations
can be found in Refs. [40-42].

3.6 VBF production of two vector bosons and two jets

The production of four leptons plus two jets in the final state at order O(a®) is dominated
by VBF contributions. In VBFNLO, all resonant and non-resonant ¢-channel exchange
contributions (including contributions from Higgs bosons) giving rise to a specific leptonic
final state are considered. For simplicity, we refer to these reactions as “VBF diboson
production”. Finite width effects of the weak bosons and spin correlations of the decay
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leptons are fully retained.

The available processes and corresponding process IDs are listed in Table[6] Anomalous
gauge boson couplings, input via anomV.dat, are implemented for all processes in this class,
as well as a simplified model with two Higgs resonances. This process class can also be run
in the Higgsless and spin-2 models implemented in VBFNLO, with the exception of W~ and
same-sign WW production. Details of the calculations can be found in Refs. [40,43-48|.

Furthermore, semileptonic decay modes of the vector bosons are implemented for the
opposite-sign WW, same-sign WW, WZ and ZZ production processes in VBF [35]. In
this case only anomalous couplings are available as BSM options.

ProcIp | PROCESS BSM

200 | pp — WHW= jj = £ ve 05 7,
210 p(l? 272 5j — (5070505 G anomalous couplings,
two-Higgs model,

O 3 Lol Kaluza-Klein models,
220 pp = WHZjj— {vely by jj spin-2 models

230 | pp = W Zjj — b0, 0505
250 | pp — WHW™jj — Fvg, v, jj
260 | pp — W W= jj — 07,0y g, }
270 | plp = Whyjj = (Tueyj
280 | pp — W jj — Ty ji }

211 | pp = ZZjj — 0H 7 v,

anomalous couplings, two-Higgs model

anomalous couplings

201 | pp = WHW=jj — qGl 7 jj
202 | pp = WHW—jj — ttuqdij
212 | pp = ZZjj — qqbte jj
221 | pp = WHZjj — qzbtejj

- 1 I
299 p(p) SW*Zij = truqdji anomalous couplings,

) . T two-Higgs model
231 | pp =W~ Zjj—qqlte jj
232 | pp = W~ Zjj - € 7qqjj
251 | pp = WHW jj = qglhujj
261 | plp > W W~ jj — qql i jj

Table 6: Process IDs for diboson + 2 jet production via vector boson fusion at NLO QCD
accuracy.

3.7 VBF production of two Higgs bosons and two jets

Higgs pair production plus two jets via VBF mainly proceeds via electroweak quark-quark
scattering processes such as q¢’ — q¢'H H and crossing-related reactions. In VBFNLO, tree
level cross sections and NLO QCD corrections to the ¢t-channel production process are
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provided. The subsequent decays of the Higgs bosons are not implemented so far. The
process and corresponding process ID is listed in Table [7] Details of the calculations can
be found in Refs. [49,50].

ProcIp | PROCESS

160 | p'p — HHjj

Table 7: Process ID for Higgs pair + 2 jet production via vector boson fusion at NLO
QCD accuracy.

3.8 W production with up to one jet

The production of a W boson with up to one jet is implemented in VBFNLO at NLO QCD.
The W boson decays leptonically and full off-shell effects and spin correlations of the final
state leptons are included. The processes are listed in Table [§] Details of the calculation
can be found in Ref. [51].

3.9 Double vector boson production

The production of four-lepton final states mainly proceeds via double vector boson produc-
tion with subsequent decays. Additionally, there are processes where one or more decaying
boson is replaced by an on-shell photon, giving rise to lepton production in association with
a photon and double photon production. In VBFNLO, the processes listed in Table [9] are
implemented to NLO QCD accuracy, including full off-shell effects and spin correlations
of the final state leptons and photons. Anomalous vector boson couplings, input via
anomV.dat, are implemented for WW, W*Z and W=~ production. The processes with
a neutral final state (WW, ZZ, Z~ and 77y) also include the gluon-induced fermionic
loop diagrams by default at NLO — both continuum production via box diagrams and the
s-channel Higgs boson contributions are included, and anomalous HV'V couplings (input
via anom_HVV.dat) can be used. Details of the calculations can be found in Ref. [52].

Furthermore, semileptonic decay modes of the vector bosons are implemented for the
WW, ZZ and W Z production processes |35|. Both anomalous VV'V and HVV couplings
are available as BSM options.

3.10 Triple vector boson production

The production of six-lepton final states mainly proceeds via triple vector boson production
with subsequent decays. Additionally, there are processes where one or more decaying
boson is replaced by an on-shell photon, giving rise to lepton production in association
with photon(s) and triple photon production. In VBFNLO, the processes listed in Tables
and [11] are implemented to NLO QCD accuracy, including full off-shell effects and spin
correlations of the final state leptons and photons. For processes with three massive
gauge bosons the Higgs boson contributions are included. Anomalous vector boson
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ProcIp | PROCESS

1330 | plp — W+ = ity
1340 | pp W =iy
1630 | p'p = WHj = 6Ty,
1640 | p'p = W—j = -5

Table 8: Process IDs for the W production processes with up to one jet at NLO QCD
accuracy.

ProcIp | PROCESS BSM

300 p([)) — WHTW= — ¢fv, 651, | anomalous HVV and VV'V couplings
310 | pp o> W+Z = vy 5t
320 | pp > W2 = (1 5t
330 p(i)) — 27 — (0050 anomalous HV'V couplings

340 p(f)) — Wty = vy

} anomalous VVV couplings

) } anomalous VV'V couplings
350 pp — W™y = L] vpy

) r
360 pf ) = oy = b4 } anomalous HV'V couplings
370 | pp =y

301 | pp = WHW— = qql
302 | pp = WHW— = (tuqq
312 | pp = WHZ = qgeti
313 p<]3) —WTZ =1 vqq
322 | pp = W2 = qgbti
323 | pp = W~Z = (~q]
331 | pp — ZZ — qgl—t* anomalous HV'V couplings

} anomalous VVV and HV'V couplings

anomalous VVV couplings

Table 9: Process IDs for the diboson production processes at NLO QCD accuracy.

couplingsEZ] are implemented for all triboson processes, with the anomalous parameters
input via anomV.dat. The processes WW Z, ZZW* and W*W W~ can also be run in
the implemented higgsless Kaluza-Klein models. Details of the calculations can be found

12Some anomalous VVV (fw and fp or, equivalently, Ak, and Ag{) couplings also imply anomalous
HVV couplings — these are automatically taken into account.
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ProcIp | PROCESS BSM

400 | p'p = WHW=Z = (v, 0y g, 05 05
o pipj o AEWT S T G G anomalous couplings
420 pp = 2ZW7 = GGG b7 Kalnza-Klein models
430 | pp = WIW W — (v b5 v, 05 ve,

440 | pp = W WHW™ = 67 54,5 vy 5 7y,
450 | pp — ZZ27 — (6500505 0F

460 | pp = W Wty — 01 Up 03 vy

470 | pp = 22y = 070t 0y

480 pipj — WHZy — v, 0505~

490 pf) - Wy = 51_54162_63‘7 anomalous couplings
500 | pp — Whyy = £Typyy
510 p(f)> = W=yy — 0 Dpyy
520 | pp — Zyy — 0T yy
521 p(ﬁ) — Zyy — vepyy
530 | pp =7y

Table 10: Process IDs for the triboson production processes at NLO QCD accuracy with
fully leptonic decays.

in Refs. [53-58].

Furthermore, semileptonic decay modes of the vector bosons are implemented for all
triple vector boson production processes with zero or one final state photon [35]. In this
case only anomalous couplings are available as BSM options.

3.11 Double vector boson production in association with a hadronic
jet

W~ and W Z production in association with a hard hadronic jet are available in VBFNLO

at NLO QCD accuracy under the process IDs of Table [12] All off-shell and finite width

effects are included. The processes can be run with anomalous WW Z and W W~ couplings,
input via anomV.dat. Details can be found in Refs. [59-62].

3.12 Triple vector boson production in association with a hadronic
jet

W~ production in association with a hard hadronic jet is available in VBFNLO at NLO

QCD accuracy under the process IDs of Table [13] All off-shell and finite width effects

are included. Anomalous vector boson couplings are implemented, with the anomalous
parameters input via anomV.dat. Details can be found in Ref. [63]. Note that this class
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ProcIbp

PROCESS

BSM

401
402
403
411
412
421
422
431
432
441
442
451
461
462
471
481
482
491
492

PP = WHW=Z — qqly v, (50
PP = WHW—Z — Cive, qq sty
pp = WHW—Z — O ve by vy q@
PP = ZZW* = 0705t qq

PP = ZZWH - qq by 0 v,

PP = ZZW™ = (70505 qq

PP = ZZW™ = qG b by 0y 1,

PP = WIW-W+ = qq ty ve, 5 vy,
PP = WIW-W+ = Cve, qq v,
PP = W WHW— = 07 g, q7 05 g,
PP = W WHW™ = qqtfve, 5 s,
PP = ZZ7 = qql 0 05

PP — WHW =y = qq £ iy

PP — WHW =y = (Tugqqy

PP — ZZy = Y gy

PP — WHZy — qql

PP — W2y — Ty qqy

PP — W2y — qql

PP — W2y — "7 qqy

anomalous couplings

Table 11: Process IDs for the triboson production processes at NLO QCD accuracy with
semileptonic decays.

ProcIb | PROCESS BsMm
610 | p'p = Wrj — - 7pvyj
620 | pp — WHyj — (Fupyj | y
630 p(]a) — W_ Zj N Efljél g;f;] anomalous Coup lngs
640 | pp — WHZj > tfv, 6505 j

Table 12:  Process IDs for W~j and W Zj production at NLO QCD.

of processes is not enabled by default and so, in order to run these processes, they must
be enabled at compilation, using the configure option --enable-processes=all or
--enable-processes=tribosonjet.
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ProcIp | PROCESS Bsm

©) oy :
800 p (p ) - W_,WJ_ - 6_ ﬁﬂw' } anomalous couplings
810 | pp = W™yyj = L vyyj

Table 13:  Process IDs for triboson production in association with a hadronic jet at NLO

QCD.

3.13 Higgs production in association with a W

The production of a Higgs boson in association with a W boson proceeds via the production
of a single off-shell W boson which radiates the Higgs boson. The W boson decays
leptonically, while the Higgs boson can decay in several channels.

In VBFNLO, the processes listed in Table [14] are implemented to NLO QCD accuracy,
including full off-shell effects and spin correlations of the final state leptons. Anomalous
couplings can be input via anomV.dat and are used both in the production process as well
as the decay of the Higgs boson. Details of the calculation can be found in Ref. [51].

3.14 Higgs production in association with a W and a hadronic
jet

W H production in association with a hadronic jet is available at NLO QCD accuracy in
VBFNLO under the process IDs of Table [15]

Full off-shell effects and spin correlations of the final state leptons are included. Anoma-
lous couplings can be input via anomV.dat and are used both in the production process as
well as the decay of the Higgs boson.

The virtual contributions of the NLO calculation include diagrams where the Higgs is
radiated off a top quark loop attached to a gluon. They are calculated including the full
top mass dependence. These contributions can be disabled using the flag dotoploops in
utilities/global.ind™} Details of the calculation can be found in Ref. [51].

3.15 QCD induced production of a vector boson in association
with two jets

A vector boson in association with two jets can be produced at order O(a?a?). This QCD
induced process is available in VBFNLO for the production of a W boson in association
with two jets at NLO QCD accuracy, including leptonic decays of the vector boson. The
process IDs can be found in Table[I6] These processes are not included by default and they
have to be enabled at compilation, using the configure option --enable-processes=X
where X is one of gcdvjj,qcdvvjj,all. These processes use quadruple precision to handle
instabilities in the virtual amplitudes. If quadruple precision is not supported by the

13Note that, if this parameter is changed, make clean must be run in the folder utilities, and then
make all install must be run for the VBFNLO code.
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ProcIDp | PROCESS BSM

1300 | pp — WHH — (ty,H

1301 p<p) — WHH — (Tvpyy

1302 p<p) —WYH — (Tvpptu~

1303 | pp — WHH — (tyrtr

1304 | pp — WHH — £+u,bb

1305 | pp — WHH — WWHW— — 0 v, (5 vi, 05 7,
1306 | pp — WHH = WHZZ — 0ivy, (5050505
1307 | pp = WHH = WHZZ = 0 vy, 0305 vy, 0,

anomalous gauge couplings

1310 | pp — W—H — (~iyH ~
1311 | pp = W—H — (- 0y

1312 | pp = W H = ¢ ot~

1313 | pp = W—H = -prtr

1314 | p'p = W—H — ¢~ b

1315 | pp = W—H = W-WW~ = 05 75, (3 v, (5 7y,
1316 | pp = W—H = W—ZZ — (705, (3050505
1317 | pp = W—H = W—ZZ — 0] 05, (305 vy, 70,

anomalous gauge couplings

Table 14: Process IDs for the W H production processes at NLO QCD accuracy.

compiler it can be disabled by adding the configure option --disable-quad. An estimate
of the error due to unstable points is printed out at the end of program execution.

3.16 QCD induced diboson production in association with two
jets

The QCD induced production of two vector bosons in association with two jets is avail-
able in VBFNLO at NLO QCD accuracy for the processes listed in Table [I7] All spin
correlations and finite width effects are included. These processes are not included
by default and they have to be enabled at compilation, using the configure option
--enable-processes=qcdvvjj or --enable-processes=all. These processes use quadru-
ple precision to handle instabilities in the virtual amplitudes. If quadruple precision
is not supported by the compiler it can be disabled by adding the configure option
--disable-quad. An estimate of the error due to unstable points is printed at the end of
program execution. Details of the calculation can be found in Refs. [64-66].
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ProcIbp | PROCESS BSM

1600 | p'p = WHHj — (i Hj
1601 | p'p = WHHj — g
1602 p(p) —WYTHj — {TyguTp=j
1603 | p'p = WHHj = ttuprtrj

1604 | p'p — WHHj — (+ubbj

1605 | pp — WHHj — WHWHW = j = 0§ vy 0 v, 05 7, j
1606 | pp — WHHj —» WHZZj — tFu, 65,6505 j

1607 | pp — WHHj — WHZZj — tFug 656y ve, v, j

anomalous couplings

1610 | pp > W-Hj — (—,Hj ~
1611 | pp = W-Hj — -0y j

1612 | pp = W Hj — - outp j

1613 | pp = W Hj — (~mprtrj

1614 | pp = W—Hj — (~gbbj

1615 | pp = W Hj = W-WW~= j = ({0l vi,l5 70, j
1616 | pp = W Hj = W=ZZj — (70,05 l; (305
1617 p({o) W Hj—W=ZZj — ] U 03 b5 v, 04, 7

anomalous couplings

Table 15: Process IDs for the WH plus jet production processes at NLO QCD accuracy.

ProcIp | PROCESS

3130 | pp — Wt jj = (i jj
3140 | p% — W~ jj = - 5,5j

Table 16: Process IDs for QCD induced vector boson + 2 jet production at NLO QCD
accuracy.

3.17 Higgs boson production in gluon fusion with two jets

CP-even and CP-odd Higgs boson production in gluon fusion, associated with two ad-
ditional jets, are processes that first appear at the one-loop level which, therefore, are
counted as leading order in the strong coupling constant. These processes are simulated
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ProcID | PROCESS

3220 | pp — WHZjj — (v t505 ji
3230 | pp — W—Zjj — & 0g, 305 jj
3250 | pp — WHWT jj — tivp v, jj
3260 | pp — W W= jj — (50,05 D, jj
3270 | pp — Whyjj = £y jj

3280 | pp — W ryjj = £ 7y

Table 17: Process IDs for QCD induced diboson + 2 jet production at NLO QCD accuracy.

ProcIp | PROCESS BsMm

4100 | p'p — Hjj MSSM, general 2HDM
=) .. ..
4101 | pp = Hjj —v7vJjJ
4102 | pp — Hjj = ptp jj
o) iy b MSSM
4103 pp - Hjj— 1777 75
4104 | pY — Hjj — bbjj
=) .. .. ..
4105 — Hijj—>WtW= 45 —= v ¢
pf) ‘7‘7 - ‘]JJF 3 1+V{1 .2'W2 I MSSM, general 2HDM,
4106 | pp — Hjj — ZZjj — 1l 505 jj anomalous HVV
4107 | P — Hjj — ZZjj — 0 v, ve,

Table 18: Process IDs for LO Higgs boson plus 2 jet production via gluon fusion. Note
that these processes are accessed via the ggflo executable.

(via the ggflo executable) with the full mass dependence of the top- and bottom—quark@
running in the loop in the Standard Model, in the (complex) MSSM and in a generic
two-Higgs-doublet model. Anomalous HV'V couplings (for decays into W or Z bosons) can
be input via anom_HVV.dat and the input file ggflo.dat can be used to define additional
settings for these processes. The relevant process IDs are given in Table [I8 Details of the
calculations can be found in Refs. [67H72].

14The value my(Mp) in the MS scheme is used for both the mass and the Yukawa coupling of the
bottom quark, while for the top quark we use its on-shell value.
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ProcIp | PROCESS BSM

4300 | p'p = WHW— = (v, oy,
(=) _ _

4330 | pp = ZZ = ({0505 anomalous HV'V couplings

4360 p(p) — Zy = Uy

4370 p(p) — vy

4301 | p'p = WHW— = qg b

) — - lous HV'V couplings
4302 | pp = WTW™ = (tyqq anoma ping
4331 | p'p — 27 — qqt— 0+

Table 19: Process IDs for the gluon-induced diboson production at LO (one-loop) QCD.
Note that these processes are accessed via the ggflo executable.

3.18 Gluon-induced diboson production

Gluon-induced diboson production can be studied separately in VBFNLO at LO with the
ggflo executable, using the process IDs in Table . Continuum production via box
diagrams as well as production via an s-channel Higgs boson resonance are included, with
interference effects fully taken into account. Anomalous HV'V couplings can be included,
using anom_HVV.dat. In the loop diagrams, first and second generation quarks are taken
to be massless and third generation quark massed'| are included.

Furthermore, semileptonic decay modes of the vector bosons are implemented for the
WW and ZZ production processes [35]. Anomalous HV'V couplings are available.

5 These are also included by default as higher order corrections to diboson production.
16 Again, my(Mp) in the MS scheme is used.
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4 INPUT FILES AND PARAMETERS

VBFNLO is steered through the following input files:

vbfnlo.dat: General parameters for a run.

cuts.dat: Values for kinematic cuts.

ggflo.dat: Additional parameters for the ggflo program.

susy.dat: Parameters describing the MSSM scenario.

anom_HVV.dat: Parameters for anomalous Higgs boson couplings.

anomV.dat: Parameters for anomalous gauge boson couplings.

kk_input.dat: Settings for the Warped Higgsless and Three-Site Higgsless Models.

kk_coupl_inp.dat: Numerical values if externally calculated Kaluza-Klein cou-
plings and masses should be used.

spin2coupl.dat: Settings for the spin-two models.
histograms.dat: Histogram options.

random.dat: Seed for the random number generator.

The following subsections give a detailed description of all available parameters.

4.1

vbfnlo.dat

vbfnlo.dat is the main input file for VBFNLO.

4.1.1

vbfnlo.dat — general parameters

PROCESS: Process ID as described in Sec. [3] Default is 100: Higgs boson production
via VBF.

LOPROCESS_PLUS_JET: If set to true, the leading order process with one additional
jet is generated, i.e. only the real radiation contribution is generated. This option is
available for all but gluon induced processes. Default is false.

LEPTONS: Choice of the final state leptons (decay products of W and Z bosons)
according to the MC particle numbering scheme [73|:

11 : e
12 : v,
13 @ u™
14 : y,
15 77
16 : v,
98 : leptons are either generation 1 or generation 2

99 : any lepton
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If the selected configuration is not available, the appropriate first-generation leptons
are used as default values. If 99(98) is set, results are output summed over all
possible lepton combinations (all possible lepton combinations of generation 1 or 2) —
for individual events (in the cuts, histograms and Les Houches event output) the
specific leptons for that particular event are generated randomly.

e DECAY_QUARKS: Choice of the final state quarks from hadronic vector boson decays
(decay products of W and Z bosons) according to the MC particle numbering
scheme |73]:

[ B U N R S
>0 w2 oo

93 : all possible combinations of u, @, d,d, s, 3, c, ¢

94 : all possible combinations of w, %, d, d, s, 3, ¢, ¢, b,b

If 93 is set, results are output summed over all possible quark / anti-quark combi-
nations of the first and second generation. For DECAY_QUARKS = 94 additionally b
and b are considered. For individual events in the Les Houches event output, the
specific quarks for that particular event are generated randomly, weighted by the
contribution of that specific quark combination. If the selected configuration is not
available, all possible combinations of first and second generation quarks are used as
default values (DECAY_QUARKS = 93).

e LO_ITERATIONS: Sets the number of iterations for the integration of LO cross sections.
Usually more than one iteration is used in order to adapt the integration grid and
thus improve the efficiency of the MC integration algorithm["| For an adapted grid
file (see LO_GRID) this parameter can be set to 1. Default is 4.

e NLO_ITERATIONS: Analogous to LO_ITERATIONS, but for the real emission part of
an NLO calculation. Since the corresponding phase-space is different from the LO
configuration, a second independent MC integration has to be performed. Default is

4.

e LO_POINTS: Determines the number of phase-space points that are generated in
each iteration. In the last iteration there are 2V points, where N = LO_POINTS. In
each previous iteration, the number of points is half the value of the following one.
Example: For 4 iterations (LO_ITERATIONS = 4) and LO_POINTS = 20, there are
217 generated points in the first, 2! in the second , 2! in the third and 22° ~ 10° in
the last iteration[] Default is N = 20.

e NLO_POINTS: Similar to LO_POINTS, but for the real emission part of an NLO
calculation. Default is 20.

"For all NLO calculations the virtual contributions are calculated using the already optimized leading
order grid.
18The virtual contributions are calculated for 2V points only.
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LO_GRID: Sets the name of the grid files that are generated at the end of each
iteration. Choosing name as the input parameter, in each iteration X a grid file
name.out.X will be produced in the working directory. If a grid file name is already
present in the input directory (specified by --input=INPUT), the program reads
in this file when executed. Note that optimised grids for all processes (using the
standard cuts given in the regress files) are provided on the VBFNLO webpage.

FLOOP_GRID: Similar to LO_GRID, but for the gluon induced fermion loop contribu-
tions (the kinematics of which can differ significantly from the LO kinematics). The
number of iterations used is given by LO_ITERATIONS and the number of points used
is LO_POINTS-8.

NLO_GRID: Similar to LO_GRID, but for the real emission part of an NLO calculation.

PHTN_GRID: Similar to NLO_GRID, but for the real photon emission part of an NLO
electroweak calculation.

NLO_SWITCH: Switch for the NLO part of a process, if available. If set to true, cross
sections and histograms are calculated to NLO QCD accuracy. Default is set to
false.

EWCOR_SWITCH: Switch for the electroweak corrections (note that this is only available
for VBF Higgs boson production). If set to true, cross sections and histograms are
calculated to NLO electroweak accuracy. This option can only be used if LOOPTOOLS
was enabled at compilation. Default is set to false.

FERMIONLOOP: Flag for the gluon-induced fermionic loop processes, such as gg —
WW (currently only available for neutral diboson processes in the ranges 300-370
and 4300-4370). The options are:

— 0 switches off these processes

— 1 includes only the box contribution

— 2 includes only diagrams via an s-channel Higgs resonance

— 3 includes both contributions including interference effects.
The default value is 3 (all contributions included).

NLO_SEMILEP_DECAY: This flag defines how the hadronic decay in processes with
semileptonic vector boson decay should be calculated:
— 0 the hadronic decay V' — ¢q is calculated at leading order QCD

— 1 the hadronic decay V' — qgq is calculated including approximate next-to
leading order QCD effects: A factor of [74]

14 O‘S(Q2>
s

is applied onto the full matrix element (includes off-shell and singly / non-
resonant contributions), which resembles the NLO corrections for the on-shell
V' — qq decay. The real emission of a gluon is not resolved.

The default value is 0 (leading order calculation for the decay).

27



ECM: The center-of-mass energy, /s, of the collider, measured in GeV. Default is
8000 GeV.

BEAM1, BEAM2: Define the type of particle of each beam. Possible options are +1
for proton beams and —1 for anti-proton beams. Default is proton-proton collisions,
(+1, +1).

ID_MUF: Choice of the factorization scale. See Table [20|for a list of available options.
Default is 0.
For the QCD induced processes, the following definitions are used:

Hr= Y pri+ BEr(Vi)+ Er(Va) 2)
i€partons
HY = Z pT,ie|yi*y12‘ + Er(Vi) 4+ Er(Va) (3)
i€jets

with .
Er =1\/pp+m?, and y;p = 5(?/1 + ).

ID_MUR: Choice of the renormalization scale. See Table for a list of available
options. Default is 0.
For the QCD induced processes the definitions of Eqs. and (3)) are used.

MUF_USER: If ID_MUF is set to 0, this parameter sets the user defined constant
factorization scale measured in GeV. Default is 100 GeV.

MUR_USER: If ID_MUR is set to 0, this parameter sets the user defined constant
renormalization scale measured in GeV. Default is 100 GeV.

XIF: Factor by which the factorization scale is multiplied. May be used to analyze
the scale dependence of differential cross sections. Default is 1.

XIR: Factor by which the renormalization scale is multiplied. May be used to analyze
the scale dependence of differential cross sections. Default is 1.

Note that alternative scale choices can be implemented in the file utilities/scales.F.

4.1.2

vbfnlo.dat — physics parameters

HMASS: Standard Model Higgs boson mass in GeV. Default value is 126 GeV.
HTYPE: Type of Higgs boson produced:

— HTYPE = 0 : SM Higgs boson, with mass HMASS

— HTYPE = 1 : Light CP-even MSSM Higgs boson

— HTYPE = 2 : Heavy CP-even MSSM Higgs boson
3:

— HTYPE = CP-odd MSSM Higgs boson (Note: this is not produced at LO
unless we are working in the MSSM with complex parameters and include
Higgs-propagator effects at LO.)
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ID_MUF | FACTORIZATION SCALE PROCESS CLASS
0 user defined constant scale set a1l
by MUF_USER
momentum transfer of exchanged .
1 gange boson vbf (except Hjjj)
2 min(pr(J;)) vbf, tribosonjet
3 or 4 invariant mass of the electroweak system | diboson, dibosonjet,
(V/VVv /VH | VVV) triboson, tribosonjet
5 \/pT(jl) X pT(j2) get
6 constant scale = Higgs boson mass all
Minimum transverse energy of the , dlbosc?n (excep 6 W),
7 - ” dibosonjet, triboson,
primary” bosons . .
tribosonjet
8 $Hr as defined in Eq. qcdvjj,qcdvvjj
9 %H’T as defined in Eq. qcdvjj,qcdvvjj
1 .. . . ..
10 5 (Er(jije) + Ex(ViVa)) qcdvjj,qcdvvij

Table 20: Factorization scale options. The definition of the process classes can be found in

Section [2.2.

Note that for HTYPE = 1-3, the input HMASS is not used. Default value is 0 (SM
Higgs boson).

HWIDTH: Although VBFNLO can calculate the Higgs total and partial widths, it is
also possible to set the Higgs boson width with this input parameter. Default is
-999 GeV, which means that the internally calculated value of the width is used. If a
SLHA file is being used, the SLHA value will be taken rather than the input HWIDTH.

MODEL: This flag determines whether we are working in the SM (1), the MSSM (2)
or the Two-Higgs model (3). Default is SM (1). Note that if HTYPE = 1-3 is chosen
with MODEL = 1, the code will run in the Standard Model, but with a Higgs boson
mass equal to that given by the specified MSSM parameters.

H2MASS: Mass of the second Higgs boson for MODEL = 3. Default value is 126 GeV.

H2WIDTH: Width of the second Higgs boson for MODEL = 3. Default is -999 GeV,
which means that an internally calculated value of the width is used.
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ID_MUR | RENORMALIZATION SCALE PROCESS CLASS
0 user defined constant scale set a1l
by MUR_USER
momentum transfer of exchanged
1 bf t Hjjj
gauge boson vbf (except Hjjj)
2 min(pr(J;)) vbf, tribosonjet
3 or 4 invariant mass of the electroweak system | diboson, dibosonjet,
(V/VVv /VH | VVV) triboson, tribosonjet
5 ay = as(pe (1)) X as(pr(2)) ¥ o (mu) gef
6 constant scale = Higgs boson mass all
Minimum transverse energy of the , dlbosc?n (excep 6 W),
7 - ” dibosonjet, triboson,
primary” bosons . .
tribosonjet
8 $Hr as defined in Eq. qcdvjj,qcdvvjj
9 %H’T as defined in Eq. qcdvjj,qcdvvjj
10 5 (Er(j1j2) + Er(ViV2)) qcdvijj,qcdvvij

Table 21: Renormalization scale options. The definition of the process classes can be found
in Section [2.2.

e SIN2BA: Multiplicative factor for the squared HV'V-coupling of the first Higgs boson
for MODEL = 3. Default value is 1.

e COS2BA: Multiplicative factor for the squared HV'V-coupling of the second Higgs
boson for MODEL = 3. Note that unitarity requires that SIN2BA + COS2BA = 1.
Default value is -999, which means that the value which fulfills the unitarity relation
is chosen.

e TOPMASS: Top-quark mass in GeV. Default value is 172.4 GeV. If a SLHA file is
being used, the SLHA value will be taken rather than the input TOPMASS.

e BOTTOMMASS: Bottom-quark pole mass in GeV, used in the calculation of the Higgs
boson width and branching ratios. In the gluon fusion processes and gluon-induced
contributions to diboson production, m(Mj) in the M.S scheme is used (which is
calculated internally from the input pole mass). Default value is 4.855 GeV, which

corresponds to mé‘TS(mb) = 4.204 GeV. The explicit formula used is given on the
VBFNLO webpage. If a SLHA file is being used, the SLHA value will be taken rather

than the input BOTTOMMASS.
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e CHARMMASS: Charm-quark pole mass in GeV used in the calculation of the Higgs
boson width and branching ratios. Default value is 1.65 GeV, corresponding to
mM3(m.) = 1.273 GeV. If a SLHA file is being used, the SLHA value will be taken
rather than the input CHARMMASS.

e TAU_MASS: Tau mass in GeV used in the calculation of the Higgs boson width and
branching ratios. Default value is 1.77684 GeV. If a SLHA file is being used, the
SLHA value will be taken rather than the input TAU_MASS.

e EWSCHEME: Sets the scheme for the calculation of electroweak parameters. A summary
of the six available options is given in Table Note that if ENSCHEME = 4 is chosen,
all variables in Table [22] are taken as inputs. As the parameters are not independent,
this can lead to problems if the input values are not consistent. In this scheme,
all photon couplings are set according to the input variable INVALFA and all other
couplings are set according to FERMI_CONST. Note also that the choice of EWSCHEME
can have a large effect on the relative size of the electroweak corrections, as the
charge renormalization depends on the way in which the electromagnetic coupling in
the LO cross section is parametrized. Full details of all changes and their effects,
together with the explicit formulae used, are available on the VBFNLO webpage.
Default value is 3.

e FERMI_CONST: Fermi constant, used as input for the calculation of electroweak
parameters in EWSCHEME = 1-4. Default value is 1.16637 x 107> GeV 2. If a SLHA
file is being used, the SLHA value will be taken rather than the input FERMI_CONST.

e INVALFA: One over the fine structure constant, used as input for EWSCHEME = 1, 4,
5 and 6. Within the other schemes this parameter is calculated. The default value
depends on the choice of ENSCHEME, as given in Table 22 If EWSCHEME = 5 is chosen,
the value of « should be (M), whereas if EWSCHEME = 6 is chosen, the value of «
should be «(0). In order to ensure backwards compatibility with previous versions of
VBFNLO, as an alternative ALFA, the fine structure constant, can be used as an input
in vbfnlo.dat, which is read and used only if INVALFA is not present. If a SLHA file
is being used, the SLHA value will be taken rather than the input INVALFA or ALFA.

e DEL_ALFA: Value of A«, where

a(0)
4
1— A« (4)
This is used as input for EWSCHEME = 6. Default value is 0.059047686. Note that

this is only used for the electroweak corrections during the calculation of the charge
renormalization constant.

Oé(Mz) =

e SIN2W: Sinus squared of the weak mixing angle. Used as input for EWSCHEME = 2
and 4. Within the other schemes this parameter is calculated. Default input value is
0.222646. If a SLHA file is being used, the SLHA value will be taken rather than
the input SIN2W.

e WMASS: W boson mass in GeV. This parameter is calculated in ENSCHEME = 1 and
2. Default input value is 80.398 GeV. If a SLHA file is being used, the SLHA value
will be taken rather than the input WMASS.
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EWSCHEME PARAMETER DEFAULT VALUE INPUT/CALCULATED

FERMI_CONST | 1.16637 x 107° GeV 2 INPUT
INVALFA 128.944341122 INPUT

1 SIN2W 0.230990 CALCULATED

WMASS 79.9654 GeV CALCULATED
ZMASS 91.1876 GeV INPUT
FERMI_CONST | 1.16637 x 107° GeV 2 INPUT

INVALFA 132.340643024 CALCULATED
2 SIN2W 0.222646 INPUT

WMASS 80.3980 GeV CALCULATED
ZMASS 91.1876 GeV INPUT
FERMI_CONST | 1.16637 x 107° GeV 2 INPUT

INVALFA 132.340705199 CALCULATED

3 SIN2W 0.222646 CALCULATED
WMASS 80.3980 GeV INPUT
ZMASS 91.1876 GeV INPUT
FERMI_CONST | 1.16637 x 107° GeV 2 INPUT
INVALFA 137.035999679 INPUT
4 SIN2W 0.222646 INPUT
WMASS 80.3980 GeV INPUT
ZMASS 91.1876 GeV INPUT
INVALFA(ZMASS) | 128.944341122 INPUT

5 SIN2W 0.222646 CALCULATED
WMASS 80.3980 GeV INPUT
ZMASS 91.1876 GeV INPUT
INVALFA(O) 137.035999679 INPUT

6 SIN2W 0.222646 CALCULATED
WMASS 80.398 GeV INPUT
ZMASS 91.1876 GeV INPUT

Table 22: Electroweak input parameter schemes.
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e ZMASS: Z boson mass in GeV. Default value is 91.1876 GeV. If a SLHA file is being
used, the SLHA value will be taken rather than the input ZMASS.

e ANOM_CPL: If set to true, anomalous Higgs boson or gauge boson couplings are used
if available for the selected process. Anomalous coupling parameters are set via the
files anom_HVV.dat and anomV.dat. These are available for

— Hjj, single and double vector production processes in VBF
— diboson production processes, including W H

— diboson + jet production processes, including W Hj

— triple vector boson production processes

— triboson -+ jet production processes

— Hjj — V'V 37 production via gluon fusion

— gluon-induced (contributions to) diboson production
Default is set to false.

e KK_MOD: Option for the Warped Higgsless Model and Three-Site Higgsless Model.
This is available for all V'V jj production modes in VBF except W~ and same
sign W*W# production and for the triboson processes W*W W=, W+W~Z and
W*ZZ. Default is set to false. Note that this needs to be enabled at compilation,
using the configure option --enable-kk. Kaluza-Klein parameters are specified
via the files kk_input.dat or kk_coupl_inp.dat.

e SPIN2: Option for the spin-2 models. This is available for the V'V 75 production
modes in VBF except same sign W*W* production. Default is set to false.
Note that this needs to be enabled at compilation, using the configure option
--enable-spin2. Spin-2 parameters are set via the file spin2coupl.dat.

e EW_APPROX: Option controlling the electroweak corrections in Hjj production via
VBF.

— EW_APPROX = 0 : No approximations involved. This option is not available
when working in the MSSM.

— EW_APPROX = 1 : Ouly top/bottom (and stop/sbottom in the MSSM) loops are
calculated.

— EW_APPROX = 2 : All fermion (and sfermion in the MSSM) loops are calculated.

— EW_APPROX = 3 : MSSM option — all SM-type (i.e. fermions, gauge and Higgs
bosons) and sfermion loops are calculated.

— EW_APPROX = 4 : MSSM option — all MSSM corrections to the Higgs boson vertex
are calculated, together with all SM-type and sfermion corrections elsewhere.

— EW_APPROX = 5 : MSSM option —all MSSM corrections to the Higgs boson vertex,
the quark vertex and the vector boson self energies are calculated, together
with all SM-type boxes and pentagons (i.e. only chargino and neutralino box
and pentagon diagrams are neglected).

When working in the SM, EW_APPROX options 3-5 are equivalent to EW_APPROX = 0.
Default is 5: full corrections in the SM, and the most complete available corrections
in the MSSM.
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4.1.3 vbfnlo.dat — parameters for event output

VBFNLO generates parton level events according to the most recent Les Houches Ac-
cord (LHA) format |75] and in the HEPMC format [76] for all processes at leading order,
except for Wj, WZj and W~~vj production. For W H(j) production the event output is
only available in the case of a non-decaying Higgs boson.

e LHA_SWITCH: Switch on or off output of LHA event files. Default is set to false.
Note that LHA event file output is not yet available for diboson plus jet or triboson
plus jet processes.

e LHA_FILE: Name of output LHA event file. Default is ‘‘event.lhe’’.

e HEPMC_SWITCH: Switch on or off output of HEPMC event files. Default is set to
false. Note that HEPMC event file output is not yet available for diboson plus jet
or triboson plus jet processes.

e HEPMC_FILE: Name of output HEPMC event file. Default is ‘‘event.hepmc’’.

e UNWEIGHTING_SWITCH: Option for event weights. If set to true, events are un-
weighted (event weight = +1). If set to false, events are weighted. Default is set
to true.

e DESIRED_EVENT_COUNT: With UNWEIGHTING_SWITCH = true, the number of un-
weighted events written out to disk can be specified. For multi-channel processes
(for example diboson / triboson production with a final-state photon) this can be
time-consuming.

DESIRED_EVENT_COUNT = O stands for collecting all events generated during the
normal integration (behaviour of VBFNLO up to version 2.7 beta 2).
Default is DESIRED_EVENT_COUNT = 0.

e PARTIAL_UNWEIGHTING: For some processes or parameter settings it may not be
possible to get the desired number of unweighted events: Single events with large
weights in some problematic phase space regions can spoil the unweighting efficiency.
For this case PARTIAL_UNWEIGHTING = true will give the desired number of events
with weight 1 and additionally a few events with weight > 1 which occured during
the event generation.

Default is PARTIAL_UNWEIGHTING = false.

e TAUMASS: Option to include the mass of 7 leptons in the event files. Default is set
to false.
All calculations (except for branching ratios) are done with massless 7 leptons.
However, as subsequent programs need the non-zero mass for the 7 decay, VBFNLO
can include the 7 mass in the output and rescale the momentum consistently. The
7 leptons in the events have to fulfill m,, > 2-m, and m,,_ > m,, otherwise the
inclusion of m. is not possible. All events where this requirement is not fulfilled will
be dismissed. Usually this criterium should be always met when using reasonable
cuts. To ensure that no events are thrown away please use a cut on the invariant
lepton pair mass of at least my > 2m,.
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Important note for processes with more than one phase space (usually pro-
cesses involving a final state photon):

VBFNLO writes the events of different phase spaces block-wise into the event file. Therefore
the event file should always be used completely, otherwise some parts of phase space are
underrepresented. Using only parts of the event file gives only correct results if the events
are taken randomly from the whole file. This note is put out at the end of the VBFNLO
run for the relevant processes if event output is requested.

4.1.4 vbfnlo.dat — PDF parameters

VBFNLO can use either built-in parton distribution functions (PDFs) or the LHAPDF [4]
library, either in version 5 or 6.

e PDF_SWITCH: Flag to choose which PDFs are used. The options are

— 0 : built-in PDFs CTEQ6L1 [13] for LO and CT10 [14] for NLO calculations
— 1 : an interface to LHAPDF is provided

— 2 : built-in PDFs MRST2004qed [15] are used at LO and NLO (if this option
is chosen, photon-induced processes can be included when calculating the
electroweak corrections to Hjj production via VBF)

3 : the built-in PDFs MSTW2008 [16] are used

Default is 0.
The following options are used only if LHAPDF has been selected (i.e. PDF_SWITCH = 1).
e LO_PDFNAME: Name of the LO PDF set. Default is “‘cteq611.LHpdf’’ (cteq6ll).
e NLO_PDFNAME: Name of the NLO PDF set. Default is ““CT10.LHgrid’’ (CT10).
e LO_PDFMEMBER: Member PDF of the LO PDF set. Default is 0.
e NLO_PDFMEMBER: Member PDF of the NLO PDF set. Default is 0.

The names of the PDF sets can be found on the LHAPDF websitd™™l In case of LHAPDF 6
the file ending (.LHgrid/.LHpdf) is no longer needed, but using the LHAPDF 5 naming
scheme is still supported. The list of PDF sets which are already available in LHAPDF 6
can be obtained from the LHAPDF website as well?®l The PDF name can also be obtained
from the file PDFsets. index, which is located in the LHAPDF 5 subfolder share/lhapdf@

For compatibility with earlier versions of VBFNLO, the following two variables are also
supported for setting the PDF sets when using LHAPDF. If both are present, LO_PDFNAME
and NLO_PDFNAME take precedence over LO_PDFSET and NLO_PDFSET, respectively.

e LO_PDFSET: LHAGLUE number for the LO PDF set.
e NLO_PDFSET: LHAGLUE number for the NLO PDF set.

The LHAGLUE numbers can be found on the LHAPDF websitéI or in the file PDFsets . index,
which is located in the LHAPDF 5 subfolder share/lhapdfZL.

Ynttp://lhapdf .hepforge.org/pdfsets
2Onttp://www.hepforge.org/archive/lhapdf/pdfsets/6.0/
2'When using LHAPDF 6 this file is located at <LHAPDF-PATH>/share/LHAPDF/pdfsets.index .
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4.1.5 vbfnlo.dat — parameters for output and histograms

VBFNLO provides output for histograms in the following formats: GNUPLOT, ROOT|
and TOPDRAWERPY as well as raw data tables. Options controlling the histogram ranges
and smearing are defined in histograms.dat. Additional histograms can be defined by
the user in the file utilities/histograms.F.

e XSECFILE: Name of output file containing LO and NLO cross sections with the
associated errors. Default is xsection.

e ROOT: Enable output of histograms in ROOT format. Default is set to false.
Additionally, custom ROOT histograms can be defined by the user with the file
utilities/rootuserhists.cpp, which are filled with the weighted events from
Monte Carlo integration. This option needs to be enabled when building VBFNLO
using the option --with-root.

e TOP: Enable output of histograms in TOPDRAWER format. Default is set to false.
e GNU: Enable output of histograms in GNUPLOT format. Default is set to true.

e DATA: Enable output of raw data in a directory hierarchy. Additionally, a GNUPLOT
command file is written into the data output directory. Default is set to true.

e REPLACE: Switch to overwrite existing histogram output files. Default is set to true.
e ROOTFILE: Name of the ROOT output file. Default is histograms.

e TOPFILE: Name of the TOPDRAWER output file. Default is histograms.

e GNUFILE: Name of the GNUPLOT output file. Default is histograms.

e DATAFILE: Name of the data output directory. Default is histograms.

4.2 cuts.dat — parameters for kinematic cuts

The following general set of cuts has been implemented in VBFNLO. Alternative cuts can
be added in the file utilities/cuts.F.

A brief documentation on how to implement additional cuts into the file cuts.F can
be found on the VBFNLO webpage, http://www.itp.kit.edu/vbfnlo/ .

4.2.1 cuts.dat — jet-specific cuts

e RJJ_MIN: Minimum separation of two identified jets, AR;; = ,/ijzj +A jzj, used
by the generalised &, jet finding algorithm [77] that combines all partons. Default is
0.8.

e Y_P_MAX: Maximum allowed (pseudo)rapidity[*”] for observation of final state partons
(detector edge). Default is 5.0.

Znttp://www.gnuplot.info/

Zhttp://root.cern.ch/

24nttp://www.pa.msu.edu/reference/topdrawer-docs/

25 As all quarks and leptons are considered massless in VBFNLO, pseudorapidity and rapidity coincide
for almost all final state particles, with one exception: Jets which consist of more than one parton have a
non-vanishing mass and therefore rapidity # pseudorapidity.
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4.2.2

4.2.3

PGENKTJET: Exponent of the generalised %k, algorithm. This yields the k&, algorithm
when setting the variable to 1, the Cambridge/Aachen algorithm |78| for 0 and the
anti-k, algorithm [79] when setting it to —1. Default value of the floating-point
number is 1.0.

PT_JET_MIN: List of minimum transverse momenta for identified jets in descending

order. The later values can be omitted if they are the same as previous values.
Default is 20 GeV.

Y_JET_MAX: Maximum allowed rapidity for identified jets. Default is 4.5.

cuts.dat — lepton specific cuts

Y_L_MAX: Maximum (pseudo)rapidity for charged leptons. Default is 2.5.

PT_L_MIN: List of minimum transverse momenta for charged leptons in descending
order. The later values can be omitted if they are the same as previous values.
Default is 10 GeV.

MLL_MIN: Minimum invariant mass for pairs of charged leptons. Whether this applies
only to opposite-sign leptons or to all pairs is chosen by the variable MLL_0OSONLY.
Default is 15 GeV.

MLL_MAX: Maximum invariant mass for pairs of charged leptons. Whether this applies
only to opposite-sign leptons or to all pairs is chosen by the variable MLL_0SONLY.
Default is 10%° GeV.

MLL_OSONLY: If set to true, the variables MLL_MIN and MLL_MAX only apply to pairs
of oppositely signed leptons, otherwise to all pairs of charged leptons. Default is
true.

RLL_MIN: Minimum separation of charged lepton pairs, ARy. Default is 0.4.

RLL_MAX: Maximum separation of charged lepton pairs, ARy. Default is 50.

cuts.dat — photon specific cuts

Y_G_MAX: Maximum (pseudo)rapidity for photons. Default is 1.5.

PT_G_MIN: List of minimum transverse momenta for photons in descending order.
The later values can be omitted if they are the same as previous values. Default is
20 GeV.

RGG_MIN: Minimum separation of photon pairs, AR,,. Default is 0.6.

RGG_MAX: Maximum separation of photon pairs, AR,,. Default is 50.

VBFNLO has a photon isolation cut implemented as defined in Ref. |31],

1 —cosd
Zi: ET16<(5 — R’W) <e pTVToséo for all 0 < 60, (5)

where 7 is a parton with transverse energy Fr, and a separation R;, with a photon of
transverse momentum pr,. The parameters dp and € can be adjusted:
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4.2.4

4.2.5

PHISOLCUT: Photon isolation ¢y. Default is 0.7.

EFISOLCUT: Efficiency € of photon isolation cut. Default is 1.

cuts.dat — additional cuts

RJL_MIN: Minimum separation of an identified jet and a charged lepton, AR;,.
Default is 0.6.

RJG_MIN: Minimum separation of an identified jet and a photon, AR,,. Default is
0.6.

RLG_MIN: Minimum separation of a charged lepton and a photon, AR;,. Default is
0.6.

MLG_MIN: Minimum invariant mass for any combination of a charged lepton and a
photon. Default is 0 GeV.

MLG_MAX: Maximum invariant mass for any combination of a charged lepton and a
photon. Default is 10%° GeV.

PTMISS_MIN: Minimum missing transverse momentum of the event
PR == pri,
i

summing over all visible jets, leptons and photons. Default is 0 GeV.

cuts.dat — jet veto

JVETO: If set to true, a jet veto is applied. For processes with fully leptonic decays
of the vector bosons the following criteria apply:

— For vbf and ggf processes it is applied to central jets beyond the two tagging
jets, where the central region is bounded by the rapidities of the two tagging
jets.

— For all other processes the jet veto is applied to additional jets beyond the

leading-order number, ordered by decreasing transverse momentum.

For processes with one hadronically decaying vector boson, one or two additional jets
are allowed, depending on the value of SINGLE_DECAYJET (one jet for SINGLE_DECAYJET
= 2, else two jets).

Default is false.

YMAX_VETO: Maximum rapidity of the additional jet. Default is 4.5.

PTMIN_VETO: Minimum transverse momentum of the additional jet. Default is
50 GeV.

DELY_JVETO: Minimum rapidity separation of a central jet from the two tagging jets
for vbf and ggf processes. Default is 0.

38



4.2.6 cuts.dat — VBF specific cuts

These cuts apply only to vbf, qcdv(v) jj and ggf processes. Furthermore, they apply to
the processes with semileptonic decays if VBFCUTS_ALWAYS = true.

e ETAJJ_MIN: Minimum required rapidity gap, An;;, between two tagging jets, which
are the two leading jets in a pr ordering for fully leptonically decaying vector bosons.
For tagging jet definition in semileptonic decay processes see DEF_TAGJET. Default is
0.

e YSIGN: If set to true, the two tagging jets are required to be found in opposite
detector hemispheres. Default is false.

e LRAPIDGAP: If set to true all charged leptons are required to lie between the two
tagging jets in rapidity. Default is false.

e DELY_JL: Minimum rapidity distance of the charged leptons from the tagging jets,
if LRAPIDGAP is set to true. Default is 0.

e GRAPIDGAP: If set to true all photons are required to lie between the two tagging
jets in rapidity. Default is false.

e DELY_JG: Minimum rapidity distance of photons from tagging jets, if GRAPIDGAP is
set to true. Default is 0.

e MDIJ_MIN: Minimum dijet invariant mass of two tagging jets. Default is 0 GeV.

e MDIJ_MAX: Maximum dijet invariant mass of two tagging jets. Default is 10%° GeV.

4.2.7 cuts.dat — special cuts for semileptonic decays

These cuts apply only to processes with one hadronically decaying vector boson.

e DEF_TAGJET: Switch for different tagging jet definitions.

— DEF_TAGJET = 1: two jets with largest pp

— DEF_TAGJET = 2: two jets with largest py and |y| > ETA_CENTRAL. Furthermore
both jets have to lie in opposite detector hemispheres.

— DEF_TAGJET

— DEF_TAGJET = 4: two jets with largest py, except for the two jets (or one jet if
SINGLE_DECAYJET > 0 and the mass of a single jet is closer to my than any
two-jet combination) with an invariant mass closest to my .

3: two jets with largest separation in rapidity

Default is 1.

e ETA_CENTRAL: Defines the outer limit of the “central region” if DEF_TAGJET = 2.
For other values of DEF_TAGJET the “central region” is defined by the rapidity values
of the two tagging jets. Default is 2.

e PTMIN_TAG_1: Minimum transverse momentum for the harder tagging jet. Default
is 20 GeV.
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PTMIN_TAG_2: Minimum transverse momentum for the softer tagging jet. Default is
20 GeV.

HARD_CENTRAL: If set to true an additional jet is required within the central region.
Default is false.

PTMIN_CENTRAL: Minimum transverse momentum for the additional hard jet in the
central region if PTMIN_CENTRAL = true. Default is 20 GeV.

VBFCUTS_ALWAYS: Usually the VBF cuts are only applied for VBF processes. With
VBFCUTS_ALWAYS = true, the VBF cuts are applied to the semileptonic diboson and
triboson production processes as well, as they supplement the s-channel part of the
electroweak V (V') jj production to the VBF processes.

Default is false.

RECONST_HAD_V: Choose between different options for a cut on the reconstructed
invariant mass of the hadronically decaying vector boson. All possible jet combina-
tions are taken into account, the one which gives an invariant mass closest to the
vector boson mass is used to apply the cut.

— RECONST_HAD_V = 0: No cut on the reconstructed invariant vector boson mass.

— RECONST_HAD_V
ered.

— RECONST_HAD_V = 2: Use invariant mass of a single jet, tagging jets are not
considered (“subjet-analysis”, only needed when SINGLE_DECAYJET > 0).

1: Use two-jet invariant mass, tagging jets are not consid-

— RECONST_HAD_V = 3: Use one- or two-jet invariant mass, tagging jets are not
considered.

Default is 0.

V_MASS_RANGE: Mass range for the cut on the reconstructed invariant vector boson
mass: |m_V - m_reconst| < V_MASS_RANGE. Default is 20 GeV.

SINGLE_DECAYJET: This switch controls the number of additional jets which is
required for processes with semileptonic decay of the vector bosons with respect to
the fully leptonic process:

— SINGLE_DECAYJET = 0: two jets are required from the hadronic decay (plus
two tagging jets for the VBF processes).

— SINGLE_DECAYJET = 1: a single jet is allowed if both quarks from the hadronic
decay are collimated into one jet.

— SINGLE_DECAYJET = 2: a single jet is allowed for all phase space points.
SINGLE_DECAYJET = 2 can only be used with LOPROCESS_PLUS_JET set to false in

vbfnlo.dat.
Default is 0.

QSQAMIN_ZDEC: Minimal photon virtuality of hadronically decaying Z/~*.
Default is 0 GeV?. However, any values below the Q* threshold (see Section [4.2.8)
for u/d-quarks of (0.373 GeV)? have no effect.
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As the Higgs boson does not couple directly to photons, no special treatment or cut
is needed for process 1010. Therefore QSQAMIN_ZDEC is not evaluated there.

4.2.8 Treatment of hadronic decays of low-virtuality photons

As the hadronic decay of a Z boson also includes the hadronic decay of photons, a
divergence in v* — qq occurs, when the final state quarks are treated massless and no
cuts are applied. In the case of the semileptonic decays within VBFNLO, this can lead to
problems in two cases:

e In the real emission case with one additional visible jet from QCD radiation both
decay quarks are allowed to form a single jet.

e This can also happen already at leading order, when SINGLE_DECAYJET is set to
true.

Therefore we apply a cut on the minimal photon virtuality, which is estimated from
ete”™ — hadrons individually for each final state quark flavour. The threshold for each
quark is chosen such that the NLO approximation for o(e*e™ — hadrons) gives the same
contribution as the experimental continuum data plus the contribution from the sharp
resonances of the respective quark flavours [80].

This procedure approximates the correct rates from low-¢g?> photons. The kinematics of
the quarks in this region are not modeled correctly, but this is of minor importance as
the low-¢? region is only relevant for semileptonic decays when the decay products form a
single jet.

Unfortunately, this procedure can cause problems when interfacing VBFNLO with a parton
shower Monte Carlo program by using the Les Houches event output without jet cuts or
with SINGLE_DECAYJET = true. Events which involve ¢q pairs with an invariant mass
below 1 GeV or below 2 - m, may be dismissed by the parton shower Monte Carlo. This
can be avoided by using the option QSQAMIN_ZDEC.

4.3 ggflo.dat — general parameters for gluon fusion processes

In VBFNLO the double real-emission corrections to gg — ¢, which lead to ¢ + 2 jet events
at order o, are included [72]. Here, ¢ can be set to be a Standard Model Higgs boson
or any of the three neutral MSSM Higgs bosons (including mixing between h, H and A
in the real or complex MSSM) by using the variables HTYPE and MODEL in vbfnlo.dat,
or a mixture of scalar and pseudoscalar Higgs bosons as in a generic two-Higgs-doublet
model (2HDM) of type II. Contributions contain top- and bottom-quark triangles, boxes
and pentagon diagrams, i.e. the full mass dependence of the loop induced production@.
Interference effects between loops with bottom- and top-quarks, as well as between CP-even
and CP-odd couplings of the heavy quarks, are fully taken into account. An option to
use the large top mass approximation, which works well for intermediate Higgs boson
masses (provided that the transverse momenta of the final state partons are smaller than
the top-quark mass), is also implemented.

Note that these gluon fusion processes require the use of the ggflo executable rather
than the vbfnlo one.

26The bottom quark mass is taken as my,(My) in the MS scheme.
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If Higgs boson plus two jet production via gluon fusion is selected in vbfnlo.dat,
i.e. PROCESS = 4100-4107, the following additional parameters can be adjusted in the
ggflo.dat file:

e Q_LOOP: Input that sets how the Higgs boson coupling is determined.

— Q_LOOP = 0: Effective theory in the large top-quark mass limit (m; — 00).
— Q_LOOP = 1: Coupling derived from top-quark loop.

— Q_LO0OP = 2: Coupling derived from bottom-quark loop.

— Q_LOOP = 3: Coupling derived from both top- and bottom-quark loops.

Default is set to 3.

e SUBPRQQ: Switch that determines whether the subprocesses with a quark-quark
initial state are included. Default is set to true.

e SUBPRQG: Switch that determines whether the subprocesses with a quark-gluon
initial state are included. Default is set to true.

e SUBPRGG: Switch that determines whether the subprocesses with a gluon-gluon initial
state are included. Default is set to true.

e HIGGS_MIX: Switch for Higgs mixing. If set to 0, there is no Higgs mixing, which is
the default. If set to 1, the mixing is determined via the user-input variables:

— CP_EVEN_MOD: Changes the strength of the CP-even coupling. Default is set to
1d0.

— CP_0ODD_MOD: Changes the strength of the CP-odd coupling. Default is set to
1d0.

using the Lagrangian
‘CYukawa = q (Ceven Yq + iC’odd Y5 gq) q @ (6)

with Ceyen = CP_EVEN_MOD and Cyqq = CP_0DD_MOD and

B 1
Y = yb:;mbtanﬁ

1
Yy = Y= ;mt cot 3. (7)

When working in the Standard Model, tan 3 is set to 1. Note that this option
is not yet available when decays of the Higgs boson to fermions or photons are
included. The option HIGGS_MIX = 2 is only used when working in the MSSM,
and incorporates mixing between all three neutral Higgs bosons according to the Z
propagator matrix, as follows

hi = Zin hamssm + Zin Hussm + Zia Avissu (8)

where ¢ — HTYPE.
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4.4 susy.dat — parameters in the MSSM

The file susy.dat is used to specify the supersymmetric parameters when working in
the MSSM. This file is used either if MODEL = 2 in vbfnlo.dat, or if HTYPE = 1-3 in
vbfnlo.dat. As described earlier, if MODEL = 2 the code will run in the MSSM, which
means that the Higgs boson masses, widths and couplings will all be set to the MSSM
values. If MODEL = 1 but HTYPE = 1-3, the code will run in the Standard Model, and only
the Higgs boson mass will be affected. Consequently, this file affects processes 100-107
(Higgs boson plus 2 jet production via VBF), processes 110-117 (Higgs boson plus 3 jet
production via VBF), processes 2100-2107 (production of a Higgs boson in association
with a photon and 2 jets via VBF) and gluon fusion processes 4100-4107. In particular,
the electroweak corrections to Higgs boson production via VBF are affected by the inputs
of susy.dat. As stated earlier, the Higgs boson contributions to the production of massive
gauge bosons will be affected by susy.dat by fixing the Higgs boson mass and couplings,
but the code will only provide a reasonable approximation to the full MSSM result in the
decoupling region (i.e. when the Higgs is SM-like).

e FEYNH_SWITCH: Determines whether FEYNHIGGS is used to calculate the MSSM
Higgs boson sector. Default is false. When working in the MSSM, especially when
including electroweak corrections, it is recommended that FEYNHIGGS is used, as the
Higgs boson mixing and the renormalization scheme used in VBFNLO are consistent
with those used by FEYNHIGGS. If a SLHA file is used instead of FEYNHIGGS,
inconsistencies may occur in the calculation of parameters.

e SLHA_SWITCH: Determines whether the MSSM parameters are taken from a SLHA
file. Default is true. If set to true the values in the SLHA input file are used instead
of internal settings or calculationg?’|

e SLHA_FILE: Name of the SLHA input file. An example file — spsla.slha — is
provided, which is the default.

e BENCH: Various benchmark scenarios are pre-programmed in the code, as an alterna-
tive to using a SLHA file. These are:

— 0: User-input scenario (see below for further inputs)
— 1: M scenario [81]

— 2: No-mixing scenario [81]

— 3: Gluophobic scenario [81]

— 4: Small aeg scenario [81]

— 5: CPX scenario [82]

— 10: SPS1aP] [83]

— 11: SPS1b

— 12-19: SPS2-9

2TNote that a SLHA file can also be used as the input for FEYNHIGGS by setting both FEYNH_SWITCH
and SLHA_SWITCH to true.

28The SPS points are defined with low-energy  parameters, as given  at
http://www.ippp.dur.ac.uk/~georg/sps/|).
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Default is 1 — the M;"** scenario.

e PROPLEVEL: Level at which Higgs propagator corrections are included:

: Effective Higgs-mixing angle used.

: Propagator factors included at leading order.

: Propagator factors included at leading order and loop level.

w N = O

: Propagator factors included as an additional loop correction.

Default is 1. These options are discussed in more detail on the VBFNLO webpage, as
well as in [34].

e DELMB_SWITCH: Switch determining whether or not to correct the bottom-quark
Yukawa coupling. Default is false.

e MH_LOOPS: Flag determining the value of the internal Higgs masses used in the
electroweak loops:

— 0: Tree level Higgs masses used in loops.

— 1: Corrected Higgs masses used in loops.

e LOOPSQR_SWITCH: Flag determining whether the squared contributions of the elec-
troweak corrections from the (s)fermion sector will be included — i.e. if set to true
the amplitude is given by:

|-/\/lBorn|2 + 2§R [Mgoranoop] + |M(s)fermion loop’2 (9)

Note that the loop squared component is only added if |M(S)fermion loop| 1S greater
than 10% of | Mpem|. Default is set to true.

If a SLHA file is not being used, and BENCH = 0-5, the following inputs are also needed.

e TANB: Value of tan . Default value is 10. Note that for the SPS benchmarks (BENCH
= 10-19), this value of tan 3 is not used.

e MASSAO: Mass of CP-odd Higgs boson M. This should be used when working in
the MSSM with real parameters. Default value is 400 GeV. Note that for the SPS
benchmarks (BENCH=10-19), this value of M, is not used.

e MASSHP: Mass of charged Higgs boson My+. This should be used when working in
the MSSM with complex parameters. Default value is -1 GeV.

Note that it is standard to use as input the mass of the CP-odd Higgs boson, M4, when
working in the MSSM with real parameters and the mass of the charged Higgs boson,
M+, when working in the MSSM with complex parameters{g_g]. The mass that is not being
used as input should be set to -1 GeV.

If desired, the SUSY breaking parameters that define the scenario can be input by the
user, by selecting BENCH = 0. Default values are those for SPS1a. These parameters are
(in the notation used by FEYNHIGGS):

29This is because, when working with complex parameters, there is mixing between all three neutral
Higgs bosons, and thus all neutral Higgs boson masses receive loop corrections.
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e M3SQ etc.: The soft SUSY breaking parameters for the sfermion section.
e AT etc.: Trilinear coupling parameters.

e MUE: Higgs boson mixing parameter.

e M_1 etc.: Gaugino mass parameters.

By default, lower generation parameters are set to the corresponding higher generation
parameters — e.g. Ac = At.

4.5 Parameters for anomalous couplings

VBFNLO supports anomalous HV'V couplings, where V' = W, Z, v, in both the production
and the decay of a Higgs boson in VBF-type reactions, i.e. for process IDs 100-107. Anoma-
lous HV'V couplings are also included in gluon induced diboson production (processes
430x, 433x, 4360, 4370, and processes 30x, 33x, 360 and 370), as well as in gluon fusion
processes Hjj — V'V jj (IDs 4105-7). The anomalous HV'V couplings can be specified in
the anom_HVV.dat input file.

Anomalous triple and quartic gauge boson couplings are available for single and double
vector boson production via VBF (process IDs 120-150, 200-280) [84,85], all triple vector
boson production processes (process IDs 400-530, 800, 810) [85,[86], diboson production
WW, Wy, WEZ and WH (process IDs 300-323, 340-350, 1300-1317) [51./52] and for
diboson plus jet processes W~j [60], W*Z5 [59] and W Hj [51] (IDs 610-640, 1600-1617).
The respective parameters are set in the input file anomV.dat. Note, however, that not all
parameters in anomV.dat affect all processes and no neutral triple gauge boson couplings
are included. By altering the triple gauge boson couplings (in anomV.dat), the couplings
between a Higgs and a pair of gauge bosons are also affected — these changes are taken into
account automatically for internal and external Higgs bosons occurring in these processes
(and during the Higgs width calculations).

4.5.1 anom_HVV.dat — anomalous HV'V couplings

The file anom_HVV.dat controls the anomalous Higgs boson coupling parameters. It is
used if the input ANOM_CPL in vbfnlo.dat is set to true. Among the anomalous coupling
input parameters, the user can choose between three different parametrizations.

The anomalous HV'V couplings can be described by the following effective Lagrangian
involving the dimension five operators

HZZ HZZ HWW HWW

_ gSe v 950 ~ v g5e + v 950 i+ v
L = HZ, 7" = HZ., " = ___HWTW-~ =2 HW*TW-~
Sy W L iy W W
gHZ'Y gHZ'Y _ gHw gHw _
5e v 50 v 5e v 50 v
HZ, A" = HZ, A" =< _HA, A" =2 HA, A"
N W ) R Y W]

(10)
where the subscript e or o refers to the CP-even or CP-odd nature of the individual

operators 87|, V# is the field strength tensor of the gauge boson V' and VH is the dual
field strength.
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An alternative approach is to write the effective Lagrangian in terms of the dimension-6
operators Oy w, Opg, Ow and Op and their corresponding CP-odd operators according
to Refs. [88}89):

Log — %OW + %03 T fj\V_QWOWW + %BOBB + CP-odd part (11)

The explicit form of the operators is
Ow = (D) W"(D,9)
Op = (Du¢")B"™(D,¢)
OWW = QSTWHVWW’QS

Ops = ¢'B,B"¢, (12)
with
W, = igT®We,
B, = ig'Y B, (13)

where g and ¢ are the SU(2) and U(1) gauge couplings, and T are the SU(2) generators.
The CP-odd part of the Lagrangian has the same form, although only three parameters
(they are denoted with a tilde, see Appendix are needed.

The different parametrizations, and the relationships between them, are discussed in
more detail on the VBFNLO webpage, where the explicit forms of the HV'V couplings are
given.

1. A parametrization in terms of couplings in the effective Lagrangian approach given

by Eq. .

e PARAMETR1: Parameter that switches on the effective Lagrangian parameteriza-
tion of Eq. . The default value is true.

e LAMBDA5: Mass scale A5 in units of GeV with 480 GeV chosen as default.

e GBE_HWW, GSE_HZZ, GBE_HGG, G5E_HGZ: Parameters that determine the cou-
plings gZVV of the CP-even dimension five operators. Their default values are

set to 0.
e G50_HWW, GS50_HZZ, GH0_HGG, G50_HGZ: Parameters that determine the cou-
plings gZIVV of the CP-odd dimension five operators. Their default values are

set to 0.

2. The parameterization of the anomalous couplings by the L3 Collaboration as given
in Ref. [90]. The parameters are d, dg, Ag? and Ak, which are related to the
coefficients f;/A? of the effective Lagrangian of Eq. in the following manner [91|:

) 2
myy my
d=—T3 fww, d=-"72 fivw
m2. sin?f ~ m2, sin®6
dn = ——W 22— v dp = ——2" ——" f5
B A2 cos2 0, f8B; B A% cos?40, Tos 4
2 N (1)
2
Aot =i =T Sy
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e PARAMETR2: Parameter that switches on the above mentioned parameterization
of Egs. (14). The default value is false.

e D_EVEN, DB_EVEN, DKGAM_EVEN, DG1Z_EVEN: Parameters that are the CP-
even couplings in this parameterization. Default values are set to zero.

e D_0ODD, DB_0ODD, KGAM_ODD: Parameters that are the CP-odd couplings in this
parameterization with default values equal to 0.

e HVV1: Parameter that determines which anomalous HV'V couplings are used
for the run. For HVV1 = 0, only the HZ~ coupling, for HVV1 = 1, only the H~y~y
coupling, for HVV1 = 2, only the HZZ coupling and for HVV1 = 3, only the
HWW coupling is used. If HVV1 is set to 4, all possible anomalous couplings
are used. This is also the default value.

3. The parametrization of the anomalous couplings in terms of coefficients f;/A? of the
effective Lagrangian in Eq. (11).

e PARAMETR3: Parameter that switches on the parametrization stated above. The
default value is false.

e FWW_EVEN, FBB_EVEN, FW_EVEN, FB_EVEN: Parameters that represent the co-
efficients of the CP-even operators — i.e. f;/A? — with default values set to
Zero.

e FWW_0ODD, FBB_0DD, FB_0DD: Parameters that are the coefficients of the CP-
odd operators — i.e. f;/A? — with default values 0 GeV 2.

e HVV2: Parameter that allows the user to choose which anomalous HVV couplings
are used. For HVV2 = 0, only the H Z~ coupling, for HYV2 = 1, only the H~~y
coupling, for HVV2 = 2, only the HZZ coupling and for HVV2 = 3, only the
HWW coupling is used. If set to 4 all possible anomalous couplings are used.
The default value is 4.

Moreover, for all parametrizations, two different form factors can be chosen as described
in Refs. [87,/91]. They model effective, momentum dependent HV'V vertices, motivated by
new physics entering with a large scale A at the loop level.
A? A?
F, = 15
LGN gAY )
By = —2NCo(qf, a5, (@ + @)*, A?) . (16)

Here the ¢; are the momenta of the vector bosons and Cj is the scalar one-loop three point
function in the notation of Ref. [92].

e FORMFACTOR: Flag that switches on the above form factor. The default value is set
to false.

e MASS_SCALE: Characteristic mass scale, A, of new physics in units of GeV. The
default value is 200 GeV.

e FFAC: Parameter that is used to select one particular form factor out of Egs.
and . If FFAC = 1, the form factor Fj is used for the parametrization. FFAC = 2
selects Fy, which is also the default value.
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Finally, the following parameters can be used to rescale the SM HV'V couplings.

e TREEFACW: Parameter that multiplies the HW W tensor present in the SM Lagrangian.
Default is 1.

e TREEFACZ: Parameter that multiplies the H ZZ tensor present in the SM Lagrangian.
Default is 1.

e LOOPFAC: Parameter that multiplies the HZ~ and H~v~ vertices induced by SM
loops. The default is chosen to be 1.

In order to comply with previous versions of VBFNLO, an input TREEFAC can be used, and
both TREEFACW and TREEFACZ are set to this input.

Note that, when working in the SM, the loop-induced couplings H Z~y and H~~y are used
only in the calculation of the Higgs width and decays, not in the production amplitude.
For the case of anomalous Higgs couplings (ANOM_CPL = .true. and one of the processes
10x, (4)300, (4)330, (4)360, (4)370 has been selected), these contributions are included in
the production as well as in the decay of the Higgs boson.

4.5.2 anomV.dat — anomalous triple and quartic gauge boson couplings

The anomalous triple and quartic gauge boson couplings can be set in the file anomV.dat.
They are parameterized using an effective Lagrangian, as described in Refs. [89,/93-95|
fi n
Leg = FOl +47 (17)

where n + 4 signifies the dimension of the operator ;. VBFNLO defines the anomalous
gauge couplings in terms of the coefficients f;/A™ of the dimension-6 and dimension-8
operators. The full list of implemented operators can be found in Appendix

A common alternative parameterization (which VBFNLO can also use as input) of the
trilinear couplings WW+~ and WW Z uses the following effective Lagrangians:

A
Lo = — ic [wg,,ww CWILAW e WIW,E 4 —gwjuwyFW] (18)
myy
for the anomalous W W+~ vertex, and

A\
Lwwz = — iecot b, [gf (WlWwrzy —WiZ,WH) + k,WIW, 2 + —jwjuwyz"a}
myy
(19)

for the anomalous WW Z vertex. It is customary to rephrase the electroweak modifications
around the SM Lagrangian in terms of new quantities,

<A91Z7 A’%Z7 A"i’)’) - (ng, Kz, "W) — L (2())

These quantities are related to the coefficients of the dimension-6 operators Oy, Op
and Owww as shown in Egs. for Ak, and Ag?. The corresponding relations for Ary
and A\, A\ are

m2

Ay = opa

fw cos® Oy — fpsin® Ow) ,
(21)
3g*miy,

AN, = ANz = TonT fwww .
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In order to include anomalous vector boson couplings, the parameter ANOM_CPL must
be switched to true in vbfnlo.dat. The parameters described above are input via the
file anomV.dat:

e TRIANOM: Switches between parameterizations of the anomalous WW~ and WW Z
couplings. TRIANOM = 1 uses the coefficients of the dimension-6 operators as input:

— FWwwW: Coefficient of the operator Owww, i.e. fiyww /A% Default is set to
0 GeV~2.

— FW: Coefficient of the operator Oy, i.e. fyr/A% Default is set to 0 GeV 2.
— FB: Coefficient of the operator Op, i.e. fg/A% Default is set to 0 GeV 2.

TRIANOM = 2 uses the alternative parameterization of Eqs. and as input:

— LAMBDAO: The quantity A, (= Az). Default is set to 0.0.

— ZDELTAKAPPAO: The quantity Axy. Default is set to 0.0.

— ZDELTAGO: The quantity AgZ. Default is set to 0.0.

— ADELTAKAPPAO: The quantity Ak,. Default is set to 0.0.

— Note that, as can be seen from Eqgs. and (21I), the quantities Akz, Ak,
and AgZ are not independent, but obey the relation

SiIl2 QW

Aky = Agé — Ak,. (22)

cos? Oy,
If one of these quantities is zero, it will be set by VBFNLO to be consistent with
the other values. If the input values are inconsistent, Ak, will be reset to give
the correct relation.

Default is TRIANOM = 1. The LEP limits on those couplings can be found in [96]. Note
that Vjj and VVj processes (process IDs 120-150 and 610-640) only take account
of the above anomalous coupling parameters and not the following parameters.

e FWW, FBB: The coefficients of the remaining CP-even dimension-6 operators, i.e.
fi/A?. Note that these are not implemented for Vj;j production via VBF (process
IDs 120-150) and V'V j processes (IDs 610-640). Default value is 0 GeV~2.

e FWWWt, FWt, FBt, FBWt, FDWt, FWWt, FBBt: The coeflicients of the CP-odd di-
mension-6 operators, i.e. f;/A?. Note that these are not implemented for Vjj
production via VBF (process IDs 120-150) and V'V j processes (IDs 610-640). Default
value is 0 GeV 2.

e FSO, FS1, FMO - FM7, FTO - FT2, FT5 - FT9: Parameters that give the values
of the coefficients of the dimension-8 operators, i.e. f;/A*. The default values for these

parameters are 0 GeV~*. Note that these are only relevant for triboson production
and V'V jj production via VBF.

In addition, a form factor can be applied, which takes the form

F= (1+%)_p, (23)

for all processes except 7jj production in VBF (process ID 150), where A is the charac-
teristic scale where the form factor effect becomes relevant. s is a universal scale (the
invariant mass squared of the produced bosons) for each phase-space point.
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Individual form factor mass scales and exponents can be set for the trilinear WW Z and
WW~ couplings, using either of the parametrizations above. If chosen, these values
overwrite the “universal” mass scale and exponent (FFMASSSCALE and FFEXP) set above

FORMFAC: Switch determining whether the above form factor F' is included. Default

is set to false.
FFMASSSCALE: Mass scale A. Default is set to 2000 GeV.

FFEXP: The exponent p. Default is set to 2.

for the selected parameters.

FORMFAC_IND: Switch determining whether individual or universal form factors are

used. Default is set to false — universal form factors are used.

If TRIANOM = 1 then

MASS_SCALE_FWWW: Mass scale A for coefficient fy . Default is 2000 GeV.
FFEXP_FWWW: Exponent p for coefficient fy -y . Default is 2.
MASS_SCALE_FW: Mass scale A for coefficient fy,. Default is 2000 GeV.
FFEXP_FW: Exponent p for coefficient fy,. Default is 2.

MASS_SCALE_FB: Mass scale A for coefficient fp. Default is 2000 GeV.

FFEXP_FB: Exponent p for coefficient fg. Default is 2.

If TRIANOM = 2 then

MASS_SCALE_AKAPPA: Mass scale A for parameter Ax,. Default is 2000 GeV.
FFEXP_AKAPPA: Exponent p for parameter Ax,. Default is 2.
MASS_SCALE_ZKAPPA: Mass scale A for parameter Axz. Default is 2000 GeV.
FFEXP_ZKAPPA: Exponent p for parameter Axz. Default is 2.
MASS_SCALE_LAMBDA: Mass scale A for parameter \. Default is 2000 GeV.
FFEXP_LAMBDA: Exponent p for parameter A. Default is 2.

MASS_SCALE_G: Mass scale A for parameter Agf. Default is 2000 GeV.

FFEXP_G: Exponent p for parameter Ag?. Default is 2.

As with the anomalous parameters themselves, the formfactors in the parameteriza-
tion of TRIANOM = 2 are not independent (see Eq. (22))). If one mass scale is set to
zero, it will be set by VBFNLO to be consistent with the other values. If the input

values are inconsistent, they will be reset to give the correct relation.

For 7jj production in VBF (process ID 150), the form factor takes the form

with A and p set by FFMASSSCALE and FFEXP, respectively. ¢?, g5 and ¢ are the invariant
masses squared of the three vector bosons involved in the VV'V vertex. For this process

2

2 2\ —P
o i qs q3
F—(l—l—P-i-p—FF) ,

only the universal form factor can be applied.
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4.5.3 Using anom_HVV.dat and anomV.dat simultaneously

Some of the anomalous coupling parameters affect both the VV'V and HVV couplings.
These parameters (fy and fp or, equivalently, Ag and Ak,) are consequently inputs in
both anom_HVV.dat and anomV.dat. As stated previously, when working with anomalous
VVV couplings with a process that contains internal Higgs bosons (e.g. WW Z tribo-
son production), the anomalous HV'V couplings resulting from fy and fp (input via
anomV.dat) are calculated and used.

In diboson WW production (process ID 300), however, anomV.dat and anom_HVV.dat
can be used simultaneously. The anomalous VVV couplings are taken directly from
anomV.dat. The values of fiy and fp for the HVV couplings are also taken from
anomV.dat, but the additional parameters (fpp, fiww etc.) are taken from anom_HVV.dat
using the appropriate parametrisationm Alternatively, the HV'V couplings can be specified
directly via g#*Y by setting PARAMETR1=true in anom_HVV.dat. In this case, the values
gHXY are used if they are consistent with the anomV.dat inputs — if they are inconsistent,
a warning message is printed and HV'V parametrisation 2 or 3 is used instead.

4.6 kk_input.dat — parameters for Higgsless models

VBFNLO allows the calculation of the vector boson fusion processes WW 3535, WZj55 and
ZZjj in the Warped Higgsless scenario [97,(98] at LO and NLO QCD level (see, for
example, Ref. [99] for a phenomenological application). This feature is used if the switch
KK_MOD in vbfnlo.dat is switched to true and must be enabled at compilation using the
configure option --enable-kk.

The triple vector-boson processes WWW , WW Z and W ZZ can be calculated in both
this model and a Three-Site Higgsless Model [100]. The model parameters (masses and
couplings) can be generated by VBFNLO via the input file kk_input.dat for a choice of
the relevant five dimensional gauge parameters. The input parameters are:

e VBFCALC_SWITCH: Switch that determines whether VBFNLO should calculate the
parameters needed by the model. Default is true. Alternatively, the user can input
their own model parameters (masses and couplings) as described below.

e MHLM_SWITCH: Switch that determines whether the Three-Site Higgsless Model [100]
(true) or the Warped Higgsless Model [97| (false) should be used. Default is false
(Warped Higgsless Model).

e The following parameters are used only when working in the Warped Higgsless Model
(MHLM_SWITCH = false):

— RDWN: Location of the UV brane for the generation of the model parameters in
the Warped Higgsless Model. Default is R = 9.75 x 107, which amounts to the
Kaluza-Klein excitations having masses of my, = 700 GeV, mz = 695 GeV,
and myz = 718 GeV. Smaller values of R result in a heavier Kaluza-Klein
spectrum.

— KKMAXW: The maximum number of Kaluza-Klein W,;t states to be included on
top of the Standard Model W# bosons, which correspond to W,;tzo. All states
k > 3 are phenomenologically irrelevant. Default is 1.

30TRIANOM=1 in anomV.dat corresponds to PARAMETR3=true in anom_HVV.dat, and TRIANOM=2 corre-
sponds to PARAMETR2=true.
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— KKMAXZ: The maximum number of Kaluza-Klein Z;, states to be included on
top of the Standard Model Z boson, which corresponds to Z;,—y. All states
k > 3 are phenomenologically irrelevant. Default is 1.

— KKMAXG: The maximum number of Kaluza-Klein Z; bosons that are excitations
of the Standard Model photon Z,_,. States k > 2 are phenomenologically
irrelevant. Default is 1.

e WPMASS: Wy, mass in the Three-Site Higgsless Model (MHLM_SWITCH = true). De-
fault is 500 GeV.

The explicit breaking of higher dimensional gauge invariance is balanced according to
the description of Ref. [101], where more details regarding the model and its implementation
can be found. Information on the widths and the sum rules relating the various gauge
boson couplings [102] are written to the file kkcheck.dat.

VBFNLO generates the text file kk_coupl_inp.dat, which documents the calculated
model parameters, i.e. Kaluza-Klein gauge boson masses and couplings of the specified
input parameters. This file can also be used as an input file for advanced users who
want to run the code with their own set of parameters — e.g. for simulation of more
general technicolor-type scenarios. To that end, select VBFCALC_SWITCH = false in the
file kk_input.dat. VBFNLO will then calculate the gauge boson widths on the basis of
these parameters by the decay to the lower lying states. The inputs in kk_coupl_inp.dat
are as follows:

e KKMAXW: The maximum number of Kaluza-Klein W,;t states included on top of the
Standard Model W¥ bosons.

e KKMAXZ: The maximum number of Kaluza-Klein Z; states included on top of the
Standard Model Z boson.

e KKMAXG: The maximum number of Kaluza-Klein Z] bosons that are excitations of
the Standard Model photon Z;_,,.

o Kaluza-Klein masses:

— KKMASSW: List of masses of the Kaluza-Klein I/VkjE states.
— KKMASSZ: List of masses of the Kaluza-Klein Z;, states.
— KKMASSG: List of masses of the Kaluza-Klein Z; states.

e Couplings

— CPL_Wz-Wy-ZX: List of couplings between Kaluza-Klein states: W — W — Z,
to WE = WE = Zugus:

— CPL_Wx-Wy-GX: List of couplings between Kaluza-Klein states: WE — W;L -7}
to W — W - Z,

KKMAXG *
— CPL_Wx-Wy-Wz-WX: List of couplings between Kaluza-Klein states: W= — I/VyjE —
WE =Wy to WE—WE-WF - Wi

KKMAXW *

— CPL_Wx-Wy-Zz-ZX: List of couplings between Kaluza-Klein states: W= — I/VyjE -
Zz — Z(] to W:;t — Wyﬂ: - Zz - ZKKMAXZ'

— CPL_Wx-Wy-Gz-GX: List of couplings between Kaluza-Klein states: W — I/VyjE —
Z;—Zéton—Wf—Z;—Z’

KKMAXG *
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— CPL_Wx-Wy-Gz-ZX: List of couplings between Kaluza-Klein states: W= — I/VyjE —
Z; — ZQ to W;: - Wyﬂ: - Z; - ZKKMAXZ'

The default values in kk_coupl_inp.dat are those produced when VBFNLO is used to
calculate the couplings and masses using the default values of kk_input.dat as described
above.

4.7 spin2coupl.dat — parameters for spin-2 models

The file spin2coupl.dat is used to set the parameters for the spin-2 models. It is read
if the switch SPIN2 in vbfnlo.dat is set to true, and will only run if the spin-2 models
were enabled at compilation using the configure option --enable-spin2.

VBFNLO uses an effective model to describe the interactions of spin-2 particles with
electroweak gauge bosons for two cases: an isospin singlet spin-2 state and a spin-2 triplet
in the adjoint representation, as described in Refs. [40-42]. For the singlet spin-2 field,
T+ the effective Lagrangian is

1 ) _ . )
Linglet = KT“” (f1B°‘”Bg + oW WIR + fsBY BE + AW WHE
+2f5(D"®) (D" ®) + fo G GLM) (25)

and for the spin-2 triplet field, TJ” Y, the effective Lagrangian is given by
1 . _
Lusier = 5 Tous (fo(D*®)0? (D) + FrIW3# B, (26)

where W, B and G are the usual field strength tensors of the SM gauge fields, W and
B the dual field strength tensors, ® is the Higgs field and D" is the covariant derivative.
fi are variable coupling parameters and A is the characteristic energy scale of the new
physics.

In order to preserve unitarity, a formfactor is introduced to multiply the amplitudes.
The formfactor has the form:

9 2 2 nyf
fal 43, p50) = A Ay Ay : (27)
P |CI%| + A?‘f |q§| + A?”f ‘p§p2| + Af”f

Here p§p2 is the invariant mass of a virtual s-channel spin-2 particle and qiz are the
invariant masses of the electroweak bosons. The energy scale Ay and the exponent n ¢
describe the scale of the cutoff and the suppression power.

The input parameters used by VBFNLO are:

e F1,F2,F3,F4,F5,F9: Coupling parameters for the spin-2 singlet field.

F6,F7: Coupling parameters for the spin-2 triplet field.

LAMBDA: Energy scale of the couplings in GeV.

LAMBDAFF: Energy scale of the formfactor in GeV.

NFF: Exponent of the formfactor.
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The gluon coupling F9 only affects the implemented VBF processes via the total width of
the spin-2 particle. Note that the electroweak part of the graviton scenario corresponds to
F1=F2=F5=1 and F3=F4=F6=F7=F9=0.

VBFNLO also needs the masses and branching ratios of the spin-2 particles into SM
gauge bosons.

e SP2MASS: Mass of the spin-2 singlet particle in GeV.
e MSP2TRIPPM: Mass of charged spin-2 triplet particles in GeV.
e MSP2TRIPN: Mass of neutral spin-2 triplet particle in GeV.

e BRRAT: Branching ratio for spin-2 singlet particle into SM gauge bosons. Default
value is 1.

e BRRATTRIPPM: Branching ratio for charged spin-2 triplet particles into SM gauge
bosons. Default value is 1.

e BRRATTRIPN: Branching ratio for neutral spin-2 triplet particle into SM gauge bosons.
Default value is 1.

Default values for different processes and scenarios can be found in Refs. [40-42[7]

4.8 histograms.dat — parameters for histogram options

VBFNLO can output histogram data in a variety of different formats (ROOT, GNUPLOT,
TOPDRAWER, raw data tables), as described in Sec

The file histograms.dat allows the user to set the x-axis range, enable a bin smearing,
and enable the calculation of the Monte Carlo error per binf}
VBFNLO can calculate the Monte Carlo error for each bin and output this to the root and
the raw histogram data output for 1D and 2D histograms. For the gnuplot histogram
output only the 1D histograms can display the error bars.

e CALC_ERROR_GNUPLQOT: Enable or disable y-error bars in 1D GNUPLOT histograms.
Default is false.

e CALC_ERROR_ROOT: Enable or disable y/z-error bars in 1D/2D ROOT histograms.
Please note: only the histograms defined in the FORTRAN file histograms.F can be
generated with error bars. Default is false.

e CALC_ERROR_1D: Enable or disable y-error bars in raw 1D histogram output. Default
is true.

e CALC_ERROR_2D: Enable or disable z-error bars in raw 2D histogram output. Default
is false.

Furthermore, VBFNLO uses a smearing between adjacent bins to avoid artefacts at NLO
when the real emission kinematics and the corresponding subtraction term fall into different
bins. As this can lead to remnants at the sharp edges caused by cuts the smearing can be
switched off.

31Note that in Ref. |40, process 191 (pp — spin-2jj — v jj) is referred to as process 240.
32By default 100 bins are used. This number can be altered in utilities/histograms.F.
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e SMEARING: Enable or disable smearing. Default is true.

e SMEAR_VALUE: Set the bin fraction where the bin smearing is active. The part that
is put to the next bin becomes larger when the x-value is closer to a bin border.
Default is 0. 2.

The range of the x-axis of the produced histograms is input in the format: xmin xmax.
The following describes those histograms which are already implemented in VBFNLO. By
altering the file utilities/histograms.F, however, it should be easy for the user to add
new histograms — VBFNLO will automatically read in the range of each created histogram.

e HIST_ID1: Range for pr of tagging jets. Default range is 0 to 250 GeV.

e HIST_ID2: Range for pr of tagging jet with higher pr. Default range is 0 to 500 GeV.
e HIST_ID3: Range for pr of tagging jet with lower py. Default range is 0 to 200 GeV.
e HIST_ID4: Range for rapidity of tagging jets. Default range is -5 to 5.

e HIST_ID5: Range for rapidity of tagging jet with higher py. Default range is -5 to 5.
e HIST_ID6: Range for rapidity of tagging jet with lower py. Default range is -5 to 5.
e HIST_ID7: Range for pi** of leptons. Default range is 0 to 500 GeV.

e HIST_ID8: Range for pi™ of leptons. Default range is 0 to 500 GeV.

e HIST_ID9: Range for ny.x of leptons. Default range is 0 to 5.

e HIST_ID10: Range for 7y, of leptons. Default range is 0 to 5.

e HIST_ID11: Range for azimuthal angle (in degrees) of tagging jets. Default range is
-180 to 180.

VBFNLO can also produce 2D histograms. In this case, both the  and y ranges can be set
using histograms.dat in the format xmin xmax ymin ymax.

e 2DHIST_ID1: Range for 2D histogram of dc/(dn;;dm;;). Default ranges are 0 to 6
for the n () axis and 0 to 800 GeV for the m;; (y) axis.

If the z-axis and y-axis ranges are not provided in the file histograms.dat the default
values, which are set in utilities/histograms.F, are used.

A brief documentation on how to implement additional histograms into the file
histograms.F can be found on the VBFNLO webpage, http://www.itp.kit.edu/vbfnlo/ .

4.9 random.dat — parameters for seeds

To run with different seeds, simply set the variable SEED in the file random.dat to a
different integer value.
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4.10 Calculating the s-channel vector boson exchange contribu-
tions for the VBF processes

The VV'V processes with semileptonic decays can be used to calculate the s-channel vector
boson exchange contributions which are neglected in the V'V jj processes with fully leptonic
decays in VBF. The same holds for semileptonic V'V production and Vjj production in
VBF.

Using the available processes with semileptonic decays it is possible to calculate the
s-channel contributions to the processes Zjj, W*jj, W*HW =355, W*Zjj, W*~jj and
Z 735 in VBF with fully leptonic decays. In order to achieve this, the corresponding
processes with semileptonic decay should be run with the same settings as the VBF process,
except for the scale choice in case a dynamical scale has been used in the VBF processes.
Additionally, the following settings should be made in cuts.dat:

e DEF_TAGJET = 1

PTMIN_TAG_1 = 0 and PTMIN_TAG_2 = 0O

HARD_CENTRAL = false

VBFCUTS_ALWAYS = true

e RECONST_HAD_V = O

1
(@)

SINGLE_DECAYJET
e RECONST_HAD_V = 0O

The option DECAY_QUARKS in the file vbfnlo.dat has to be set to the value 93 (or 94
if initial and final-state b-quarks should be included). The list of corresponding s- and
t-channel contributions in VBFNLO can be found in Table 23]

With this prescription a few simplifications are in place: interferences between s- and
t-channel contributions are still neglected. Additionally, the NLO QCD corrections of the
hadronic vector boson decay can be included only in an approximation (see Section [4.1]).
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PROCESS ProcID of ¢t-channel | PRocIDs of s-channel
P = Zjj — 0t g 120 312, 331

PP — W ij = 0Ty 130 302, 313

PP = W™ jj = 5 jj 140 301, 323

PP = WEW = jj = v, b5 14, §j 200 403, 431, 442
PP = WEZjj =t 05t jj 220 402, 412

PP = W—Zjj — (o 05ty jj 230 401, 422

PP — ZZ5j — (e ey 5 210 411, 421, 451
PP = Wy i — vy i 270 462, 482

PP = Wy — Ty i 280 461, 492

Table 23: Corresponding s- and t-channel vector boson exchange contributions of elec-
troweak V(V')jj production in VBFNLO.

5 (CHANGES

The release VERSION 2.7.0 includes some changes that alter previous results:

5.1 Running scales in NLO calculations

In release 2.7.0 a problem with certain dynamical renormalization and factorization scales
has been fixed, which lead to wrong results at NLO QCD in the subtraction part of the real
emission calculation. In particular, the scale choices “min(pz(j;))” (ID=2) and “minimal
transverse energy of the bosons” (ID=7) did not give correct results in previous releases.

5.2 Jet cuts in VBF /gluon fusion Higgs boson production with
H — bb

Starting with VBFNLO 2.7.0 the jet cuts will be applied to the b-quarks from Higgs boson
decay.

5.3 NLO calculation of W*W~Z production

A bug in the calculation of the virtual contributions for WW Z production has been fixed
while comparing with the results of Ref. |[103]. The new results are roughly one per cent
smaller, and agree between both codes for squared amplitudes at the level of the machine
precision and for integrated cross sections at the per mill level.
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5.4 LO and NLO calculation of W*jj / Zjj production in VBF

The particle—anti-particle-assignment in W75, Zjj has been fixed. In case of Wjj
production this leads to an increase in cross section of roughly one per cent with basic
cuts.

5.5 Event output

Several bugs have been fixed concerning the event output to Les Houches or HepMC files:
e The color information in the event output for W~W =357 in VBF has been fixed.

e The momenta assignment in the event output for W~-W W~ has been corrected.

5.6 Previous changes — version 2.6.3

The release VERSION 2.6.3 includes some changes that alter previous results:

5.6.1 Event output

Several bugs have been fixed concerning the event output to Les Houches or HepMC files:

e Fixed bugs in output of particle IDs for processes 191 and 43xx: In previous versions
some particles had the particle ID 0.

e Parton and beam particle IDs have been fixed for process 260.

e The tau mass can now be included in the event output of all processes. Furthermore,
several bugs have been fixed in the existing implementation of tau mass inclusion.

e Several bugs have been fixed in the helicity output.

5.6.2 Calculation of the H — gg partial width

Higher-order corrections to the H — gg partial width have been included which lead to
slightly smaller branching ratios for all other decay channels. Therefore cross sections of
processes involving Higgs bosons can be up to a few per cent smaller.

5.6.3 Electroweak corrections in the VBF Hjj processes

Some bugs have been fixed in the calculation of electroweak corrections for the processes
10x.

5.7 Previous changes — version 2.6.2

The release VERSION 2.6.2 included some changes that altered previous results:

5.7.1 Distributions and cross section for H — WW in VBF and gluon fusion

Due to a bug which has been fixed in the lepton assignment for H — WW/ZZ — 44
distributions (and cross sections after the my, cut) were off for the 1x5 and 4105 processes
in the previous versions. This bug has been fixed in v.2.6.2.
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5.7.2 Les Houches event output for processes with more than one phase space

The fraction of events coming from the different phase spaces was not sampled correctly in
previous versions. Processes affected are W, Z~, Wy, Z~j, ZZZ, WW~, W Z~, W,

Zyy, yyy and Woyg.

5.7.3 ZZZ production

The QCD real emission part of the NLO computation gave no reliable result in previous
versions due to a bug in the dipole subtraction. This bug has been fixed in v.2.6.2.
5.7.4 Form factor in v jj production with anomalous couplings

For the v jj production in VBF (procID 150) a different form factor is used.

5.8 Previous changes — version 2.6.1

The release VERSION 2.6.1 included some changes that altered previous results:

5.8.1 Anomalous Higgs couplings

A bug was found and fixed in the implementation of the TREEFACZ and TREEFACW, the
factors which multiply the SM HZZ and HWW couplings. Note that this bug was only
present in VERSION 2.6.0, not in earlier versions. Additionally, a small bug was found
and fixed in the coefficient of the input FB_ODD in the a£%Z coupling.

5.8.2 Symmetry factor 27 — (T (70~

In the processes pp — H~vjj — ZZ~vjj — (707" ~jj (ID 2106) and gluon fusion
pp — Hjj — ZZjj — (¢ {1055 (ID 4106) a symmetry factor was missing when
identical final-state leptons were chosen.

5.9 Previous changes — version 2.6.0

The release VERSION 2.6.0 included some changes that alter results (events, cross sections
and distributions) from earlier versions.

5.9.1 Allowed width of virtuality

In the phase-space generators, the allowed range of the virtuality of a resonance of
intermediate vector bosons has been increased. This mainly affects processes where an
intermediate Z boson decays into a pair of neutrinos — i.e.

e pp — Hjj — ZZjj — (Tl vwjj via vector boson fusion (process ID 107) and
gluon fusion (process ID 4107)

e pp = Hjjj — ZZjjj — (T4 vvjjj (process ID 117)
o pp — Hvyjj — ZZ~jj — (T~ vwryjj (process ID 2107)

e pp — ZZjj — LT~ vwjj (process ID 211)
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This not only affects the cross sections for these processes, but also means that the events
produced by VBFNLO-2.6.0 will differ from those produced by VBFNLO-2.5, even if the
same random numbers are used.

5.9.2 Matrix element H — 77 — 4¢

A bug was found and fixed in the implementation of the matrix element calculating the
decay H — Z7Z — 4L.

5.9.3 Anomalous couplings

Several changes have been made to the implementation of the anomalous couplings. For
Higgs production via vector boson fusion (process IDs 100-107) the variable TREEFAC, which
multiplies the Standard Model contribution to the tree-level HV'V couplings, has been
corrected and altered — now, separate factors for HZZ and HWW are input (TREEFACZ
and TREEFACW respectively).

When working with anomalous HV'V couplings two types of formfactor can be applied
which model effective, momentum dependent HV'V vertices, motivated by new physics
entering with a large scale A at loop level. Corrections to the HV'V formfactor F, (see
Eq. have been made. The implementation of the parameterization described by
PARAMETR3 — where the input determining the anomalous couplings is in terms of the
dimension-6 operators (O, Op, Oww and Opg) have also been altered.

If anomalous triple (and quartic) gauge boson couplings are being studied, a formfactor
given by

S \—P

F= (1 + F> , (28)
can be applied in order to preserve unitarity, where A is the scale of new physics. The
momentum dependence of the applied formfactor (i.e. s) is now universal for each phase-
space point, with the invariant mass of the produced bosons as the scale. This ensures the
proper cancellations for anomalous contributions. The values of the formfactor scales A
and p can be set to different values for each input describing the triboson couplings. In the
parameterization TRIANOM = 2, the formfactor scales for Ak, and Ak, are now separately
set, and the consistency of related parameters (i.e. Ag?, Ak, and Aky) is enforced when
formfactors are applied.

When processes involving resonant Higgs diagrams (e.g. WWW production) are
studied with anomalous couplings, the Higgs width is now calculated with the appropriate
anomalous HV'V' couplings (the anomalous HV'V couplings in the production amplitudes
were taken into account in previous versions of VBFNLO). Various corrections have also
been made to the anomalous triboson couplings in diboson plus jet processes (these were
incorporated into the intermediate release VBFNLO 2.5.3).

5.9.4 VBF Higgs boson production in association with three jets

A small bug was found and fixed in the calculation of the processes pp — Hjjj, with
process [Ds 110-117.

5.10 Previous changes — version 2.5.0

The previous version of VBFNLO — 2.5.0 — was altered in such a way that some results
differ from VBFNLO-2.0 and below. These changes are described briefly here, and in more
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detail on the VBFNLO website, http://www.itp.kit.edu/vbfnlo/.

5.10.1 EWSCHEME

The implementation of options EWSCHEME = 1 and 4, which are described in Section [4.1.2]
was altered. The new implementation is hopefully more transparent, and is described in
this manual.

5.10.2 Gluon fusion

Since version 2.5.0, in gluon fusion processes the bottom-quark mass M,(My) is used
throughout the calculation. New, more stable, tensor routines for the boxes and pentagons
were implemented, reducing the number of omitted points with bad numerical accuracy.
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6 CHECKS

Extensive checks for the LO and the real emission amplitudes, as well as for the total
LO cross sections, have been performed for all processes implemented in VBFNLO. Born
amplitudes and real emission diagrams have been compared with the fully automatically
generated results provided by MADGRAPH [17]|. Complete agreement has been found in
each case. Moreover, total LO cross sections with a minimal set of cuts agree with the
respective results obtained by MADEVENTP?| [18,[104], SHERPAPY [105] and/or HELAC-
PHEGASY] [106/{108].

LHA event files for the LO processes have been tested with HERWIGJr#—m [109], a
general purpose Monte Carlo event generator for the simulation of hard lepton-lepton and
hadron-hadron collisions.

As a final and very important test, comparisons with already published results have
been made. The NLO results for Higgs boson production via VBF agree with those
produced by the code HAWKHI. In Ref. [110], a tuned comparison of LO and NLO QCD
results for Higgs boson production via vector boson fusion at the LHC has been performed.
Three different calculations have been cross checked: VBFNLO, the results of Refs. [111,[112],
and the VV2H program? For the dominant ¢- and u-channel contributions which are
implemented in VBFNLO, good agreement has been found. Diboson processes, including
W H, as well as W and W7 production have been checked against MCFI\/JF_gI [113-115]. The
results for W H+jet production have been compared with Ref. [116]. For the triboson
processes a comparison for the production of on-shell gauge bosons without leptonic
decays has been performed with the results presented in Ref. [117]. Additionally, the
tree-level results for W*~+ have been compared to the results with an on-shell W boson of
Ref. [118]. Again, in all cases good agreement has been found. Triple photon production
has been tested against FEYNARTS, FORMCALC and HADCALC [5[6,|119]. Processes with
anomalous quartic gauge couplings have been compared with MADGRAPH/MADEVENT
and WHIZARD[Y| [120] in Ref. [95]. Results for the CP-odd and CP-even Higgs boson
production via gluon fusion have been tested against FEYNARTS and FORMCALC [22,23].

All fermion loops have been checked against results obtained with FEYNARTS, FORM-
CALC and LooPToOLS. and the gluon-gluon loops have also been checked against
caa2VVH [121,]122).

33http://madgraph.hep.uiuc.edu/

34nhttp://sherpa.hepforge.org/
3%http://helac-phegas.web.cern.ch/helac-phegas/
36http://herwig.hepforge.org/

3" http://omnibus.uni-freiburg.de/~sd565/programs/hawk/hawk.html
38http://tiger.web.psi.ch/vv2h/

39nttp://mcfm.fnal.gov/

“Onttps://whizard.hepforge.org/

Thttp://gg2VV.hepforge.org/
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7 OUTLOOK

Additional processes and features will become available in the near future and will be
included in the code version on the VBFNLO website.
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A OPERATORS FOR ANOMALOUS GAUGE BOSON COUPLINGS

A.1 List of operators implemented in VBFNLO

This is a list of the full set of operators included the effective Lagrangian which is used
for calculations with anomalous gauge boson couplings. The full set can be used in the
diboson, triboson and V'V jj in VBF production processes. The dimension-6 operators are
constructed according to Refs. [88,89] and the dimension-8 operators are taken from [94].
More details on the implementation of these operators can be found in Refs. [84-86].

With the building blocks (following the notation of [88,89])
W, = igT"We,
B., = igYB,,
D, = 0, +igT*Wi +ig'YB,, (29)
we can construct the following operators, where g and ¢’ are the SU(2) and U(1) gauge

couplings, and T* are the SU(2) generators. We obtain slightly different expressions for
the dimension-8 operators compared to [94], as they use different field strength tensor

expressions (W\W = T“W;}V and B\W = B,,). The conversion factors for the coupling
strengths f; between [94] and our implementation can be found in Appendix

The explicit form of the CP-even operators is
Ow = (D,®) W (D,®)
Op = (D,®)B"(D,o)
OWWW = Tr WﬂyW”PWpu
O = BT, T
Ops = ®'B,B"®. (30)

If we replace one field strength tensor with the corresponding dual field strength tensor,
we obtain the C’P-odd part of the Lagrangian

==

Ow = (D,®)'W (D,®)
Y

05 = (D,®)'B (D,®)

OWWW = Tr {WNVWVPWPP}

O = BT, T
Op, = @B, B"®
Opw = Tt ([DM,WWMD“,/WW])

m

O, = OB,W & (31)

BW
The operators O g and O are included only in their CP-odd version, as their CP-
even counterparts affect the gauge boson two-point functions and are already extremely
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constrained by electroweak precision tests. Furthermore, only 4 of these 7 operators are
linearly independent. For example O, O3 and O3 can be written as

1 1
= 05— 59%w + 595
= —205—Opy
= —40mpuw - (32)

The dimension-8 operators can be split into three categories:

1. Operators using D, ®:
Ls
Lsn

2. Operators using D, ®, WW

Lo
L
L2
L3
L
Lars
L

Lz

= [(D,®)'D,®] x [(D'®)'D"®]
— [(D,®)D"®] x [(D,®) D"®] (33)

and BW:

= e [Wu 0| x [(Ds@) D0
= e [Wu | x [(Ds@) D"
— | BuB"| x [(Ds0) D0]

— BB x [(Ds®) D"®)
TWBVDWI)} x BP

f WB,,D”cD} x BPH

f Wﬂ,,WﬂVDﬂcp}

Twﬁ,,wﬂﬂp'@} (34)

3. Operators using W;w and BW:

Lt
L7
L
Lrgs
Lt
L7

Lrsg
Lr.g

= Tr -WWW“”- x Tr -WQ@WQB-
= Tr _WQVWW_ x Tr _WWWW_

=[] T [t

"5 By, BV (35)
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Each new operator introduces a new coupling strength f;, so the complete effective
Lagrangian containing effects from dimension six and eight operators is

Loy = Lsu
+ ]XZ Ow + /J;]z Op + fVZXWW Owww + fVAV;A/ Oww + fff Ops
+ % ];éto +fWKV2WtOWWW+fVXZ”OWW+fiftO
+ %ODWJJ%”O e
+ J;\Sfﬁso J;{qj[’m
T L P L1 IR LTI LY
+ %4£M4+T5£M5+JX“£M6+{€”£M7
+ J;XTj.cTo JXiﬁTl JX;ET2+J;\T45£T5+J;\T5£T6 JX475T7 (36)

A.2 Conventions for anomalous gauge boson coupling parameters
in VBFNLO

As mentioned in Appendix [A.T], our definition of the field strengths is slightly different
than the one of [94]. For comparisons with programs that use the definition from [94] (for
example MadGraph5 [123] with the UFO file written by Eboli et al., you should rescale
the coupling strengths by

fson = f5F (37)
1 Sboli
fM,o,l - T3 1\]43[][,)0,11 (38)
4 Eboli
Tvmes = ——5 - faos (39)
2 Eboli
fM,4,5 = _E‘ M4,5 (40)
1 Sboli
fusr = —= - fires (41)
1 Eboli
fT,0,1,2 = 41 °JT01,2 (42)
4 Eboli
fT,5,6,7 = W T,5,6,7 (43)
16 Sboli
frso = ﬁ' :Eké,é (44)

where g and ¢’ are the SU(2) and U(1) gauge couplings. The numerical values of g, g used
in the calculation are printed out at the beginning of the VBFNLO run.

42available from http://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling
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B Process list

The following is a complete list of all processes available in VBFNLO, including any Beyond
the Standard Model (BSM) effects that are implemented. Firstly, the processes that are

accessed via the vbfnlo executable are given.

&
Y S >
Y D Q
&b@ﬂ O\NQ O\»Q\ be\' &S
.\0 %% @Q %CJ @0 ‘& Q}
& & FF g & &
S L & /‘2’ &2 ‘b"
N Q 3 3 jz» ¢ ’ @
St e ST
ProcID PROCESS LSS E XY
100 pp — Hjj RV
101 pp = Hjj— v VY
102 pp = Hijj = ptp= jj Y
103 pyp = Hijj =t jj Y
104 pp — Hjj = bbjj RV
105 pp — Hijj — WHW= jj = Fvg by 0, jj Y
106 pp = Hjj— 22jj — 650 jj NV
107 pp = Hjj— ZZjj — (T ve,in, jj N S
108 pp = Hijj = WHW=jj — qql v jj S v - v - -
109 pp — Hijj— WHIW= jj = (Tvqq N A
1010 pp — Hjj = ZZjj — qq " jj S ov - v - - =
=) .
110 pp = Hjjj N
-) .. ..
111 pp = Hjjj—v7jiJ - v - - - - - =
-) o ..
112 pp — Hjjj— ptpu~ jjj - vV - - = = = =
113 pp = Hjjj =747 jji N
114 p'p — Hjjj — bbjjj _ v - - - -
-) . .. ...
115 pp — Hjjj—WTW j]j—)éfwlfz U, 377 - v - - - - = =
116 pp — Hjjj = 27 jjj — (76505 i - - - - - - -
-) .. . _ .
117 pp — Hjjj— ZZ3jjj — 60 ve,ve, 4) - v - - - - - -
120 pY = Zjj— 0tejj _ v v - - o _ _
121 pp = Zjj = minjj v v - - - -
130 pp = WHjj = ttujj _ v v - - -
140 pp = W jj = ("7 Y
150 pp =7 - v v - - - -
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&S 000@2 o &

& F S S ¥

S S S s

S e ST

ProcID PROCESS L P F T E XY
191 pp = Sajj =i N
195  pp — Sajj = WEW= jj — vy b3 7y, _ v - - o _ oy o
196 pp = Sajj — ZZjj — CH7 050 jj v - - s o
197 pp = S2jj = 22 jj — O veyn, G Y
160  pp — HHjj N
2100  pp — Hyjj _ v - - - _ _ _
2101 pp = Hyjj =177 A
2102 pYp = Hyjj = whpyjj N
2103 p'p — Hyjj— rtrjj Y
2104  p'p — Hyjj — bbyjj _ v - - - - _ _
2105 pp — Hyjj — WW—y3jj — b ve, 5 76,7 jj S S
2106 pp — Hryjj — ZZyjj — (7030~ ) N
2107 p'P — Hryjj — ZZvjj — 507 ve, 00, ji _ v - - - o o _
200 pp - WHW jj = v, b o, G N 2 VR
201 p'p = WHW jj — qgl 70 jj S v v - v - - -
202 PP = WEWjj = (ruqdij S v v - v - - -
210 PP = ZZjj — (HT e i v v - v v v _
211 PP = ZZjj = Ol v, i N 2 VA
212 PP = ZZjj = qqtt jj vV VY v - v - - -
220 PP - WZjj - (v b5 jj N 2 VA
221 pY = WHZjj - qgtte jj v v - v - - -
222 pp = WtZjj = (ruqdj S v v - v - - -
230 pp = WZjj— (0,05l i N Y VA
231 pp = W Zjj = qqltejj Y
232 PP S W Zjj = qdji S v v - v - - -
250 P = WIWTjj — v (v, jj N VA
251 PP = WHWH i = gl jj v v - v - - -
260  pp > WW jj — (700,05 7, ji N V.
261 pp = W W jj = qal g VoV v - v - - -
270 p'p - Whyjj = vy jj _ v v - - -
280  pp = W jj = €0 jj - v v - - - -
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B &
be@ﬂ OOQ\&QO\&Q\&O&\ 0&7}
S & ¥
& & e & &
DV e R D
& <§ & & &S

ProcID PROCESS L FSE D
3130 PP = Wt ij — T j - o o
3140 pp = W jj = -7 jj -
3220 pY o WHZjj— v 65ty jj -
3230  pp > W Zjj - (7o 5ly ji .
3250  pp — WHW jj = (Fve, 5w, 5 .
3260 pp — W W< jj = 6775, 5 - - - -
3270 pY = Whyjj — Cruey i - -
3280 pp = Wi — 0y .
1330 PP = Wt oty -
1340 pp =W =l _ o o _ o_
1630 pp = W*j = (i) .
1640 pp =W j =05 j _ o o _ o
300 PP = WHW— = (fu, b5, Y
301 p(yS) S WHTW~ = qqt" v, - v v - - - _
302 pp = WHW— =ty qq S - v v - o o
310 pp = WHZ = tFu, 0565 _ - s - - _ _ _
312 pp = WTZ = qglte S - v - - _ _ _
313 p(fo) —WTZ = 0ty qq S - v - - - - _
320 PP o WZ (7ol Y
322 PP = WZ = qqltim v - v - - _ _ _
323 PP oW Z—=qq /S - v - - _ _ _
330 pp = ZZ - (7600 R
331 pp = ZZ = qgl 0t - - v - - _
340 p(ja) = Why = vy - - v - - - - _
350 p(i)) = W=y = vy - - v = = - - =
360 p(fo) — Zy = 070y - - - Y = - -
370 pp =y - - - v - - - -
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&S Fo &
R R IR
\90 OGQ) ‘v\,éo ®%%' & @Q) &
.,\"’Q NES N ‘2*”60 & ¢ s >
R

ProcID PROCESS L P F T E XY
1300  pp = WHH = ¢ty H .
1301 pY = WHH — (i - - v - - - -
1302 p(ja) —WTH — (tTypptu~ - - v - - - - -
1303 p(i)) — WTH = {Typrtr— - - v - = = - -
1304 pp = WHH — ttubb .
1305  pp = WHH = WHWHW= — 6 vy, (3 v, 05 70, - - v - - - - -
1306 p'p = WHH — W*ZZ — (fv, 05050505 2
1307 p'p = WHH — WHZZ — (f vy, 05 6y vy, 7, Y
1310 PP =W H — - inH .
1311 pY = W H = iy R
1312 p(fo) —W™H = £t~ - - v - - - - -
1313 pp = W H — (- pyrtr S
1314 PP = W H — 0~ iybb .
1315 pp »> W H = W-WW— — (] 5,65 v, 05 7, S
1316 pp > W H = W27 — (7 0y, 05 05 0505 2
1317 PP = W H = W—ZZ — (5, (305 vy, i, - - v - - - -
610 p(];) = W=vyj =L 0pyj - - v - - - - -
620 p(p) — WTyj = £Tvpyj - - v - - - - -
630 pp — WZj — (7l 05 O
640  pp — WHZj— (v, 5055 - - v - - == -
1600 pY > WHHj = (Y Hj - - v - - - -
1601 pp = WHHj — ttumyyj .
1602 p(i)) —WTHj = Toputu=j - - v - - - = -
1603 PP = WHHj — trurtr - - v - - - -
1604  pP = WHHj — (+ubbj S
1605  pp = WHHj —» WHWW=j = (fvg ivebo0,) - — v — — — — -
1606 pp — WHHj — WHZZj — Uiy (3050305 - - v - - - = -
1607  pp — WHHj — WTZZj — Crvg b5 by vg,ip, - - v - - -
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& SN
o N o§ >
ProcIbD PROCES 0&0 . ég)eo %QO Obe O
s K& & & o
@\ < ¢ X *2;”6060 o :
&L & & & W " >
1610 -) & & & é& %%
pp —-W™Hj U @
o 4 j—= 0" Hj
pp ->W-"Hj -
o r J—= oy g -
1 pp = W Hj— L ipu™ -
& ’ E - - .
613 pp — W Hj o -
e » AR 7 o -
4 pp ->W-Hj ~,bb : =
o 4 j—= L Ubbj o o
pp =W Hj—W-WT+ -
1 o o - o
616 Pp)—>W—H~ W= j = by e, by vey b3 Ty, VR
: w27 - 142 Vi3 Ve - : : :
o 4 Zj—>€9€+7+ i Y
pp W Hj W~ 22 ) -
Zj — 07 0 U by v, 0 S :
1 Ve ly Uy Vey ey -
- - v = .
400 @ -
pp — WTW— -
oo Z — (v by g, 0305
p W=7 — qgly v b5 - ,
402 pp S WtwW-Z iy e v -t
403 ) — v, qqld 0y . -
pp = WHW~-Z * i -
410 oY% ™ Avals P ad Pl s
pp — ZIWT = 0f 7 by -
411 ©) GGGy i i
pp—)ZZW+—>€+_+2343 -
12 Yoz b e .
420 o) W = qq b 6 . o
PP = ZZW- +1_12% S
0 v N ey 7 CY -
pp — ZZW™ — 0He; o -
422 pp > L - .
30 o0 ZZW= = qq it by . o
) 14w o :
pp = WHW-W+ T - -
431 pp N — v by g, (3 v o -
! (17))—>W W-W+ —qqliv S . S
32 pp — WHW-W+ i, St |
o 4 — 0Ty, qq T o -
o e 1 Ve, 93l v, P
441 p%) —W-W* hntt _— .
442 (-) v KIDZ it | / : : _ _
e %W7W+W7 199 %9 Vi, y . } ’
450 ) Aty P g
pp — ZZZ — 070505 o -
451 O b GG . i
3 \/ }
pp — ZZ7 — qaly 005 3 -
qly ity @_ P -
v - v = o
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be@ﬂ 000$ioo§06® o
RS Q S >
& & q;’éo ®%%' & @@ &
RO L RN
& <§ & & & S

ProcID PROCESS L P F T E XY
460 p(ja) — WWhy — 07 0, 03 ve,y - -y - - -
461 pp - WHW =y = qq vy S - v - - - - _
462 pp = WHWy = Lruqqy R
470 PP = ZZy > T iy R
AT Y > 22y = gy V o— v - - - -
480 PP = WH Iy o G b5 05 e
481 p(]a) — W2y — qgl 0Ty v - v - - - - _
482 pp - W2y - tTupaqy -
490 p(]a) W~ Zvy— E;ﬂglfgfg’}/ - - v - - - - _
491 pp =W Zy 5 qal v - v - o o _
492 pp S W Zy = gy S - v - - _ _ _
500 pp - Wty = Loy - - v - - - -
510 pp — Wy = L ieyy - - v - - - - _
520 p(f)) — Zyy = 00T yy S
521 pp = Zyy = vy Y
530 pp =y Y
800  pp — Wi — (rupj S
810 plp — Wi = (o .
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The gluon-fusion processes accessed via the executable ggflo are given below.

&
@e@%%&dﬁ O\«,Q\x >
T 60%0 Q
& &
F & & &S
ProcID PROCESS g & F
4100 P = Hjj S - - v v
4101 PP = Hjj — vvjj v - - - v
4102 PP > Hjj— ptu jj o - - v
4103 pp = Hjj—rtr jj v - -
4104 p'p = Hjj — bbjj S - - - v
4105 PP S Hjj>WW—jj = Gol5o,ji v — « v
4106 p'p — Hjj — ZZjj — (7070305 5j S - v v
4107 pp = Hjj — ZZjj — €7 ve, i, jj S - v v v
4300  pp = WHW = v 05 o, o v - -
4301 pp S WHW— = gl S VoV - -
4302 PP = WHW = (g oV v - -
4330 pY = ZZ > (605 05 v - v - -
4331 pY = 27 — qql et VRV V.
4360  pp — Zy o (6 o- v - -
4370 p(f)) — vy v - v - -
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