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Total Higgs production cross sections at the LHC

Vector boson fusion is an important ingredient in Higgs search at the LHC
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Higgs Search in Vector Boson Fusion
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[Eboli, Hagiwara, Kauer, Plehn, Rainwater, D.Z. . . . ]

Most measurements can be performed at the LHC with statistical accuracies on the measured

cross sections times decay branching ratios, σ× BR, of order 10% (sometimes even better).
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VBF signature
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Characteristics:

•• energetic jets in the forward and backward directions (pT > 20 GeV)

•• Higgs decay products between tagging jets

•• Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange

(central jet veto: no extra jets with pT > 20 GeV and |η| < 2.5)
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Statistical and systematic errors at LHC

Assumed errors in fits to

couplings:

•• QCD/PDF uncertainties

- ±5% for VBF

- ±20% for gluon fu-

sion

•• luminosity/acceptance

uncertainties

- ±5%

Some of the lowest errors are achievable in VBF production of the Higgs boson



VBF processes at LHC

qq→qqH Han, Valencia, Willenbrock (1992); Figy, Oleari, DZ: hep-ph/0306109; Campbell, Ellis, Berger (2004)

•• Higgs coupling measurements

qq→qqZ and qq→qqW Oleari, DZ: hep-ph/0310156

•• Z→ττ as background for H→ττ

•• measure central jet veto acceptance at LHC

qq→qqWW, qq→qqZZ, qq→qqWZ Jäger, Oleari, Bozzi, DZ: hep-ph/0603177,

hep-ph/0604200, hep-ph/0701105

•• qqWW is background to H→WW in VBF

•• underlying process is weak boson scattering:

WW→WW, WW→ZZ, WZ→WZ etc.

=⇒ measure weak boson scattering

Precise predictions require QCD corrections
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Generic features of QCD corrections to VBF

t-channel color singlet exchange =⇒ QCD corrections to different quark lines are independent

Born and vertex corrections to upper line

No t-channel gluon exchange at NLO

real emission contributions: upper line

Features are generic for all VBF processes
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Real emission

Calculation is done using Catani-Seymour subtraction method

Consider q(pa)Q→g(p1)q(p2)QH. Subtracted real emission term

|Memit|
2 − 8παs

CF

Q2

x2 + z2

(1 − x)(1 − z)
|MBorn|

2 with 1− x =
p1 · p2

(p1 + p2) · pa
, 1− z =

p1 · pa

(p1 + p2) · pa

is integrable =⇒ do by Monte Carlo

Integral of subtracted term over d3p1 can be done analytically and gives

αs

2π
CF

(
4πµ2

R

Q2

)ǫ

Γ(1 +ǫ)|MBorn|
2

[
2

ǫ2
+

3

ǫ
+ 9 −

4

3
π2

]
δ(1 − x)

after factorization of splitting function terms (yielding additional “finite collinear terms”)

The divergence must be canceled by virtual corrections for all VBF processes

only variation: meaning of Born amplitude MBorn
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Higgs production

Most trivial case: Higgs production

Virtual correction is vertex correction only
virtual amplitude proportional to Born

MV = MBorn
αs(µR)

4π
CF

(
4πµ2

R

Q2

)ǫ

Γ(1 +ǫ)

[
−

2

ǫ2
−

3

ǫ
+

π2

3
− 7

]
+O(ǫ)

•• Divergent piece canceled via Catani

Seymour algorithm

Remaining virtual corrections are accounted for by trivial factor multiplying Born cross section

|MBorn|
2

(
1 + 2αs

CF

2π
cvirt

)

•• Factor 2 for corrections to upper and lower quark line

•• Same factor to Born cross section absorbs most of the virtual corrections for other VBF

processes



Results for Higgs production

✓ Small QCD corrections of

order 10%

✓ Tiny scale dependence of

NLO result

- ±5% for distributions

- < 2% for σtotal

✓ K-factor is phase space

dependent

✓ QCD corrections under

excellent control

✗ Need electroweak correc-

tions for 5% uncertainty

Solved now =⇒

talk by Denner

Figy, Oleari, DZ: hep-ph/0306109

mH = 120 GeV, typical VBF cuts



W and Z production
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•• 10 · · · 24 Feynman graphs

•• ⇒ use amplitude techniques, i.e. nu-

merical evaluation of helicity ampli-

tudes

•• However: numerical evaluation

works in d=4 dimensions only
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Virtual contributions

Vertex corrections: same as for Higgs case

V

V

+ + + . . .

New: Box type graphs (plus gauge related

diagrams)

+ + . . .+V V V

For each individual pure vertex graph

M(i) the vertex correction is proportional

to the corresponding Born graph

M
(i)
V = M

(i)
B

αs(µR)

4π
CF

(
4πµ2

R

Q2

)ǫ

Γ(1 +ǫ)

[
−

2

ǫ2
−

3

ǫ
+

π2

3
− 7

]

Vector boson propagators plus attached

quark currents are effective polarization

vectors

build a program to calculate the finite part

of the sum of the graphs
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Handling of IR and collinear divergences

Use tensor decomposition a la Passarino-Veltman

Split B0 · · · Di j functions into divergent and finite parts

With s = (q1 + q2)
2, t = (k2 + q2)

2 = (k1 − q1)
2 we get, for example,

B0(q2) =
Γ(1 +ǫ)

(−s)ǫ

[
1

ǫ
+ 2 − ln

q2 + i0+

s
+ O(ǫ)

]

=
Γ(1 +ǫ)

(−s)ǫ

[
1

ǫ
+ B̃0(q2) +O(ǫ)

]

D0(k2, q2, q1) =
Γ(1 +ǫ)

(−s)ǫ

[
1

st

( 1

ǫ2
+

1

ǫ
ln

q2
1q2

2

t2

)
+ D̃0(k2, q2, q1) +O(ǫ)

]

Dµν(k2, q2, q1) =
Γ(1 +ǫ)

(−s)ǫ

(
1

ǫ

(
kµ

1 kν
1 d2(q2

1, t) + kµ
2 kν

2 d2(q2
2, t)

)
+ D̃µν(k2, q2, q1) + O(ǫ)

)

with d2(q2, t) = 1/(s(q2 − t)2)
[
t ln(q2/t)− (q2 − t)

]

Finite D̃i j have standard PV recursion relations =⇒ determine them numerically
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Boxline corrections

Virtual corrections for quark line with 2 EW

gauge bosons

k1 k2

q1 q2
(a)

k1 k2

q1 q2
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k1 k2

q1 q2
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k1 k2

q1 q2
(d)

The external vector bosons correspond to

V→l1 l̄2 decay currents or quark currents

Divergent terms in 4 Feynman graphs

combine to multiple of corresponding

Born graph

M
(i)
boxline = M

(i)
B F(Q)

[
−

2

ǫ2
−

3

ǫ
+

π2

3
− 7

]

+
αs(µR)

4π
CFM̃τ (q1, q2)(−e2)g

V1 f1
τ g

V2 f2
τ

+ O(ǫ)

with F(Q) = αs(µR)
4π

CF(
4πµ2

R

Q2 )ǫΓ(1 +ǫ)

M̃τ (q1, q2) = D̃µνǫ
µ
1ǫ

ν
2 is universal vir-

tual qqVV amplitude: use like HELAS

calls in MadGraph
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Virtual corrections

Born sub-amplitude is multiplied by same factor as found for pure vertex corrections

⇒ when summing all Feynman graphs the divergent terms multiply the complete MB

Complete virtual corrections

MV = MB F(Q)

[
−

2

ǫ2
−

3

ǫ
+

π2

3
− 7

]
+ M̃V

where M̃V is finite, and is calculated with amplitude techniques.

The interference contribution in the cross-section calculation is then given by

2 Re [MVM
∗
B] = |MB|

2F(Q)

[
−

2

ǫ2
−

3

ǫ
+

π2

3
− 7

]
+ 2 Re

[
M̃VM

∗
B

]

The divergent term, proportional to |MB|
2, cancels against the subtraction terms

just like in the Higgs case.
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Most recent: qq→qqWW, qqZZ, qqWZ at NLO

•• example: WW production via VBF with

leptonic decays: pp → e+νeµ
−ν̄µ + 2 j

•• Spin correlations of the final state leptons

•• All resonant and non-resonant Feynman

diagrams included

•• NC =⇒ 181 Feynman diagrams at LO

•• CC =⇒ 92 Feynman diagrams at LO

Use modular structure, e.g. leptonic tensor
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Calculate once, reuse in different processes

Speedup factor ≈ 70 compared to MadGraph

for real emission corrections
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New for virtual: pentline corrections

Virtual corrections involve up to pen-

tagons
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The external vector bosons correspond to

V→l1 l̄2 decay currents or quark currents

The sum of all QCD corrections to a single quark

line is simple

M
(i)
V = M

(i)
B

αs(µR)

4π
CF

(
4πµ2

R

Q2

)ǫ

Γ(1 +ǫ)

[
−

2

ǫ2
−

3

ǫ
+ cvirt

]

+ M̃
(i)
V1V2V3 ,τ (q1 , q2, q3) +O(ǫ)

•• Divergent pieces sum to Born amplitude:

canceled via Catani Seymour algorithm

•• Use amplitude techniques to calculate finite

remainder of virtual amplitudes

Pentagon tensor reduction with Denner-

Dittmaier is stable at 0.1% level
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Gauge invariance tests

Numerical problems flagged by gauge invariance test: use Ward identities for pentline and

boxline contributions

qµ2
2 Ẽµ1µ2µ3

(k1, q1, q2, q3) = D̃µ1µ3
(k1, q1, q2 + q3) − D̃µ1µ3

(k1, q1 + q2, q3)

With Denner-Dittmaier recursion relations for Ei j functions the ratios of the two expressions

agree with unity (to 10% or better) at more than 99.8% of all phase space points.

Ward identities reduce importance of computationally slow pentagon contributions when

contracting with W± polarization vectors

Jµ± = x± qµ
± + rµ

±

choose x± such as to minimize pentagon contribution from remainders r± in all terms like

Jµ1
+ Jµ2

− Ẽµ1µ2µ3 (k1, q+, q−, q0) = rµ1
+ rµ2

− Ẽµ1µ2µ3 (k1, q+, q−, q0) + box contributions

Resulting true pentagon piece contributes to the cross section at permille level =⇒ totally

negligible for phenomenology
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Phenomenology

Study LHC cross sections within typical VBF cuts

•• Identify two or more jets with kT-algorithm (D = 0.8)

pT j ≥ 20 GeV , |y j| ≤ 4.5

•• Identify two highest pT jets as tagging jets with wide rapidity separation and large dijet

invariant mass

∆y j j = |y j1 − y j2 | > 4, M j j > 600 GeV

•• Charged decay leptons (ℓ = e, µ) of W and/or Z must satisfy

pTℓ ≥ 20 GeV , |ηℓ| ≤ 2.5 , △R jℓ ≥ 0.4 ,

mℓℓ ≥ 15 GeV , △Rℓℓ ≥ 0.2

and leptons must lie between the tagging jets

y j,min < ηℓ < y j,max

For scale dependence studies we have considered

µ = ξ mV fixed scale µ = ξ Qi weak boson virtuality : Q2
i = 2kq1 · kq2



WW production: pp→ j je+νeµ
−ν̄µX @ LHC

Stabilization of scale dependence at NLO

Jäger, Oleari, DZ hep-ph/0603177



WZ production in VBF, WZ→e+νeµ
+µ−

Transverse momentum distribution of the softer

tagging jet

•• Shape comparison LO vs. NLO

depends on scale

•• Scale choice µ = Q pro-

duces approximately constant

K-factor

•• Ratio of NLO curves for differ-

ent scales is unity to better than

2%: scale choice matters very

little at NLO

Use µF = Q at LO to best approxi-

mate the NLO results
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ZZ production in VBF, ZZ→e+e−µ+µ−

4-lepton invariant mass distribution without/with Higgs resonance

Good agreement of LO and NLO due to low scale choice µ = mZ. Alternative choice µ = mH or

µ = m4ℓ leads to smaller LO cross section at high m4ℓ
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Conclusions

•• LHC will observe a SM-like Higgs boson in multiple channels,

with 5 . . . 20% statistical errors

=⇒ great source of information on Higgs couplings

•• Whether or not a light Higgs is observed, weak boson scattering,

i.e. VV j j production by VBF, is an important testing ground for the

physics underlying SU(2)× U(1) breaking

•• NLO QCD corrections and improved simulation tools are

crucial for precise measurements with full LHC data.

NLO QCD correction for VBF now available in VBFNLO:

parton level Monte Carlo for H j j, W j j, Z j j, W+W− j j, ZZ j j production

by Bozzi, Figy, Hankele, Jäger, Klämke, Oleari, Worek, DZ, ...

http://www-itp.physik.uni-karlsruhe.de/∼vbfnloweb/
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