NLO QCD CORRECTIONS TO VECTOR BOSON FUSION PROCESSES

Dieter Zeppenfeld Universität Karlsruhe

8th International Symposium on Radiative Corrections, RadCor 2007, Florence, Oct. 1–5, 2007

- VBF and Higgs Physics
- *Wjj* and *Zjj* production
- Vector boson pairs in VBF
- Virtual corrections
- Phenomenological implications
- Conclusions

Total Higgs production cross sections at the LHC

Vector boson fusion is an important ingredient in Higgs search at the LHC

Higgs Search in Vector Boson Fusion

[Eboli, Hagiwara, Kauer, Plehn, Rainwater, D.Z....]

Most measurements can be performed at the LHC with statistical accuracies on the measured cross sections times decay branching ratios, $\sigma \times$ BR, of order 10% (sometimes even better).

VBF signature

$$\eta = \frac{1}{2}\log\frac{1+\cos\theta}{1-\cos\theta}$$

Characteristics:

- energetic jets in the forward and backward directions ($p_T > 20 \text{ GeV}$)
- Higgs decay products between tagging jets
- Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange (central jet veto: no extra jets with $p_T > 20$ GeV and $|\eta| < 2.5$)

Statistical and systematic errors at LHC

Some of the lowest errors are achievable in VBF production of the Higgs boson

VBF processes at LHC

 $qq \rightarrow qqH$ Han, Valencia, Willenbrock (1992); Figy, Oleari, DZ: hep-ph/0306109; Campbell, Ellis, Berger (2004)

- Higgs coupling measurements
- $qq \rightarrow qqZ$ and $qq \rightarrow qqW$

Oleari, DZ: hep-ph/0310156

- $Z \rightarrow \tau \tau$ as background for $H \rightarrow \tau \tau$
- measure central jet veto acceptance at LHC

 $qq \rightarrow qqWW, qq \rightarrow qqZZ, qq \rightarrow qqWZ$

Jäger, Oleari, Bozzi, DZ: hep-ph/0603177, hep-ph/0604200, hep-ph/0701105

- qqWW is background to $H \rightarrow WW$ in VBF
- underlying process is weak boson scattering: $WW \rightarrow WW, WW \rightarrow ZZ, WZ \rightarrow WZ$ etc.
 - \implies measure weak boson scattering

Precise predictions require QCD corrections

Generic features of QCD corrections to VBF

t-channel color singlet exchange \implies QCD corrections to different quark lines are independent

No *t*-channel gluon exchange at NLO

(c)

real emission contributions: upper line

Features are generic for all VBF processes

(d)

Real emission

Calculation is done using Catani-Seymour subtraction method

Consider $q(p_a)Q \rightarrow g(p_1)q(p_2)QH$. Subtracted real emission term

$$|\mathcal{M}_{\text{emit}}|^2 - 8\pi\alpha_s \frac{C_F}{Q^2} \frac{x^2 + z^2}{(1 - x)(1 - z)} |\mathcal{M}_{\text{Born}}|^2 \quad \text{with } 1 - x = \frac{p_1 \cdot p_2}{(p_1 + p_2) \cdot p_a}, \quad 1 - z = \frac{p_1 \cdot p_a}{(p_1 + p_2) \cdot p_a}$$

is integrable \implies do by Monte Carlo

Integral of subtracted term over $d^3\mathbf{p}_1$ can be done analytically and gives

$$\frac{\alpha_s}{2\pi}C_F \left(\frac{4\pi\mu_R^2}{Q^2}\right)^{\epsilon} \Gamma(1+\epsilon)|\mathcal{M}_{\text{Born}}|^2 \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + 9 - \frac{4}{3}\pi^2\right]\delta(1-x)$$

after factorization of splitting function terms (yielding additional "finite collinear terms")

The divergence must be canceled by virtual corrections for all VBF processes only variation: meaning of Born amplitude M_{Born}

Higgs production

Most trivial case: Higgs production Virtual correction is vertex correction only

virtual amplitude proportional to Born

$$\mathcal{M}_{V} = \mathcal{M}_{\text{Born}} \frac{\alpha_{s}(\mu_{R})}{4\pi} C_{F} \left(\frac{4\pi\mu_{R}^{2}}{Q^{2}}\right)^{\epsilon} \Gamma(1+\epsilon)$$
$$\left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + \frac{\pi^{2}}{3} - 7\right] + \mathcal{O}(\epsilon)$$

• Divergent piece canceled via Catani Seymour algorithm

Remaining virtual corrections are accounted for by trivial factor multiplying Born cross section

$$|\mathcal{M}_{\mathrm{Born}}|^2 \left(1 + 2\alpha_s \frac{C_F}{2\pi} c_{\mathrm{virt}}\right)$$

- Factor 2 for corrections to upper and lower quark line
- Same factor to Born cross section absorbs most of the virtual corrections for other VBF processes

Results for Higgs production

- ✓ Small QCD corrections of order 10%
- ✓ Tiny scale dependence of NLO result
 - $\pm 5\%$ for distributions
 - < 2% for $\sigma_{\rm total}$
- ✓ K-factor is phase space dependent
- ✓ QCD corrections under excellent control
- ✗ Need electroweak corrections for 5% uncertainty
 Solved now ⇒
 talk by Denner

Figy, Oleari, DZ: hep-ph/0306109

 $m_H = 120$ GeV, typical VBF cuts

W and Z production

- 10 · · · 24 Feynman graphs
- → use amplitude techniques, i.e. numerical evaluation of helicity amplitudes
- However: numerical evaluation works in d=4 dimensions only

Virtual contributions

Vertex corrections: same as for Higgs case

New: Box type graphs (plus gauge related diagrams)

For each individual pure vertex graph $\mathcal{M}^{(i)}$ the vertex correction is proportional to the corresponding Born graph

$$\mathcal{M}_{V}^{(i)} = \mathcal{M}_{B}^{(i)} \frac{\alpha_{s}(\mu_{R})}{4\pi} C_{F} \left(\frac{4\pi\mu_{R}^{2}}{Q^{2}}\right)^{\epsilon} \Gamma(1+\epsilon)$$
$$\left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + \frac{\pi^{2}}{3} - 7\right]$$

Vector boson propagators plus attached quark currents are effective polarization vectors

build a program to calculate the finite part of the sum of the graphs

Handling of IR and collinear divergences

Use tensor decomposition a la Passarino-Veltman Split $B_0 \cdots D_{ij}$ functions into divergent and finite parts

With $s = (q_1 + q_2)^2$, $t = (k_2 + q_2)^2 = (k_1 - q_1)^2$ we get, for example,

$$\begin{split} B_{0}(q^{2}) &= \frac{\Gamma(1+\epsilon)}{(-s)^{\epsilon}} \left[\frac{1}{\epsilon} + 2 - \ln \frac{q^{2} + i0^{+}}{s} + \mathcal{O}(\epsilon) \right] \\ &= \frac{\Gamma(1+\epsilon)}{(-s)^{\epsilon}} \left[\frac{1}{\epsilon} + \widetilde{B}_{0}(q^{2}) + \mathcal{O}(\epsilon) \right] \\ D_{0}(k_{2}, q_{2}, q_{1}) &= \frac{\Gamma(1+\epsilon)}{(-s)^{\epsilon}} \left[\frac{1}{st} \left(\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon} \ln \frac{q_{1}^{2}q_{2}^{2}}{t^{2}} \right) + \widetilde{D}_{0}(k_{2}, q_{2}, q_{1}) + \mathcal{O}(\epsilon) \right] \\ D^{\mu\nu}(k_{2}, q_{2}, q_{1}) &= \frac{\Gamma(1+\epsilon)}{(-s)^{\epsilon}} \left(\frac{1}{\epsilon} \left(k_{1}^{\mu} k_{1}^{\nu} d_{2}(q_{1}^{2}, t) + k_{2}^{\mu} k_{2}^{\nu} d_{2}(q_{2}^{2}, t) \right) + \widetilde{D}^{\mu\nu}(k_{2}, q_{2}, q_{1}) + \mathcal{O}(\epsilon) \right) \end{split}$$

with $d_2(q^2, t) = 1/(s(q^2 - t)^2) [t \ln(q^2/t) - (q^2 - t)]$ Finite \widetilde{D}_{ij} have standard PV recursion relations \Longrightarrow determine them numerically

Boxline corrections

Virtual corrections for quark line with 2 EW gauge bosons

The external vector bosons correspond to $V \rightarrow l_1 \bar{l}_2$ decay currents or quark currents

Divergent terms in 4 Feynman graphs combine to multiple of corresponding Born graph

$$\mathcal{M}_{\text{boxline}}^{(i)} = \mathcal{M}_{B}^{(i)}F(Q) \\ \left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + \frac{\pi^{2}}{3} - 7\right] \\ + \frac{\alpha_{s}(\mu_{R})}{4\pi}C_{F}\widetilde{\mathcal{M}}_{\tau}(q_{1}, q_{2})(-e^{2})g_{\tau}^{V_{1}f_{1}}g_{\tau}^{V_{2}f_{2}} \\ + \mathcal{O}(\epsilon)$$

with
$$F(Q) = \frac{\alpha_s(\mu_R)}{4\pi} C_F(\frac{4\pi\mu_R^2}{Q^2})^{\epsilon} \Gamma(1+\epsilon)$$

 $\widetilde{\mathcal{M}}_{\tau}(q_1, q_2) = \widetilde{\mathcal{D}}_{\mu\nu}\epsilon_1^{\mu}\epsilon_2^{\nu}$ is universal virtual qqVV amplitude: use like HELAS calls in MadGraph

Virtual corrections

Born sub-amplitude is multiplied by same factor as found for pure vertex corrections \Rightarrow when summing all Feynman graphs the divergent terms multiply the complete M_B

Complete virtual corrections

$$\mathcal{M}_V = \mathcal{M}_B F(Q) \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} + \frac{\pi^2}{3} - 7 \right] + \widetilde{\mathcal{M}}_V$$

where $\widetilde{\mathcal{M}}_V$ is finite, and is calculated with amplitude techniques. The interference contribution in the cross-section calculation is then given by

$$2\operatorname{Re}\left[\mathcal{M}_{V}\mathcal{M}_{B}^{*}\right] = |\mathcal{M}_{B}|^{2}F(Q)\left[-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}+\frac{\pi^{2}}{3}-7\right] + 2\operatorname{Re}\left[\widetilde{\mathcal{M}}_{V}\mathcal{M}_{B}^{*}\right]$$

The divergent term, proportional to $|M_B|^2$, cancels against the subtraction terms just like in the Higgs case.

Most recent: $qq \rightarrow qqWW$, qqZZ, qqWZ at **NLO**

- example: WW production via VBF with leptonic decays: $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu + 2j$
- Spin correlations of the final state leptons
- All resonant and non-resonant Feynman diagrams included
- NC \implies 181 Feynman diagrams at LO
- CC \implies 92 Feynman diagrams at LO

Use modular structure, e.g. leptonic tensor

Calculate once, reuse in different processes Speedup factor \approx 70 compared to MadGraph for real emission corrections

New for virtual: pentline corrections

Virtual corrections involve up to pentagons

The external vector bosons correspond to $V \rightarrow l_1 \bar{l}_2$ decay currents or quark currents

The sum of all QCD corrections to a single quark line is simple

$$\mathcal{M}_{V}^{(i)} = \mathcal{M}_{B}^{(i)} \frac{\alpha_{s}(\mu_{R})}{4\pi} C_{F} \left(\frac{4\pi\mu_{R}^{2}}{Q^{2}}\right)^{\epsilon} \Gamma(1+\epsilon)$$

$$\left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + c_{\text{virt}}\right]$$

$$+ \widetilde{\mathcal{M}}_{V_{1}V_{2}V_{3},\tau}^{(i)} (q_{1},q_{2},q_{3}) + \mathcal{O}(\epsilon)$$

- Divergent pieces sum to Born amplitude: canceled via Catani Seymour algorithm
- Use amplitude techniques to calculate finite remainder of virtual amplitudes

Pentagon tensor reduction with Denner-Dittmaier is stable at 0.1% level Numerical problems flagged by gauge invariance test: use Ward identities for pentline and boxline contributions

$$q_2^{\mu_2}\widetilde{\mathcal{E}}_{\mu_1\mu_2\mu_3}(k_1,q_1,q_2,q_3) = \widetilde{\mathcal{D}}_{\mu_1\mu_3}(k_1,q_1,q_2+q_3) - \widetilde{\mathcal{D}}_{\mu_1\mu_3}(k_1,q_1+q_2,q_3)$$

With Denner-Dittmaier recursion relations for E_{ij} functions the ratios of the two expressions agree with unity (to 10% or better) at more than 99.8% of all phase space points.

Ward identities reduce importance of computationally slow pentagon contributions when contracting with W^{\pm} polarization vectors

$$J^{\mu}_{\pm} = x_{\pm} q^{\mu}_{\pm} + r^{\mu}_{\pm}$$

choose x_{\pm} such as to minimize pentagon contribution from remainders r_{\pm} in all terms like

$$J_{+}^{\mu_{1}}J_{-}^{\mu_{2}}\widetilde{\mathcal{E}}_{\mu_{1}\mu_{2}\mu_{3}}(k_{1},q_{+},q_{-},q_{0}) = r_{+}^{\mu_{1}}r_{-}^{\mu_{2}}\widetilde{\mathcal{E}}_{\mu_{1}\mu_{2}\mu_{3}}(k_{1},q_{+},q_{-},q_{0}) + \text{box contributions}$$

Resulting true pentagon piece contributes to the cross section at permille level \implies totally negligible for phenomenology

Phenomenology

Study LHC cross sections within typical VBF cuts

• Identify two or more jets with k_T -algorithm (D = 0.8)

$$p_{Tj} \ge 20 \text{ GeV}$$
, $|y_j| \le 4.5$

• Identify two highest *p*_T jets as tagging jets with wide rapidity separation and large dijet invariant mass

$$\Delta y_{jj} = |y_{j_1} - y_{j_2}| > 4, \qquad \qquad M_{jj} > 600 \,\,\mathrm{GeV}$$

• Charged decay leptons ($\ell = e, \mu$) of *W* and/or *Z* must satisfy

$$p_{T\ell} \ge 20 \text{ GeV}, \qquad |\eta_\ell| \le 2.5, \qquad riangle R_{j\ell} \ge 0.4,$$

 $m_{\ell\ell} \ge 15 \text{ GeV}, \qquad riangle R_{\ell\ell} \ge 0.2$

and leptons must lie between the tagging jets

$$y_{j,min} < \eta_\ell < y_{j,max}$$

For scale dependence studies we have considered

 $\mu = \xi m_V$ fixed scale $\mu = \xi Q_i$ weak boson virtuality : $Q_i^2 = 2k_{q_1} \cdot k_{q_2}$

Stabilization of scale dependence at NLO

Jäger, Oleari, DZ hep-ph/0603177

WZ production in VBF, $WZ \rightarrow e^+ \nu_e \mu^+ \mu^-$

Transverse momentum distribution of the softer tagging jet

- Shape comparison LO vs. NLO depends on scale
- Scale choice μ = Q produces approximately constant *K*-factor
- Ratio of NLO curves for different scales is unity to better than 2%: scale choice matters very little at NLO

Use $\mu_F = Q$ at LO to best approximate the NLO results

ZZ production in VBF, $ZZ \rightarrow e^+e^-\mu^+\mu^-$

4-lepton invariant mass distribution without/with Higgs resonance

Good agreement of LO and NLO due to low scale choice $\mu = m_Z$. Alternative choice $\mu = m_H$ or $\mu = m_{4\ell}$ leads to smaller LO cross section at high $m_{4\ell}$

Conclusions

- LHC will observe a SM-like Higgs boson in multiple channels, with 5...20% statistical errors
 ⇒ great source of information on Higgs couplings
- Whether or not a light Higgs is observed, weak boson scattering, i.e. VVjj production by VBF, is an important testing ground for the physics underlying $SU(2) \times U(1)$ breaking
- NLO QCD corrections and improved simulation tools are crucial for precise measurements with full LHC data.

NLO QCD correction for VBF now available in VBFNLO: parton level Monte Carlo for *Hjj*, *Wjj*, *Zjj*, *W*⁺*W*⁻*jj*, *ZZjj* production by Bozzi, Figy, Hankele, Jäger, Klämke, Oleari, Worek, DZ, ...

http://www-itp.physik.uni-karlsruhe.de/~vbfnloweb/