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EW gauge-boson sector of the SM

Gauge invariance and renormalizability completely determine the
kinetic terms for the gauge bosons

LYM = −1
4

BµνBµν − 1
4

Wa
µνWµν

a

Bµν = ∂µBν − ∂νBµ

Wa
µν = ∂µWa

ν − ∂νWa
µ + gεabc Wb,µ Wc,ν

The gauge symmetry does NOT allow any mass terms for W± and Z,
i.e. forbidden are terms like

LMass =
1
2

m2
WWa

µWµ
a

Dieter Zeppenfeld Higgs physics in the SM 1



Spontaneous symmetry breaking

Experimentally, the weak bosons are massive. We give mass to the gauge bosons through the
Higgs mechanism: generate mass terms from the kinetic energy term of a scalar douplet field Φ
that undergoes spontaneous symmetry breaking.

Introduce a complex scalar douplet

Φ =


 φ+

φ0


 , YΦ =

1
2

LHiggs = (DµΦ)†(DµΦ)−V
(
Φ†Φ

)

Dµ = ∂µ − igWµ
i
σ i

2
− ig′YΦBµ

V
(
Φ†Φ

)
= V0 − µ2Φ†Φ + λ

(
Φ†Φ

)2
, µ2, λ > 0

Notice the “wrong” mass sign.

)
V

(|
Φ+ |

0
Φ| ,

|

|Φ +|

Φ0||

µ <02

µ>02

v/ 2

V
(
Φ†Φ

)
is SU(2)L×U(1)Y symmetric.



Spontaneous symmetry breaking

The potential has minima at

|Φ|2 =
µ2

2λ
≡ v2

2
All these minimum configurations (ground states) are connected by gauge transformations, that
change the phase of the complex field Φ, without affecting its modulus.

v is called the vacuum expectation value (VEV) of the neutral component of the Higgs doublet.

When the system chooses one of the minimum configura-
tions, this configuration is no longer symmetric under the
the gauge symmetry.

This is called spontaneous symmetry breaking.

The Lagrangian is still gauge invariant and all properties
connected with it (such as current conservation) still hold!
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Expanding Φ around the minimum

Φ =


 φ+

φ0


 =


 φ+

1√
2

[v + H(x) + iχ(x)]


 =

1√
2

exp
[

iσiθ
i(x)

v

]
 0

v + H(x)




We can rotate away the fields θi(x) by an SU(2)L gauge transformation

Φ(x)→Φ′(x) = U(x)Φ(x) =
1√
2


 0

v + H(x)




where U(x) = exp
[
− iσiθ

i(x)
v

]
.

This gauge choice, called unitary gauge, is equivalent to absorbing the Goldstone modes θi(x).

The vacuum state can be chosen to correspond to the vacuum expectation value

Φ0 =
1√
2


 0

v




Notice that only a scalar field can have a vacuum expectation value.The VEV of a fermion or
vector field would break Lorentz invariance.
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SU(2)L× U(1)Y→ U(1)em

Let’s verify that the vacuum state breaks the gauge symmetry.

A state Φ̃ is invariant under a symmetry operation exp(igTaθa) if

exp(igTaθa)Φ̃ = Φ̃

This means that a state is invariant if (just expand the exponent)

TaΦ̃ = 0

For the SU(2)L× U(1)Y case we have

σ1Φ0 =


 0 1

1 0




 0

v/
√

2


 =


 v/

√
2

0


 6= 0 broken

σ2Φ0 =


 0 −i

i 0




 0

v/
√

2


 =


 −iv/

√
2

0


 6= 0 broken
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SU(2)L× U(1)Y→ U(1)em

σ3Φ0 =


 1 0

0 −1




 0

v/
√

2


 =


 0

−v/
√

2


 6= 0 broken

YΦ0 = YΦ


 0

v/
√

2


 = +

1
2


 0

v/
√

2


 6= 0 broken

But, if we examine the effect of the electric charge operator Q̂ on the (electrically neutral) vacuum
state, we have (YΦ = 1)

Q̂Φ0 =

(
1
2
σ3 + Y

)
Φ0 =


 YΦ + 1

2 0

0 YΦ − 1
2


Φ0 =


 1 0

0 0




 0

v/
√

2


 =


 0

0




the electric charge symmetry is unbroken!
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Consequences for the scalar field H

The scalar potential

V
(
Φ†Φ

)
= λ

(
Φ†Φ− v2

2

)2

expanded around the vacuum state

Φ(x) =
1√
2


 0

v + H(x)




becomes

V =
λ

4

(
2vH + H2

)2
=

1
2

(2λv2)H2 + λvH3 +
λ

4
H4

Consequences:

•• the scalar field H gets a mass which is given by the quartic coupling λ

m2
H = 2λv2

•• there is a term of cubic and quartic self-coupling.



Higgs kinetic terms and coupling to W, Z

DµΦ =

(
∂µ − igWµ

i
σ i

2
− ig′

1
2

Bµ
)

1√
2


 0

v + H(x)




=
1√
2


 0

∂µH


− i

2
√

2


g


 Wµ

3 Wµ
1 − iWµ

2

Wµ
1 + iWµ

2 −Wµ
3


+ g′Bµ




 0

v + H




=
1√
2




 0

∂µH


− i

2
(v + H)


 g

(
Wµ

1 − iWµ
2
)

−gWµ
3 + g′Bµ






=
1√
2




 0

∂µH


− i

2

(
1 +

H
v

)
 gv

√
2Wµ+

−
√

g2 + g′2vZµ






(DµΦ)† DµΦ =
1
2

∂µH∂µH +

[( gv
2

)2
Wµ+W−µ +

1
2

(
g2 + g′2

)
v2

4
ZµZµ

](
1 +

H
v

)2



We have defined

W±µ =
1√
2

(
W1
µ ∓ iW2

µ

)
,

Zµ =
1√

g2 + g′2

(
gW3

µ − g′Bµ
)

= cosθWW3
µ − sinθW Bµ

with

sinθW =
g′√

g2 + g′2
, cosθW =

g√
g2 + g′2

,

The orthogonal combination of the neutral gauge fields is the photon

Aµ =
1√

g2 + g′2

(
g′W3

µ + gBµ
)

= sinθWW3
µ + cosθW Bµ

With these definitions the gauge kinetic term

Lgauge
kin = −1

4
BµνBµν − 1

4
W3
µνW3,µν − 1

2
W+
µνWµν−

and the mass term become

Lgauge
kin = −1

4
AµνAµν − 1

4
ZµνZµν − 1

2
W+
µνWµν−

Lgauge
mass =

( gv
2

)2
Wµ+W−µ +

1
2

(
g2 + g′2

)
v2

4
ZµZµ



Consequences

•• The W and Z gauge bosons have acquired masses

m2
W =

g2v2

4
m2

Z =

(
g2 + g′2

)
v2

4
=

m2
W

cos2θW

From the measured value of the Fermi constant GF

GF√
2

=

(
g

2
√

2

)2 1
m2

W
=⇒ v =

√
1√
2GF

≈ 246.22 GeV

•• the photon stays massless

•• HWW and HZZ couplings from 2H/v term (and HHWW and HHZZ couplings from H2/v2

term)

LHVV =
2m2

W
v

W+
µ W−µH +

m2
Z

v
ZµZµH ≡ gmWW+

µ W−µH +
1
2

gmZ
cosθW

ZµZµH

Higgs coupling proportional to mass

•• tree-level HVV (V = vector boson) coupling requires VEV!
Normal scalar couplings give Φ†ΦV or Φ†ΦVV couplings only.



Fermion fields of the SM and gauge quantum numbers

SU(3) SU(2) U(1)Y

Qi
L =


 uL

dL





 cL

sL





 tL

bL


 3 2 1

6

ui
R = uR cR tR 3 1 2

3

di
R = dR sR bR 3 1 − 1

3

Li
L =


 νeL

eL





 νµL

µL





 ντL

τL


 1 2 − 1

2

ei
R = eR µR τR 1 1 −1

νi
R = νeR νµR ντR 1 1 0



Fermion mass generation

A direct mass term is not invariant under SU(2)L or U(1)Y gauge transformation

m f ψ̄ψ = m f (ψ̄RψL + ψ̄LψR)

Generate fermion masses through Yukawa-type interactions terms

LYukawa = −ΓdQ̄LΦdR − Γdd̄RΦ
†QL

−ΓuQ̄LΦcuR + h.c. Φc = iσ2Φ
∗ =

1√
2


 v + H(x)

0




−Γe L̄LΦeR + h.c.

−Γν L̄LΦcνR + h.c.

where Q, L are left-handed doublet fields and dR, uR, eR, νR are right-handed SU(2) -singlet
fields.

Notice: neutrino masses can be implemented via Γν term. Since mν ≈ 0 we neglect it in the
following.



Fermion mass generation

A direct mass term is not invariant under SU(2)L or U(1)Y gauge transformation

m f ψ̄ψ = m f (ψ̄RψL + ψ̄LψR)

Generate fermion masses through Yukawa-type interactions terms

LYukawa = −Γ i j
d Q̄′ iLΦd′ jR − Γ

i j∗
d d̄′ iRΦ

†Q′ jL

−Γ i j
u Q̄′ iLΦcu′ jR + h.c. Φc = iσ2Φ

∗ =
1√
2


 v + H(x)

0




−Γ i j
e L̄i

LΦe j
R + h.c.

where Q′, u′ and d′ are quark fields that are generic linear combination of the mass eigenstates u
and d and Γu, Γd and Γe are 3× 3 complex matrices in generation space, spanned by the indices i
and j.

LYukawa is Lorentz invariant, gauge invariant and renormalizable, and therefore it can (actually it
must) be included in the Lagrangian.
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Expanding around the vacuum state

In the unitary gauge we have

Q̄′ iL Φ d′ jR =
(

ū′ iL d̄′ iL

)

 0

v+H√
2


 d′ jR =

v + H√
2

d̄′ iL d′ jR

Q̄′ iL Φc u′ jR =
(

ū′ iL d̄′ iL

)



v+H√
2

0


 u′ jR =

v + H√
2

ū′ iL u′ jR

and we obtain

LYukawa = −Γ i j
d

v + H√
2

d̄′ iL d′ jR − Γ
i j
u

v + H√
2

ū′ iL u′ jR − Γ
i j
e

v + H√
2

ēi
L e j

R + h.c.

= −
[

Mi j
u ū′ iL u′ jR + Mi j

d d̄′ iL d′ jR + Mi j
e ēi

L e j
R + h.c.

] (
1 +

H
v

)

with mass matrices Mi j = Γ i j v√
2
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Diagonalizing M f

It is always possible to diagonalize Mi j
f ( f = u, d, e) with a bi-unitary transformation (U f

L/R must
be unitary in order to preserve the form of the kinetic terms in the Lagrangian)

f ′Li =
(

U f
L

)
i j

fLj

f ′Ri =
(

U f
R

)
i j

fRj

with U f
L and U f

R chosen such that
(

U f
L

)†
M f U f

R = diagonal

For example:

(Uu
L)† MuUu

R =




mu 0 0

0 mc 0

0 0 mt




(
Ud

L

)†
MdUd

R =




md 0 0

0 ms 0

0 0 mb



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Mass terms

LYukawa = − ∑
f ′ ,i, j

Mi j
f f̄ ′ iL f ′ jR

(
1 +

H
v

)
+ h.c.

= − ∑
f ,i, j

f̄ i
L

[(
U f

L

)†
M f U f

R

]

i j
f j
R

(
1 +

H
v

)
+ h.c.

= −∑
f

m f
(

f̄L fR + f̄R fL
) (

1 +
H
v

)
= ∑

f
m f f̄ f

(
1 +

H
v

)

We succeed in producing fermion masses and we got a fermion-antifermion-Higgs coupling
proportional to the fermion mass.

The Higgs Yukawa couplings are flavor diagonal: no flavor changing Higgs interactions.
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Mass diagonalization and charged current interaction

The charged current interaction is given by

e√
2 sinθW

ū′ iL /W+ d′ iL + h.c.

After the mass diagonalization described previously, this term becomes

e√
2 sinθW

ūi
L

[
(Uu

L)†Ud
L

]
i j

/W+d j
L + h.c.

and we define the Cabibbo-Kobayashi-Maskawa matrix VCKM

VCKM = (Uu
L)†Ud

L

•• VCKM is not diagonal and then it mixes the flavors of the different quarks.

•• It is a unitary matrix and the values of its entries must be determined from experiments.
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Mass diagonalization and neutral current interaction

The neutral current interaction for e.g. down type quarks is given by

e
sinθW cosθW

(−1
2

+
1
3

sin2θW)d̄′ iL /Z d′ iL +
e

sinθW cosθW
(+

1
3

sin2 θW)d̄′ iR /Z d′ iR

After the mass diagonalization described previously, this term becomes

e
sinθW cosθW

(−1
2

+
1
3

sin2θW)d̄i
L

[(
Ud

L

)†
Ud

L

]

i j
/Z d j

L +
e

sinθW cosθW
(+

1
3

sin2θW)d̄i
R

[(
Ud

R

)†
Ud

R

]

i j
/Z d j

R

Now the unitary matrices cancel and the Z interaction is flavor diagonal also in the mass
eigenstate basis

e
sinθW cosθW

(−1
2

+
1
3

sin2θW)d̄i
L /Z di

L +
e

sinθW cosθW
(+

1
3

sin2 θW)d̄i
R /Z di

R

It works the same way for the other flavors. This mechanism is called the GIM mechanism after
Glashow, Iliopoulos and Maiani, who invented it.
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Feynman rules for Higgs couplings

H

f

f

−i m f
v

H

Wµ
+

Wν
-

ig mW gµν

H

Zµ

Zν

i g 1
cosθW

mZ gµν

Within the Standard Model, the Higgs couplings are almost completely constrained. The only
free parameter (not yet measured) is the Higgs mass

m2
H = 2λv2


