

Vacuum stability in the NMSSM

Based on work in collaboration with Fabio Campello and Georg Weiglein

ITP seminar

23rd of November 2023

Thomas Biekötter

P Collaborative Research Center TRR 257 Particle Physics Phenomenology after the Higgs Discovery

Vacuum stability in BSM theories

The core concept: In models with extended scalar sectors the EW vacuum might not correspond to the global minimum of the potential.

- \rightarrow The EW vacuum is not stable
- \rightarrow If the EW vacuum is short-lived 1 a parameter point is unphysical

 \rightarrow Constraints on the parameter space of the model

The **outline** of my presentation:

1. Supersymmetry and vacuum stability

2. Technical details of our analysis

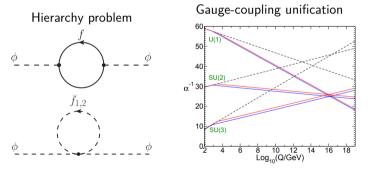
3. Results: Application to the NMSSM

¹in comparison to the age of the Universe

Supersymmetry (Susy)

Supersymmetry combines **bosonic** and **fermionic** degrees of freedom into a combined superspace formalism.

Pick your favourite motivation, a personal selection:



Supergravity (Sugra)

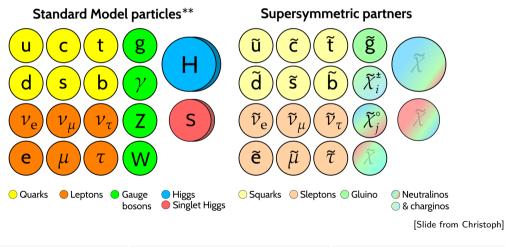
 $\{Q_a,Q_{\dot{b}}^\dagger\}=-2\sigma^\mu_{a\dot{b}}P_\mu$

Local Susy implies the existence of gravity

There are more: Dark matter candidates, Coleman-Mandula theorem, ...

The NMSSM

NMSSM: Next-to Minimal Supersymmetric Standard Model

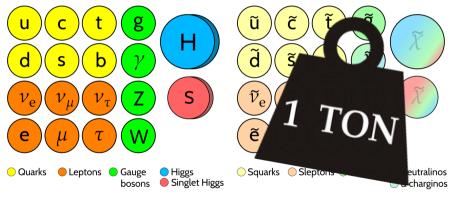


The NMSSM

NMSSM: Next-to Minimal Supersymmetric Standard Model

Standard Model particles**

Supersymmetric partners



[Slide from Christoph]

Susy gives a recipe for constructing the scalar potential:

$$V = F + D + V_{\text{soft}}$$

Susy gives a recipe of how to construct the scalar potential:

$$V = F + D + V_{\text{soft}}$$

F-term contributions from the Superpotential:

$$W = \frac{1}{3}\kappa S^{3} + \lambda SH_{u} \cdot H_{d} + y_{t}Q_{L} \cdot H_{u}\bar{t}_{R} + y_{b}H_{d} \cdot Q_{L}\bar{b}_{R} + y_{\tau}H_{d} \cdot L_{L}\bar{\tau}_{R}$$
$$F = \sum_{\phi} |\partial_{x}W|^{2} , \quad \phi \in \{h_{u}^{0}, h_{u}^{+}, h_{d}^{0}, h_{d}^{-}, \tilde{t}_{L}, \tilde{b}_{L}, \tilde{\tau}_{L}, \tilde{\nu}_{L}, \tilde{t}_{R}^{*}, \tilde{b}_{R}^{*}, \tilde{\tau}_{R}^{*}\}$$

Susy gives a recipe of how to construct the scalar potential:

$$V = F + D + V_{\text{soft}}$$

D-term contributions from the gauge structure:

$$D = D_{U(1)_Y} + D_{SU(2)_L} + D_{SU(3)_c}$$
$$D_{U(1)_Y} = \frac{g_1^2}{8} \left(\sum_{\phi} Y_{\phi} |\phi|^2\right)^2$$
$$D_{SU(2)_L} = \frac{g_2^2}{8} \sum_{\Phi_i} \sum_{\Phi_j} 2(\Phi_i^{\dagger} \Phi_j) (\Phi_j^{\dagger} \Phi_i) - (\Phi_i^{\dagger} \Phi_i) (\Phi_j^{\dagger} \Phi_j)$$
$$D_{SU(3)_c} = \frac{g_3^2}{6} \left(|\tilde{t}_L|^2 - |\tilde{t}_R|^2 + |\tilde{b}_L|^2 - |\tilde{b}_R|^2\right)^2$$

Susy gives a recipe of how to construct the scalar potential:

$$V = F + D + V_{\text{soft}}$$

Contributions from soft Susy breaking:

$$\begin{split} V_{\text{soft}} &= m_S^2 s^{\dagger} s + m_{H_u}^2 h_u^{\dagger} h_u + m_{H_d}^2 h_d^{\dagger} h_d + \left(A_{\lambda} s h_u \cdot h_d + \frac{1}{3} A_{\kappa} s^3 + \text{h.c.} \right) \\ &+ m_{Q_3}^2 \tilde{Q}_L^{\dagger} \tilde{Q}_L + m_{L_3}^2 \tilde{L}_L^{\dagger} \tilde{L}_L + m_{U_3}^2 |\tilde{t}_R|^2 + m_{D_3}^2 |\tilde{b}_R|^2 + m_{E_3}^2 |\tilde{\tau}_R|^2 \\ &+ \left(y_t A_t \tilde{t}_R^* \tilde{Q}_L \cdot h_u + y_b A_b \tilde{b}_R^* h_d \cdot \tilde{Q}_L + y_\tau A_\tau \tilde{\tau}_R^* h_d \cdot \tilde{L}_L + \text{h.c.} \right) \,, \end{split}$$

Susy gives a recipe of how to construct the scalar potential:

$$V = F + D + V_{\text{soft}}$$

Physical EW vacuum (the one we want to be in):

$$H_{d} = \begin{pmatrix} (v_{d} + h_{d} + ia_{d})/\sqrt{2} \\ h_{d}^{+} \end{pmatrix}, \quad H_{d} = \begin{pmatrix} h_{u}^{+} \\ (v_{u} + h_{u} + ia_{u})/\sqrt{2} \end{pmatrix}, \quad s = (v_{s} + h_{s} + ia_{s})/\sqrt{2}$$

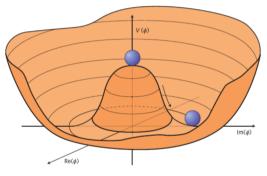
with $v_{d}, v_{u}, v_{s} \in \mathbb{R}$ and $v^{2} = v_{d}^{2} + v_{u}^{2} = 246^{2} \text{ GeV}^{2}$

BUT: V is a function in many (field) dimensions with loads of parameters

 \rightarrow In general there can be several local (dangerous) minima below the EW minimum

Vacuum stability: SM vs. Susy

 SM^2

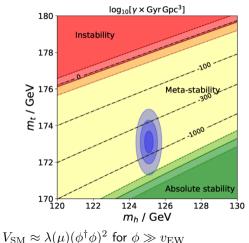


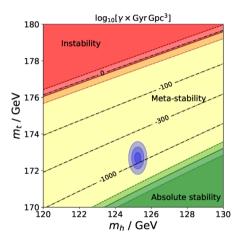
²The SM might have issues with vacuum instabilities at very large energy scales/in the early universe.

ITP seminar

Intermezzo: SM

Today there was an update on the $\ensuremath{\mathsf{arXiv}}$



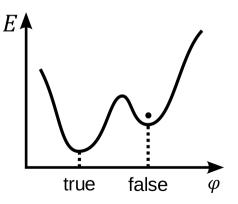


[Addendum 2023: 1707.09301]

Vacuum stability analysis

Step 1: Is the EW vacuum meta-stable?

 \rightarrow Determination of all stationary points of the scalar potential below the EW minimum.



Vacuum stability analysis

Step 1: Is the EW vacuum meta-stable?

 \rightarrow Determine all stationary points of the scalar potential below the EW minimum.

Step 2: What is the lifetime of the EW vacuum? \rightarrow Compute the vacuum decay rates for each possible transition

$$\frac{\Gamma}{V} = K \mathrm{e}^{-S_E}$$

 S_E : Euclidean bounce action

Vacuum stability analysis

Step 1: Is the EW vacuum meta-stable?

 \rightarrow Determine all stationary points of the scalar potential below the EW minimum.

Step 2: What is the lifetime of the EW vacuum?

 \rightarrow Compute the vacuum decay rates for each possible transition

Step 3: Is the EW vacuum sufficiently long-lived?

 \rightarrow Compare the smallest inverse decay rate (lifetime) to the age of the universe

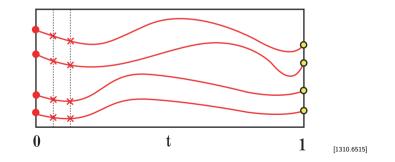
 $S_E < 390$: Short-lived EW vacuum, unphysical $390 < S_E < 440$: Uncertain fate of the EW vacuum $S_E > 440$: Long-lived (meta-stable) EW vacuum, physical

[W. Hollik, G. Weiglein, J. Wittbrodt: 1812.04644]

Homotopy continuation method

Solutions of a system of polynomial equations can be found using homotopy continuation methods. \rightarrow Can be used to determine all stationary points $\vec{F}(\vec{z}) = 0$ of tree-level scalar potentials

 $\vec{H}(\vec{z},t) = (1-t)\cdot\vec{F}(\vec{z}) + t\cdot\vec{g}(\vec{z}) = 0 \ , \quad \text{solutions of } \vec{g}(\vec{z}) = 0 \ \text{are known}.$



We use HOM4PS2 v.2: Polyhedral homotopy continuation; best (?) algorithm, closed source...

The bounce solution: 1 field

The bounce solution is the key object describing the vacuum transition.

 ϕ_T

[1109.4189]

 $-V(\phi)$ ϕ_F

In one dimensions this can be solved using the overshoot-undershoot method.

Bounce action:
$$S_E = \frac{2\pi^2}{\Gamma(2)} \int \rho^3 d\rho \left[\frac{1}{2} (\vec{\phi}(\rho))^2 + \Delta V(\vec{\phi}(\rho)) \right]$$

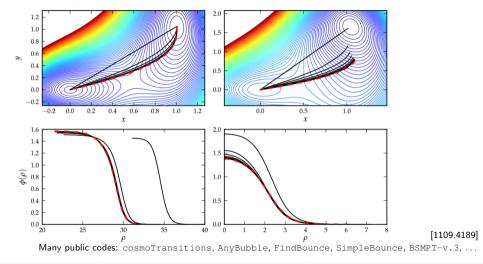
 $\frac{d^2\vec{\phi}}{d\rho^2} + \frac{3}{\rho}\frac{d\vec{\phi}}{d\rho} = \vec{\nabla}_{\phi}V(\vec{\phi})$ with $\rho = r^2 - t^2$

 $ec{\phi}(\infty) = ec{\phi}_F \;, \quad \left. \frac{dec{\phi}}{d
ho}
ight|_{==0} = 0$

Boundary conds.:

The bounce solution: > 1 fields

The main obstacle in many dimensions is finding the correct tunneling path in field space.



Thomas Biekötter

ITP seminar

The bounce solution: > 1 fields

In our analysis we use three different methods:

Method 1: Straight path approximation

Compute the bounce action assuming that the true tunneling path is well approximated by a straight path connecting the true and false minima (EVADE).

Method 2: Path deformation algorithm

Iterative procedure that deforms the straight path into the correct path by minimizing *perpendicular forces* along the path (cosmoTransitions).

Method 3: Using neural network to solve differential equations

Transform the problem of solving a system of differential equations into a minimization problem. Then use NN to minimize the loss function.

Method 2 and 3 are planned to be implemented into a future version of EVADE.

Method 3

System of coupled differential equations:

$$F_m(x_i, \phi_m(x_i), \nabla_j^1 \phi_m(x_i), \dots, \nabla_j^p \phi_m(x_i)) = 0$$

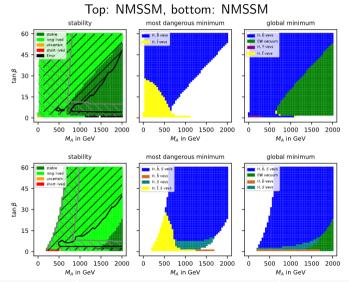
Create a loss function L for neural network with set of weights and biases $\{w, b\}$, simplest way: "squared sum" of $(F_m + \text{boundary conditions})$:

$$L(\{w,b\}) = \sum_{m,x_i} \left[F_m(x_i,\phi_m(x_i),\nabla_j^1\phi_m(x_i),\dots,\nabla_j^p\phi_m(x_i)) \right]^2 + \sum_{\alpha} [BC]_{\alpha}^2$$

Applied to calculation of bounce solution e.g. in [1902.05563]

So far we have still **issues** applying this to realistic models: discretization of field space problematic in thin-wall limit, convergence to trivial solution, choice of suitable architecture of NN

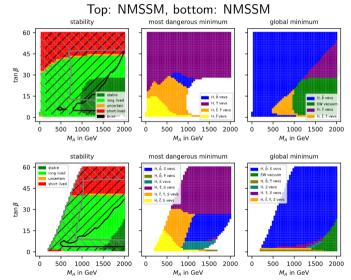
M_h^{125} benchmark scenario



Thomas Biekötter

ITP seminar

$M_h^{125}(\tilde{\tau})$ benchmark scenario



Thomas Biekötter

ITP seminar

$M_h^{125({ m tri})}$ benchmark scenario

stability most dangerous minimum global minimum 6000 stable H, b vevs H. & vevs Iong-lived H. Evevs H. č. ž. vevs H. E. D vevs H Evens short-lived 3000 EW vacuum A in GeV 0 -3000 -6000 2500 5000 -5000 -2500 0 2500 5000 -5000 -2500 0 -5000 -2500 0 2500 5000 Ц ... 11 most dangerous minimum global minimum stability 6000 stable H F S VINUE H. C. S. vevs long-lived H. S vevs EW vacuum uncertain H. B. S VEVS thort load 3000 b. S vevs H. Evers H. t. S vevs HEDSVeva A in GeV H, č, t, S vevs -3000 -6000 -5000 -2500 0 2500 5000 -5000 -2500 0 2500 5000 -5000 -2500 0 2500 5000

Top: NMSSM, bottom: NMSSM

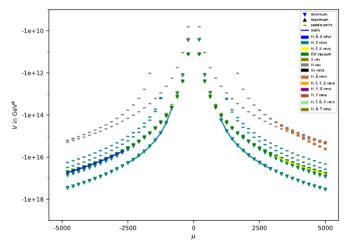
.,

ц

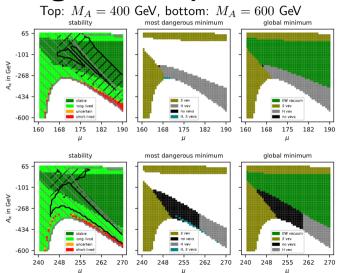
и

$M_h^{125({ m tri})}$ benchmark scenario

Top: NMSSM, bottom: NMSSM



NMSSM align. wo. dcpl.



ITP seminar

Conclusions so far

The EW vacuum is in large parts of the parameter space **meta-stable**. \rightarrow at T = 0 not an issue, but could yield cosmological issues

Meta-stable EW vacua are in most cases sufficiently long-lived.

ightarrow demanding a global EW minimum is too restrictive

Analysis of vacuum is difficult but worth the effort.

 \rightarrow constrains the way in which BSM theories might manifest themselves at colliders

We found parameter space regions in which the straight path approximation is not sufficient \rightarrow cosmoTransitions works great for a small number of fields

 \rightarrow NN works for > 20 fields but so far not reliable enough

Thanks!