

Anomalous Couplings in WZ production at nNLO QCD

Robin Roth | 18.06.2015

in collaboration with Francisco Campanario, Sebastian Sapeta, Dieter Zeppenfeld

INSTITUTE FOR THEORETICAL PHYSICS

CAPS COMMON SUBSTITUTIONS NUMERAL CAPS SUBSTITUTIONS NUMERAL CAPS SUBSTITU	28 BITS OF ENTROPY 28 = 3 DRYS AT 1000 GLESES/SC (Managed and A sub-REPHT We grant the process of a sub- water of the process of a sub- company of the process of a sub- sector of the process of a sub- company of the process of a sub- company of the process of a sub- sector of the process of the process of a sub- term of the process of the process of the pro- sector of the process of the process of the process of the pro- sector of the process of the process of the process of the pro- sector of the process of the process of the pro- sector of the process of the process of the pro- term of the process of the process of the pro- sector of the process of the pro- sector of the process of the pro- sector of the process of the pro- term of the process of the pro- sector of the process of the pro- sector of the process of the pro- sector of the process of the process of the pro- sector of	WAS IT TRONBONE? NO, TROUGADOR, AND ONE OF THE CS, WAS ZENO? AND THERE WAS SOME SHABOL DIFFICULTY TO REMEMBER: HARD	Correct horse battery staple	~44 длт ог Емлюру остановано 2 ¹¹ = 550 ублек Агт 1000 GUESSES/Sec Difficulty 10 GUESS: HARD	DIFFICULTY TO REMEMBER:
--	---	---	------------------------------	--	-------------------------

Overview

Introduction & Reminder

- 2 Anomalous Couplings and Additional QCD radiation
 - Motivation
 - Observable: x_{jet}, x_Z
 - *R*_{//}
- 3 LoopSim: nNLO QCD
 - The LoopSim Method
 - Preliminary Results of WZ with Anomalous Couplings
- 4 Technical Issues
 - Statistics
 - Bin Smearing

Introduction

Goal

- Test the Standard Model (SM) at the LHC with the highest possible precision
- Look for deviations from the SM in a structured way

Methods

- Improve SM prediction, reduce theory error ($\Rightarrow \bar{n}NLO$)
- Provide framework to parametrize beyond-SM effects (⇒ AC)
- Help to improve analyses (⇒ better cuts and observables)

Tools

- VBFNLO: AC for Diboson Production at NLO QCD
- LoopSim: nNLO based on VBFNLO input

Anomalous Couplings

- bottom-up Effective Field Theory, constructed from SM fields/symmetries
- add higher-dimension terms to Lagrangian
- allows to parametrize deviations from SM, e.g. in triple/quartic gauge couplings

Example operator: $\mathcal{O}_W = (D_\mu \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_\nu \Phi), \quad \mathcal{L} = \mathcal{L}_{SM} + \frac{f_W}{\Lambda^2} \mathcal{O}_W + \frac{f_k}{\Lambda^4} \dots$

Introduction & Reminder

Validity of EFT approach

Assumptions

- New Physics at a high mass scale
- well-behaved couplings (small)

Then EFT provides: most general extension of the SM

Problems

- Conventions/Basis
- Power counting (Λ, p^2)
- Mixing of operators (need complete basis)
- Interplay of different powers:

$$\mathcal{M} = \mathcal{M}_{SM} + \mathcal{M}_{AC}$$
$$|\mathcal{M}|^{2} = \underbrace{\mathcal{M}_{SM}^{2}}_{1/\Lambda^{0}} + \underbrace{2\text{Re}\mathcal{M}_{AC}^{*}\mathcal{M}_{SM}}_{1/\Lambda^{2}} + \underbrace{\mathcal{M}_{AC}^{2}}_{1/\Lambda^{4}}$$

- Include dimension 8? Theory error: \mathcal{M}^2_{AC} ?
- Experimental fit only in range where $\mathcal{M}^2_{AC} \ll \mathcal{M}_{AC} \mathcal{M}_{SM}$

Introduction & Reminder

Motivation: Additional Jets in Diboson Production

- [Campanario, RR, Zeppenfeld, arXiv:1410.4840]
- VV production at high p_T is mostly Vj with a second soft vector boson
- Anomalous Couplings scale with $s = m_{VV}$
 - \Rightarrow focus on phase space with high m_{VV} , little energy in jets
- traditional fixed jet veto brings terms log $\frac{\rho_{\mathrm{Tveto}}}{m_{VV}}$

Observable: x_{jet}, x_Z

Motivation

- 3 particle final state, e.g. WZj
- the transverse momenta can be parametrized using only two variables
 6 d.o.f. (*pt*_W, *pt*_Z, *pt*_{jet}) 2 (total *p*_T = 0) 1 (no φ dependence) 1 (rescaling at high *p*_T)
- dalitz-like construction

$$\begin{aligned} x_{\text{jet}} &= \frac{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i}}{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i} + \sum_{W,Z} \mathsf{E}_{\mathsf{T},i}}, \quad x_V = \frac{E_{TV}}{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i} + \sum_{W,Z} \mathsf{E}_{\mathsf{T},i}} \\ x_{\text{jet}} + x_W + x_Z = 1 \\ x_i &\leq 0.5 \quad (\text{at LO only}) \end{aligned}$$

other choices: p_T instead of E_T , partons instead of jets, ...

Observable: *x*_{jet}, *x*_Z

Observable: *x*_{jet}, *x*_Z

Anomalous Couplings and Additional QCD radiation Robin Roth – Anomalous Couplings in WZ production at nNLO QCD

The R_{\parallel} cut and Anomalous Couplings

•
$$R_{\parallel}$$
: $\Delta R^2 = \Delta \phi^2 + \Delta \eta^2$, separation of leptons

$$\vec{p} = \begin{pmatrix} p_{\mathsf{T}} \cos \phi \\ p_{\mathsf{T}} \sin \phi \\ p_{\mathsf{T}} \sinh \eta \end{pmatrix}, \quad |\vec{p}| = p_{\mathsf{T}} \cosh \eta$$

Relation to invariant mass of two particles to R_{\parallel}

Assumption: massless/relativistic products of boosted massive particle

$$m^{2} = 2p_{1} \cdot p_{2} = 2 \left(E_{1}E_{2} - \vec{p}_{1} \cdot \vec{p}_{2}\right) =$$

$$= 2 \left(\rho_{T1}\rho_{T2}\cosh\eta_{1}\cosh\eta_{2} - \rho_{T1}\rho_{T2}\left(\cos\phi_{1}\cos\phi_{2} + \sin\phi_{1}\sin\phi_{2} + \sinh\eta_{1}\sinh\eta_{2}\right)\right)$$

$$= 2p_{T1}\rho_{T2}\left(\cosh(\eta_{1} - \eta_{2}) - \cos(\phi_{1} - \phi_{2})\right)$$

$$\approx 2\frac{pt_{2}}{2}\frac{pt_{2}}{2}\left(1 + \frac{1}{2}\Delta\eta^{2} - 1 + \frac{1}{2}\Delta\phi^{2}\right) = \boxed{\frac{1}{4}pt_{2}^{2}\Delta R^{2}}$$

for M_Z and $R_{\parallel} = 0.4$: $pt_Z = 450 \text{ GeV}$

Sensitive on Decay angle and thus Z polarization!

Anomalous Couplings and Additional QCD radiation Robin Roth – Anomalous Couplings in WZ production at nnLO QCD

R_{\parallel} and Anomalous Couplings

The LoopSim Method

Goal

- Merge different multiplicity final state
- include dominant contributions from extra emissions, possibly log enhanced
- Work on parton level, no shower needed
- preserve NLO total cross section
- use NLO events, interface to existing Monte Carlos programs

X@nNLO

- X@NLO
- Xj@NLO
- loop Xj@NLO and remove double counting
- missing: finite
- Inspired by CKKW matching
- [Rubin, Salam, Sapeta arXiv:1006.2144]

The LoopSim Method

- cluster by distance to get emission sequence (C/A algorithm)
- captures soft/collinear divergences
- subtract divergences by generating looped diagrams with negative weight
- Catani-Seymour like generation of looped kinematics
- Clustering radius R_{LS} gives estimate of dependence on merging
- Scale dependence preserved for additional emissions, overestimates the NNLO scale dependence

Previous LoopSim results

[Campanario, Rauch, Sapeta, arXiv:1309.7293]

LoopSim with **VBFNLO**

Interfacing with LoopSim

- VBFNLO produces event sample
- LoopSim generates looped events from sample
- run analysis on those final events

Issues

- no flavour information from VBFNLO (summed over)
- need very inclusive sample (no jet cut) to fill all of phase space
- Consistent scale choice over all samples needed

practical LoopSim

LoopSim slower than bare VBFNLO run by a factor 8

interest not in phase space region with highest cross section but tails

 W^+Z 10^{3} FW = -5FW = -3SM (NLO) $\frac{\mathrm{d}\sigma/\mathrm{d}x_{j}}{10^{1}} / \frac{\mathrm{fb}/\mathrm{GeV}}{10^{1}}$ SM (nNLO) 10^{2} FW = +7FW = +10 10^{0} $1.2 \\ 1.1 \\ 1.0 \\ 0.9$ AC/SM nNLO/NLO 1.2 1.0 0.0 0.20.40.6 0.8 1.0 x_j / GeV

LoopSim: nNLO QCD

Karlsruhe Institute of Technology

 W^+Z

 W^+Z 10^{-1} FW = -5 $\frac{\mathrm{d}\sigma/\mathrm{d}mWZ, veto}{10^{-2}}, \frac{10}{10^{-4}}$ FW = -3SM (NLO) SM (nNLO) FW = +7FW = +10AC/SM nNLO/NLO 1.0 6 2 0 5001000 1500 2000 mWZ, veto / GeV

LoopSim: nNLO QCD

Combine histograms of N runs

- have: observables of N runs
- want: central value and error
- assumption: Gaussian distribution of individual runs

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$
$$\sigma_{\text{MC}} = \sqrt{\left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) - \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)^2}$$
$$\sigma_{\text{mean}} = \frac{\sigma_{\text{MC}}}{\sqrt{N}}$$

Standard deviation \Leftrightarrow Standard error of the mean

Problem

- large cancellations between events (real/subtraction, real/looped)
- small momentum changes (tilde kinematics)
- events close to bin boundary can end up in different bins
- increased error in both bins

Solution

- count events close to bin boundaries in both bins
- need smooth function to transition from 100% Bin1 to 100% Bin2

Optimizing Monte Carlo integration

Monaco, our Monte Carlo core

- based on Vegas
- importance sampling, choose points proportional to weight

Problem

- Monaco tries to reduce error on total cross section
- for LoopSim: want high statistics in tails, not soft jets

Solution

- "Cheat" Monaco
- function to integrate: $\sigma(p_i) \cdot rew(p_i)$

•
$$rew(p_i) = H_T^4 \cdot \left\{ \left(\frac{p_{t_{jet,min}}}{p_{t_{jet,analysiscut}}} \right)^n, 1 \right\}$$
, where $n = 1, 2, 4$ and $H_T = \sum_{jets} p_{T,i}$

Outlook

- merge WZjj@NLO for WZ@nnNLO
- compare LoopSim to other merging schemes (Herwig/Matchbox, ...)
- validate with existing differential NNLO calculations (WH, $\gamma\gamma$?)
- estimate missing two-loop term $\sim \alpha_{\rm s}^2 \sigma_{\rm LO}$ for a class of processes
- better observables for anomalous couplings, search strategies for LHC

Backup

Introduction & Reminder WHj Production

	inclusive				boosted			
	W	^+Z	W	+Zj	W	^+Z	W	+Zj
Njets	LO	NLO	LO	NLO	LO	NLO	LO	NLO
0	14.00	16.74			0.492	0.397		
1		11.28	11.31	8.391		1.242	1.248	0.554
2				6.223				1.094

$$\sqrt{s} = 14 \text{ TeV}, \text{ jet algorithm: anti-} k_t \text{ with } R = 0.4$$

$$\mu_0 = \frac{1}{2} \left(\sum_{\text{partons}} p_{T,i} + \sum_{W,Z} \sqrt{p_{T,i}^2 + m_i^2} \right)$$

Cuts

 $\begin{array}{ll} p_{\mathsf{T}\,l} > 20 \, {\rm GeV} & p_{\mathsf{T}\,j} > 30 \, {\rm GeV} & p_{\mathsf{T}} > 30 \, {\rm GeV} \\ |\eta_j| < 4.5 & |\eta_l| < 2.5 & R_{l(l,j)} > 0.4 \\ m_{ll} > 15 \, {\rm GeV} & R_{ll} > 0.4 \end{array}$

boosted: $p_{TZ} > 200 \text{ GeV}$

Higgs at LHC

WH at LHC

- small cross section \Rightarrow large BR most interesting
- \blacksquare WH, H \rightarrow bb has large background from W + jets
- improve S/B using boosted Higgs, fat jet, subjet analysis
- current status: CMS WH \rightarrow Wbb: 2.1 σ excess ATLAS exclusion down to 1.4 σ_{SM}
- useful for BSM decay modes
- WWH coupling
- best channel for $H \to b \overline{b}$

WHj NLO

- NLO QCD: virtual and real contributions
- numerical integration with different phase spaces: need to be finite individually
- Catani-Seymour dipole subtraction

$$\sigma^{NLO} = \int_{m} d\sigma^{V} + \int_{m+1} d\sigma^{R}$$
$$= \int_{m} \left(d\sigma^{V} + \int_{1} d\sigma^{A} \right) + \int_{m+1} \left(d\sigma^{R} - d\sigma^{A} \right)$$

Anomalous Couplings

- use effective field theory to describe physics entering at a higher scale
- new operators with dimensionful couplings $\mathcal{L}_{\mathsf{EFT}} = \sum_{i} \frac{f_{i}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)}$
- dimension 6 operators affecting the WWH vertex: $\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu}\Phi), \quad \mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu}\Phi \quad (CP \text{ even})$ $\mathcal{O}_{\widetilde{W}} = (D_{\mu}\Phi)^{\dagger} \widehat{\widetilde{W}}^{\mu\nu} (D_{\nu}\Phi), \quad \mathcal{O}_{\widetilde{W}W} = \Phi^{\dagger} \widehat{\widetilde{W}}_{\mu\nu} \hat{W}^{\mu\nu}\Phi \quad (CP \text{ odd})$

$f_W/\Lambda^2~({ m TeV}^{-2})$	cross section (fb)			$p_{\mathrm Th}$ $<$ 200 GeV		
	LO	NLO	К	LO	NLO	К
0	25.0	28.6	1.14	21.5	24.8	1.15
1	22.9	25.9	1.13	20.5	23.1	1.13
-1	28.0	30.7	1.09	22.7	25.5	1.13
10	52.3	34.6	0.66	13.6	15.5	1.14
-10	103.5	82.7	0.80	36.0	40.0	1.11

Event selection and cross sections

$$\begin{split} \sqrt{s} &= 14 \ \text{TeV} & \mathsf{R}_{jj} &= 0.8, \ \textit{k}_{T}\text{-alg.} & \mathsf{R}_{jl} &= 0.6 \\ \textit{m}_{h} &= 126 \ \text{GeV} & \textit{p}_{T,j} &= 30 \ \text{GeV} & \textit{p}_{T,l} &= 20 \ \text{GeV} \\ \mu_{R} &= \mu_{F} &= \textit{m}_{Z} & \left|\eta_{j}\right| < 4.5 & \left|\eta_{l}\right| < 2.5 \end{split}$$

Process	LO (fb)	NLO (fb)	K-Factor
W ⁺ H	56	76	1.37
W^-H	32	45	1.41
W ⁺ Hj	25	28	1.10
W ⁻ Hj	15	17	1.15
W ⁺ Hjj	11		
W ⁻ Hii	6		

• included: BR(W⁺
$$\rightarrow$$
 e⁺ ν) = 10.84%

• not included: BR
$$(H \rightarrow b\overline{b}) = 57\%$$