Renormalization of the THDM and the NLO Corrections to the Decay $H^+ \rightarrow ~W^+~h/H$

Robin Lorenz

02.07.2015

Outline

Introductory Remarks

2 Renormalization of the Scalar Sector of the THDM

3 The Decay $H^+ \rightarrow W^+ h/H$ @ NLO

Conclusion and Outlook

	< □ >	(日)・モン・モン	Ξ.	୬୯୯
Outline	Robin Lorenz	02.07.2015		1 / 32

The Two-Higgs-Doublet Model (THDM)

THDM = SM with two complex scalar SU(2) doublets Φ_1 and Φ_2 with Y = +1; Renormalizable Lagrangian, invariant under $SU_L(2) \times U_Y(1)$:

$$\mathcal{L}_{EW} = \sum_{\psi} \overline{\psi} i \not{D} \psi - \frac{1}{4} W^{a}_{\mu\nu} W^{\mu\nu}_{a} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \mathcal{L}_{Ghost}$$
$$+ \sum_{i=1,2} (D_{\mu} \Phi_{i})^{\dagger} (D^{\mu} \Phi_{i}) + \mathcal{L}_{GF} (\Phi_{1}, \Phi_{2}, A^{a}_{\mu}, B_{\mu})$$
$$+ \mathcal{L}_{Yuk} (\Phi_{1}, \Phi_{2}, \{\psi\})$$
$$- V(\Phi_{1}, \Phi_{2})$$

Introductory Remarks	Pobin Lorenz	02.07.2015	-	2/22
Introductory Remarks	Robin Lorenz	02.07.2015		2 / 32

The Physical Degrees of Freedom

• The most general CP-conserving scalar potential (additionally respecting a Z_2 -symmetry):

$$\begin{split} V\left(\Phi_{1},\Phi_{2}\right) &= m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} - m_{12}^{2}\left(\Phi_{1}^{\dagger}\Phi_{2} + \Phi_{2}^{\dagger}\Phi_{1}\right) \\ &+ \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\Phi_{1}^{\dagger}\Phi_{1}\Phi_{2}^{\dagger}\Phi_{2} + \lambda_{4}\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} \\ &+ \frac{\lambda_{5}}{2}\left(\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + \left(\Phi_{2}^{\dagger}\Phi_{1}\right)^{2}\right) \end{split}$$

Introductory Remarks	Robin Lorenz	02.07.2015	3 / 32

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Physical Degrees of Freedom

• The most general CP-conserving scalar potential (additionally respecting a *Z*₂-symmetry):

$$\begin{split} V\left(\Phi_{1},\Phi_{2}\right) &= m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} - m_{12}^{2}\left(\Phi_{1}^{\dagger}\Phi_{2} + \Phi_{2}^{\dagger}\Phi_{1}\right) \\ &+ \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\Phi_{1}^{\dagger}\Phi_{1}\Phi_{2}^{\dagger}\Phi_{2} + \lambda_{4}\Phi_{1}^{\dagger}\Phi_{2}\Phi_{2}^{\dagger}\Phi_{1} \\ &+ \frac{\lambda_{5}}{2}\left(\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + \left(\Phi_{2}^{\dagger}\Phi_{1}\right)^{2}\right) \end{split}$$

• Diagonalization of the mass matrices:

$$\begin{pmatrix} \rho_{1} \\ \rho_{2} \end{pmatrix} = R(\alpha) \begin{pmatrix} H \\ h \end{pmatrix} \rightarrow R(\alpha)^{\mathsf{T}} M_{\rho} R(\alpha) = \begin{pmatrix} m_{H}^{2} & 0 \\ 0 & m_{h}^{2} \end{pmatrix}$$
$$\begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{0} \\ A \end{pmatrix} \rightarrow R(\beta)^{\mathsf{T}} M_{\eta} R(\beta) = \begin{pmatrix} 0 & 0 \\ 0 & m_{A}^{2} \end{pmatrix}$$
$$\begin{pmatrix} \omega_{1}^{+} \\ \omega_{2}^{+} \end{pmatrix} = R(\beta) \begin{pmatrix} G^{+} \\ H^{+} \end{pmatrix} \rightarrow R(\beta)^{\mathsf{T}} M_{\omega} R(\beta) = \begin{pmatrix} 0 & 0 \\ 0 & m_{H^{\pm}}^{2} \end{pmatrix}$$

Introductory Remarks	Robin Lorenz	02.07.2015	3 / 32
----------------------	--------------	------------	--------

What have I done?

• Full one-loop electroweak corrections to the decay

$$H^+ \rightarrow W^+ h/H$$

Figure 1 : Tree-level Feynman diagram for the decay $H^+ \rightarrow W^+ h/H$.

		▶ ▲ 国 ▶ ▲ 国 ▶	3	9 Q P
Introductory Remarks	Robin Lorenz	02.07.2015		4 / 32

What have I done?

• Full one-loop electroweak corrections to the decay

$$H^+ \rightarrow W^+ h/H$$

Figure 1 : Tree-level Feynman diagram for the decay $H^+ \rightarrow W^+ h/H$.

• Study of different renormalization schemes for the THDM:

What are the differences?

What are the intuitions behind them?

Is there a universally preferable scheme?

		▶ ◆ 문 ▶ ◆ 문 ▶	≣ *) Q (*
Introductory Remarks	Robin Lorenz	02.07.2015	4 / 32

Which Parameters to Renormalize and How?

• Complete set of 12 independent parameters:

$$\{ m_{11}, m_{22}, m_{12}, \lambda_1 - \lambda_5, v_1, v_2, g, g' \}$$

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	5 / 32
--	--------------	------------	--------

Which Parameters to Renormalize and How?

• Complete set of 12 independent parameters:

$$\{ m_{11}, m_{22}, m_{12}, \lambda_1 - \lambda_5, v_1, v_2, g, g' \}$$

- Different renormalization schemes lead to differences of the angles with respect to:
 - numerical stability
 - gauge independence
 - process independence

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	5 / 32

Which Parameters to Renormalize and How?

Complete set of 12 independent parameters:

$$\{ m_{11}, m_{22}, m_{12}, \lambda_1 - \lambda_5, v_1, v_2, g, g' \}$$

• Different renormalization schemes lead to differences of the angles with respect to:

- numerical stability
- gauge independence
- process independence
- Freitas et al. [hep-ph/0205281] establish a no-go-theorem for the MSSM.

 $\rightarrow~$ What about the general THDM?

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	5 / 32

The 'Kanemura approach':

[Kanemura et al., hep-ph/1502.07716]

$$\sqrt{Z_f} = R(\delta\theta)^T R(\theta)^T \sqrt{Z_\gamma} R(\theta)$$
(1)

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	6 / 32

The 'Kanemura approach':

[Kanemura et al., hep-ph/1502.07716]

$$\sqrt{Z_f} = R(\delta\theta)^T R(\theta)^T \sqrt{Z_\gamma} R(\theta)$$
(1)

 $\delta \alpha$ and $\delta \beta$ can be fixed by imposing on-shell conditions on the inverse propagator:

$$\hat{\Gamma}_{f}(p^{2}) = \sqrt{Z_{f}}^{\dagger} \left[p^{2} \mathbb{1}_{2 \times 2} - (D_{f} + \delta D_{f}) + \Sigma_{f} \right] \sqrt{Z_{f}} , \qquad (2)$$

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	6 / 32

The 'Kanemura approach':

[Kanemura et al., hep-ph/1502.07716]

$$\sqrt{Z_f} = R(\delta\theta)^T R(\theta)^T \sqrt{Z_\gamma} R(\theta)$$
(1)

 $\delta \alpha$ and $\delta \beta$ can be fixed by imposing on-shell conditions on the inverse propagator:

$$\hat{\Gamma}_f(p^2) = \sqrt{Z_f}^\dagger \left[p^2 \mathbb{1}_{2 \times 2} - (D_f + \delta D_f) + \Sigma_f \right] \sqrt{Z_f} , \qquad (2)$$

which yields

$$\delta \alpha = \frac{1}{2(m_{H}^{2} - m_{h}^{2})} \left[\Sigma_{Hh}(m_{h}^{2}) + \Sigma_{Hh}(m_{H}^{2}) - 2\delta T_{Hh} \right]$$
(3)
$$\delta \beta = -\frac{1}{2 m_{H^{\pm}}^{2}} \left[\Sigma_{G^{+}H^{+}}(m_{H^{\pm}}^{2}) + \Sigma_{G^{+}H^{+}}(0) - 2\delta T_{G^{+}H^{+}} \right]$$
(4)

	< □ >	◆週 → ◆ 国 → ◆ 国 →	≣
Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	6 / 32

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	7 / 32
--	--------------	------------	--------

イロト イヨト イヨト イヨト

In order to circumvent the gauge dependence of β , Kanemura *et al.* suggest:

$$\delta\beta \equiv \left. -\frac{1}{m_{H^{\pm}}^{2}} \left[\Sigma_{G^{+}H^{+}}(m_{H^{\pm}}^{2}) - \delta T_{G^{+}H^{+}} \right] \right|_{G.I.}$$
(5)

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	7 / 32

What is the minimum number of required field renormalization constants?

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	8 / 32

What is the minimum number of required field renormalization constants?

$$\Phi_i \mapsto \sqrt{Z_i} \Phi_i = \left(1 + \frac{1}{2}\delta Z_i\right) \Phi_i \quad \text{for } i = 1, 2.$$
 (6)

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	8 / 32

What is the minimum number of required field renormalization constants?

$$\Phi_i \mapsto \sqrt{Z_i} \Phi_i = \left(1 + \frac{1}{2}\delta Z_i\right) \Phi_i \quad \text{for } i = 1, 2.$$
 (6)

For the Z_{γ} this implies

$$\sqrt{Z_{\gamma}^{Min}} = \begin{pmatrix} 1 + \frac{1}{2}\delta Z_1 & 0\\ 0 & 1 + \frac{1}{2}\delta Z_2 \end{pmatrix}, \qquad (7)$$

which feeds into

$$\sqrt{Z_f^{Min}} \equiv R(\delta\theta)^T R(\theta)^T \sqrt{Z_{\gamma}^{Min}} R(\theta) .$$
(8)

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	8 / 32

What is the minimum number of required field renormalization constants?

$$\Phi_i \mapsto \sqrt{Z_i} \Phi_i = \left(1 + \frac{1}{2}\delta Z_i\right) \Phi_i \quad \text{for } i = 1, 2.$$
 (6)

For the Z_{γ} this implies

$$\sqrt{Z_{\gamma}^{Min}} = \begin{pmatrix} 1 + \frac{1}{2}\delta Z_1 & 0\\ 0 & 1 + \frac{1}{2}\delta Z_2 \end{pmatrix}, \qquad (7)$$

which feeds into

$$\sqrt{Z_f^{Min}} \equiv R(\delta\theta)^T R(\theta)^T \sqrt{Z_{\gamma}^{Min}} R(\theta) .$$
(8)

The renormalization conditions for the scalar sector:

$$\left\{ \hat{\Gamma}_{G^+H^+}(m_{H^{\pm}}^2) \stackrel{!}{=} 0, \quad \operatorname{Re}\left(\hat{\Gamma}'_{H^+H^+}(m_{H^{\pm}}^2) \right) \stackrel{!}{=} 1 \right\} \quad \Rightarrow \text{ fix } \delta Z_1 \text{ and } \delta Z_2$$

$$\delta t_{\beta} \stackrel{!}{=} \frac{t_{\beta}}{2} \left(\delta Z_2 - \delta Z_1 \right)$$

$$(10)$$

$$\hat{\Gamma}_{Hh}(m_H^2) \stackrel{!}{=} 0 \implies \text{fixes } \delta \alpha$$
 (11)

< ロ > < 同 > < 回 > < 回 >

Only 4 independent parameters for the renormalization of all scalar fields.

 \Rightarrow Not all scalars can be renormalized on-shell.

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	9 / 32

Only 4 independent parameters for the renormalization of all scalar fields.

- \Rightarrow Not all scalars can be renormalized on-shell.
- \Rightarrow Wave-function normalization matrix Z_N needed to restore on-shell relations after renormalization:

$$\begin{pmatrix} \tilde{A}_{H} \\ \tilde{A}_{h} \end{pmatrix} = Z_{N} \begin{pmatrix} A_{H} \\ A_{h} \end{pmatrix}$$
(12)

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	9 / 32

Only 4 independent parameters for the renormalization of all scalar fields.

- \Rightarrow Not all scalars can be renormalized on-shell.
- \Rightarrow Wave-function normalization matrix Z_N needed to restore on-shell relations after renormalization:

$$\begin{pmatrix} \tilde{A}_{H} \\ \tilde{A}_{h} \end{pmatrix} = Z_{N} \begin{pmatrix} A_{H} \\ A_{h} \end{pmatrix}$$
(12)

9 / 32

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	
--	--------------	------------	--

• Along the lines of the electric charge renormalization: Use a physical process to fix $\delta \alpha$ and $\delta \beta$.

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	10 / 32

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Along the lines of the electric charge renormalization: Use a physical process to fix $\delta \alpha$ and $\delta \beta$.
- Can the decay $H^+ \rightarrow W^+ H$ be used to fix $\delta(\beta \alpha)$?

$$\Gamma_{H}^{\text{NLO}} = \Gamma_{H}^{\text{LO}} \left[1 + 2 \operatorname{Re} \left(F_{H^+W^-H}^{\text{NLO}} \right) + \delta Z_{WW} + \delta Z_{H^+H^+} + \delta Z_{HH} - \frac{c_{\beta-\alpha}}{s_{\beta-\alpha}} \left(\delta Z_{G^+H^+} + \delta Z_{hH} \right) + 2 \frac{\delta g}{g} + 2 \frac{c_{\beta-\alpha}}{s_{\beta-\alpha}} \delta(\beta-\alpha) \right]$$

	< □ >	◆週 → ◆注 → ◆注 →	æ	୬୯୯
Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015		10 / 32

Г

- Along the lines of the electric charge renormalization: Use a physical process to fix $\delta \alpha$ and $\delta \beta$.
- Can the decay $H^+ \rightarrow W^+ H$ be used to fix $\delta(\beta \alpha)$?

$$\Gamma_{H}^{\text{NLO}} = \Gamma_{H}^{\text{LO}} \left[1 + 2 \operatorname{Re} \left(F_{H^+W^-H}^{\text{NLO}} \right) + \delta Z_{WW} + \delta Z_{H^+H^+} + \delta Z_{HH} \right. \\ \left. - \frac{c_{\beta-\alpha}}{s_{\beta-\alpha}} \left(\delta Z_{G^+H^+} + \delta Z_{hH} \right) + 2 \frac{\delta g}{g} + 2 \frac{c_{\beta-\alpha}}{s_{\beta-\alpha}} \delta(\beta-\alpha) \right]$$
$$\left. \stackrel{!}{=} \Gamma_{H}^{\text{LO}} \right]$$

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	10 / 32

- Along the lines of the electric charge renormalization: Use a physical process to fix $\delta \alpha$ and $\delta \beta$.
- Can the decay $H^+ \rightarrow W^+ H$ be used to fix $\delta(\beta \alpha)$?

$$\Gamma_{H}^{\text{NLO}} = \Gamma_{H}^{\text{LO}} \left[1 + 2 \operatorname{Re}\left(F_{H^{+}W^{-}H}^{\text{NLO}}\right) + \delta Z_{WW} + \delta Z_{H^{+}H^{+}} + \delta Z_{HH} \right. \\ \left. - \frac{c_{\beta-\alpha}}{s_{\beta-\alpha}} \left(\delta Z_{G^{+}H^{+}} + \delta Z_{hH}\right) + 2\frac{\delta g}{g} + 2\frac{c_{\beta-\alpha}}{s_{\beta-\alpha}}\delta(\beta-\alpha) \right] \\ \left. \stackrel{!}{=} \Gamma_{H}^{\text{LO}} \right]$$

• Problem: IR divergent virtual corrections, e.g. from:

・ロト ・回ト ・ヨト ・ヨト

- Along the lines of the electric charge renormalization: Use a physical process to fix $\delta\alpha$ and $\delta\beta.$
- Can the decay $H^+ \rightarrow W^+ H$ be used to fix $\delta(\beta \alpha)$?

$$\Gamma_{H}^{\text{NLO}} = \Gamma_{H}^{\text{LO}} \left[1 + 2 \operatorname{Re} \left(F_{H^+W^-H}^{\text{NLO}} \right) + \delta Z_{WW} + \delta Z_{H^+H^+} + \delta Z_{HH} \right. \\ \left. - \frac{c_{\beta-\alpha}}{s_{\beta-\alpha}} \left(\delta Z_{G^+H^+} + \delta Z_{hH} \right) + 2 \frac{\delta g}{g} + 2 \frac{c_{\beta-\alpha}}{s_{\beta-\alpha}} \delta(\beta-\alpha) \right] \\ \left. + \Gamma_{H\gamma}^{\text{soft}} \right]$$

 $\stackrel{!}{=}$ Γ_H^{LO}

• Problem: IR divergent virtual corrections, e.g. from:

• Suggestion to circumvent this issue is to use the decay

 A^0

$$\rightarrow \tau^+ \tau^-$$
 [Freitas *et al*, hep-ph/0205281]

to fix $\delta\beta$.

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	12 / 32

• Suggestion to circumvent this issue is to use the decay

$$A^0
ightarrow au^+ au^-$$
 [Freitas *et al*, hep-ph/0205281]

to fix $\delta\beta$.

The virtual photon corrections form a UV finite subset,

$$\Gamma^{\text{NLO}} = \Gamma^{\text{LO}} + \Gamma^{\text{NLO}}_{\text{virt,QED}} + \Gamma^{\text{NLO}}_{\text{virt,rest}} + \Gamma^{\text{NLO}}_{\text{real}}, \qquad (13)$$

and one can therefore require

$$\Gamma_{\text{virt,rest}}^{\text{NLO}} \stackrel{!}{=} 0 \tag{14}$$

to fix the angle counterterm.

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	12 / 32

- Why not using a vertex which satisfies the following requirements?
 - Involves only neutral external fields.
 - 2 Depends on α and/or β .
 - In the second second

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	13 / 32

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Why not using a vertex which satisfies the following requirements?
 - Involves only neutral external fields.
 - 2 Depends on α and/or β .
 - In the second second
- Couplings meeting these criteria:
 - Yukawa couplings: none
 - 2 scalars 2 gauge bosons: none
 - 2 scalars 1 gauge boson:
 - 1 scalar 2 gauge bosons:
 - Trilinear scalar couplings:
 - Quartic scalar couplings:

SOR

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	13 / 32

• Couplings with only neutral fields are either kinematically restrictive and/or very hard to be actually measured.

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	14 / 32

- Couplings with only neutral fields are either kinematically restrictive and/or very hard to be actually measured.
- The THDM has two independent mixing angles, hence two processes are needed. Apart from $A^0 \rightarrow \tau^+ \tau^-$ to fix $\delta\beta$, one could use $H \rightarrow \tau^+ \tau^-$ to fix $\delta\alpha$.

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	14 / 32

- Couplings with only neutral fields are either kinematically restrictive and/or very hard to be actually measured.
- The THDM has two independent mixing angles, hence two processes are needed. Apart from $A^0 \rightarrow \tau^+ \tau^-$ to fix $\delta\beta$, one could use $H \rightarrow \tau^+ \tau^-$ to fix $\delta\alpha$.

(+)

- gauge independence
- numerically stable

(-)

- process dependence
- technically involved (especially beyond one-loop level)

	< □ >	- 本間を 本語を 本語を	三 つくぐ
Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	14 / 32

Scheme 4: The HybMS Scheme

- Hybrid scheme with:
 - on-shell renormalized scalar fields
 - MS condition for the angles

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	15 / 32

Scheme 4: The HybMS Scheme

- Hybrid scheme with:
 - on-shell renormalized scalar fields
 - MS condition for the angles

- (+)
- gauge independence
- process independence

- (-)
- numerical instabilities

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Renormalization of the Scalar Sector of the THDM	Robin Lorenz	02.07.2015	15 / 32

Real Corrections

The IR finite decay width is obtaind by adding corrections from real soft photons:

$$\Gamma_{h/H}^{\text{obs}} = \Gamma(H^+ \to W^+ h/H) + \underbrace{\Gamma(H^+ \to \gamma W^+ h/H)}_{\equiv \Gamma_{\gamma h/H}^{\text{soft}}}, \qquad (15)$$

The Decay $H^+ \rightarrow W^+ h/H$ @ NLO	Robin Lorenz	02.07.2015	16 / 32

(ロ) (国) (E) (E) (E) (O)

Real Corrections

The IR finite decay width is obtaind by adding corrections from real soft photons:

$$\Gamma_{h/H}^{\text{obs}} = \Gamma(H^+ \to W^+ h/H) + \underbrace{\Gamma(H^+ \to \gamma \ W^+ h/H)}_{\equiv \Gamma_{\gamma h/H}^{\text{soft}}}, \qquad (15)$$

where $\Gamma_{\gamma h/H}^{\text{soft}}$ reads schematically

$$\Gamma_{\gamma h/H}^{\text{soft}} = \frac{1}{2m_{H^{\pm}}} \int d\Pi_2 \sum_{\lambda_W} \left[\int_{E_{\gamma} \leq \Delta E} \frac{d^3 p_{\gamma}}{(2\pi)^3} \frac{1}{2E_{\gamma}} \sum_{\lambda_{\gamma}} \right]$$
(16)

 $+_{H^+-------h/H} \begin{pmatrix} & & \\ &$

The Deca	$_{\rm W} H^+ \rightarrow$	$W^+ h$	/H@NLO
----------	----------------------------	---------	--------

・ロト ・回 ト ・ヨト ・ヨト

Numerical Results

Figure 2 : Partial decay width Γ (upper part) and $\Delta\Gamma = (\Gamma^{\text{NLO}} - \Gamma^{\text{LO}})/\Gamma^{\text{LO}}$ (lower part) of the decays $H^+ \rightarrow W^+ h$ (left) and $H^+ \rightarrow W^+ h$ (right) at LO and at NLO in the *Kan* and *Min* scheme for the scenarios of the class C_1 .

The Decay $H^+ \rightarrow W^+ h/H$ @ NLO	Robin Lorenz	02.07.2015	17 / 32

э

Numerical Results

Figure 3 : Partial decay width Γ (upper part) and $\Delta\Gamma = (\Gamma^{\text{NLO}} - \Gamma^{\text{LO}})/\Gamma^{\text{LO}}$ (lower part) of the decays $H^+ \rightarrow W^+ h$ (left) and $H^+ \rightarrow W^+ h$ (right) at LO and at NLO in the *Kan* and *Min* scheme for the scenarios of the class C_2 .

The Decay $H^+ \rightarrow W^+ h/H$ @ NLO	Robin Lorenz	02.07.2015	18 / 32

イロト イポト イヨト イヨト

э

The HybMS Scheme

Figure 4 : Comparison of the NLO partial decay width of the decay $H^+ \rightarrow W^+ H$ in the *HybMS*, *Kan* and *Min* scheme for the scenarios of class C_1 .

The Decay $H^+ \rightarrow W^+ h/H$ @ NLO	Robin Lorenz	02.07.2015	19 / 32

イロト イヨト イヨト イヨト

э

The HybMS Scheme

Figure 4 : Comparison of the NLO partial decay width of the decay $H^+ \rightarrow W^+ H$ in the *HybMS*, *Kan* and *Min* scheme for the scenarios of class C_1 .

Figure 5 : $\Delta \Gamma_{\mu} = (\Gamma(\mu) - \Gamma(\mu = m_{H^{\pm}}))/\Gamma(\mu = m_{H^{\pm}})$ in the Kan scheme for the scenario of class C_1 with $m_{H^{\pm}} = 340$ GeV, where μ was varied from $m_{H^{\pm}}/2$ to $2m_{H^{\pm}}$.

			=
The Decay $H^+ \rightarrow W^+ h/H$ @ NLO	Robin Lorenz	02.07.2015	19 / 32

Conclusion

- NLO corrections are of the order of a few percent to ten percent for parameter regions which are allowed.
- The difference between renormalization schemes suggests that the two-loop calculation is needed to reduce the uncertainty.
- The differences between various schemes became clearer, but so far, no scheme seems to be ideal in all respects, each one of them has its drawbacks. More investigations are needed.

Conclusion and Outlook	Robin Lorenz	02.07.2015	20 / 32

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outlook

- Implement a process-dependent scheme using the decays $A^0 \to \tau^+ \tau^-$ and $H \to \tau^+ \tau^-$.
- Redo the calculation in general R_{ξ} gauge and check Kanemura's suggestion to avoid gauge dependence of tan(β)
- Check gauge dependence in the Min scheme
- Check gauge dependence of the NLO amplitude? How to be sure that one hasn't made a mistake?
- Use extended Slavnov-Taylor identities to examine relation between gauge independence, numerical stability and process independence for the THDM. Is there a universally preferable scheme?

ヘロア 人間 アメヨア 人口 ア

Thank you

for your attention!

	< 🗆 🕨 < 🗇 I	 < 콜 ▶ < 콜 ▶ 	ヨー うくぐ
Conclusion and Outlook	Robin Lorenz	02.07.2015	22 / 32

Backup: THDMs and FCNCs

$$\begin{aligned} \mathcal{L}_{Yuk} &= - \bar{Q}_L \left(\Gamma_1^d \phi_1 + \Gamma_2^d \phi_2 \right) D_R - \bar{Q}_L \left(\Gamma_1^u \tilde{\phi}_1 + \Gamma_2^u \tilde{\phi}_2 \right) U_R \\ &- \bar{L}_L \left(\Gamma_1^\prime \phi_1 + \Gamma_2^\prime \phi_2 \right) E_R + h.c. \end{aligned}$$

Model I:

All quarks couple to ϕ_2 E_R couple to ϕ_2 Lepton-specific Model:

All quarks couple to ϕ_2 E_R couple to ϕ_1

• Model II:

 U_R couple to ϕ_2 D_R and E_R couple to ϕ_1 Flipped Model:

 U_R and E_R couple to ϕ_2 D_R couple to ϕ_1

A D N A D N A D N A D N

-

Backup Slides	Robin Lorenz	02.07.2015	23 / 32

Backup: On-shell Conditions

- **()** The real part of the pole of the propagator is given by the physical mass *m*.
- (a) The mixing with other fields of the same quantum numbers vanishes on the mass shell, which is defined by $p^2 = m^2$.
- The field is properly normalized, i.e. the residue of the propagator at the pole is equal to *i*.

$$G(p^2) = \sqrt{Z_{\phi}^*} \sqrt{Z_{\phi}} \int d^4 x \ e^{ipx} \langle \Omega | T \phi(x) \phi(0) | \Omega \rangle$$

= $\int d^4 x \ e^{ipx} \langle \Omega | T \phi_0(x) \phi_0(0) | \Omega \rangle$
= $---- + - -(1PI) - - + - -(1PI) - -(1PI) - - + ...$
= $\frac{i}{p^2 - m_0^2 + \Sigma + i\epsilon}$

Backup Slides	Robin Lorenz	02.07.2015	24 / 32

Backup: On-shell Conditions

$$\hat{\Gamma}_{f}(p^{2}) = \sqrt{Z_{f}}^{\dagger} \left[p^{2} \mathbb{1}_{2 \times 2} - (D_{f} + \delta D_{f}) + \Sigma_{f} \right] \sqrt{Z_{f}}$$

$$\operatorname{Re}\left(\hat{\Gamma}_{f_{1}f_{2}}(m_{f_{1}}^{2})\right) \stackrel{!}{=} 0, \qquad \operatorname{Re}\left(\hat{\Gamma}_{f_{1}f_{2}}(m_{f_{2}}^{2})\right) \stackrel{!}{=} 0,$$

$$\operatorname{Re}\left(\hat{\Gamma}_{f_{1}f_{1}}(m_{f_{1}}^{2})\right) \stackrel{!}{=} 0, \qquad \operatorname{Re}\left(\hat{\Gamma}_{f_{2}f_{2}}(m_{f_{2}}^{2})\right) \stackrel{!}{=} 0,$$

$$\mathsf{Re}\left.\left(\frac{\partial\hat{\mathsf{\Gamma}}_{f_{1}f_{1}}(\boldsymbol{p}^{2})}{\partial\boldsymbol{p}^{2}}\right)\right|_{\boldsymbol{p}^{2}=m_{f_{1}}^{2}} \stackrel{!}{=} 1, \qquad \mathsf{Re}\left.\left(\frac{\partial\hat{\mathsf{\Gamma}}_{f_{2}f_{2}}(\boldsymbol{p}^{2})}{\partial\boldsymbol{p}^{2}}\right)\right|_{\boldsymbol{p}^{2}=m_{f_{2}}^{2}} \stackrel{!}{=} 1.$$

Backup Slides	Robin Lorenz	02.07.2015	25 / 32

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Backup: On-shell Conditions

$$\begin{split} \delta m_{f_i}^2 &= \operatorname{Re} \left(\left. \Sigma_{f_i f_i} (m_{f_i}^2) - \delta T_{f_i f_i} \right. \right) & \text{for } i = 1, 2 , \\ \delta Z_{f_i f_i}^{os} &= \operatorname{Re} \left(\left. \frac{\partial \Sigma_{f_i f_i}}{\partial p^2} \right) \right|_{p^2 = m_{f_i}^2} & \text{for } i = 1, 2 , \\ \delta Z_{f_i f_j}^{os} &= \left. \frac{2}{m_{f_i}^2 - m_{f_i}^2} \left[\Sigma_{f_i f_j} (m_{f_j}^2) - \delta T_{f_i f_j} \right] & \text{for } i, j = 1, 2 \\ \operatorname{and} i \neq j . \end{split}$$

Backup Slides	Robin Lorenz	02.07.2015	26 / 32

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Backup: Tadpole Conditions

The matrices with tadpole parameters are defined as

$$\delta T = R(\theta)^T \begin{pmatrix} \frac{\delta T_1}{v_1} & 0\\ 0 & \frac{\delta T_2}{v_2} \end{pmatrix} R(\theta) ,$$

where the relation to the physical tadpoles is given through

$$-V(\Phi_1, \Phi_2)|_{\text{lin. terms}} = -T_1\rho_1 - T_2\rho_2$$

$$= \underbrace{(-c_\alpha T_1 - s_\alpha T_2)}_{=:T_H} H + \underbrace{(-c_\alpha T_2 + s_\alpha T_1)}_{=:T_h} h .$$

These $T_{h/H}$ are then fixed by the following conditions

$$+ \delta T_{h/H} \stackrel{!}{=} 0.$$

			-
Backup Slides	Robin Lorenz	02.07.2015	27 / 32

Backup: The Kanemura Approach

$$\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = R(\theta)^T \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} \quad \mapsto \quad R(\theta + \delta\theta)^T \sqrt{Z_{\gamma}} \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}$$
$$\stackrel{\text{NLO}}{=} \underbrace{R(\delta\theta)^T R(\theta)^T \sqrt{Z_{\gamma}} R(\theta)}_{=:\sqrt{Z_f}} R(\theta)^T \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}$$
$$= \sqrt{Z_f} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$

Backup Slides	Robin Lorenz	02.07.2015	28 / 32

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Backup: The Kanemura Approach

$$\begin{pmatrix} H \\ h \end{pmatrix} \mapsto \begin{pmatrix} 1 + \frac{1}{2}\delta Z_{HH} & \delta C_h + \delta \alpha \\ \delta C_h - \delta \alpha & 1 + \frac{1}{2}\delta Z_{hh} \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix} ,$$

$$\begin{pmatrix} G^0 \\ A^0 \end{pmatrix} \mapsto \begin{pmatrix} 1 + \frac{1}{2}\delta Z_{G^0G^0} & \delta C_{A^0} + \delta \beta \\ \delta C_{A^0} - \delta \beta & 1 + \frac{1}{2}\delta Z_{A^0A^0} \end{pmatrix} \begin{pmatrix} G^0 \\ A^0 \end{pmatrix} ,$$

$$\begin{pmatrix} G^+ \\ H^+ \end{pmatrix} \mapsto \begin{pmatrix} 1 + \frac{1}{2}\delta Z_{G^+G^+} & \delta C_{H^+} + \delta \beta \\ \delta C_{H^+} - \delta \beta & 1 + \frac{1}{2}\delta Z_{H^+H^+} \end{pmatrix} \begin{pmatrix} G^+ \\ H^+ \end{pmatrix}$$

Backup Slides	Robin Lorenz	02.07.2015	29 / 32
			/

.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Backup: The Min Scheme

• The field renormalization matrix in the Min Scheme:

$$\begin{split} \sqrt{Z_{f}^{Min}} &\equiv R(\delta\theta)^{T} R(\theta)^{T} \sqrt{Z_{\gamma}^{Min}} R(\theta) \\ &= \mathbb{1} + \frac{1}{2} \underbrace{\begin{pmatrix} c_{\theta}^{2} \delta Z_{1} + s_{\theta}^{2} \delta Z_{2} & c_{\theta} s_{\theta} (\delta Z_{2} - \delta Z_{1}) + 2\delta\theta \\ c_{\theta} s_{\theta} (\delta Z_{2} - \delta Z_{1}) - 2\delta\theta & s_{\theta}^{2} \delta Z_{1} + c_{\theta}^{2} \delta Z_{2} \end{pmatrix}}_{= \delta Z_{f}^{Min}} \end{split}$$

Backup Slides	Robin Lorenz	02.07.2015	30 / 32

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Backup: The Min Scheme

• The entries of the wave-function normalization matrix

$$Z_N = \begin{pmatrix} \sqrt{Z_{f_1}} & \sqrt{Z_{f_1}} & Z_{f_1 f_2} \\ \sqrt{Z_{f_2}} & Z_{f_2 f_1} & \sqrt{Z_{f_2}} \end{pmatrix}$$

are given by

$$Z_{f_i f_j} = -\frac{\hat{\Sigma}_{f_i f_j}(m_{f_i}^2)}{m_{f_i}^2 - m_{f_j}^2 + \hat{\Sigma}_{f_j f_j}(m_{f_i}^2)},$$

$$\sqrt{Z_{f_i}} = \left[1 + \operatorname{Re}\left(\hat{\Sigma}'_{f_i f_i}(p^2)\right) - \operatorname{Re}\left(\frac{\left(\hat{\Sigma}_{f_i f_j}(p^2)\right)^2}{p^2 - m_{f_j}^2 + \hat{\Sigma}_{f_j f_j}(p^2)}\right)'\right]^{-\frac{1}{2}}\right|_{p^2 = m_{f_j}^2}$$

Backup Slides	Robin Lorenz	02.07.2015	31 / 32

Backup: Definition of Scenario Classes

Only scenarios respecting

$$m_{H^{\pm}} \geq M_W + m_H ,$$

were considered. With the help of ScannerS [Santos *et al*, arXiv:1301.2599] the following classes of scenarios have been scanned:

Name	Туре	$m_{H^{\pm}}$ [GeV]	<i>m_H</i> [GeV]	m_{A^0} [GeV]	<i>m</i> ₁₂ [GeV]	$tan(\beta)$	$ \mathbf{s}_{\beta-\alpha} $
<i>C</i> ₁	I	[240, 400]	m _{H±} - 110	m_{H^\pm} - 50	<i>m_{H[±]}</i> - 250	5	0.8
<i>C</i> ₂	Ι	[240, 310]	m _H ± - 110	<i>m_H</i> ± - 50	<i>m_H</i> ± - 250	15	0.95

Table 1 : Definition of two classes of type I scenarios with $m_{H^{\pm}}$ as only free parameter.

Backup Slides	Robin Lorenz	02.07.2015	32 / 32