

Same Sign Top Signals within the Flavour Violating MSSM

in collaboration with M. Rauch and D. Zeppenfeld Yasmin Anstruther | January 19, 2012

INSTITUTE FOR THEORETICAL PHYSICS

http://back2favour.blogspot.com/2011/05/back-2-flavour-pre-battle-sketches.html

KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outline

- Theory of Flavour Violation (Blackboard)
- Experimental Constraints
- 4 Signal

💿 Analysis

Motivation

Signal

- NMFV connected to susy breaking ~> pin down breaking mechanism
- Study changes within analysis of discovery processes
- Process may have good significance ~> measure parameters precisely

Implementation

Mainly used:

- Herwig++ 2.5.2 : flavourviolation at matrixelement-level roughly by extending the 2 × 2 to 6 × 6 mixing matrices within the Feynman rules
- Madgraph & Madevent 5 : generate LesHouches event files for the backgrounds to feed Herwig++
- SPheno 3.0.beta56 : passes mixing parameters to Herwig++, generates squark masses and checks constraints
- ROOT 5.28.00b : performs analysis and draws plots

How would the choice of our parameters influence other observables?

- B-Physics \rightarrow generation mixing
- Vacuum Stability Conditions \rightarrow LR mixing
- Susy corrections to electroweak ρ -parameter: $\Delta \rho$
- Recent LHC exclusion limits

Make sure that our parameter points haven't been excluded yet.

No FCNCs at tree-level \rightarrow very sensitive to new physics.

	rad. decays	semilept. decays	mass differences
2&3	$B ightarrow X_s \gamma$	$B ightarrow X_{s} l^{+} l^{-}$	$ \Delta M_{B_s} $
1 & 3	$B \rightarrow X_d \gamma$	$B ightarrow X_d l^+ l^-$	$ \Delta M_{B_d} $

Effective low energy theory: decompose Hamiltonian

$$H_{eff} \propto \sum_{i} [C_i(\mu) O_i(\mu)]$$
 (1)

- model-independent, non-pert. Operators O_i
- model-dependent, pert. Wilson Coefficients C_i
- RGE running: $\mu = M_Z \rightarrow \mu = m_b$

[M. Spannowsky, PhD thesis]

Experimental Constraints Y. Anstruther - LHC Signals of the NMFV MSSM

semileptonic decays: negligible

B-**Physics**

• $B^0 \overline{B}^0$ -oscillations:

Vacuum Stability Conditions

avoid charge and colour breaking (CCB) minima of the superpotential, as long as:

$$|T_{u\alpha\alpha}|^{2} < 3f^{u_{\alpha}}(M_{Q\alpha\alpha}^{2} + M_{u\alpha\alpha}^{2}$$

$$+ (m_{H^{\pm}}^{2} + m_{Z}^{2}\sin\theta_{W})\sin^{2}\beta - \frac{1}{2}m_{Z}^{2})$$

$$|T_{u\alpha\beta}|^{2} < 3f^{u_{\gamma}}(M_{Q\alpha\alpha}^{2} + M_{u\beta\beta}^{2}$$

$$+ (m_{H^{\pm}}^{2} + m_{Z}^{2}\sin\theta_{W})\cos^{2}\beta - \frac{1}{2}m_{Z}^{2})$$
(3)

with $\gamma = \max_{\alpha \neq \beta} (\alpha, \beta)$.

Regarding LR mixing, these constraints are stronger than the ones from FCNCs.

[J. A. Casas, S. Dimopoulos, Phys.Lett. B387 (1996) 107-112]

LHC exclusion limits

CMS Preliminary

→ squark masses bigger than 1 TeV

 ρ -parameter

Def. at LO: $\rho := \frac{M_W^2}{M_Z^2 \cos^2 \theta_W}$ quantum (incl. Susy) corrections: $\Delta \rho = \frac{\Sigma_Z(0)}{M_Z^2} - \frac{\Sigma_W(0)}{M_W^2} < 0.0012$ $\Sigma(0)$: transverse part of unren. self-energies

Heavy Flavor Averaging Group¹:

¹without theory uncertainties

Experimental Constraints Y. Anstruther – LHC Signals of the NMFV MSSM

Signal process

Same-sign top quark production via flavour-violating t-channel gluino exchange:

- diagonal entries $\rightsquigarrow m_{\tilde{q}} \approx 1 \,\mathrm{TeV}$
- hierarchy: ascending or descending
- offdiagonal entries
 mass splitting

 \Rightarrow 2 variable parameters and hierarchies

Scenario I - Porod et al.²

$\sigma(pp \rightarrow tt \chi_0^1 \chi_0^1)$ in fb:

²Phys.Lett.B698: 380-388, 2011

Scenario II - $m_{\tilde{q}} \approx 1 \, {\rm TeV}$

$\sigma(pp \rightarrow tt \chi_0^1 \chi_0^1)$ in fb:

Hierarchy 2: inverted

· · · ·		10		~		00	04	00	
I	11	12	13	21	22	23	31	32	33
$M_{Q\alpha\beta}^2/{ m GeV}^2$	$60 \cdot 10^4$	-	-	-	$62 \cdot 10^4$	-	-	-	$93\cdot 10^4$
$M_{u\alpha\beta}^2/{ m GeV}^2$	$96 \cdot 10^4$	-	Х	-	$103\cdot 10^4$	-	X	-	$111 \cdot 10^{4}$
$M_{dlphaeta}^2/{ m GeV}^2$	$96 \cdot 10^4$	-	-	-	$103\cdot 10^4$	-	-	-	$111 \cdot 10^{4}$
$T_{u\alpha\beta}/\text{GeV}$	0.067	-	-	-	0.36	-	У	-	34

Scenario III - Effective Susy

Idea of effective Susy

- squark masses of 1st and 2nd generation of O(10)TeV
- 3rd generation squarks \approx 1TeV

Choice: $m^{1,2} \approx$ 15 TeV and $m^3 \approx$ 1 TeV

- + contributions to constraints strongly suppressed
- $\tilde{q}^{1,2}$ can't be produced
- only small mixing possible

$$ightarrow \sigma(pp
ightarrow tt \chi_0^1 \chi_0^1) pprox 10^{-7} ext{fb}$$

Backgrounds - Supersymmetry

Other processes with the same visible final state particles?

Supersymmetry:

- jbl^+l^+ and E_t^{miss}
- jjI^+I^+ and E_t^{miss}

only due to b-mis-tagging, either once or twice.

 \rightsquigarrow reduction of signal-events by 10% or 1%, respectively \rightsquigarrow negligible background?

Backgrounds Y. Anstruther – LHC Signals of the NMFV MSSM

More Backgrounds

Standardmodel:

- W⁺W⁺jj
- *ttW*⁺

m

but consider the benefit of b-tagging!

per final-state jet in the detector:

jets identified as b-jet by:

efficiencies	30GeV < <i>p</i> _{<i>Tb</i>} < 50GeV	$p_{Tb} > 50 { m GeV}$
$ \eta <$ 1.4	0.65	0.75
$1.4 < \eta < 2.4$	0.6	0.7

- mis-tagging: 10%
- no assumptions about the possibility of distinguishing between b and b have been made yet
- Poisson Statistic:

$$S_{cL} = \sqrt{2[(s+b)\ln(1+s/b)-s]}$$

³C. Weiser, CERN-CMS-NOTE-2006-014

Cuts, $\sqrt{s} = 7$ TeV and $\int \mathcal{L} dt = 30$ fb⁻¹

- *p*_T > 30 GeV
- |η| < 2.4</p>
- $\Delta R_{ll}, \Delta R_{lb} > 0.4$
- *p*^{*miss*} > 100 GeV

 $\Rightarrow S_{cL} = 3.16\sigma$

More Cuts

substantial amount of background from $t\bar{t}W^+$, but suitable for additional cuts:

- jet-veto: 50 GeV, but this is dangerous!
- invariant mass m_{bl^+} can be larger than m_t :

 $\min\{\max\{m_{l_1^+b_1}, m_{l_2^+b_2}\}, \max\{m_{l_1^+b_2}, m_{l_2^+b_1}\}\} = m_{bl^+} \stackrel{!}{<} m_t$

Results: $S_{cL} = 4.36\sigma$

More Cuts?

Distributions of W^- from $t\bar{t}W^+$:

Problem: W^- will decay

Conclusion & Outlook

- This seems to be a useful process to explore flavour violation
- Background could be further reduced by distinguishing b and \bar{b}
- Analysis power parameter-dependent, only one parameter set
- Effect on recent studies?

Thank you!

Backup

Conclusion & Outlook Y. Anstruther – LHC Signals of the NMFV MSSM

Backup

Conclusion & Outlook Y. Anstruther – LHC Signals of the NMFV MSSM

Backup

Conclusion & Outlook Y. Anstruther – LHC Signals of the NMFV MSSM