

Massive Dipole Shower in Matchbox Herwig++

Karlsruhe Institute of Technology (KIT) Martin Stoll | November 17, 2011

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

Table of Contents

Motivation

- 2 Catani-Seymour Subtraction Formalism
- 3 Dipole Shower
- 4 NLO Matching
- 5 Simulation Results

6 Outlook

Motivation

Herwig++'s Matchbox module

- written by Simon Plätzer
- extension to Herwig++ multi-purpose MC event generator
- introduces a new Catani-Seymour dipole shower (2 \rightarrow 3 splittings instead of Herwig++'s 1 \rightarrow 2 splittings)
- goal: automated NLO matching
- to be published in Herwig++'s next scheduled release
- generally good description of experimental data
- problems with observables concerning heavy quarks (treats all partons as if massless)

Motivation

 $e^+e^- \mapsto \mathit{jets}$ with Matchbox vs data

 \Rightarrow add modifications which improve to incorporate finite parton masses

November 17, 2011 4/27

Catani-Seymour Subtraction Formalism

We start with an NLO cross section

$$\sigma = \sigma^{LO} + \sigma^{NLO} = \int_m d\sigma^B + \int_m d\sigma^V + \int_{m+1} d\sigma^R$$

- real & virtual contributions are seperately divergent
 ⇒ no straightforward numeric implementation
- Idea: introduce auxiliary cross section *d*σ^A as local counterterm for *d*σ^R
 - \Rightarrow

1

$$\sigma^{NLO} = \int_{m+1} \left[\left(d\sigma^R \right)_{\epsilon=0} - \left(d\sigma^A \right)_{\epsilon=0} \right] + \int_m \left[d\sigma^V + \int_1 d\sigma^A \right]_{\epsilon=0}$$

Catani-Seymour Subtraction Formalism

factorization in soft & collinear limits

 $d\sigma^{R} = d\sigma^{B} \cdot (\text{process-independent factor})$

introduce "dipoles"

$$d\sigma^{A} = \sum_{\textit{dipoles}} d\sigma^{B} \otimes dV_{\textit{dipole}}$$

furthermore:

$$\int_{m+1} d\sigma^{A} = \int_{m} \sum_{dipoles} d\sigma^{B} \otimes \int_{1} dV_{dipole} \equiv \int_{m} \left[d\sigma^{B} \otimes I \right]$$

$$\begin{split} \sigma^{\textit{NLO}} &= \int_{m+1} \left[\left(\boldsymbol{d\sigma}^{\textit{R}} \right)_{\epsilon=0} - \left(\sum_{\textit{dipoles}} \boldsymbol{d\sigma}^{\textit{B}} \otimes \boldsymbol{dV}_{\textit{dipole}} \right)_{\epsilon=0} \right] + \\ \int_{m} \left[\boldsymbol{d\sigma}^{\textit{V}} + \boldsymbol{d\sigma}^{\textit{B}} \otimes \boldsymbol{I} \right]_{\epsilon=0} \end{split}$$

Catani-Seymour Subtraction Formalism M. Stoll – Massive Dipole Shower in Matchbox Herwig++

Catani-Seymour Subtraction Formalism

$$\mathcal{D}_{ij,k}(p_1,...,p_{m+1}) = -\frac{1}{(p_i + p_j)^2 - m_{ij}^2} m \langle ..., \tilde{i}j, ..., \tilde{k}, ...| \frac{T_k \cdot T_{ij}}{T_{ij}^2} V_{ij,k} |..., \tilde{i}j, ..., \tilde{k}, ... \rangle_m$$

Catani-Seymour Subtraction Formalism M. Stoll – Massive Dipole Shower in Matchbox Herwig++

Parton Showers

- fixed-order QCD calculations are enhanced by higher orders in the following phasespace regions (leading logarithms)
 - soft emission
 - collinear splitting
- cross section *d*σ_{n+1} approximated by virtue of factorization theorems:

$$d\sigma_{n+1} = d\sigma_n d\mathcal{P}_{ba}$$

■ *dP*_{ba}: splitting probability

kinematic variables: $z = E_b/E_a$, evolution variable (e.g. virtuality)

angular ordering assures correct leading log contribution

Dipole Shower: Introduction

- based on Catani-Seymour dipoles
- $\blacksquare\ 2\to 3$ splittings allow on-shell partons at each step
- splitting kinematics of massless partons $(\tilde{p}_{ij}, \tilde{p}_k) \rightarrow (p_i, p_j, p_k)$

•
$$Z = \frac{p_i p_k}{(p_i + p_j)p_k}, \quad Y = \frac{p_i p_j}{p_i p_j + p_i p_k + p_j p_k}$$

• p_{\perp} ordering guiding the evolution

Dipole Shower

want to calculate p_⊥ spectrum
 i.e. probability of evolving from a hard scale p^h_⊥ to a scale p_⊥
 without splitting and split at scale p_⊥

• have: probability of splitting in $[p_{\perp}^2, p_{\perp}^2 - dp_{\perp}^2]$: $d\mathcal{P}_{\tilde{i}_j \to i, j; k}$

• need probability of unresolved splitting $\Delta_{\tilde{i}_{l} \rightarrow i, j; k}(p_{\perp}^{h2}, p_{\perp}^{2})$

Dipole Shower

- unitarity leads to probability for unresolved splitting in $[p_{\perp}^2, p_{\perp}^2 dp_{\perp}^2]$: $1 \sum_{(i,j)} d\mathcal{P}_{\tilde{i}_j \to i,j;k}$
- lacksquare ightarrow Sudakov form factor (no-splitting prob. between p_{ot}^{h2} and p_{ot}^2)

$$\Delta_{\tilde{j}j\to i,j;k}(\boldsymbol{p}_{\perp}^{h2},\boldsymbol{p}_{\perp}^{2}) = \exp\left[-\sum_{(i,j)}\int_{\boldsymbol{p}_{\perp}^{2}}^{\boldsymbol{p}_{\perp}^{h2}}\frac{d\bar{\boldsymbol{p}}_{\perp}^{2}}{\bar{\boldsymbol{p}}_{\perp}^{2}}\int_{\boldsymbol{z}_{-}(\bar{\boldsymbol{p}}_{\perp}^{2})}^{\boldsymbol{z}_{+}(\bar{\boldsymbol{p}}_{\perp}^{2})}d\boldsymbol{z}\frac{\alpha_{s}}{2\pi}\boldsymbol{P}_{\tilde{j}\to i,j;k}(\bar{\boldsymbol{p}}_{\perp}^{2},\boldsymbol{z})\right]$$

• p_{\perp} , *z* spectra of a (FF) $q\bar{q}$ dipole

Dipole Shower: Phasespace

impact of parton masses on splitting phasespace

(y, z) phasespace for massless and massive partons

phasespace in Dalitz variables (x_i, x_i) for massless and massive partons

Dipole Shower: massive kinematics

- splitting kinematics are described by either (p_{\perp}, z) or (y, z)
- the algorithm is most efficient if first a value of p_⊥ in [p_⊥^h, μ_{IR}] is created → (p_⊥, z)

- problem: Sudakov decomposition becomes very unwieldy
- instead: it is straightforward to determine 4-momentum components explicitly as functions of Lorentz-invariants y and z
- p_{\perp} can be read off the momentum vector BUT: no applicable inverse mapping $(p_{\perp}, z) \mapsto (y, z)$

Dipole Shower: massive kinematics

In the quasi-collinear limit (*m_i* → λ*m_i*, *p*_⊥ → λ*p*_⊥ with λ → 0) a Sudakov decomposition analoguous to massless case can be given

$$p_{i} = zp + \frac{p_{\perp}^{2} - z^{2}m_{ij}^{2} + m_{i}^{2}}{z} \frac{n}{2p \cdot n} + k_{\perp}$$
$$p_{j} = (1 - z)p + \frac{p_{\perp}^{2} - (1 - z)^{2}m_{ij}^{2} + m_{j}^{2}}{1 - z} \frac{n}{2p \cdot n} - k_{\perp}$$

- \Rightarrow simple relation between $(y, z) \leftrightarrow (p_{\perp}, z)$ (in this limit), which will be used
- physical p_{\perp} does not coincide with $p_{\perp}(y, z)$ outside this limit
- no influence on shower dynamics since all relations hold in the quasi-collinear limit
- shower ordering in $p_{\perp}^{quasi-coll}$.

NLO Matching: Introduction

• have constructed shower which predicts to $\mathcal{O}(\alpha_s)$

also know NLO matrix element

question: how can we achieve the shower predicts the correct NLO matrix element?

NLO Matching

NLO prediction for an observable O

$$\langle O^{NLO} \rangle = \int_{m} dx B(x) O(x) + \alpha_{s} \int_{m+1} dx dy \frac{R(x, y)}{y} O(x, y) + \alpha_{s} \int_{m} dx V(x) O(x) \downarrow CS = \int_{m} dx B(x) O(x) + \alpha_{s} \int_{m+1} dx dy \frac{R(x, y) O(x, y) - A(x, y) O(x)}{y} + \alpha_{s} \int_{m} dx \left[V(x) + \int_{1} dy \frac{A(x, y)}{y^{1-\epsilon}} \right] O(x)$$

NLO Matching

 $\mathcal{O}(\alpha_s)$ parton shower prediction starting off Born process

$$\langle O \rangle_{PS} = \int_{m+1} dx dy B(x) \left[\delta(y) \Delta(x) + \theta(y-\mu) \alpha_s \frac{P(x,y)}{y} \Delta(x) \right] O(x,y)$$

with Sudakov form factor

$$\Delta(x) = e^{-\alpha_s \int_{\mu}^{1} dy' \frac{P(x,y')}{y'}} = 1 - \alpha_s \int_{\mu}^{1} dy' \frac{P(x,y')}{y'} + \mathcal{O}(\alpha_s^2)$$
this yields

$$\langle O \rangle_{PS} = \int_{m} dx B(x) O(x)$$

+ $\alpha_{s} \int_{m+1} dx dy \frac{P(x, y)}{y} \left[O(x, y) - O(x) \right] B(x) + O(\alpha_{s}^{2})$

NLO Matching

$$\langle O^{NLO} \rangle = \int_{m} dx B(x) O(x) + \alpha_{s} \int_{m+1} dx dy \frac{R(x, y) O(x, y) - A(x, y) O(x)}{y} + \alpha_{s} \int_{m} dx \left[V(x) + \int_{1} dy \frac{A(x, y)}{y^{1-\epsilon}} \right] O(x)$$

$$\langle O \rangle_{PS} = \int_{m+1} dx B(x) O(x) + \alpha_{s} \int_{m+1} dx dy \frac{P(x, y)}{y} \left[O(x, y) - O(x) \right] B(x) + \mathcal{O}(\alpha_{s}^{2})$$

 \Rightarrow double counting of $\mathcal{O}(\alpha_s)$ contribution

$$\langle O \rangle_{matched}^{NLO} = \int_{m} dx B(x) O(x)$$

$$+ \alpha_{s} \int_{m} dx \left[V(x) + \int_{1} dy A(x, y) y^{\epsilon-1} \right] O(x)$$

$$+ \alpha_{s} \int_{m+1} dx dy \frac{P(x, y) B(x) - A(x, y)}{y} O(x)$$

$$+ \alpha_{s} \int_{m+1} dx dy \frac{R(x, y) - P(x, y) B(x)}{y} O(x, y)$$

Consistency check 1

- set masses to zero
- compare to standard matchbox

- Consistency check 2
 - check subtraction

Compare p⊥, z spectra of the first emission to numerical calculation

Compare new massive shower to standard dipole shower

b quark fragmentation

identified particle spectra

\Rightarrow parameter tuning is required

Outlook: Tuning

- Tuning: fitting free parameters (cutoffs, hadronization parameters etc.) to data
- without tuning the impact of the massive shower is limited
- new parameters for heavy quarks are expected to reduce tension between event shapes and b fragmentation
- a first test run with different parameter sets seems promising:
 - envelope plots for π^{\pm} production ratios

Outlook: Tuning

 b fragmentation fuction: dipole shower (envelope plots, l.h.s.) vs Herwig++ with standard shower (several different tunes, r.h.s)

Outlook

Done so far

- Implementation of massive final-final (FF) shower
- Implementation of NLO $e^+e^- \mapsto q\bar{q}$ matrix element and matching ingredients
- Validation of shower & matching
- Investigation of the impact on some observables

Still to be done

- Tuning (in progress)
- Implement FI,IF,II dipole shower (DIS / hadron colliders)

Thank you for your attention!