

Establishing Signals, Excluding Parameters

Roger Wolf

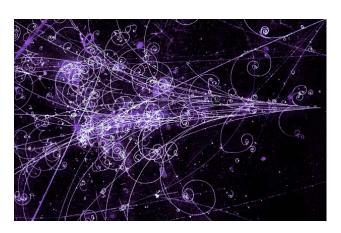
19. November 2015

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) - PHYSICS FACULTY

Statistics vs. particle physics

Experiment:

- All measurements we do are derived from rate measurements.
- We record millions of trillions of particle collisions.
- Each of these collisions is independent from all the others.



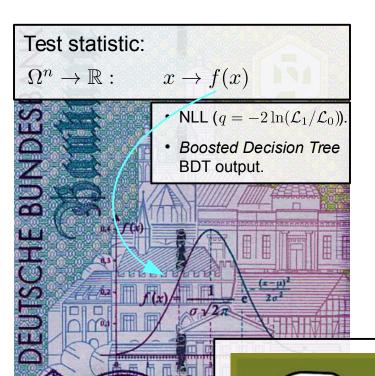
Theory:

- QM wave functions are interpreted as probability density functions.
- The Matrix Element, S_{fi} , gives the probability to find final state f for given initial state i.
- Each of the statistical processes
 pdf → ME → hadronization →
 energy loss in material → digitization
 are statistically independent.
- Event by event simulation using Monte Carlo integration methods.

Particle physics experiments are a perfect application for statistical methods.

Statistics vs. probability theory (stochastic)

Statistic



Probability (density) function:

$$\Omega^n \to [0,1] \subset \mathbb{R}: \qquad x \to \mathcal{P}(x)$$

Stochastic

στοχαστική)

- $\mathcal{P}("6") = 3.572 \cdot 10^{-6}$.
- Laplacian paradoxa.
- Problem of statistics is usually ill-defined.
- Deduce truth from shadows in Platon's cave...

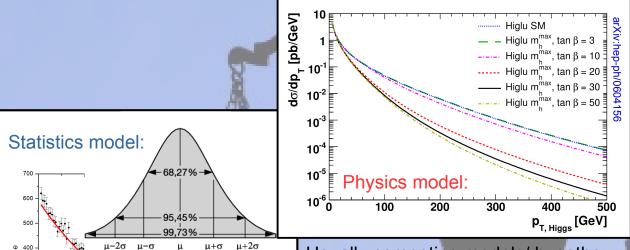
The case of "truth"

Deduce truth from shadows:

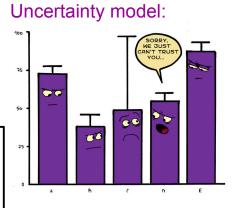


Usually phrased in form of (nested) models (=ideas for Platon):

Mathematically model = hypothesis.



Usually competing models/ hypotheses will be discussed here!



Usually determined to best knowledge (not questioned)

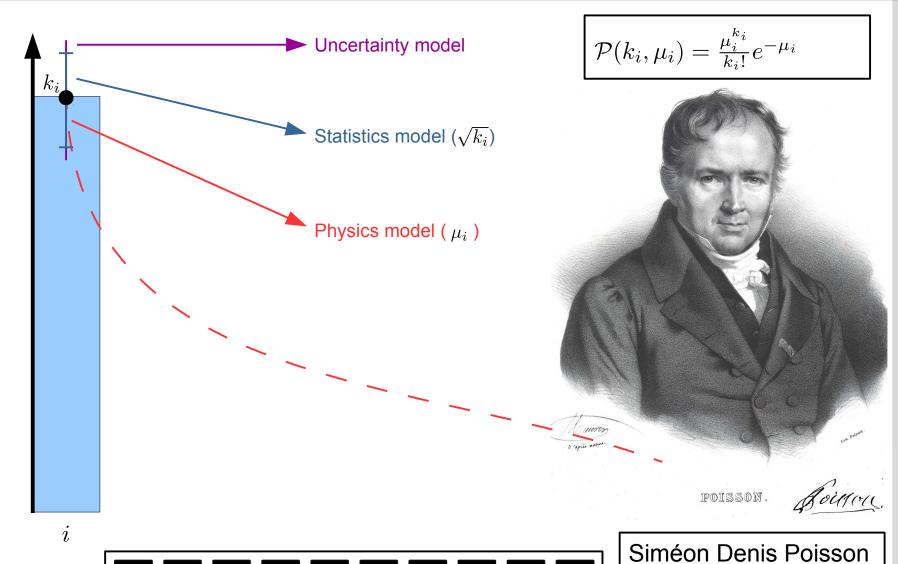
Usually not questioned

Zeit [Minuten]

200

Models in counting experiments

(21.07.1781 - 25.04.1840)

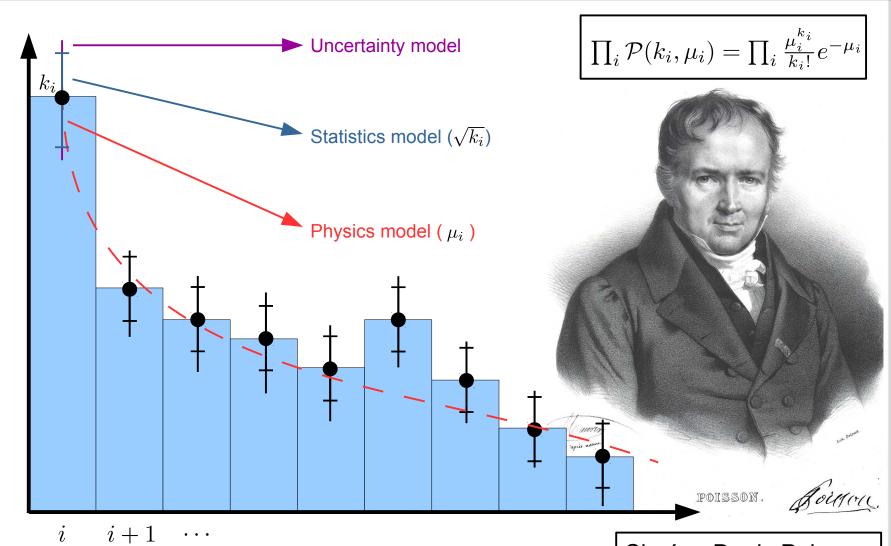


0423456789

From one to many...

Siméon Denis Poisson

(21.07.1781 - 25.04.1840)



0423456789

6

Model building (likelihood functions)

• Likeliness of a model to be true quantified by likelihood function $\mathcal{L}(\{k_i\}, \{\kappa_j\})$.

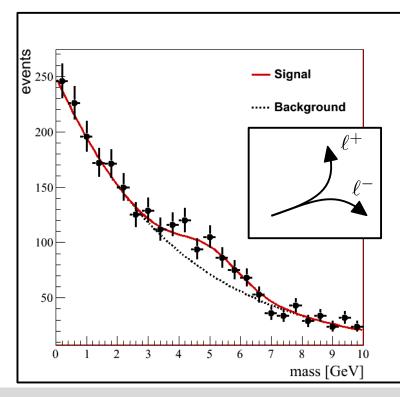
$$\prod_{i} \mathcal{P}(k_i, \mu_i) = \prod_{i} \frac{\mu_i^{k_i}}{k_i!} e^{-\mu_i}$$

model parameters.

measured number of events (e.g. in bins i).

 Simple example: signal on top of known background in a binned histogram:

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
 Product of pdf s for each bin (Poisson).
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$



Model building (likelihood functions)

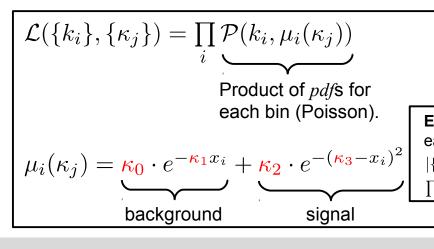
• Likeliness of a model to be true quantified by likelihood function $\mathcal{L}(\{k_i\}, \{\kappa_j\})$.

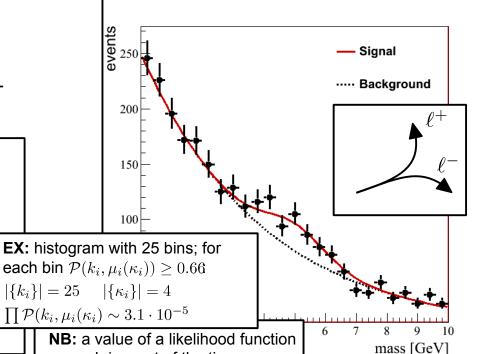
$$\prod_{i} \mathcal{P}(k_i, \mu_i) = \prod_{i} \frac{\mu_i^{k_i}}{k_i!} e^{-\mu_i}$$

model parameters.

measured number of events (e.g. in bins i).

 Simple example: signal on top of known background in a binned histogram:





NB: a value of a likelihood function as such is most of the time very close to zero, and w/o a reference in general w/o further meaning.

rimental Particle Physics (IEKP)

Distinguishing models (likelihood ratio)

Task of likelihood analyses:

do not determine likelihood of an experimental outcome per se, but distinguish models (=hypotheses) and determine the one that explains the experimental outcome best.

Fundamental lemma of Neyman-Pearson:

when performing a test between two simple hypotheses H_1 and H_0 the *likelihood* ratio test, which rejects H_0 in favor of H_1 when

$$Q = \frac{\mathcal{L}_{H_1}(\{k_i\}, \{\kappa_i\})}{\mathcal{L}_{H_0}(\{k_i\}, \{\kappa_i\})} \le \eta$$
$$\mathcal{P}(Q(\{k_i\}, \{\kappa_i\}) \le \eta | H_i) = \alpha$$

is the most powerful test at significance level α for a threshold η .

• For $q=-2\ln Q$ this ratio turns into a difference ($\Delta {\rm NLL}$).

This is usually the *test* statistic of choice!

Maximum likelihood fit

• Each likelihood ratio/function (with one or more parametric model part(s)) can be subject to a maximum likelihood fit (**NB**: negative log-likelihood finds its minimum where the log-likelihood is maximal...).

Minimization problem as known from school.

In our example e.g. four parameters κ_i .

Parameters can be constraint or unconstraint.

 Simple example: signal on top of known background in a binned histogram:

$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
 Product for each bin (Poisson).
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$

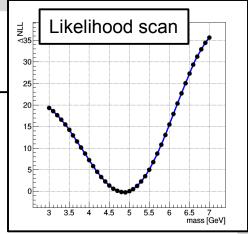
The ATLAS+CMS Higgs couplings combined fit has $\mathcal{O}(4250)$ parameters and up to seven POI's.

The CMS Tracker
Alignment problem has $\mathcal{O}(50'000) \text{ parameters and}$ several thousand POI's.

Parameter(s) of interest (POI)

NB: this is a likelihood ratio on its own.

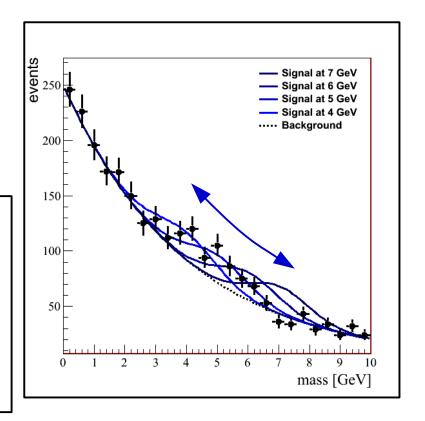
NB: I've also made the scan based on a likelihood ratio.



- In a maximum likelihood fit each case/problem defines its own parameter(s) of interest (POI's):
 - POI could be the mass (κ_3).

 Simple example: signal on top of known background in a binned histogram:

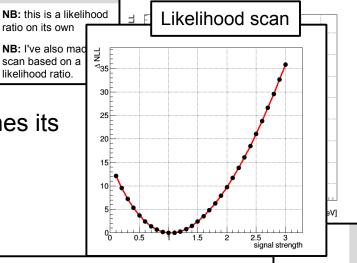
$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
 Product for each bin (Poisson).
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$

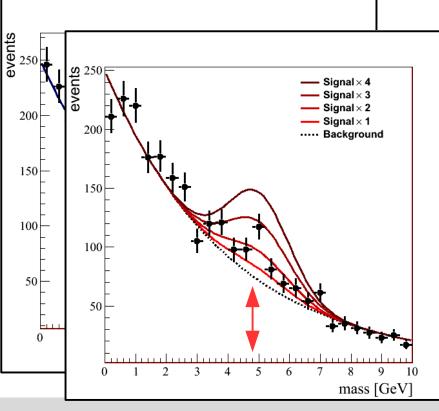


Parameter(s) of interest (POI)

- In a maximum likelihood fit each case/problem defines its own parameter(s) of interest (POI's):
 - POI could be the mass (κ_3).
 - In our case POI usually is the signal strength (κ_2) (for a fixed value for κ_3).
- Simple example: signal on top of known background in a binned histogram:

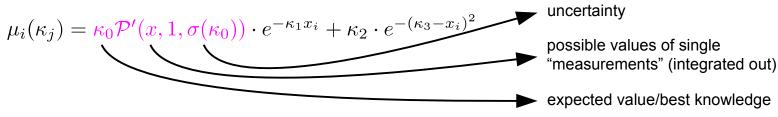
$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
 Product for each bin (Poisson).
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$





Incorporation of systematic uncertainties

- Systematic uncertainties are usually incorporated in form of nuisance parameters:
 - E.g. background normalization κ_0 not precisely known, but with uncertainty $\sigma(\kappa_0)$:

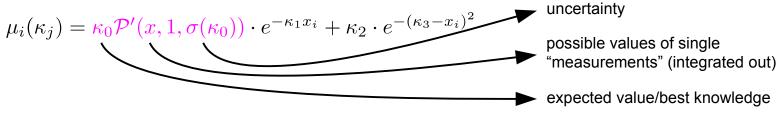


 Simple example: signal on top of known background in a binned histogram:

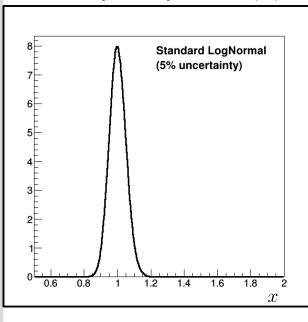
$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
 Product for each bin (Poisson).
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$

Incorporation of systematic uncertainties

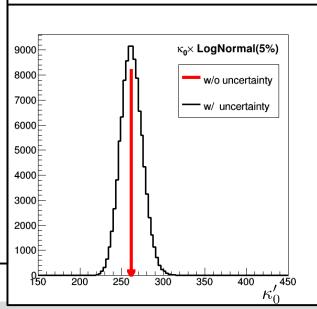
- Systematic uncertainties are usually incorporated in form of nuisance parameters:
 - E.g. background normalization κ_0 not precisely known, but with uncertainty $\sigma(\kappa_0)$:



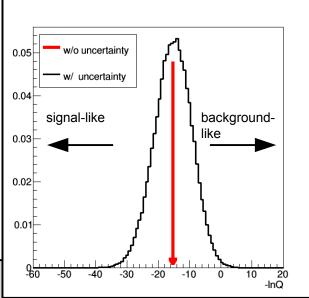
Probability density function (\mathcal{P})



Effect on BG normalization

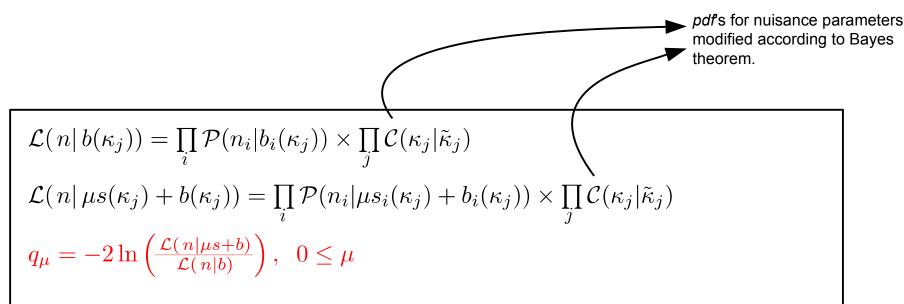


$$-\ln Q = -\ln \left(\frac{\mathcal{L}_{H_1}(\{k_i\}, \{\kappa_i\})}{\mathcal{L}_{H_0}(\{k_i\}, \{\kappa_i\})}\right)$$



Example: test statistics (LEP ~2000)

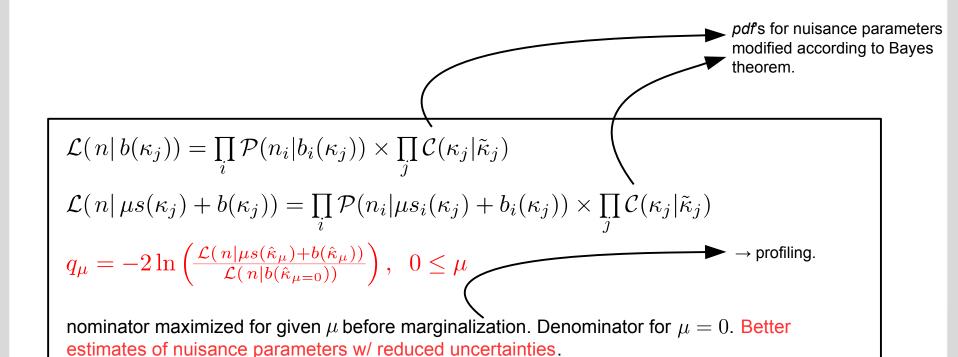
• Test signal (H_1 , for fixed mass, m, and fixed signal strength, μ) vs. background-only (H_0).



nuisance parameters $\tilde{\kappa}_j$ integrated out before evaluation of q_μ (\rightarrow marginalization).

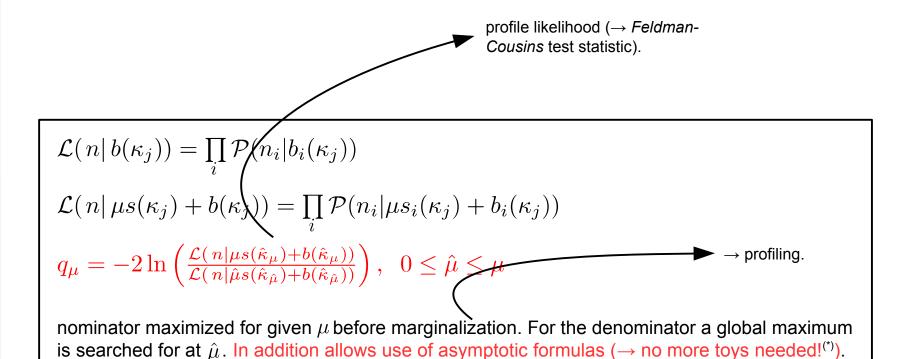
Example: test statistics (Tevatron ~2005)

• Test signal (H_1 , for fixed mass, m, and fixed signal strength, μ) vs. background-only (H_0).



Example: test statistics (LHC ~2010)

• Test signal (H_1 , for fixed mass, m, and fixed signal strength, μ) vs. background-only (H_0).

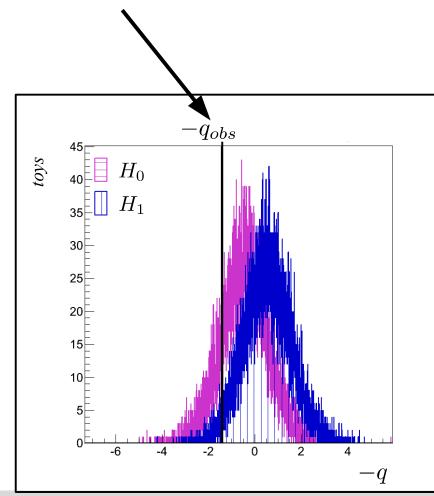


Meaning and interpretation of the test statistic

- From the evaluation of the test statistic on data always obtain a plain value q_{obs} (in our discussion: $q_{obs} < 0$ signal-like; $q_{obs} > 0$ background-like).
- True outcome of the experiment (nuisance parameters estimated to best knowledge, no uncertainties involved here)!

How to produce a toy experiment:

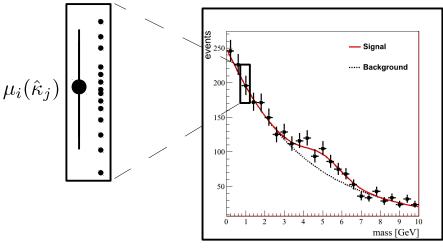
$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
 Product for each bin (Poisson).
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$



NB: real life examples (→ HIG-13-021).

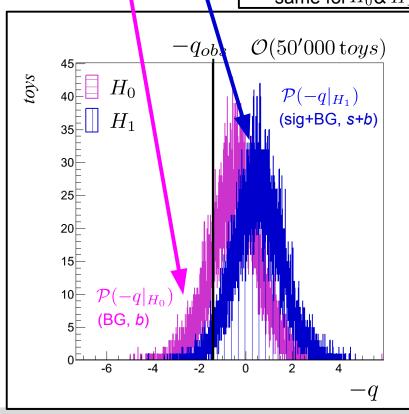
Meaning and interpretation of the test statistic

• How compatible is q_{obs} with H_0 or H_1 ? For this evaluate the test statistic on large number of toy experiments based on H_0 or H_1 .



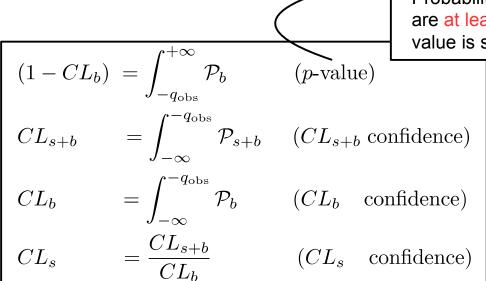
$$\mathcal{L}(\{k_i\}, \{\kappa_j\}) = \prod_i \mathcal{P}(k_i, \mu_i(\kappa_j))$$
 Product for each bin (Poisson).
$$\mu_i(\kappa_j) = \underbrace{\kappa_0 \cdot e^{-\kappa_1 x_i}}_{\text{background}} + \underbrace{\kappa_2 \cdot e^{-(\kappa_3 - x_i)^2}}_{\text{signal}}$$

- Determine *toy* dataset.
- Determine toy values for all uncertainties.
- Determine value of -q for toy.
- Proceed as often as possible; do the same for H_0 & H_1 .



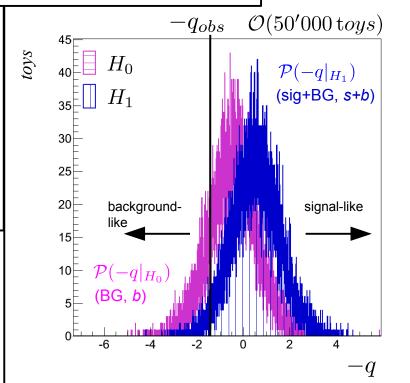
Significance levels/confidence levels (CL)

• The association to one or the other hypothesis can now be performed up to a given confidence level α .

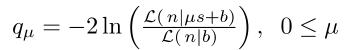


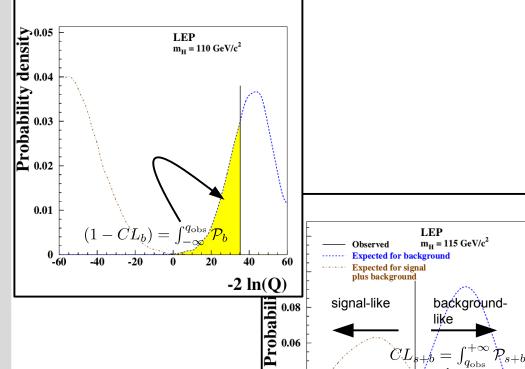
Questioning H_0 :

Probability to obtain values of q, which are at least as signal-like as q_{obs} . If p-value is small H_0 can be excluded.



Example: test statistics (LEP)





0.04

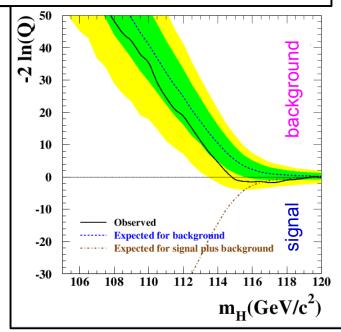
0.02

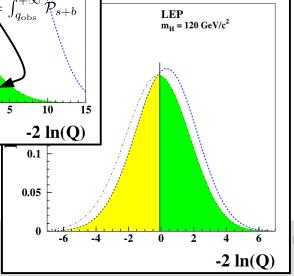
-15

-10

-5

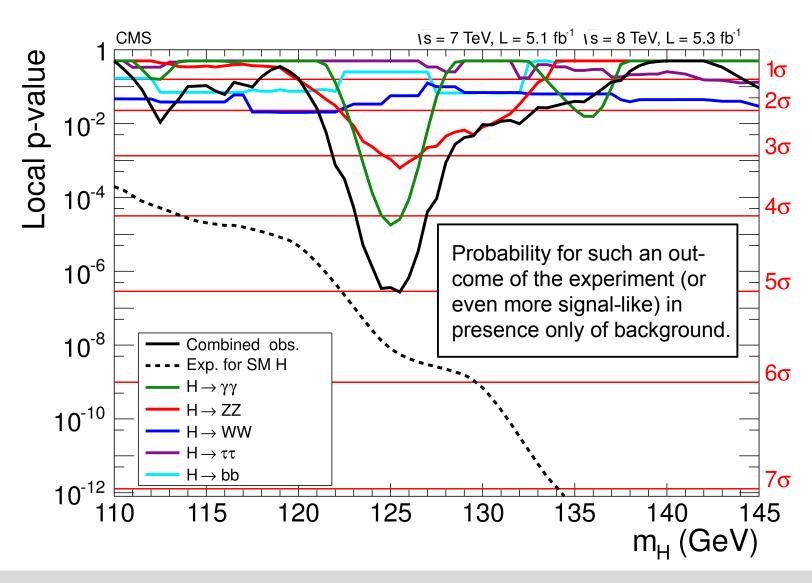
0





Experimental Particle Physics (IEKP)

Example: p-value (LHC)



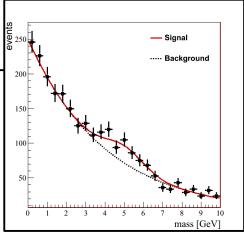
Example: saturated model

Example of a likelihood ratio:

$$q_{\lambda} = -2 \ln \left(\frac{\mathcal{L}(\text{data}|_{\text{test}})}{\mathcal{L}(\text{data}|_{\text{saturated}})} \right)$$

Model to be tested.

Model w/ as many parameters, λ_j , as measurements.



e.g. one shape for each bin.

 Special case: (i) histogram; (ii) no further nuisance parameters; (iii) uncertainties normal distributed:

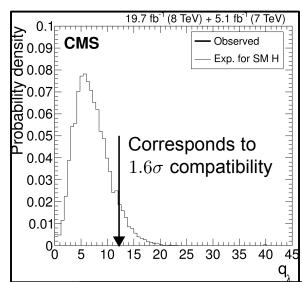
$$\mathcal{L}(\text{data}|_{\text{test}}) = \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{i}}} e^{-(d_{i} - \lambda_{i})^{2}/2\sigma_{i}}$$

$$\mathcal{L}(\text{data}|_{\text{saturated}}) = \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{i}}}$$

$$q_{\lambda} = -2\ln\left(\frac{\mathcal{L}(\text{data}|_{\text{test}})}{\mathcal{L}(\text{data}|_{\text{saturated}})}\right) = \sum_{i} \frac{(d_{i} - \lambda_{i})^{2}}{\sigma_{i}}$$

Generalization of the χ^2 test.

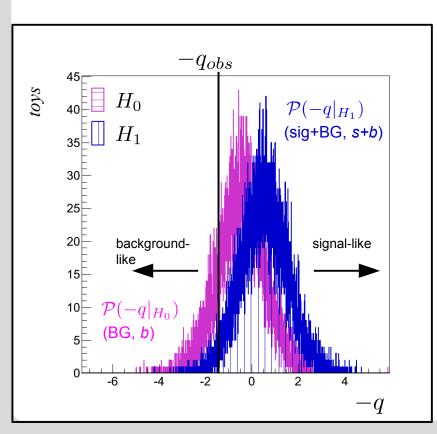
General case: (i) many histograms;
 (ii) many nuisance parameters:

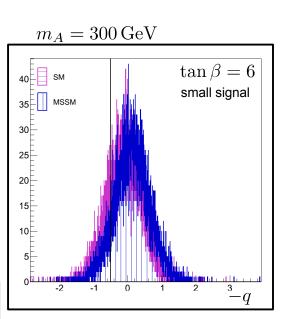


CL of interest: $\int_{q_{\rm obs}}^{+\infty} \mathcal{P}_{\rm test}$

• Questioning H_1 : to be conservative choose probability α that q is more BG-like than q_{obs} low.

• $\mathcal{P}(-q|_{H_1})$ usually depends on POI: $q=-2\ln\left(\frac{\mathcal{L}(\text{obs})|H_1}{\mathcal{L}(\text{obs})|H_0}\right)$ varies



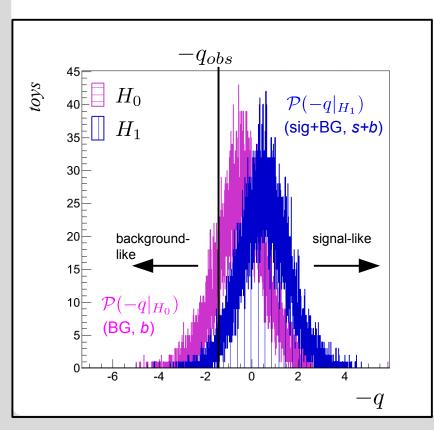


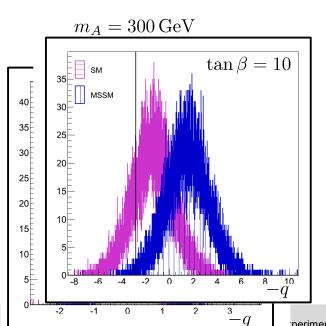
fixed

fixed

• Questioning H_1 : to be conservative choose probability α that q is more BG-like than q_{obs} low.

• $\mathcal{P}(-q|_{H_1})$ usually depends on POI: $q=-2\ln\left(\frac{\mathcal{L}(\mathrm{obs})|H_1}{\mathcal{L}(\mathrm{obs})|H_0}\right)$ varies

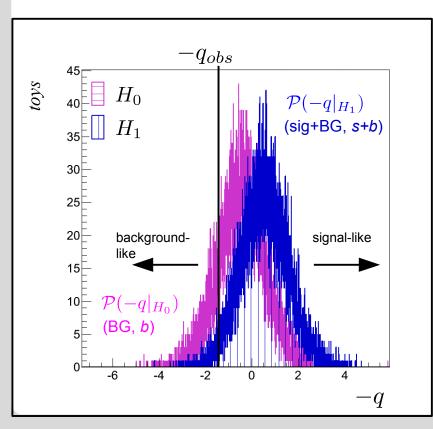


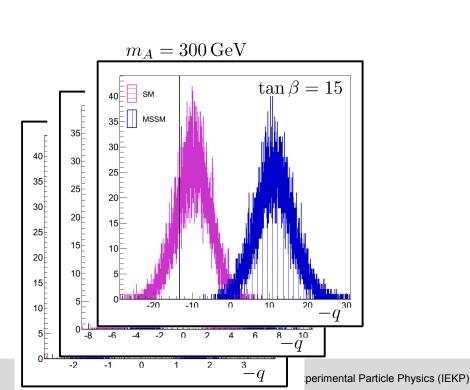


fixed

fixed

- Questioning H_1 : to be conservative choose probability α that q is more BG-like than q_{obs} low.
- $\mathcal{P}(-q|_{H_1})$ usually depends on POI: $q=-2\ln\left(\frac{\mathcal{L}(\mathrm{obs})|H_1}{\mathcal{L}(\mathrm{obs})|H_0}\right)$ varies



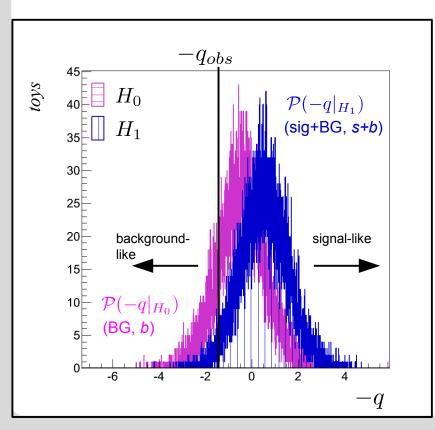


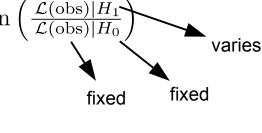
fixed

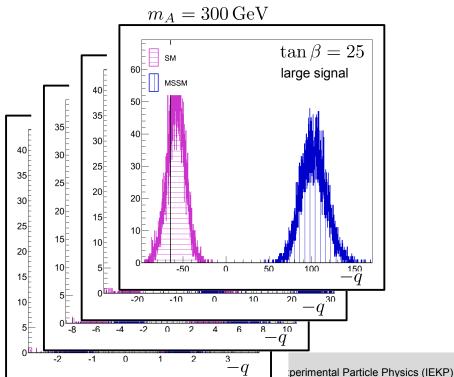
fixed

• Questioning H_1 : to be conservative choose probability α that q is more BG-like than q_{obs} low.

than q_{obs} low.
• $\mathcal{P}(-q|_{H_1})$ usually depends on POI: $q=-2\ln\left(\frac{\mathcal{L}(\text{obs})|_{H_1}}{\mathcal{L}(\text{obs})|_{H_0}}\right)$.

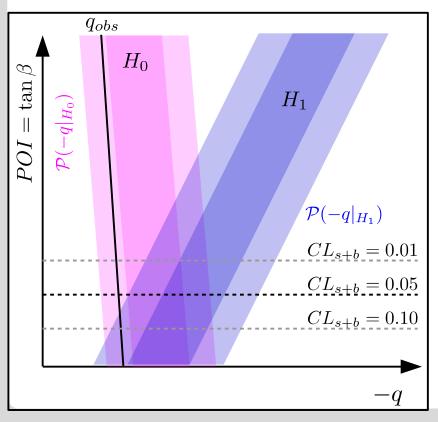






Observed exclusion

- Questioning H_1 : to be conservative choose probability α that q is more BG-like than q_{obs} low.
- Traditionally we determine 95% CL exclusions on the POI ($\alpha = 0$).



- $\mathcal{P}(-q|_{H_0})$ and $\mathcal{P}(-q|_{H_1})$ move apart from each other with increasing POI.
- The more separated $\mathcal{P}(-q|_{H_0})$ and $\mathcal{P}(-q|_{H_1})$ are the clearer H_0 and H_1 can be distinguished.
- Identify value of POI for which:

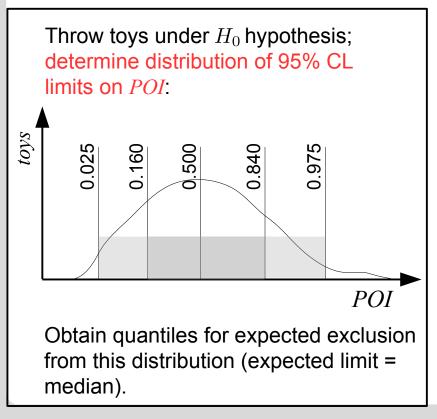
$$CL_{s+b} = \int_{-\infty}^{-q_{\text{obs}}} \mathcal{P}_{s+b} = 0.05$$

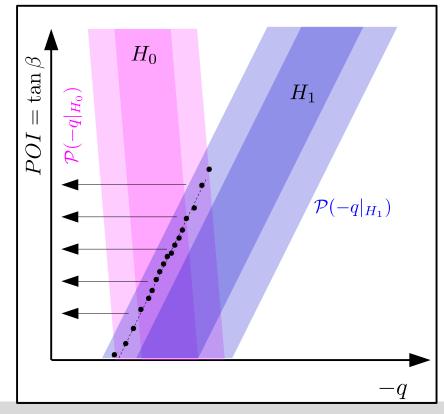
for this value q would have been more signal-like than q_{obs} with 95% probability.

 There is still a 5% chance to exclude by mistake.

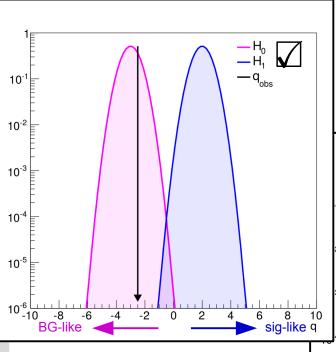
Expected exclusion

- To obtain expected limit mimic calculation of observed; base it on toy datasets.
- Use fact that $\mathcal{P}(-q|_{H_0})$ and $\mathcal{P}(-q|_{H_1})$ do not depend on toys (i.e. schematic plot on the left does not change).

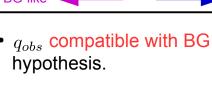




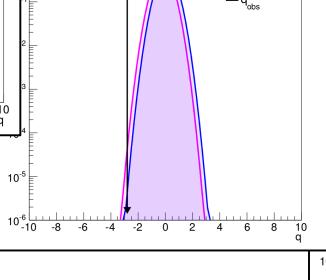
Interpretation issues (increasing pathology)

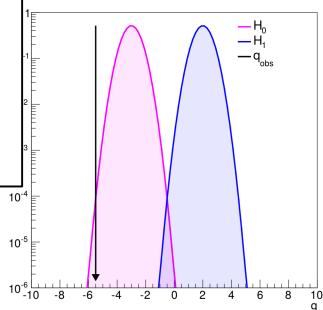


- Signal and BG hypothesis cannot be distinguished.
- Should this outcome lead to an exclusion of the signal hypothesis?
- q_{obs} incompatible both with signal and BG hypothesis.
- Should this outcome lead to an exclusion of the signal hypothesis?



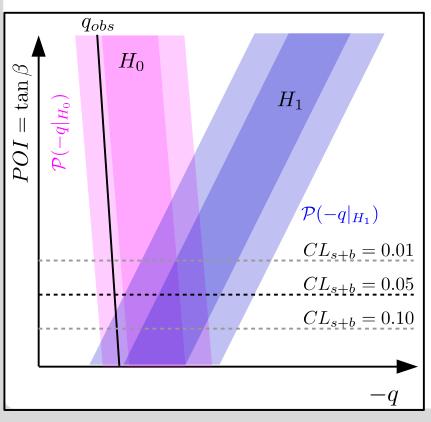
• q_{obs} incompatible with signal hypothesis.





Modified frequentist exclusion method (CLs)

• In particle physics we set more conservative limits, following the *CLs* method:



•
$$CL_{s+b} = \int_{-\infty}^{-q_{obs}} \mathcal{P}_{s+b}$$

 $CL_b = \int_{-\infty}^{-q_{obs}} \mathcal{P}_b$

• Identify value of POI for which:

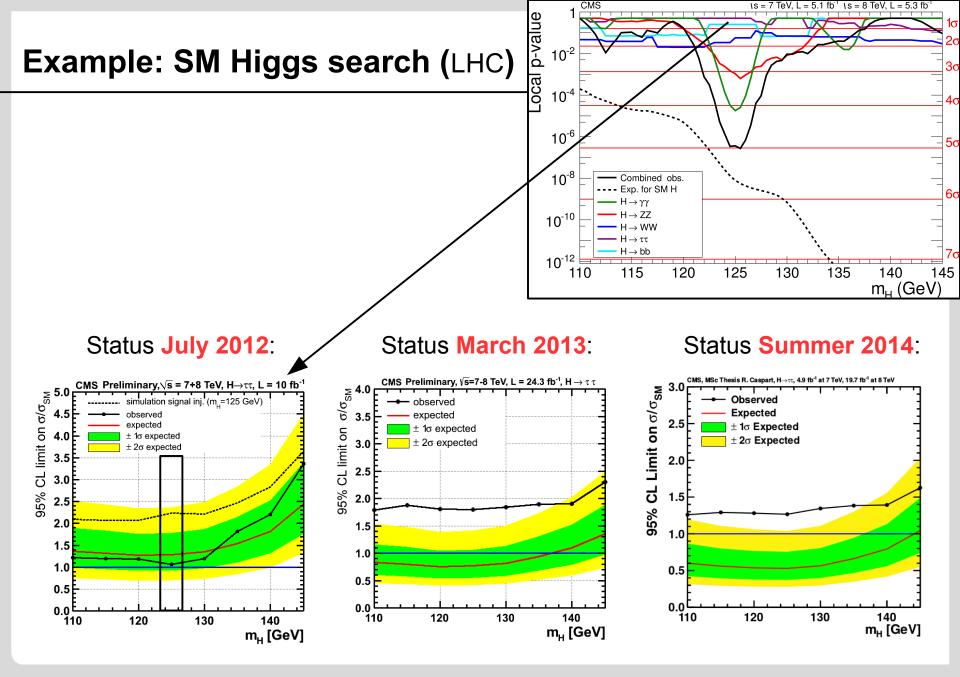
$$CL_s = \frac{CL_{s+b}}{CL_b} = 0.05$$

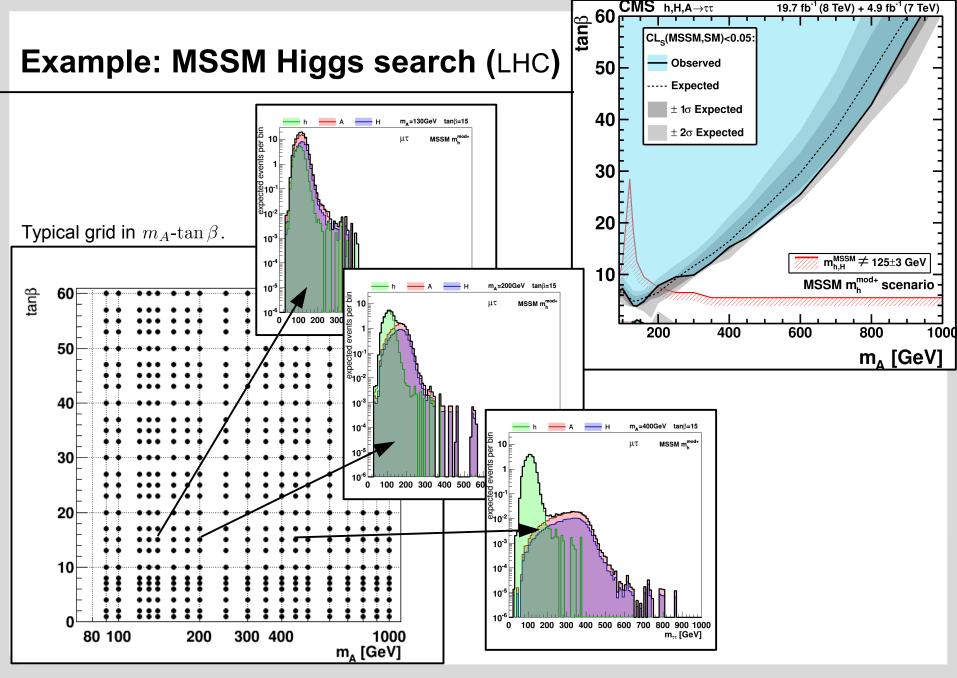
• If H_0 and H_1 are well separated (and H_0 gives a valid description of the experiment):

$$CL_s \to CL_{s+b}$$

• If H_0 and H_1 become indistinguishable:

$$CL_{s+b} < CL_s \to 1$$





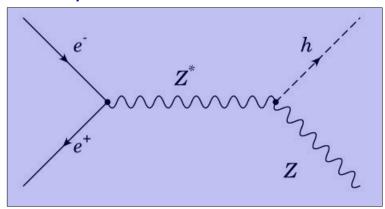
Concluding Remarks

- Statistics: mathematical tool to distinguish true from false models.
- The most powerful tool is the likelihood ratio.
- We have discussed: likelihood models, incorporation of systematic uncertainties, maximum likelihood fits, confidence intervals, *p*-values & parameter exclusions.
- Important pillar of each modern physics branch to compare models with measurements.

Backup

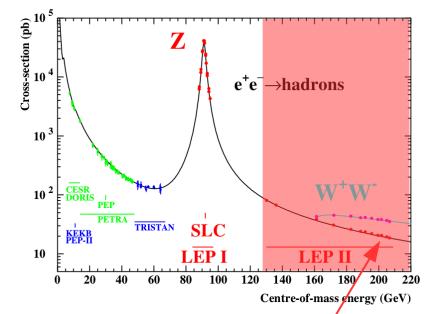
Direct Higgs Boson searches @ LEP

• Main production mode in e^+e^- :



- Higgs boson couples to mass.
- Strongest coupling to heaviest objects.

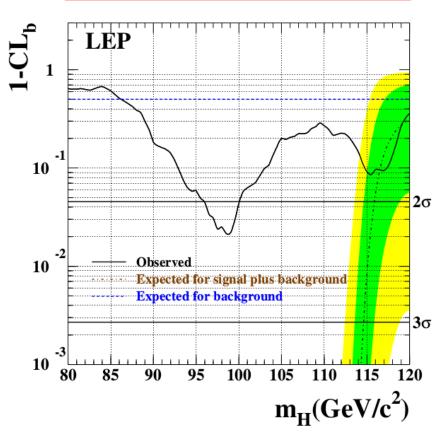
Integrated luminosities in pb ⁻¹										
	ALEPH	DELPHI	L3	OPAL	LEP					
$\sqrt{s} \ge 189 \text{ GeV}$	629	608	627	596	2461					
$\sqrt{s} \ge 206 \text{ GeV}$	130	138	139	129	536					



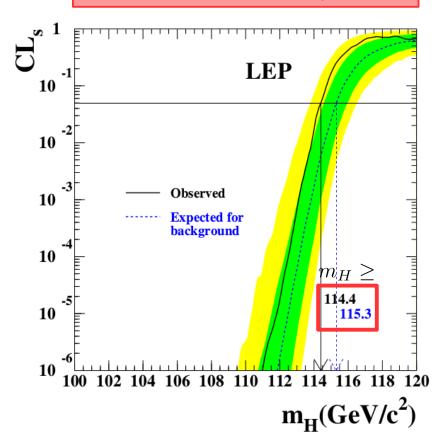
Year	1996		1997	1998	1999			20	2000	
$E_{\rm CM}$ nominal [GeV]	161	172	183	189	192	196	200	202	205	207

What was the maximal reach on m_H at LEP? —

Result (Final Word from LEP)



$$CL_s$$
 -limit ($CL_s = \frac{CL_{s+b}}{CL_b}$):



No signal observed!

p-value vs. Gaussian significance

- If the measurement is normal distributed q is distributed according to a χ^2 distribution.
- The χ^2 probability can then be interpreted as a Gaussian confidence interval.

