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Overview

Motivation for an extension of the Higgs sector

Addition of a real singlet scalar (xSM)

Addition of a complex singlet scalar (cxSM)
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Cosmological mystery: the ’missing mass’ problem

Jan Oort (1900-1992) Fritz Zwicky (1898-1974)

Motion of galaxies and stars in the universe ⇒ dark matter.
Estimated to account for about 85% of the mass in the universe.
But where does it come from?
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MACHOs and WIMPs

Massive compact halo
object

Weakly interacting
massive particle
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MACHOs and WIMPs

Properties of WIMPs

• Little interaction with SM particles.

• large mass (for a particle).

• Readily predicted by simple extensions of the SM Higgs sector.

We study the addition of a real (xSM) as well as a complex
(cxSM) singlet scalar to the Higgs doublet.
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Let H be the SM Higgs doublet and s be a single gauge singlet
real scalar field.

Consider the potential

V =µ2
(
H†H

)
+ λ

(
H†H

)2
+ a1

(
H†H

)
s + a2

(
H†H

)
s2

+
b2
2
s2 +

b3
3
s3 +

b4
4
s4.

Note: V is Z2 symmetric in s for a1 = b3 = 0
(i.e. symmetric under s → −s).
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V =µ2
(
H†H
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+ λ
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4
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What are the conditions on V?

• It must be bounded from below (existence of a vacuum).

• It must accomodate electroweak symmetry breaking ⇒
〈H〉 6= 0.

• It should yield a massive stable scalar s.
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The stationary conditions
We write

H =
1√
2

(
0
h

)
, with h real (unitary gauge),

and denote the vacuum expectation values of h and s with v and
vs .
With this, the stationary conditions of V

∂V

∂h

∣∣∣∣
(h,s)=(v ,vs)

=
∂V

∂s

∣∣∣∣
(h,s)=(v ,vs)

= 0

yield

µ2 = −λv2 − vs(a1 + a2vs),

a1 = −a2vs −
2b2vs
v2
− 2b3v

2
s

v2
− 2b4v

3
s

v2
.
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Using the equation for µ2 we now calculate the mass squared
matrix

M2 =


∂2V

∂h2
∂2V

∂h∂s

∂2V

∂s∂h

∂2V

∂s2


∣∣∣∣∣∣∣∣
(h,s)=(v ,vs)

=

 2λv2 a1v + 2a2vvs

a1v + 2a2vvs a2v
2 + b2 + 2b3vs + 3b4v

2
s

 .

Note: A Z2 symmetry (a1 = b3 = 0) is not sufficient to eliminate
the mixing terms.
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This is because the acquisition of a nonzero vev vs 6= 0 of the
scalar s breaks the Z2 symmetry (if imposed) spontaneously.
⇒ unwanted mixing terms.
⇒ instability of the mass eigenstates.
⇒ no DM candidate.
So, in order to obtain a viable dark matter candidate, we now
assume

a1 = b3 = 〈s〉 = 0.
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Constraints on the potential

After electroweak symmetry breaking, for which we shift
h ≡ v + h, the potential reads

V =− µ4

4λ
− µ2h2 + λvh3 +

λ

4
h4

+
1

2
(b2 + a2v

2)s2 +
b4
4
s4 + a2vs

2h +
a2
2
s2h2.

Necessary conditions:

• Existence of a vacuum: λ, b4 ≥ 0 and λb4 ≥ a22 for negative
a2.

• The mass squared matrix M2 = diag(2λv , b2 + a2v
2) must be

positive definite.

Note: The phenomenological properties of this model are
completely determined by a2 and b2, or a2 and m2

s = b2 + a2v
2.
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Experimental and theoretical constraints on the parameters

Figure: taken from Lei Feng, S. Profumo, L. Ubaldi, [arXiv:1412.1105]

Highly constrained parameter space for the xSM!
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Another cosmological mystery: the baryon asymmetry

Number of baryons � number of antibaryons in the observable
universe.
Possible Explanations:

• There is as much antimatter, as there is matter, but its all
clunked together far away.

• The universe began with a small preference for matter.

• The universe was initially perfectly symmetric, but somehow
matter was favoured over time.
This requires the electroweak symmetry breaking to be a first
order phase transition.
In the context of SM, this requires mh . 70 GeV. In the
context of xSM, this requires 〈S〉 6= 0.
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xSM - Conclusive remarks

The xSM Model

yields either a stable CDM candidate , that doesn’t affect
EWPT (〈S〉 = 0), or

generates strong first order EWPT, but only yields unstable
mass eigenstates (〈S〉 6= 0).

So, it is impossible to explain both these mysteries in the context
of a single xSM.

Unsatisfactory?
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Let S = S + iA be a single gauge singlet complex scalar field.
Consider the U(1) and Z2 symmetric Potential

V =
m2

2

(
H†H

)
+
λ

4

(
H†H

)2
+
δ2
2
H†H |S|2 +

b2
2
|S|2 +

d2
4
|S|4

+

(
|b1|

4
e iφb1S2 + c .c .

)
We study the cases

A1 〈S〉 = 0; a1 = b1 = 0. (Unbroken U(1))

A2 〈S〉 = 0; a1 = 0, b1 6= 0. (explicitly broken U(1))

B1 〈S〉 6= 0; a1 = b1 = 0. (spontaneously broken U(1))

B2 〈S〉 6= 0; a1 6= 0, b1 6= 0. (explicitly broken U(1) and Z2)
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Glodstone’s theorem: 〈S〉 6= 0⇒ massless particle (Spontaneous
breaking of the U(1) symmetry).

We therefore break the U(1) symmetry explicitly.
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Constraints on the potential

V =
m2

2

(
H†H

)
+
λ

4

(
H†H

)2
+
δ2
2
H†H |S|2 +

b2
2
|S|2 +

d2
4
|S|4

+

(
|b1|

4
e iφb1S2 + |a1| e iφa1S + c .c .

)

• Existence of a vacuum (v , vS):
We take λ > 0, d2 > 0 ⇒ if δ2 < 0 then λd2 > δ22 .

• For simplicity, we take φb1 = φa1 = π ⇒ 〈A〉 = 0.

• The vacuum must be a local minimum, so the mass squared
matrix must be positive definite.
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Case A: 〈S〉 = 0.

The mass matrix in (v , 0) is M2 = diag
(
M2

h ,M
2
S ,M

2
A

)
,where

M2
h =

1

2
λv2,

M2
S = −1

2
|b1|+

1

2
b2 +

δ2v
2

4
,

M2
A =

1

2
|b1|+

1

2
b2 +

δ2v
2

4
.

For case A1, that is b1 = 0, we obtain two phenomenologically
aquivalent particles.
−→ xSM.
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Case A2: 〈S〉 = 0; a1 = 0, b1 6= 0

V =
m2

2

(
H†H

)
+
λ

4

(
H†H

)2
+
δ2
2
H†H |S|2 +

b2
2
|S|2 +

d2
4
|S|4

+

(
−|b1|

4
S2 + c .c .

)
M2

S/A = ∓1

2
|b1|+ 1

2
b2 +

δ2v
2

4
.

No mixing of the scalars.
Stable two-component dark matter scenario.
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Figure: taken from V. Barger et al., [arXiv:0811.0393]
Contribution to the relic density over the mass of the light scalar

M2
S = − 1

2 |b1|+ 1
2b2 + δ2v

2

4 .
MH = 120 GeV,
b2 = 50000 GeV2,
d2 = 1.
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Case B1: 〈S〉 6= 0; a1 = b1 = 0.

V =
m2

2

(
H†H

)
+
λ

4

(
H†H

)2
+
δ2
2
H†H |S|2 +

b2
2
|S|2 +

d2
4
|S|4 .

M2 =


λv2/2 δ2vvS/2 0

δ2vvs/2 d2v
2
S/2 0

0 0 0

 .

Two unstable mixed scalars.
A is stable but massles.
⇒ no dark matter candidate.
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Case B2: 〈S〉 6= 0; a1 6= 0, b1 6= 0.

V =
m2

2

(
H†H

)
+
λ

4

(
H†H

)2
+
δ2
2
H†H |S|2 +

b2
2
|S|2 +

d2
4
|S|4

+

(
−|b1|

4
S2 − |a1| S + c .c.

)
.

M2 =


λv2/2 δ2vvS/2 0

δ2vvs/2 d2v
2
S/2 +

√
2 |a1| /vS 0

0 0 |b1|+
√

2 |a1| /vS

 .

Two unstable mixed scalars.
A remains stable (no mixing) and M2

A = |b1|+
√
2|a1|
vS

> 0.
⇒ A candidate for dark matter!
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Figure: Contribution
to the relic density
over the mass MA.
vS = 100 GeV,
Mh1 = 120 GeV,
Mh2 = 250 GeV.
(V. Barger et al.,
[arXiv:0811.0393])

Figure: Contribution
to the relic density
over the mass MA.
vS = 10 GeV,
Mh1 = 120 GeV,
Mh2 = 140 GeV.
(V. Barger et al.,
[arXiv:0811.0393])

21 / 22



Motivation xSM - real singlet addition cxSM - complex singlet addition

cxSM - Conclusive remarks

The cxSM model

yields a simple two-component DM scenario, if the U(1)
symmetry is explicitly but not spontaneously broken.

yields a single-component DM scenario and allows for first
order EWPT, as required for electroweak baryogenesis, if the
U(1) symmetry is both explicitly and spontaneously broken.
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