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Exercise sheet

Exercise 1: SU(N) representation

The generators T a of the fundamental representation of the SU(N) are given by

T aij , a = 1, . . . , N2 − 1 , i, j = 1, . . . , N .

They are Hermitian, T a† = T a, traceless, Tr(T a) = 0, and normalized through

Tr
(
T aT b

)
=

1

2
δab .

They satisfy the commutation and anti-commutation relation[
T a, T b

]
= ifabcT

c , (1){
T a, T b

}
=

1

N
δab 1N×N + dabcT

c , (2)

which defines the total antisymmetric structure constants fabc and the total symmetric
symbols dabc of the SU(N). The commutation relation, Eq. (1), is satisfied for all SU(N)
representations, whereas Eq. (2) only holds for the fundamental representation.
Every complex N × N matrix M can be decomposed into a linear combination of these
N2 − 1 generators, with coefficients c0, ca, as follows:

M = c01N×N +
N2−1∑
a=1

caT
a . (3)

(a) Show that the Fierz identity of the SU(N),

T aijT
a
kl ≡

N2−1∑
a=1

T aijT
a
kl =

1

2
δilδjk −

1

2N
δijδkl , (4)

is a result of combining the completeness relation, eq. (3), with the tracelessness of
T a.

(b) Show that, independent of any specific representation of SU(N), that

C2 = T aT a ≡
N2−1∑
a=1

T aT a

is a Casimir invariant, i.e. that [C2, T
a] = 0 holds for all generators T a.



(c) By using the hermiticity of the generators, show that fabc and dabc are real.

(d) Calculate the value of C2 in the fundamental representation.

Exercise 2: Transformation of the covariant derivative

The covariant derivative

Dµ = ∂µ + igAµ = ∂µ + igAaµT
a ,

is explicitly dependent on the chosen representation of the generators T a of the gauge
group. In this exercise, we consider the transformation of the covariant derivative and of
the gauge field,

D′µ = UDµU
−1 , A′µ = UAµU

−1 − i

g
U(∂µU

−1)

where representation matrices U = exp(iϑaT a) are given in the fundamental representation.
With this, prove that the covariant derivative transforms like

D′µ = V DµV
−1

for any arbitray representation V and calculate the transformation explicitly.
Hint: Use the Baker–Hausdorff formula

eBAe−B =
∞∑
n=0

1

n!
An ,

where An = [B,An−1], A0 = A and A = Aµ respectively A = ∂µ and B = iϑaT a.

By starting with

D′µ = V (∂µ + igAµ)V −1 = ∂µ + V (∂µV
−1) + igV AµV

−1 ,

you can transform the right-hand side in such a way that the transformation of the gauge
fields Aµ in the adjoint representation, with (T aadj)bc = (−ifa)bc, appears explicitly. The

structure constants fabc are the same is introduced in exercise 3.

Exercise 3: Symmetry breaking

We first analyze the Lagrangian of ϕ4 theory for real fields ϕ(x), given by

L =
1

2
(∂µϕ) (∂µϕ)− V (ϕ) , V (ϕ) = −1

2
µ2ϕ2 +

λ

4
ϕ4 .

where µ2 and λ are constants of the potential and λ > 0.



(a) Find the trivial extremum 〈ϕ〉1 and the non-trivial extremum v ≡ 〈ϕ〉2 of the
potential V (ϕ) with respect to the field ϕ. The non-trivial extremum v is called
the vacuum expectation value of the field ϕ. What condition must µ2 fulfill that the
non-trivial extremum v actually exists in the potential V (ϕ)? In this case, is it a
global minimum or maximum of the potential?

(b) The Lagrangian is invariant under the discrete symmetry ϕ→ −ϕ. We assume that
the non-trivial minimum v exists. In this case, the field can condensate into this
new minimum and it can be expanded about the vacuum expectation value as

ϕ(x) = v + σ(x) ,

where σ(x) is a small perturbation of the field near v. Rewrite the Lagrangian in
terms of v, λ and σ(x). Express the mass of the field σ(x) through the original
parameters of the potential and then rewrite the Lagrangian in terms of this mass
and v, only.

We now consider a complex scalar field ϕ(x) which couples both to itself and to a vector
field Aµ(x), described by the Lagrangian

L = −1

4
FµνF

µν + (Dµϕ) (Dµϕ)∗ − V (ϕ) , V (ϕ) = −µ2ϕ∗ϕ+
λ

2
(ϕ∗ϕ)2 ,

where Dµ = ∂µ + igAµ.

(c) Analogous to part (a), find the trivial and non-trivial extrema of the potential. Show
that the Lagrangian is invariant under the local continuous U(1) gauge transforma-
tion

ϕ(x) −→ eiα(x)ϕ(x) , Aµ(x) −→ Aµ(x)− 1

g
∂µα(x) .

What would happen with this symmetry if we would naively add a mass term
m2
AAµA

µ for the gauge field by hand to the Lagrangian? Interpret this finding.

(d) Expand the field ϕ about its non-trivial extremum v,

ϕ(x) = v +
h(x) + iG(x)√

2
,

where h(x) and G(x) are perturbations of the field near v. Why do we need two fields
now in contrast to part (b), where one field h(x) was sufficient in the expansion?
Express the potential V (ϕ) in terms of v, λ, h(x) and G(x) and identify the masses
of the fields h(x) and G(x).

(e) Rewrite the kinetic term (Dµϕ) (Dµϕ)† of the Lagrangian in terms of the new fields,
where you can omit (mixing) terms cubic and quartic in all fields Aµ(x), h(x) and
G(x). Identify the effective mass term of the gauge field Aµ(x). Interpret your fin-
dings by comparing this to the result you found in part (c).



(f) Use the gauge freedom of the field ϕ(x) as given in part (c) to remove the massless
Goldstone field G(x) from the Lagrangian. This special choice of gauge is called
unitary gauge. Express the Lagrangian in this special case. Interpret your findings.
Hint: Rewrite the expansion of the field ϕ(x) from part (d) in such a way that the
field perturbation G(x) appears in the argument of an exponential function and use
the freedom of choice of α(x) to formally remove G(x). After that, insert the new
expansion (without G(x)) into the Lagrangian.

Exercise 4: Range of Forces

In particle physics, forces (interactions) between two particles are described as constant
exchange of bosons. These interaction bosons can be massive in general, and their rest
mass has to be created temporarily, at least during the exchange. This is not possible in
classical physics, but the Heisenberg uncertainty relation offers a way out here.

(a) Calculate the typical range of the force, assuming that the exchange/interaction
particle moves at the speed of light for

(i) the electromagnetic interaction

(ii) the weak interaction

(exchange particles: W and Z with MW = 80.398GeV
c2 , MZ = 91.1876GeV

c2 ).

(b) The force between nucleons is typically of the order of 1 fm, and is transmitted
through pions (bound quark-antiquark states). What is the implication for the mass
of the pions?

Exercise 5: Polarization of a massive vector boson

We consider a vector boson with mass M 6= 0 and polarization vectors εµλ(k), where kµ is
its four-vector and λ denotes the three physical degrees of freedom for the polarization of
the massive vector boson. The polarization vectors are normalized through the following
relations:

k · ελ(k) = 0 ,

ελ(k) · ε∗λ′(k) = −δλλ′ .
(1)

(a) Boost into the rest frame of the vector boson. By using the relations from Eq. (1),
determine the form of the three polarization vectors under the assumption that the
vector boson is linearly polarized in one longitudinal and two transversal modes.



(b) By using again the relations from Eq. (1) in the rest frame of the vector boson,
determine the form of the polarization vectors if we now consider the vector boson
to be longitudinally polarized in the z direction, but circularly polarized in the x−y
plane.

(c) By using Lorentz covariance, guess the form of the completeness relation Σλε
µ
λ(k)ε∗νλ (k)

of the massive vector boson and use Eq. (1) to determine the correct form of the
polarization sum as given in the lecture.
Hint: Which tensors and four-vector combinations are compatible with εµλ(k)ε∗νλ (k)
to preserve Lorentz covariance? Express the completeness relation as a linear com-
bination of these possible components and use Eq. (1) to determine the coefficients
of these components in the rest frame of the vector boson.

(d) Show that the circularly polarized vector boson from part (b) fulfills the comple-
teness relation from part (c) by inserting the polarization vectors explicitly for all
µ and ν. You can again work in the rest frame of the vector boson.

Exercise 6: Lagrangian of a massive vector field

The Lagrangian of a massive free vector field V µ(x) is given by

LV = −1

4
FµνF

µν +
m2
V

2
VµV

µ

where mV 6= 0 denotes the mass of the vector particle and F µν = ∂µV ν − ∂νV µ denotes
the field-strength tensor.

(a) Calculate the equations of motion for V µ, the so-called Proca equations.

(b) Using the equations of motion, prove that

∂µV
µ = 0

(c) Use the results from (a) and (b) to show that all components of V µ satisfy the
Klein-Gordon equation separately and explain the physical meaning of this result.

A new Lagrangian L = LV + LD is given by adding a Dirac term

LD = ψ(x)
(
i /D −mD

)
ψ(x) ,

where the covariant derivative Dµ = ∂µ + iqVµ yields a coupling between the spinor ψ and
the vectorfield Vµ.

(d) Consider ψ, ψ and Vµ as independent fields and calculate the new equations of
motion for all three of them, separately.



(e) The vector current jµ and axial vector current jµ5 can be defined as

jµ = ψγµψ jµ5 = ψγµγ5ψ.

Consider the special case of q = 0, i.e. the fermion decouples from the vector boson.
By using the equations of motion, prove that jµ is a conserved quantity, whereas
j5µ is not conserved in general. In which special case is jµ5 conserved, as well?


