

SM: 0.2100
$$\pm$$
 0.0026

$$\frac{\sin^2 \theta_W(M_2^2)}{\exp} \quad MSSM; \quad 0.2335 \pm 0.0017$$
exp: 0.2316 \pm 0.0002
• SM couplings cannot be unified. SUSY couplings can
• SUSY predictions of $\sin^2 \theta_W$ within 2 permille. Independent of details of the $\bar{M} \sim 1$ TeV spectrum, only sensitive to particle spectrum.
(b) Proton decay:
 $T(P \rightarrow \pi^0 + e^+) \sim \frac{M_T^4}{\alpha_S^2 M_P^2}$ $r = r \exp r$ immental limit $r = \frac{1}{\alpha_S^2 + \alpha_S^2}$ $r = \frac{1}{M_T^2}$ $r = \frac{1}{\alpha_S^2 + \alpha_S^2}$

Q (GeV)

(c) Radiative symmetry breaking:

	SUS	' Breakin	lg Mechanisms	
Ferrara sum rule: no	spontaneous s	symmetry brea	king in eigenworld: $\sum (-1)^{2J}$ ($(2J+1)M_J^2 \neq 0.$
<u>Mechanisms:</u> Super	gravitation		mSUGRA	
Gaug	e-mediated SU	ISY breaking	GMSB	
Anom	aly-mediated	SUSY breaking	g AMSB	
Scher	k-Schwarz SU	SY breaking	SSSB	
Minimal SUPERGRA	VITATION:			
Hidden sector SUSY: $\langle \bar{\lambda} \lambda \rangle \neq 0$	GRAV.	Eigenworld	$\Rightarrow \boxed{M_{SUSYbreak} \sim 10^{11}}$	¹ GeV
Soft parameters "uni	versal": 5 para	ameters: M_0, I	$M_{1/2}, A_0, aneta, sgn\mu$	
<u>Evolution:</u> GUT \rightarrow E	LW:	$\frac{\partial M_i}{\partial \log \mu^2} =$	$-rac{b_i}{4\pi}lpha_i M_i$	
		$ \frac{\partial \alpha_i}{\partial \log \mu^2} = \\ \Rightarrow \frac{M_i}{\alpha_i} = $	$-rac{arrho_i}{4\pi}lpha_i^2$ const	
Gaugino masses run	like gauge cou	plings \Rightarrow Λ	$M_1 = M_2 \frac{5}{3} \cdot \tan^2 \theta_W \sim \frac{1}{2} M_2$	$(M_i(M_{GUT}) = M_{1/2})$
		$\overline{\lambda}$	$rac{M_3}{M_2} = rac{lpha_3}{lpha_2} \gg 1 \Rightarrow$	$m_{ ilde{g}} \gg m_{ ilde{\chi}}$

Gauge-mediated SUSY breaking (GMSB):

- flavor-blind SUSY-breaking mediating interactions are ordinary EW and QCD gauge interactions
- MSSM soft terms come from loop diagrams involving messenger particles
- messengers are new chiral supermultiplets coupling to a SUSY breaking VEV (F) and also have $SU(3)_C imes SU(2)_L imes U(1)_Y$ interactions providing the necessary connection to the MSSM

- gaugino masses evolve like in mSUGRA but without unification
- scalar masses significantly different, determined by F, the messenger mass M_{mess} and the number N of messenger fields
- 5 parameters: $F, M_{mess}, N, \tan\beta, \operatorname{sgn}\mu$

•
$$m_{\tilde{e}_L} = M_{H_u}$$
 at $\mu = \sqrt{F} \to \exp$. reconstr. of $\sqrt{F} = M_{SUSYbreak}$

- \bullet lower limit to $M_{mess},~{\rm SUSY}$ masses $\Rightarrow \sqrt{F}\gtrsim 10^5~{\rm GeV}$
- NLSP: (i) N small \rightarrow neutralino

(II)
$$N$$
 large \rightarrow slepton

SUSY Particle Production

(i) Hadron Collider

 $pp/p\bar{p}$ collisions Large production cross sections for moderate squark/gluino masses through strong interactions in

3 classes of SUSY pair production processes:

(i) Strongly interacting particle pairs

$$\sigma_{gg} = \int_{\tau_0}^1 dx_1 \, \int_{\tau_0/x_1}^1 dx_2 \, g(x_1, \mu_F^2) g(x_2, \mu_F^2) \, \hat{\sigma}_{gg}(\hat{s} = x_1 x_2 s)$$

with $au_0 = 4m^2/s \ [m = (m_1 + m_2)/2]$ and

$$\hat{\sigma}_{gg}(\hat{s} = x_1 x_2 s) = \alpha_s^2(\mu_R) f_0(\hat{s} = x_1 x_2 s)$$

- leading order: large theoretical uncertainties (due to undefined renormalization scale μ_R , factorisation scale $\mu_F)$
- natural scale: $\mu_R = \mu_F = m$; scale variation \rightarrow estimate of theoretical uncertainties with respect to scale choice (large logarithms in higher order):

$$\begin{aligned} \alpha_s(Q^2) &= \frac{\alpha_s(\mu^2)}{1 + \frac{33 - 2N_F}{12} \frac{\alpha_s(\mu^2)}{\pi} \log \frac{Q^2}{\mu^2}} \\ &= \alpha_s(\mu^2) \left[1 - \frac{33 - 2N_F}{12} \frac{\alpha_s}{\pi} \log \frac{Q^2}{\mu^2} + \mathcal{O}(\alpha_s^2) \right] \end{aligned}$$

[parton densities in analogy]

$$\frac{1}{2}m < \mu_R = \mu_F < 2m : \delta\sigma \sim \pm 50 \%$$

<u>LHC</u>

Effect reduced through SUSY QCD corrections:

- virtual 1-loop contributions

- real contributions through gluon radiation/crossing

$$\hat{\sigma}_{gg} = \alpha_s^2(\mu_R) \left\{ f_0 + f_0 \frac{33 - 3N_F}{6} \frac{\alpha_s}{\pi} \log \frac{\mu_R^2}{m^2} + \frac{\alpha_s}{\pi} f_1 \right\} \\ = \alpha_s^2(m^2) \left\{ f_0 + \frac{\alpha_s}{\pi} f_1 + \mathcal{O}(\alpha_s^2) \right\}$$

[parton densities in analogy]

$$rac{1}{2}m < \mu_R = \mu_F < 2m : \delta\sigma \sim \pm 10^{\circ}$$

 \Rightarrow NLO corrections provide reliable predictions of cross sections at hadron colliders

central scale: $K = \frac{\sigma_{NLO}}{\sigma_{LO}} \sim 1.1 - 2.0$

$$<\mu_R=\mu_F<2m:\delta\sigma\sim\pm10~\%$$

Beenakker, Höpker, Spira, Zerwas

Implications for exp. searches:

- (i) Renorm./factor. scale dep. reduced by $\sim 2.5-4 \rightsquigarrow$ stable theor. predictions for σ
- (*ii*) NLO corrs. large & positive
 → to be included in analyses
 (→ masses)
- $(iii) \ p_T$ and y distributions hardly affected by NLO
- (iv) NLO \rightsquigarrow raise of Tev lower \tilde{q}, \tilde{g} mass bounds by +10-30 GeV

Beenakker, Krämer, Plehn, Spira, Zerwas

Classical signatures (R-parity conserving SUSY, i.e. pair production/LSP stable):

- gluino > squark: $\tilde{q} \rightarrow q\tilde{\chi}_1^0 = q + E_T^{miss}$ $\tilde{g} \rightarrow q\tilde{q} \rightarrow qq\tilde{\chi}_1^0 = qq + E_T^{miss}$
- squark > gluino: $\tilde{g} \rightarrow q\tilde{q}_{virt} \rightarrow qq\tilde{\chi}_1^0 = qqE_T^{miss}$

$$\tilde{q} \rightarrow q\tilde{g} \rightarrow qqq\tilde{\chi}_1^0 = qqq + E_T^{miss}$$

 $pp \rightarrow n \; jets + E_T^{miss}$

Discovery range:

Tevatron \lesssim 500 GeV LHC \lesssim 2.5...3 TeV

Mass reach of the LHC

 $M_{\tilde{q},\tilde{g}} \leq 2.5 \ {
m to} \ 3 \ {
m GeV}$

Signature: E_T^{miss} + jets

(ii) Weakly interacting particle pairs

Signatures

$$\tilde{l} \rightarrow l \tilde{\chi}_1^0$$
: $pp \rightarrow l^+ l^- + E_T^{miss}$
 $\tilde{\chi}_2^0 \rightarrow l^+ l^- \tilde{\chi}_1^0$ etc. : $pp \rightarrow l^+ l^+ l^- l^- + E_T^{miss}$ etc.

(iii) Associated production

9 (000r-

 $--\tilde{q}$

q

Slepton pair production at NLO

- Drell-Yan processes mediated by Z^{st} or W^{st}
- With QCD corrections at LHC $\sigma_{NLO} \sim (1.25 1.35) \sigma_{LO}$
- Cross section is small < 1 fb at $m_{\tilde{l}} \approx 500~{\rm GeV}$

Baer et al., hep-ph/9712315: Cross section in [pb]

Beenakker, Klasen, Krämer, Plehn, Spira, Zerwas

Gaugino Pairs

Beenakker, Krämer, Plehn, Spira, Zerwas

Prospino

gluino/squark decays = rich source for non-colored (supersymmetric) particles

Mass determination: kinematic endpoint technique

Contruct lepton/quark upper/lower endpoints and relate them to the masses in the decay chain

$$\exists \mathsf{.g.:} \ \tilde{q} \to \tilde{\chi}_2^0 q \to \tilde{l}^{\pm} l^{\mp} q \to \tilde{\chi}_1^0 l^+ l^- q = j + l^+ + l^- + E_T^{miss}$$

- 4 unknown masses: $M_{ ilde{q}}, M_{ ilde{\chi}_2^0}, M_{ ilde{l}}, M_{ ilde{\chi}_1^0}$
- 4 endpoints: $M(ll)^{max}, M(l_1q)^{max}, M(l_2q)^{max}, M(llq)^{max}$

ĝ,

28

ŵĤ

 \hat{z}_{1}^{2}

91

ŝ

ê+

 \Rightarrow all masses can be determined

$$\max M^2(ll) = M^2_{\tilde{\chi}^0_2} \left[1 - \frac{M^2_{\tilde{\chi}^0_1}}{M^2_{\tilde{\chi}^0_2}} \right] \left[1 - \frac{M^2_{\tilde{\chi}^0_1}}{M^2_{\tilde{\ell}}} \right]$$

Spin:

particle chain in SUSY equivalent to UED

SUSY: $\tilde{q}_L \to q + \tilde{\chi}_2^0 \to q + (\tilde{l}l) \to q + ll + \tilde{\chi}_1^0$ UED: $q_1 \to q + Z_1 \to q + (l_1l) \to q + ll + \gamma_1$

distinction by spin: \sim angular distributions / invariant masses

charge asymmetry in $[ql^+]$ vs $[ql^-]$:

difficult analysis \rightarrow A.J.Barr, hep-ph/0405052.

(i) Strongly interacting particle pairs

NLO QCD & SUSY-QCD corrections known, $\mathcal{O}(\text{several } 10\%)$

(ii) Weakly interacting particle pairs

genuine SUSY \sim few percent dominating QED, but \Rightarrow 1-loop analysis [Freitas, Manteuffel, Zerwas]:

Summary: LHC+ILC
Coherent LHC+ILC
analyses complete
and increase
resolution of SUSY
picture significantly

A^0	h^0	$ ilde{g}$	$ ilde{t}_2$	$ ilde{t}_1$	$ ilde{q}_L$	$ ilde{ au}_2$	$ ilde{ au_1}$	$ ilde{\mu}_R$	$\tilde{ u}_e$	\tilde{e}_L	$ ilde{e}_R$	$ ilde{\chi}^0_2$	$ ilde{\chi}_1^0$	$\chi_{\tilde{2}}$	$\tilde{\chi_{1\pm}}$	
399.4	110.8	604.0	586.3	399.5	570.6	210.7	134.8	143.9	191.3	207.1	143.9	180.7	97.2	382.3	179.7	Mass, ideal
	0.25	8.0			8.7	Ι	5-8	4.8	Ι	5.0	4.8	4.7	4.8	Ι		"LHC"
1.5	0.05	Ι	Ι	2.0	Ι	1.1	0.3	0.2	1.2	0.2	0.05	1.2	0.05	3.0	0.55	"ILC"
1.5	0.05	6.5		2.0	4.9	1.1	0.3	0.2	1.2	0.2	0.05	0.08	0.05	3.0	0.55	"LHC+ILC"

Spin at the ILC:

$$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^- \rightarrow \mu^+\mu^- + \tilde{\chi}_1^0\tilde{\chi}_1^0$$

production axis can be reconstructed up to 2-fold ambiguity

Possibility to test equality of couplings, needs NLO!

Brandenburg, Maniatis, Weber, Zerwas

1

R-Parity Violation

Superpotential

$$\begin{split} \mathcal{L}_{W} &= -\sum_{i} \left| \frac{\partial W}{\partial \phi_{i}} \right|^{2} - \frac{1}{2} \sum_{ij} \overline{\psi_{iL}^{c}} \frac{\partial^{2} W}{\partial \phi_{i} \partial \phi_{j}} \psi_{jL} + h.c. \\ W &= W_{R} + W_{R} \\ W_{R} &= \sum_{i,j=1}^{2} \sum_{r,s,t=1}^{3} \epsilon_{ij} [\lambda_{rst} \hat{L}_{ir} \hat{L}_{js} \hat{E}_{t}^{c} + \lambda_{rst}^{\prime} \hat{L}_{ir} \hat{Q}_{js} \hat{D}_{t}^{c}] + \lambda_{rst}^{\prime\prime} \hat{U}_{r}^{c} \hat{D}_{s}^{c} \hat{D}_{t}^{c} \\ (r, s, t: \text{ generation indices}) \end{split}$$

- $SU(2)_L$ -invariance: $\lambda_{rst} = -\lambda_{srt}$ $SU(3)_C$ -invariance: $\lambda_{rst}'' = -\lambda_{rts}''$
- \Rightarrow 9+27+9= 45 new couplings
- Lagrangian of the 1st term:

$$\mathcal{L}_{LLE} = \lambda_{rst} [\tilde{\nu}_L^r \bar{e}_R^t e_L^s + \tilde{e}_L^s \bar{e}_R^t \nu_L^r + \tilde{\bar{e}}_R^t \overline{\nu_L^{rc}} e_L^s - (r \leftrightarrow s)] + h.c.$$

R-Parity

$$R = (-1)^{3B+L+2S} = \left\{ egin{array}{cc} +1 & {\sf SM} \ -1 & {\sf SUSY} \ {\sf partner} \end{array}
ight.$$

 $\Rightarrow W_{I\!\!R}$ violates R-parity.

$$\begin{split} & \Gamma(p \to e^+ \pi^0) \sim \frac{(\lambda'_{11k} \lambda''_{11k})^2}{\tilde{m}_k^4} M_p^5 \\ & \tau(p \to e^+ \pi^0) > 1.6 \times 10^{33} a \\ & \Rightarrow \ \lambda'_{11k} \lambda''_{11k} \lesssim \frac{1}{2} \times 10^{-27} \left(\frac{\tilde{m}_k}{100 \text{ GeV}}\right)^2 \\ & \Rightarrow \ \lambda'_{11k} \lambda''_{11k} \sim 0 \end{split}$$

• Symmetries
(i) R-Parity
$$\Rightarrow W_{q_{R}} = 0$$

(ii) Matter-Parity
 $(\hat{L}_{r}, \hat{E}_{r}^{c}, \hat{Q}_{r}, \hat{U}_{r}^{c}, \hat{D}_{r}^{c}) \rightarrow -(\hat{L}_{r}, \hat{E}_{r}^{c}, \hat{Q}_{r}, \hat{U}_{r}^{c}, \hat{D}_{r}^{c})$
 $(H_{1}, H_{2}) \rightarrow (H_{1}, H_{2})$
 $\Rightarrow W_{q_{R}} = 0$
(ii) Baryon-Parity
 $(\hat{Q}_{r}, \hat{U}_{r}^{c}, \hat{D}_{r}^{c}) \rightarrow -(\hat{Q}_{r}, \hat{U}_{r}^{c}, \hat{D}_{r}^{c})$
 $(\hat{L}_{r}, \hat{E}_{r}^{c}, H_{1}, H_{2}) \rightarrow (\hat{L}_{r}, \hat{E}_{r}^{c}, H_{1}, H_{2})$
 $\Rightarrow \lambda_{rst}^{''} = 0$
(iv) Lepton-Parity
 $(\hat{Q}_{r}, \hat{U}_{r}^{c}, \hat{D}_{r}^{c}, H_{1}, H_{2}) \rightarrow (\hat{Q}_{r}, \hat{U}_{r}^{c}, \hat{D}_{r}^{c}, H_{1}, H_{2})$
 $\Rightarrow \lambda_{rst} = \lambda_{rst} = 0$
 $M_{p} < M_{LSP} \Rightarrow \text{proton stable}$

(1)

RPV: low energy limits

 $\lambda_{ijk}^{\lambda_{ijk}},\ \lambda_{11k}^{\prime},\ \lambda_{21k}^{\prime}$ 231233 232133 132 123 λ'_{231} 131 122 $\lambda_{133}\ ,\ \lambda_{1jj}^{\prime}$ 121 - (I) : heavy nucleon decay - (k) : $B(\tau \rightarrow \pi \nu_{\tau})$ - (i) : $B(D^+ \to K^{*0} \mu^+ \nu_\mu) / B(D^+ \to K^{*0} e^+ \nu_e)$ - (j) : u_{μ} deep inelastic scattering Dependence of the bounds on \tilde{m} : Bounds on RPV Yukawa couplings, assuming $\tilde{m} = 100 GeV$: Experimental inputs : $(h): \Gamma$ <u>0</u> Θ (n) : Yukawas remain within unitarity bound up to GUT scale 0 <u>o</u> (g): $R_l = \Gamma_{had}(Z) / \Gamma_l(Z)$ (f) : $D^0 - D^0$ mixing (a) : charged current universality : atomic parity violation 0.004^{c} 0.06^{b} 0.06 0.06^{b} 0.06^{b} 0.05^{a} 0.05^{a} 0.05^{a} : n - n oscillations : $\Gamma(\tau \to e \nu \bar{\nu}) / \Gamma(\tau \to \mu \nu \bar{\nu})$ ⁶90.0 : bound on ν_e mass : neutrinoless double-beta decay λ_{ijk} $(\pi \rightarrow e\nu)$ $m_{\tilde{d}_{Rk}}/100 GeV$ $m_{\tilde{e}_{Rk}}/100 GeV$ $\frac{m_{\tilde{\nu}_{\tau}L}}{100 GeV}$ $(m_{\tilde{\tau},\tilde{d}_j}/100GeV)^{1/2}$ 133132131 112111 123122121 113 $\Gamma(\pi \to \mu \bar{\nu})$ 0.035 0.33^{g} 0.035 0.20^{f} 0.06^{c} 0.02^{a} 0.02^{a} 0.001^{a} 0.002^{c} ed. G.Kane, World Scientific, Singapore (hep-ph/9707435) H.Dreiner, Perspectives on Supersymmetry 222 223 213212211232 233 231221 $\lambda'_{\underline{32k}}$ $\lambda_{1j1}^{\prime} \lambda_{1j1}^{\prime} \lambda_{1j23}^{\prime}$ 0.39^{g} 0.399 0.18^{i} 0.18^{i} 0.09^{h} 0.09^{h} 0.09^{h} 0.22^{j} 0.18^{i} $\frac{(m_{\tilde{q}}/100 GeV)^2 (\overline{m_{\tilde{g}}/1TeV})^{1/2}}{m_{\tilde{q}_{Lj}}/100 GeV}$ $(m_{\tilde{d}_{Rk}}/100 GeV)^{1/2}$ $(m_{\tilde{b}_R}/100GeV)^{1/2}$ 312333 332 331 323322321313 311 0.20^{f} 0.16^{k} 0.16^{k} 0.26^{g} 0.26^{9} 0.20^{j} 0.20^{f} 0.16^{k} 0.26^{9} 312212313 223 213323 123113 112 0.43^{g} 0.43^{g} 0.43^{g} $10^{-6,l}$ 1.25^{n} 1.25^{n} 1.25^{n} 1.25^{n} $10^{-5}, m$

• Phenomenological consequences of ${\cal R}$

(i) L- or B-Violation

(ii) LSP not stable:

$$\Gamma_{\tilde{\gamma}} = \frac{3\alpha \lambda_{121}^{\prime 2}}{128\pi^2} \frac{M_{\tilde{\gamma}}^5}{\tilde{m}_e^4} \qquad (\tilde{\gamma} = \tilde{\chi}_1^0 \text{ LSP})$$

Decay within detector: $c\gamma\tau \lesssim 1m$

$$\Rightarrow \lambda_{121}' > 1.4 \times 10^{-6} \sqrt{\gamma} \left(\frac{\tilde{m}_e}{200 \text{ GeV}}\right)^2 \sqrt{\frac{100 \text{ GeV}}{M_{\tilde{\gamma}}}^5}$$

 \Rightarrow no natural candidate for Dark Matter

(iii) LSP $\in (\tilde{\chi}^0_1, \tilde{\chi}^\pm_1, \tilde{g}, \tilde{q}, \tilde{t}, \tilde{l}, \tilde{ u})$

need not be charge- and color neutral (\leftarrow cosmology)

(iv) Production of single SUSY particles:

$d_j d_k$	$ar{u}_i ar{d}_j$	$d_j ar{d}_k$	$ar{u}_j d_k$	$e^- \bar{d_k}$	e^-u_j	e^+e^-
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
$ar{ ilde{u}}_{Ri}$	$ ilde{d}_{Rk}$	$ar{ ilde{ u}}_{Li}$	${\widetilde e}^{Li}$	$ar{ ilde{u}}_{Lj}$	$ ilde{d}_{Rk}$	$ ilde{ u}_{Lj}$
$(\hat{U}_i^c\hat{D}_j^c\hat{D}_k^c)$	$(\hat{U}_i\hat{D}_j^c\hat{D}_k^c)$	$(\hat{L}_i \hat{Q}_j \hat{D}_k^c)$	$(\hat{L}_i\hat{Q}_j\hat{D}_k^c)$	$(\hat{L}_1 \hat{Q}_j \hat{D}_k^c)$	$(\hat{L}_1 \hat{Q}_j \hat{D}_k^c)$	$(\hat{L}_1\hat{L}_j\hat{E}_1^c)$
Tevatron,LHC	Tevatron,LHC	Tevatron,LHC	Tevatron,LHC	HERA	HERA	LEP

• Collider phenomenology:

Pair production: $\tilde{m} \lesssim \frac{\sqrt{s}}{2} \Rightarrow$ cinematical limitation

Single production: small coupling $\lambda,\lambda',\lambda''$, but $\tilde{m}\lesssim\sqrt{s}$

Plehn et al Kunszt,Stirling Example: Resonant squark production at HERA

• RPV: Reach at the LHC

CMS reach for 10 $\rm fb^{-1}$

 $\lambda_{121}=0.05$: squark mass reach ~ 2.2 TeV, gluino mass reach ~ 1.8 TeV $\lambda_{233}=0.06$: squark mass reach ~ 1.7 TeV, gluino mass reach ~ 1.5 TeV

 \Rightarrow Reach compatible to R_P conserving mSUGRA scenario