SUSY at Colliders

SS 2011

Outline

- * Introduction MSSM Higgs sector
- Higgs decays
- * Higgs production
- * Higher order corrections
- * Higgs couplings
- * Higgs quantum numbers
- * Higgs self-couplings

Higgs mechanism:

Creation of particle masses without violating gauge principles

Higgs mechanism:

Creation of particle masses without violating gauge principles

$\stackrel{\rm EWSB}{\rightarrow}$	MSSM H	
neutral, CP-even h,H	liggs sector – supersymmet	Minimal Supersymm
neutral, CP-odd A	ry & anomaly-free theo	$etric \mathcal{E}xtension of$
charged H^+, H^-	$y \Rightarrow 2$ complex Higgs double	the \mathcal{SM} (\mathcal{MSSM})
	sts	

$\mathcal{M}_{\text{inimal Supersymmetric }\mathcal{E}_{\text{xtension of the }\mathcal{S}\mathcal{M}}$	MSSM Higgs sector – supersymmetry & anomaly-free theory \Rightarrow 2 com	$\xrightarrow{\text{EWSB}}$ neutral, CP-even h, H neutral, CP-odd A charged E	Higgs masses $M_h \lesssim 140 \text{ GeV}$ Ellis et al;Okada et al;Habe Hoang et al;Carena et al;H Zhang et al;Brignole et al;H
sion of the SM (MSSM)	free theory \Rightarrow 2 complex Higgs doublet:	odd A charged H^+, H^-	Ellis et al:Okada et al:Haber Hempfling:

ę	${\cal M}$ inimal ${\cal S}$ upersymmetric ${\cal E}$ xtension of the ${\cal S}{\cal M}$ (${\cal M}{\cal S}{\cal S}{\cal M}$)
MSSM H	iggs sector – supersymmetry & anomaly-free theory \Rightarrow 2 complex Higgs doublets
$\stackrel{\mathrm{EWSB}}{\rightarrow}$	neutral, CP-even h, H neutral, CP-odd A charged H^+, H^-
Higgs ma	SSES Ellis et al;Okada et al;Haber,Hempfling;
	$M_h \lesssim 140~{ m GeV}$ Hoang et al;Carena et al;Heinemeyer et al; Zhang et al;Brignole et al;Harlander et al;
	$M_{A,H,H^{\pm}} \sim \mathcal{O}(v)1~{ m TeV}$ Kant, Harlander, Mihaila, Steinhauser;
Decouplin	Mar of Mart 1 and
M_h -	ightarrow max. value, $ aneta$ fixed; h SM-like

MSSM H EWSB ⊢ Higgs ma	Minimal Supers iggs sector – supersy neutral, CP-even h sses M_h	mmetric \mathcal{E}_{X} mmetry & anon H neutral, 140 GeV	raly-free theory ⇒ CP-odd A ch Ellis et al;Okada Hoang et al;Care Zhang et al;Brigi Kant,Harlander,I	E SM (MSSM - 2 complex Higgs dou arged H^+, H^- et al;Haber,Hempfling; ena et al;Heinemeyer et al; nole et al;Harlander et al; Mihaila,Steinhauser;
$\stackrel{\mathrm{EWSB}}{\longrightarrow}$	neutral, CP-even h	H neutral,	CP-odd A ch	arged H^+, H^-
Higgs may	sses		Ellis et al;Okada	et al;Haber,Hempfling;
	M_{h} \lesssim $M_{A,H,H\pm}$ \sim	$140~{ m GeV}$ ${\cal O}(v)1~{ m TeV}$	Hoang et al;Care Zhang et al;Brigı Kant,Harlander,İ	ena et al;Heinemeyer et al; nole et al;Harlander et al; Mihaila,Steinhauser;
Decouplin	ng limit: $M_{\rm ret} \sim M_{\rm ret} \gg m$			
M_h -	\rightarrow max. value, $ aneta$ f	ixed; h SM-like		
Modified	couplings w/ respec	t to the SM:	(decoupling limit	Gunion, Haber)
	$\Phi \hspace{0.4cm} g_{\Phi u ar u}$	$g_{\phi d ar d}$	$g_{\Phi VV}$	$\tan \beta \uparrow \Rightarrow a_{\Phi m}$
	$h c_{lpha}/s_{eta} ightarrow 1$	$-s_{\alpha}/c_{\beta} \rightarrow 1$	$s_{eta-lpha} o 1$	ο φdd
	$H s_{\alpha}/s_{\beta} \rightarrow 1/\mathrm{tg}\beta$	$c_lpha/c_eta ightarrow { m tg}eta$	$c_{eta-lpha} ightarrow 0$	$a_{\rm AVVV}^{MSSM} < a_{\rm AVV}^{SM}$
	$A = 1/tg\beta$	tgeta	0	

MSSM Higgs Mass Limits

 \triangleright Direct Search at LEP $e^+e^- \rightarrow Z + h/H, A + h/H, \nu_e \bar{\nu}_e + h/H$

 $M_{h/H} \gtrsim 92.6 \text{ GeV}$ $M_A \gtrsim 93.4 \text{ GeV}$ $M_{H\pm} > 78.6 \text{ GeV}$ 0.6 < aneta < 2.5 excluded(only in this scenario, $m_t = 174.3 \text{ GeV!}$)

Extremely important decay channel for the LHC

- $H \rightarrow b\bar{b}, \tau^+\tau^-$: dominant for large $\tan\beta$
- $H \rightarrow hh, WW, ZZ, t\bar{t}$

Η

- $A \rightarrow b\bar{b}, \tau^+\tau^-$: dominant for large $\tan\beta$
- $A \rightarrow t\bar{t}$: dominant above the $t\bar{t}$ threshold for small and moderate $tan\beta$

 \bullet total widths: $\Gamma_{\phi} \lesssim 10...30~{\rm GeV}$ narrow

Higgs boson production in SM/MSSM

Gluon Gluon Fusion

• W/Z Fusion

 $pp \rightarrow qq \rightarrow qq + WW/ZZ \rightarrow qq + H^{SM} \, / \, h, H$

Associated Production

q

h, H

W, Z

M.M. Mühlleitner, SUSY at Colliders

MSSM Higgs Boson Production at the LHC

M.M. Mühlleitner, SUSY at Colliders

MSSM Higgs Boson Production at the LHC

Gluon gluon fusion: higher order corrections

Gluon Gluon fusion: lowest order - 1 loop

Georgi,...;Gamberini,...

QCD corrections to top & bottom loops

- \diamond SM; tg $\beta \lesssim 5$: limit $M_{\Phi} \ll m_t$ ♦ NLO (SM, MSSM) $\diamond m_t$ effect: NNLO K-factor \diamond NNLO @ $M_{\Phi} \ll m_t \Rightarrow$ ♦ estimate of the NNNLO effects scale dependence: approximation \sim 20-30% enhance σ by $\sim 10...100\%$ $\Delta \lesssim 10 - 15\%$
- ♦ soft gluon resummation:
- ♦ EW 2-loop effects
- \diamond EW, b contrs to H + j

 $+ \sim 10\%$ → improved convergence better than 1% for $M_H \lesssim 300~{
m GeV}$ further enhancement by 20-30%

 $\sim +5...-2\%$ enhancement

 $\sim {\cal O}(1\%)$

Spira, Djouadi, Graudenz, Zerwas Dawson; Kauffman, Schaffer

Krämer, Laenen, Spira

Ravindran, Smith, van Neerven Melnikov;Catani,deFlorian,Grazzini; Harlander, Kilgore; Anastasiou

Pak, Rogal, Steinhause Marzani et al.; Harlander eal;

Moch,Vogt Ravindran

Catani, de Florian, Grazzini, Nason

Degrassi, Maltoni; Actis et al. Anastasiou et al; Aglietti et al.;

Keung, Petriello; Brein

Harlander, Kilgore

 $gg \to H ~\mathcal{NNLO}$

Gluon gluon fusion: higher order corrections

Gluon Gluon fusion: lowest order - 1 loop

Georgi,...;Gamberini,...

NLO corrections to squark loops

heavy squark mass limit full SUSY-QCD corrections in the heavy mass limit

 $m_{\tilde{\mathbf{Q}}} \lesssim 400$ GeV: NLO squark mass effects

full NLO SUSY QCD calculation

Dawson,Djouadi,Spira Harlander,Steinhauser;Harlander, Hofmann;Degrassi,Slavich

Anastasiou, Beerli, Bucherer, Daleo, Kunszt; Aglietti, Bonciani, Degrassi, Vicini; MMM, Spira

Anastasiou, Beerli, Daleo; MMM, Rzehak, Spira

The gluophobic Higgs scenario $[m_t = 174.3 \text{ GeV}]$

Carena, Heinemeyer, Wagner, Weiglein

 $M_{SUSY}=350~{\rm GeV},~\mu=M_2=300~{\rm GeV},~X_t=-770~{\rm GeV},~A_b=A_t,~m_{\tilde{g}}=500~{\rm GeV}$

$$\begin{aligned} & \tan \beta = 3 & \tan \beta = 3 \\ m_{\tilde{t}_1} &= 156 \text{ GeV} \quad m_{\tilde{t}_2} = 517 \text{ GeV} & m_{\tilde{t}_1} = 155 \text{ GeV} \quad m_{\tilde{t}_2} = 516 \text{ GeV} \\ m_{\tilde{b}_1} &= 346 \text{ GeV} \quad m_{\tilde{b}_2} = 358 \text{ GeV} & m_{\tilde{b}_1} = 314 \text{ GeV} \quad m_{\tilde{b}_2} = 388 \text{ GeV} \end{aligned}$$

NLO cross section \rightarrow

Kinks, bumps, spikes: $\tilde{t}_1 \tilde{t}_1, \tilde{b}_1 \tilde{b}_1, \tilde{b}_2 \tilde{b}_2$ thresholds in consecutive order with rising Higgs mass.

 $\sigma(pp
ightarrow h/H + X)/\sigma_\infty$ up to 20%

 $\sigma_{\rm NLO}$ w/ full squark mass dependence $' \sigma_{\sf NLO}$ in the heavy squark limit

 $\tilde{\mathbf{Q}} \tilde{\mathbf{Q}}$ thresholds: Formation of 0^{++} states \rightsquigarrow Coulomb singularities

Singular behaviour can be derived from the Sommerfeld rescattering corrections \rightsquigarrow

At each specific $\tilde{Q}_0\bar{\tilde{Q}}_0$ threshold:

$$C_1(\tau_Q, \tau_{\tilde{Q}}) \to \mathsf{Re} \left\{ \frac{g_{\tilde{Q}_0}^{\Phi} \tilde{F}(\tilde{Q}_0) \frac{16\pi^2}{3(\pi^2 - 4)} \left[-\ln\left(\tau_{\tilde{Q}_0}^{-1} - 1\right) + i\pi + const \right]}{\sum_Q g_Q^{\Phi} F(\tau_Q) + \sum_{\tilde{Q}} g_{\tilde{Q}}^{\Phi} \tilde{F}(\tau_{\tilde{Q}})} \right\}$$

Agrees quantitatively with numerical results.

Genuine SUSY-QCD corrections

• Limit heavy SUSY masses $\rightarrow O(10 \%)$

Harlander, Steinhauser, Hofmann

Numerical analysis: $F_Q^{h/H}(\tau_Q) \to F_Q^{h/H}(\tau_Q)[1 + C_{SUSY}^Q \frac{\alpha_S}{\pi}]$

•
$$m_{Q/\tilde{Q}}^2 \to m_{Q/\tilde{Q}}^2(1-i\epsilon)$$

• 5-dimensional Feynman integral \rightarrow endpoint subtractions:

$$\int_0^1 dx \ \frac{f(x)}{x(1-x)} \to \int_0^1 dx \left\{ \frac{f(x)}{x(1-x)} - \frac{f(0)}{x} - \frac{f(1)}{(1-x)} \right\}$$

 \Rightarrow isolation of singularities

The Scenario

Small α_{eff} scenario [modified]

$$tan\beta = 30$$

$$M_{\tilde{Q}} = 800 \text{ GeV}$$

$$M_{\tilde{g}} = 1000 \text{ GeV}$$

$$M_{2} = 500 \text{ GeV}$$

$$A_{b} = A_{t} = -1.133 \text{ TeV}$$

$$\mu = 2 \text{ TeV}$$

 \uparrow

$$\begin{array}{rcrcrcrc} m_{\tilde{t}_1} &=& 679 \; {\rm GeV} & m_{\tilde{t}_2} &=& 935 \; {\rm GeV} \\ m_{\tilde{b}_1} &=& 601 \; {\rm GeV} & m_{\tilde{b}_2} &=& 961 \; {\rm GeV} \end{array}$$

MMM, Rzehak, Spira

Preliminary results

MMM, Rzehak, Spira

Preliminary results

Higher order corrections to Higgs production at the \mathcal{LHC}

• W/Z Fusion

VBFNLO	NNLO QCD	NLO QCD H+3j	Verteilungen	NLO QCD σ (SM/MSSM)
MC			$\sim 10~\%$	\sim 5 bis 10%
Figy eal;Arnold eal	Bolzoni et al	Figy,Hankele, Zeppenfeld	Figy et al; Berger,Campbell	Han,Valencia, Willenbrock
HAWK for $H+2j$		SUSY QCD&EW	SUSY QCD	EW & QCD
MC NLO		klein	klein	$\sim 5~\%$
Denner,Dittmaier, Mück		Hollik, Plehn, Rauch, Rzehak	Djouadi,Spira	Ciccolini,Denner Dittmaier

 $gg \to H + 2j$

DelDuca eal; Campbell eal

	Higher order	corrections to ${\cal H}$	(iggs prod	luction at t	he LHC
• Higgs-s	trahlung				
NLO QC	D (SM/MSSM)	$\sim +30~\%$ (Drell-Yar	۲) Han,Willen Ohnemus,S	ıbrock;Baer eal; Stirling	
NNLO Q	QCD (SM/MSSM)	$\sim +5-10$ %	Hamberg,\ Brein,Djou	/an Neerven,Matsuu adi,Harlander	ra $\Delta_{ t theor} \sim 5~\%$
SUSY Q	CD: klein ^{Djouadi,} Spira	full EW(SM):-5-10	% Ciccolini,D	ittmaier,Krämer	
• Associa	ted production				
$bar{b}\Phi^0$	NLO	Dittmaier,Krämer,Spira, Walser;Dawson,Jackson, Reina,Wackeroth	$b\bar{b} o \Phi^0$	NLO,NNLO	Dicus,Willenbrock;Stelzer et al.; Balazs et al.;Campbell et al.; Harlander,Kilgore;Kidonakis
t Beitr.	NNLO	Boudjema, Ninh		EW	Dittmaier, Krämer, Mück, Schlüter
	SUSY QCD	Gao et al.; Hollik,Rauch	$bar{b} o \Phi^0 \ bg o b\Phi^0$	SUSY QCD	Dittmaier eal;Dawson,Jackson
$t ar{t} \Phi^0$	NLO QCD+20%	Beenakker et al.; Dawson et al.	SUSY QCI	D 20-30%	Peng et al.
 Backgroup 	ound NLO QCD to	$b \ t \overline{t} b \overline{b}$ Bredenstein et al.; Bevilaqua eal et al.			

10

 $\mu = \mu_0/2 = (2m_b + M_H)/4$

 $\sqrt{s} = 1.96 \; TeV$

 $\sigma(p\bar{p}{\rightarrow} bbH + X) \ [fb]$

 \mathcal{SM} \mathcal{H} iggs boson \mathcal{S} earch at the \mathcal{LHC}

LHC Higgs cxn WG

Charged Higgs Production

genuine SUSY QCD corrs.: small Djouadi, Spira scale dependence reduced: $\Delta\,\lesssim\,15$ % NLO QCD corrs.: $\sim 30 \% (\leftarrow \text{Drell-Yan})$ NLO SUSY QCD & EW corrs. NLO QCD & SUSY QCD corrs.: 50...100 % • H^{\pm} pair production $pp \rightarrow q\bar{q} \rightarrow H^+H^$ $pp
ightarrow gg
ightarrow H^+W^-$ + c.c. (LO) $pp
ightarrow gg
ightarrow H^+ H^-$ (LO) Dominant: t decay or $pp \rightarrow q\bar{q}, gg \rightarrow H^- + t\bar{b} + c.c.$ LO cxn: $gb \rightarrow H^-t + c.c.$ Zhu; Plehn; Berger eal; Gao et al.;Kidonakis;Beccaria eal Barrientos et al.; Brein et al. Willenbrock;Krause eal; Barrientos eal Jiang eal; Brein, Hollik; Peng et al Dittmaier et al. $pp \rightarrow b\bar{b} \rightarrow H^+W^-+\text{c.c.}$ QCD corrs. moderate \overline{q} SUSY-QCD significant $pp \rightarrow b\bar{b} \rightarrow H^+H^ \gamma, Z$ 9 0000 00000 H^+ 6 H^{-} Barrientos eal; Brein eal; Hong-Sheng eal Barrientos eal; Dicus eal; Hollik eal Zhao eal Borzumati eal; Belyaev eal Bawa eal;

Charged Higgs Boson discovery reach

Berger et al.

M_A,GeV/c²

Dührssen et al

 $\Delta g^{2}(H,X) / g^{2}(H,W)$ $g^{2}(H,X) / g^{2}(H,W)$

> - <mark>g²(H,汞) / g²(H,W)</mark> - g²(H,b) / g²(H,W)

 $-g^{2}(H,Z) / g^{2}(H,W)$

 $-g^2(H,t) / g^2(H,W)$ without syst. uncertainty

0.7

 $A_t = 1.05 \text{ TeV}$

ho Four-lepton LHC events from MSSM Higgs boson decays into neutralino and chargino pairs Event-generator level simulations w/ realistic detector effects and analyses of all significant bkgs

 M_{Φ} [GeV]

500 M_{\$\phi\$} [GeV]

700

1000

can be covered

Bisset,Li,Kersting,Moortgat,Moretti $(\mu, M_2, M_2, m_{\tilde{t}_{soft}}, m_{\tilde{\tau}_{soft}}) =$ (-500, 180, 90, 250, 250) GeV $\Phi^0 \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$ totally dominates Part of difficult wedge region (only *h* discovery)

M.M. Mühlleitner, SUSY at Colliders

Higgs Search in SUSY cascade decays

▷ Few scenarios considered Datta,Djouadi,Guchait,Moortgat

$$\begin{array}{rccccccc} \mathsf{Sc3} & pp & \to & \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g} & \to & \chi_2^{\pm}, \chi_3^0, \chi_4^0 + X \\ & & & \to & \chi_1^{\pm}, \chi_2^0, \chi_1^0 + h, H, A, H^{\pm} + X \\ \\ \mathsf{Sc4} & pp & \to & \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{g} & \to & \chi_1^{\pm}, \chi_2^0 + X \\ & & \to & \chi_1^0 + H^{\pm}, h, H, A + X \end{array}$$

 \downarrow

N

°Î

50

100

150

200

250

300 350 400 bb invariant mass (GeV)

400

Events / 5 GeV

green - SM $t\bar{t}$ red - SUSY bkg

M.M. Mühlleitner, SUSY at Colliders

Higgs mechanism:

Creation of particle masses without violating gauge principles

Strategy

Combination of the Higgs production and decay channels \Rightarrow Higgs decay rates, absolute couplings

Problem

- total Higgs production cross section not measurable
- some Higgs decay channels not observable

 \Rightarrow only ratios of couplings are measurable

Ansatz

Mild theoretical assumptions \Rightarrow total Higgs width and absolute couplings

- Light Higgs with SM-like couplings Kinnunen, Nikitenko, Richter-Was, Zeppenfeld
- General two-Higgs doublet model Dührssen, Heinemeyer, Logan, Rainwater, Weiglein, Zeppenfeld

 ${\sf D}\ddot{u}hrssen, {\sf Heinemeyer, Logan, Rainwater, Weiglein, Zeppenfeld}$

 \mathcal{D} etermination of the \mathcal{H} iggs \mathcal{C} ouplings

Higgs mechanism:

Creation of particle masses without violating gauge principles

below ZZ threshold: angular correlations, threshold effects	CP-violation	angular correlations in Higgs decays, e.g. $H \rightarrow ZZ \rightarrow l^+ l^- l^+ l^-$	
Choi, Miller, MMM, Zerwas 3uszello, Marquard, van der Bij	3uszello,Marquard,van der Bij Godbole,Miller,MMM	Dell'Aquila,Nelson; Kramer,Kühn,Stong,Zerwas; Choi,Miller,MMM,Zerwas;Bluj; 3uszello,Fleck,Marquard,van der Englert,Hackstein,Spannowsky: <i>l</i>	

Spin and *CP* quantum numbers: angular correlations, threshold effects

 $\diamond \gamma \gamma \to H \text{ or } H \to \gamma \gamma \rightsquigarrow J \neq 1.$

Quantum numbers of the Higgs boson: $J^{PC} P$ parity

Higgs boson quantum numbers

J spin

C charge conjugation

angular correlations in production: H_{jj} in vector boson fusion,

aluon aluon fucion

Campanario eal; Del Duca eal Hankele, Klämke, Zeppenfeld Plehn, Rainwater, Zeppenfeld;

Bij; lljj

Higgs boson quantum numbers

 \diamond Determination of spin and parity in

$$gg \to H \to ZZ^{(*)} \to (f_1\bar{f_1})(f_2\bar{f_2})$$

 \diamond Helicity methods: general HZZ coupling for arbitrary spin and parity

 \diamond Double polar angular distribution (${\cal CP}$ invariant theory)

$$\frac{d\Gamma_H}{d\cos\theta_1 d\cos\theta_2} \sim \sin^2\theta_1 \sin^2\theta_2 |\mathcal{T}_{00}|^2 + \frac{1}{2}(1 + \cos^2\theta_1)(1 + \cos^2\theta_2) \left[|\mathcal{T}_{11}|^2 + |\mathcal{T}_{1,-1}|^2\right] \\ + (1 + \cos^2\theta_1) \sin^2\theta_2 |\mathcal{T}_{10}|^2 + \sin^2\theta_1 (1 + \cos^2\theta_2) |\mathcal{T}_{01}|^2 \\ + 2\eta_1\eta_2 \cos\theta_1 \cos\theta_2 \left[|\mathcal{T}_{11}|^2 - |\mathcal{T}_{1,-1}|^2\right]$$

SM: $\mathcal{T}_{00} = M_H^2/(2M_Z^2) - 1$, $\mathcal{T}_{11} = -1$, $\mathcal{T}_{10} = \mathcal{T}_{01} = \mathcal{T}_{1,-1} = 0$

$$\diamond$$
 Azimuthal angular distribution (${\cal CP}$ invariant theory)

 $\eta_i = 2v_i a_i / (v_i^2 + a_i^2), \ v_i = 2I_{3i} - 4e_i \sin^2 \theta_W, \ a_i = 2I_{3i}$

$$\begin{aligned} \frac{d\Gamma_H}{d\varphi} &\sim |\mathcal{T}_{11}|^2 + |\mathcal{T}_{10}|^2 + |\mathcal{T}_{1,-1}|^2 + |\mathcal{T}_{01}|^2 + |\mathcal{T}_{00}|^2/2 \\ &+ \eta_1 \eta_2 \left(\frac{3\pi}{8}\right)^2 \Re(\mathcal{T}_{11}\mathcal{T}_{00}^* + \mathcal{T}_{10}\mathcal{T}_{0,-1}^*) \cos\varphi + \frac{1}{4} \Re(\mathcal{T}_{11}\mathcal{T}_{-1,-1}^*) \cos 2\varphi \end{aligned}$$

$\begin{split} & \underline{M}_{H} \leq 2M_{Z}: d\Gamma/dM_{*}^{2} \sim \beta \text{ for } \mathcal{J}^{\mathcal{P}} = 0^{+} \\ & \diamond d\Gamma/dM_{*}^{2} \text{rules out } \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{-}, 2^{-}, 3^{\pm}, 4^{\pm} \\ & \diamond d\Gamma/dM_{*}^{2} \text{and no} [1 + \cos^{2}\theta_{1}]\sin^{2}\theta_{2} \\ & [1 + \cos^{2}\theta_{2}]\sin^{2}\theta_{1} \text{rules out } \mathcal{J}^{\mathcal{P}} = 1^{+}, 2^{+} \\ & A_{H} \geq 2M_{Z}: \\ & \diamond \text{ odd normality: } \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{+}, 2^{-}, 3^{+}, \dots \\ & \diamond \text{ odd normality: } \mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots \\ & \diamond \text{ even normality: } \mathcal{J}^{\mathcal{P}} = 2^{+}, 4^{+} \text{ with: } \\ & \frac{d\sigma}{d\cos\theta}[gg/\gamma\gamma \rightarrow H \rightarrow ZZ] \text{only isotropic for spin 0} \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Determination of spin and parity	$M_H < 2M_Z$: $d\Gamma/dM_*^2 \sim eta$ for $\mathcal{J}^\mathcal{P} = 0^+$	$ \begin{aligned} &\diamond d\Gamma/dM_*^2 \text{rules out} \mathcal{J}^{\mathcal{P}} = 0^-, 1^-, 2^-, 3^{\pm}, 4^{\pm} \\ &\diamond d\Gamma/dM_*^2 \text{and no} [1 + \cos^2 \theta_1] \sin^2 \theta_2 \\ &\qquad [1 + \cos^2 \theta_2] \sin^2 \theta_1 \text{rules out} \ \mathcal{J}^{\mathcal{P}} = 1^+, 2^+ \end{aligned} $	\diamond odd normality: $\mathcal{I}^{\mathcal{P}} = 0^-, 1^+, 2^-, 3^+, \dots$ excluded by non-zero $\sin^2 \theta_1 \sin^2 \theta_2$	\diamond even normality: $\mathcal{J}^\mathcal{P}=1^-,3^-,$ excluded by non-zero $\sin^2 heta_1\sin^2 heta_2$	\diamond rule out $\mathcal{J}^\mathcal{P}=2^+,4^+$ with:	$rac{d\sigma}{d\cos heta}[gg/\gamma\gamma o H o ZZ]$ only isotropic for spin 0
Caveat: HO corrections to $H o WW/ZZ o 4f$ distort the shapes of the distributions Bredenstein,Denner,Dittmaier,Walser	$\begin{split} \underline{M_{H}} &< 2M_{Z}: d\Gamma/dM_{*}^{2} \sim \beta \text{ for } \mathcal{J}^{\mathcal{P}} = 0^{+} \\ & \diamond d\Gamma/dM_{*}^{2} \text{rules out } \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{-}, 2^{-}, 3^{\pm}, 4^{\pm} \\ & \diamond d\Gamma/dM_{*}^{2} \text{and no} [1 + \cos^{2}\theta_{1}] \sin^{2}\theta_{2} \\ & [1 + \cos^{2}\theta_{2}] \sin^{2}\theta_{1} \text{rules out } \mathcal{J}^{\mathcal{P}} = 1^{+}, 2^{+} \\ & \bullet \text{ odd normality: } \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{+}, 2^{-}, 3^{+}, \dots \\ & \diamond \text{ even normality: } \mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots \\ & \bullet \text{ rule out } \mathcal{J}^{\mathcal{P}} = 2^{+}, 4^{+} \text{ with:} \\ & \frac{d\sigma}{d\cos\theta}[gg/\gamma\gamma \rightarrow H \rightarrow ZZ] \text{only isotropic for spin 0} \end{split}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{split} \underline{M_H} \geq 2M_Z: \\ &\diamond \text{ odd normality:} \mathcal{J}^{\mathcal{P}} = 0^-, 1^+, 2^-, 3^+, \dots \\ &\diamond \text{ even normality:} \mathcal{J}^{\mathcal{P}} = 1^-, 3^-, \dots \\ &\Rightarrow \text{ rule out} \qquad \mathcal{J}^{\mathcal{P}} = 2^+, 4^+ \text{ with:} \\ &\frac{d\sigma}{d\cos\theta} [gg/\gamma\gamma \to H \to ZZ] \text{only isotropic for spin 0} \end{split} $	♦ even normality: $\mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-},$ excluded by non-zero $\sin^{2} \theta_{1} \sin^{2} \theta_{2}$ ♦ rule out $\mathcal{J}^{\mathcal{P}} = 2^{+}, 4^{+} \text{ with:}$ $\frac{d\sigma}{d\cos\theta} [gg/\gamma\gamma \rightarrow H \rightarrow ZZ] \text{ only isotropic for spin 0}$	\diamond rule out $\mathcal{J}^{\mathcal{P}} = 2^+, 4^+$ with: $\frac{d\sigma}{d\cos\theta}[gg/\gamma\gamma \rightarrow H \rightarrow ZZ]$ only isotropic for spin 0	$rac{d\sigma}{d\cos heta}[gg/\gamma\gamma o H o ZZ]$ only isotropic for spin 0	
	$\begin{split} \underline{M_{H}} &\leq 2M_{Z}; & d\Gamma/dM_{*}^{2} \sim \beta \text{ for } \mathcal{J}^{\mathcal{P}} = 0^{+} \\ &\diamond d\Gamma/dM_{*}^{2} & \text{rules out } \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{-}, 2^{-}, 3^{\pm}, 4^{\pm} \\ &\diamond d\Gamma/dM_{*}^{2} & \text{and no} & [1 + \cos^{2}\theta_{1}] \sin^{2}\theta_{2} \\ & [1 + \cos^{2}\theta_{2}] \sin^{2}\theta_{1} & \text{rules out } \mathcal{J}^{\mathcal{P}} = 1^{+}, 2^{+} \\ & \underline{M_{H}} \geq 2M_{Z}; \\ &\diamond \text{ odd normality; } & \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{+}, 2^{-}, 3^{+}, \dots \\ &\diamond \text{ even normality; } & \mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots \\ &\Rightarrow \text{ rule out } & \mathcal{J}^{\mathcal{P}} = 2^{+}, 4^{+} \text{ with;} \\ & \frac{d\sigma}{d\cos\theta} [gg/\gamma\gamma \rightarrow H \rightarrow ZZ] & \text{only isotropic for spin 0} \\ \\ \hline \underline{Caveat;} \text{ HO corrections to } H \rightarrow WW/ZZ \rightarrow 4f \text{ distort the shapes of the distributions} \\ \\ & \text{Bredenstein,Denner,Ditmater,Walser} \end{split}$	$ \begin{array}{ll} \diamond d\Gamma/dM_{*}^{2} \text{rules out} \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{-}, 2^{-}, 3^{\pm}, 4^{\pm} \\ \diamond d\Gamma/dM_{*}^{2} \text{and no} [1 + \cos^{2}\theta_{1}] \sin^{2}\theta_{2} \\ [1 + \cos^{2}\theta_{2}] \sin^{2}\theta_{1} \text{rules out } \mathcal{J}^{\mathcal{P}} = 1^{+}, 2^{\pm} \\ \hline \mathbf{M}_{H} \geq 2M_{Z}: \\ \diamond \mathbf{M}_{H} \geq 2M_{Z}: \\ \diamond \text{ odd normality:} \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{+}, 2^{-}, 3^{\pm}, \dots \\ \diamond \text{ even normality:} \mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots \\ \diamond \text{ even normality:} \mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots \\ \Rightarrow \text{ rule out} \mathcal{J}^{\mathcal{P}} = 2^{\pm}, 4^{\pm} \text{ with:} \\ \frac{d\sigma}{d\cos\theta}[gg/\gamma\gamma \rightarrow H \rightarrow ZZ] \text{only isotropic for spin 0} \\ \hline \mathbf{Caveat:} \text{ HO corrections to } H \rightarrow WW/ZZ \rightarrow 4f \text{ distort the shapes of the distributions} \\ \text{Bredenstein,Demer,Ditmaier,Water} \end{array} $	$M_{H} > 2M_{Z}:$ odd normality: $\mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{+}, 2^{-}, 3^{+}, \dots$ excluded by non-zero $\sin^{2}\theta_{1} \sin^{2}\theta_{2}$ ormality: $\mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots$ excluded by non-zero $\sin^{2}\theta_{1} \sin^{2}\theta_{2}$ ormality: $\mathcal{J}^{\mathcal{P}} = 2^{+}, 4^{+}$ with: $\frac{d\sigma}{d\cos\theta}[gg/\gamma\gamma \rightarrow H \rightarrow ZZ]$ only isotropic for spin 0 Caveat: HO corrections to $H \rightarrow WW/ZZ \rightarrow 4f$ distort the shapes of the distributions Bredenstein,Denner,Dittmaier,Walser	$ \begin{array}{ll} \diamond \text{ even normality:} & \mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots & \text{excluded by non-zero } \sin^{2}\theta_{1} \sin^{2}\theta_{2} \\ & \gamma^{\mathcal{P}} = 2^{+}, 4^{+} \text{ with:} \\ & \frac{d\sigma}{d\cos\theta} [gg/\gamma\gamma \rightarrow H \rightarrow ZZ] & \text{only isotropic for spin 0} \\ \end{array} $	 ◇ rule out $\mathcal{J}^{\mathcal{P}} = 2^+, 4^+$ with: $\frac{d\sigma}{d\cos\theta}[gg/\gamma\gamma \rightarrow H \rightarrow ZZ]$ only isotropic for spin 0 ▲ Caveat: HO corrections to $H \rightarrow WW/ZZ \rightarrow 4f$ distort the shapes of the distributions Bredenstein, Denner, Dittmaier, Walser 	$\frac{d\sigma}{d\cos\theta}[gg/\gamma\gamma \to H \to ZZ] \text{only isotropic for spin 0}$ • Caveat: HO corrections to $H \to WW/ZZ \to 4f$ distort the shapes of the distributions Bredenstein,Denner,Dittmaier,Walser	• Caveat: HO corrections to $H \to WW/ZZ \to 4f$ distort the shapes of the distributions Bredenstein,Denner,Dittmaier,Walser

${\cal CP}$ Violation

• CP Violation: Examine behaviour with

most general vertex = sum of even and odd normality tensors

• Case spin 0: $p = p_{Z_1} + p_{Z_2}, k = p_{Z_1} - p_{Z_2}$

Vertex HZZ : $\frac{igM_Z}{\cos\theta_W} \left[a g_{\mu\nu} + \frac{b}{M_Z^2} p_\mu p_\nu + i \frac{c}{M_Z^2} \epsilon_{\mu\nu\alpha\beta} p^\alpha k^\beta \right]$

a = 1, b = c = 0: SM $a \neq 0 \land c \neq 0$ ∨ $b \neq 0 \land c \neq 0$: CP-violation

- Observables sensitive to CP
- \diamond angle ϕ between oriented Z decay planes in the Higgs rest frame
- \diamond cos of the fermion polar angle θ in the Z rest frame

angular distribution in $\cos \theta$

Godbole, Miller, MMM

angular distribution in ϕ

Godbole, Miller, MMM

Asymmetries sensitive to CP

Godbole, Miller, MMM

 Example:
 O_{5} \mathbf{O}_{5} $\|$ $\sin\theta_1 \sin\theta_2 \sin\phi [\sin\theta_1 \sin\theta_2 \cos\phi - \cos\theta_1 \cos\theta_2]$ $|\vec{p}_{3H} + \vec{p}_{4H}||\vec{p}_{3Z} - \vec{p}_{4Z}|^2|\vec{p}_{1Z} - \vec{p}_{2Z}|^2/8$ $\Gamma(O_5 > 0) - \Gamma(O_5 > 0)$ $[(\vec{p}_{4H} \times \vec{p}_{3H}) \cdot \vec{p}_{1H}][(\vec{p}_{1Z} - \vec{p}_{2Z}) \cdot \vec{p}_{3Z}]$

 \mathcal{A}_{5}

 $\Gamma(O_5 > 0) + \Gamma(O_5 > 0)$

gluon gluon fusion	CP-even Htt can be distinguished from CP-odd at $>5\sigma~(M_H=160~{ m GeV})$	Klämke,Zeppenfeld
H ightarrow ZZ ightarrow 4l	consistency with SM; $0^-/1^\pm$ excluded $(\int {\cal L} = 100 { m fb}^{-1}, \ M_H = 200/\gtrsim 230 { m ~GeV})$	Buszello,Fleck, Marquard,van der Bij
CMS: $H o ZZ o 4l$	scalar, pseudoscalar can be distinguished at 3σ ($\int {\cal L} = 60 { m fb}^{-1}$, $M_H = 300~{ m GeV}$)	CMS
ALTAS: $H o ZZ o 4l$	strong limits to anomalous couplings	Buszello,Marquard, van der Bij
	\triangleright CP-odd excluded at 8.7 σ (2.9 σ) for	Strässner
	$M_H=200$ GeV (130 GeV), $\int {\cal L}=100 { m fb}^{-1}$	
	$\vartriangleright b/c$ w/ precision 1 (0.35/0.2)	
	for $M_H=130$ GeV (higher M_H)	
	hicksim include info from measured signal cxn	
	 ✓ further increase in precision 	

Higgs mechanism:

Creation of particle masses without violating gauge principles

\mathcal{D} etermination of the \mathcal{H} iggs \mathcal{S} elf- \mathcal{C} ouplings

The Higgs potential:

Reconstruction of the Higgs potential

Higgs mechanism \mathcal{O} f the scalar sector of the

Determination of the Higgs self-couplings at colliders:

 $\Lambda HHHH$ λ_{HHH} via triple Higgs production via Higgs pair production

Higgs-strahlung, WW/ZZ fusion, gg fusion

The Trilinear	Hig	PŪ N	Self-Couplir	ng at the \mathcal{LHC}
Determination of λ_{HHH} at the L	HC			Djouadi, Kilian, MMM, Zerwas; Lafaye, Miller, Moretti, MMM
double Higgs-strahlung:	$q \bar{q}$	\downarrow	W/Z + HH	Barger,Han,Phillips
WW/ZZ fusion:	bb	\downarrow	qq + HH	Dicus, Kallianpur, Willenbrock Abbasabadi, Repko, Dicus, Vega Dobrovolskaya, Novikov Eboli, Marques, Novaes, Natale
gluon gluon fusion:	gg	\downarrow	ΗH	Glover,van der Bij Plehn,Spira,Zerwas Dawson,Dittmaier,Spira
gluon gluon fusion - dominant pro	Cess			
L0000 B		Ň, H		Т H
g cooo		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ц H

Double SM Higgs Production at the LHC

Djouadi, Kilian, MMM, Zerwas

small signal + large QCD background ~-> challenge!

 $M_H < 140 \text{ GeV}: gg \rightarrow HH \rightarrow bb\gamma\gamma$:

Baur, Plehn, Rainwater

• SLHC [$\int \mathcal{L} = 6 \text{ ab}^{-1}$]: • VLHC $\sqrt{s} = 200 \text{ TeV}$]: $M_H = 120 \text{ GeV}$ $M_{H} = 120 \text{ GeV}:$ $\delta \lambda_{HHH} / \lambda_{HHH} = 20 - 40\%$ $\lambda_{HHH} = 0$ exclusion at 1 σ at 90% CL

 $M_H > 140 \text{ GeV}: gg \rightarrow HH \rightarrow W^+W^-W^+W^-$:

Baur, Plehn, Rainwater

Dahlhoff

Gianotti et al.;Blondel,Clark,Mazzucato

 \circ SLHC [[$\mathcal{L}=3~{\rm ab}^{-1}]$: • LHC [$\int \mathcal{L} = 300 \text{ fb}^{-1}$]: $150 \lesssim M_H \lesssim 200 \text{ GeV}: \quad \lambda_{HHH} = 0 \text{ exclusion}$ $150 < M_H < 200 {\rm ~GeV}$ $\delta \lambda_{HHH} / \lambda_{HHH} = 20 - 30\%$ at 1 σ at 95% CL

Higgs self-couplings in the MSSM

Djouadi, Kilian, MM, Zerwas; Pandita, Osland; Boudjema, Semenov

6 CP-invariant trilinear couplings between neutral Higgs bosons

Determination of $\lambda_{3\Phi}$ at e^+e^- colliders

For example $e^+e^- \rightarrow Zhh$

N

γ

5

Sensitivity regions

Processes sensitive

to $\lambda_{3\Phi}$

	×	×	×		×				HAA
	×		×	×	×				hAA
		×	L			×			HHH
ambig		×	×			×	×		HHh
apart			×	×			×	×	Hhh
for al				×				×	hhh
syster	AAA	AHH	AHh	Ahh	ZAA	ZHH	ZHh	Zhh	λ
	iction	s–produ	le Higgs	trip	nlung	s–strah	ble Higg	dou	

Sensitivity regions

(i) $\sigma[\lambda] > 0.01$ fb [and 0.1 fb] (ii) $eff{\lambda \rightarrow 0} > 2$ st.dev. for $\int \mathcal{L} = 2$ ab⁻¹

Djouadi, Kilian, MM, Zerwas

large M_A : sensitivity criteria not fulfilled because of

phase space effects

 \circ suppression of the H,A propagators for heavy masses

regions without sensitivity: $\lambda \sin(\beta - \alpha), \lambda \cos(\beta - \alpha)$ small

large M_A : sensitivity criteria not fulfilled because of

o phase space effects

 \circ suppression of the H,A propagators for heavy masses

M.M. Mühlleitner, SUSY at Colliders

 \circ suppression of the H,A propagators for heavy masses

Djouadi, Kalinowski, Zerwas

* h can be discovered in the entire MSSM parameter range: Zh or Ah

- * All SUSY Higgs bosons can be discovered @ 500 GeV if $M_A, M_H, M_{H^\pm} \lesssim 230 {
 m ~GeV}$
- * If decay modes are very complicated \rightsquigarrow

missing mass tech. \rightsquigarrow detection

$\mathcal{MSSM} \ \mathcal{H}iggs \ \mathcal{B}oson \ \mathcal{P}roduction \ in \ \gamma\gamma \ \mathcal{C}ollisions$

Krämer, MM, Spira, Zerwas, Phys. Lett. B508(2001)311-316

Higgs particles H, A with masses $M_{H/A}\gtrsim 200~{\rm GeV}$ and centered around $\tan\beta\sim 7$ may escape discovery at the LHC

Krämer, MM, Spira, Zerwas, Phys. Lett. B508(2001)311-316

▷ At e^+e^- linear colliders: Production of H, A with masses $M_{H,A} \leq 0.5\sqrt{s_{ee}}$

Krämer, MM, Spira, Zerwas, Phys. Lett. B508(2001)311-316

Higgs particles H, A with masses $M_{H/A}\gtrsim 200~{\rm GeV}$ and centered around $\tan\beta\sim7$ may escape discovery at the LHC

▷ At e^+e^- linear colliders: Production of H, A with masses $M_{H,A} \leq 0.5\sqrt{s_{ee}}$

 \triangleright Alternative: Search for H, A at future $\gamma\gamma$ colliders high energy, high degree of polarisation high luminosity ($\int \mathcal{L} = 300 \text{ fb}^{-1}$ in 2 years)

H,A can be produced with masses up to $M_{H,A} \lesssim 0.8 \sqrt{s_{ee}}$

Ginzburg,Kotkin,Panfil, Serbo, Telnov

HDECAY

Process $\gamma\gamma \rightarrow q\bar{q} - bkg$ & interference

Background process

 \triangleright Peaks/kinks: behaviour of $\gamma\gamma A$ form factor/BR($H/A \rightarrow bb$) at the gaugino/ $t\bar{t}$ thresholds

- \triangleright $M_A = 300$ GeV, $M_H = 301.37$ GeV for large SUSY particle masses
- \triangleright Change of cross section at the H, A production thresholds \Rightarrow separation of H and A via

threshold scan of the H, A production cross section

$\tau\tau$ Fusion to SUSY Higgs Bosons at a Photon Collider

Choi, Kalinowski, Lee, MM, Spira, Zerwas, Phys. Lett. B606 (2005) 164

• Motivation: $\delta \tan \beta / \tan \beta \sim 10$ % at e^+e^-/pp colliders

ers Choi et al.;Boos et al.;Gunion et al.;Kinnunen et al. Nieżurawski et al.;Velasco et al.

$\tau \tau \mathcal{F}$ usion to SUSY Higgs Bosons at a Photon Collider

Choi, Kalinowski, Lee, MM, Spira, Zerwas, Phys. Lett. B606(2005)164

Analysis: Full set of signal and bkg diagrams (\rightarrow CompHEP Boos,Pukhov,...)

Cuts: $M_{bb} = M_{\Phi} \pm \Delta$ with $\Delta = \max[\Gamma_{\phi}/2, \Delta_{ex}] \rightarrow \Delta_{ex} = 0.05 M_{\Phi}$

au polar angle ≥ 130 mrad [shielding: dead mask]

 $\tau \,\, {\rm energy} \qquad \geq 5 \,\, {\rm GeV}$

 τ^+ and τ^- assumed in opposite directions

Efficiencies: $\epsilon_{bb} \sim 0.7$ and $\epsilon_{\tau\tau} \sim 0.5 \rightsquigarrow \epsilon \sim 0.35$

- $\Delta \tan \beta \approx 0.9$ -1.3 uniformly for $\tan \beta \gtrsim 10$

- $\sigma(h) = 5$ fb for $M_h = 110$ GeV and $\tan \beta = 30$

- $\sigma(H/A) = 3$ to 1 fb for $M_{A/H} = 100...500$ GeV and $\tan \beta = 30$

$\tau \tau$ Fusion to SUSY Higgs Bosons at a Photon Collider

Choi, Kalinowski, Lee, MM, Spira, Zerwas, Phys. Lett. B606 (2005) 164

 $E_{e^{\pm}e^{-}} = 800/500 \text{ GeV} \Rightarrow E_{\gamma\gamma} = 600/400 \text{ GeV}, \ \mathcal{L} = 200/100 \text{ fb}^{-1}$

Process	
ノノ	
\downarrow	
$b\overline{b}$	
1	
technical	
details	

- *bb* final state most promising
- \circ Restriction to 2-jet final states \leadsto enhance S/B
- \circ Higher order corrections (in 2-jet) are accounted for by resummation Fadin, Khoze, Martin Melles,Stirling
- \circ Polarisation of e^\pm and laser beams \leadsto enhance S/B
- [For leading order with realistic photon spectra see also Gunion et al.]

