$\mathrm{WS}\ 2015/16$

Einführung in Theoretische Teilchenphysik

V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch

Übungsblatt 12

Abgabe: Mo, 08.02.16 Besprechung: Mi, 10.02.16

Aufgabe 25: Higgs-Massen im 2-Higgs-Dublett-Modell (3+5+6+6=20 Punkte)

Eine mögliche Erweiterung des Standardmodells besteht im Hinzufügen eines weiteren Higgsdubletts mit denselben Quantenzahlen. Das Potential dieses 2-Higgs-Dublett-Modells (2HDM) ist dann gegeben durch

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right)$$

$$+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right)$$

$$+ \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right]$$

mit zwei Dubletts Φ_1 und Φ_2

$$\Phi_a = \begin{pmatrix} \varphi_a^+ \\ \frac{v_a + \rho_a + i\eta_a}{\sqrt{2}} \end{pmatrix} , \qquad \langle \Phi_a \rangle = \begin{pmatrix} 0 \\ \frac{v_a}{\sqrt{2}} \end{pmatrix} , \qquad a = 1, 2.$$

Alle Parameter $m_{11,22,12}^2$, λ_{1-5} und $v_{1,2}$ sowie die Komponentenfelder ρ_a und η_a sind reell, φ_a^+ sind komplex mit $(\varphi_a^+)^* \equiv \varphi_a^-$.

(a) Die obenstehende Entwicklung der Dublett-Felder geschieht am Minimum des Potentials, das durch die folgenden Bedingungen gegeben ist, wobei Φ_a und Φ_a^{\dagger} in Bezug auf die Ableitung unterschiedliche Felder sind:

$$\left. \frac{\partial V}{\partial \Phi_a^{\dagger}} \right|_{\Phi_i = \langle \Phi_i \rangle} = 0 , \qquad a = 1, 2 .$$

Zeigen Sie, dass dies auf die folgenden beiden Gleichungen für die Potentialparameter führt, die erfüllt sein müssen:

$$m_{11}^{2} + \frac{\lambda_{1}v_{1}^{2}}{2} + \frac{\lambda_{3}v_{2}^{2}}{2} = m_{12}^{2} \frac{v_{2}}{v_{1}} - (\lambda_{4} + \lambda_{5}) \frac{v_{2}^{2}}{2},$$

$$m_{22}^{2} + \frac{\lambda_{2}v_{2}^{2}}{2} + \frac{\lambda_{3}v_{1}^{2}}{2} = m_{12}^{2} \frac{v_{1}}{v_{2}} - (\lambda_{4} + \lambda_{5}) \frac{v_{1}^{2}}{2}.$$

Die Frage, welche Parameterbereiche tatsächlich zu einem Minimum führen, soll dabei nicht weiter betrachtet werden.

Um die Massenterme der Felder zu bestimmen, benötigen wir nun wieder alle Terme aus dem in die einzelnen Komponentenfelder ρ_a , η_a , φ_a^{\pm} entwickelten Potential, die quadratisch in den Feldern sind.

- (b) Überlegen Sie sich zuerst allgemein $\Phi_a^{\dagger}\Phi_b$ ausgedrückt in den Komponentenfeldern, um mögliche Kombinationen zu sehen. Vergewissern Sie sich, dass im Potential keine Mischterme der Form $\rho_a\eta_b$, a,b=1,2 auftreten.
- (c) Finden Sie alle Terme der Form $\varphi_a^- \varphi_b^+$ im Potential und bestimmen Sie daraus \mathcal{M}_C , das definiert ist über

$$V|_{\varphi^-\varphi^+} = (\varphi_1^-, \varphi_2^-) \mathcal{M}_C \begin{pmatrix} \varphi_1^+ \\ \varphi_2^+ \end{pmatrix}.$$

Eliminieren Sie m_{11} und m_{22} über die Minimumsbedingung. Berechnen Sie dann die Eigenwerte von \mathcal{M}_C , welche die Massenquadrate der beiden Bosonen sind. Berechnen Sie schließlich noch $\tan \beta$, wobei β den Winkel der Drehmatrix U_C bezeichnet, die \mathcal{M}_C diagonalisiert.

Zwischenergebnis:
$$\mathcal{M}_C = \left(m_{12}^2 - (\lambda_4 + \lambda_5) \frac{v_1 v_2}{2}\right) \begin{pmatrix} \frac{v_2}{v_1} & -1 \\ -1 & \frac{v_1}{v_2} \end{pmatrix}$$

(d) Extrahieren Sie alle Massenterme der CP-ungeraden Komponenten $\eta_a\eta_b$ und bringen Sie das Ergebnis wieder in Matrixform analog zur vorherigen Aufgabe.

Bestimmen Sie die beiden Masseneigenwerte.

Zeigen Sie, dass die zugehörige orthogonale Transformationsmatrix identisch zu der ist, die wir schon für den geladenen Fall gefunden haben.

Zwischenergebnis:
$$\mathcal{M}_P = \frac{1}{2} \left(m_{12}^2 - \lambda_5 v_1 v_2 \right) \begin{pmatrix} \frac{v_2}{v_1} & -1 \\ -1 & \frac{v_1}{v_2} \end{pmatrix}$$