

Reconstructing the supersymmetric Lagrangian

Michael Rauch

(in collaboration with Rémi Lafaye, Tilman Plehn, Dirk Zerwas)

Outline

- Current Status of Supersymmetry
- Determining SUSY Parameters
- Kinematic Edges as Experimental Input
- Possible Collider Results
- Testing Unification

Supersymmetry

Symmetry between bosons and fermions:

 $Q |\text{boson}\rangle = |\text{fermion}\rangle;$

 $Q |\text{fermion}\rangle = |\text{boson}\rangle$

Q: Supersymmetry Operator

Simplest model:

Minimal Supersymmetric Standard Model (MSSM)

- Supersymmetric partner to each Standard Model particle
- Two Higgs doublets \Rightarrow 5 Higgs bosons (h^0, H^0, A^0, H^{\pm})
- Particles with same quantum numbers mix (e.g. Zino, Photino, 2 Higgsino → 4 Neutralino)

mSUGRA

Unification at the GUT scale ($\sim 10^{16}~{\rm GeV}$):

- Apparent unification of gauge couplings (general feature of MSSM)
- **D** Common scalar mass: m_0
- Common sfermion mass: $m_{1/2}$
- Common trilinear coupling: A_0

plus

- If a ratio of the Higgs vacuum expectation values at the electro-weak scale: $\tan \beta = \frac{v_2}{v_1}$
- one sign: $\operatorname{sgn} \mu$

Evolve three parameters defined at the GUT scale via renormalisation group equations down to electro-weak scale:

- \Rightarrow Weak-scale MSSM parameters
- \Rightarrow Masses and couplings

Standard Model experimentally very well confirmed

- Standard Model experimentally very well confirmed
- Few experimental deviations
 - Dark matter

 $\sim 23\%$ Dark Matter content in the universe

- Possible candidate in the SM: Neutrinos
- \leftrightarrow neutrino mass limits prevent accounting for total content
- M_W
 - $\sim 1\sigma$ deviation
- g-2 of the Muon 3.4σ deviation

- Standard Model experimentally very well confirmed
- Few experimental deviations
 - Dark matter

 $\sim 23\%$ Dark Matter content in the universe

- Possible candidate in the SM: Neutrinos
- \leftrightarrow neutrino mass limits prevent accounting for total content
- M_W
 - $\sim 1\sigma$ deviation
- g-2 of the Muon 3.4σ deviation
- Some theoretical problems
 - No gauge coupling unification

- Standard Model experimentally very well confirmed
- Few experimental deviations
 - Dark matter

 $\sim 23\%$ Dark Matter content in the universe

- Possible candidate in the SM: Neutrinos
- \leftrightarrow neutrino mass limits prevent accounting for total content
- M_W
 - $\sim 1\sigma$ deviation
- g-2 of the Muon 3.4σ deviation
- Some theoretical problems
 - No gauge coupling unification
 - Hierarchy problem

(higher-order corrections to the Higgs-boson mass

proportional to mass of the heaviest coupling particle

- \rightarrow GUT scale (?))
- Look for possible ultra-violet completions → Supersymmetry

Determining SUSY parameters

 \Rightarrow Tools to reconstruct SUSY parameters

Current Fits

 \rightarrow Fits of current data to supersymmetry (only mSUGRA)

[Allanach, Cranmer, Lester, Weber 2005-7] [Roszkowski, Ruiz de Austra, Trotta 2006/7] [Buchmüller, Cavanaugh, De Roeck, Heinemeyer, Isidori, Paradisi, Ronga, Weber, Weiglein 2007]

Observables:

- **9** Dark Matter $\Omega_{\rm DM}h^2$
- $g 2_{\mu}$
- \checkmark M_W
- $\sin^2 \theta_W$
- **9** $\mathsf{BR}(b \to s\gamma)$
- BR($B_s \to \mu^+ \mu^-$)
- **9** ...

 \Rightarrow Predictions for SUSY mass spectrum

Current Fits (2)

Predictions for SUSY mass spectrum

[plots by Allanach et al.]

Bayesian:

(flat $\tan\beta$ prior)

(REWSB+same order prior)

Frequentist:

Current Fits (2)

- Low-energy TeV-scale SUSY fits data very well
- Mass ranges for SUSY particles
- Mass of the lightest Higgs boson compatible with LEP limit

Discovery of SUSY at the LHC

- \Rightarrow Additional observables from collider data
- \Rightarrow SFitter

What SFitter does

Set of measurements

- LHC measurements: kinematic edges, thresholds, masses, mass differences cross sections, branching ratios
- ILC measurements
- Indirect Constraints
 - electro-weak: M_W , $\sin^2 \theta_W$; flavour: BR $(b \to s\gamma)$, BR $(B_s \to \mu^+ \mu^-)$; dark matter: Ωh^2

 $(q-2)_{\mu}$

- or even ATLAS and CMS measurements separately
- Compare to theoretical predictions

LC cross sections: MsmLib

Spectrum calculators: SoftSUSY, SuSPECT, ISASUSY

[Allanach; Djouadi, Kneur, Moultaka; Baer, Paige, Protopopescu, Tata]

- LHC cross sections: Prospino2 [Plehn et al.]
 - [Ganis]

[Stöckinger]

- Branching Ratios: SUSYHit (HDecay + SDecay) [Djouadi, Mühlleitner, Spira]
- micrOMEGAs [Bélanger, Boudjema, Pukhov, Semenov]
- 🧕 g-2

- MSSM parameter space is high-dimensional:
 - SM: 3+ parameters $(m_t, \alpha_s, \alpha, ...)$
 - mSUGRA: 5 parameters $(m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
 - General MSSM: 105 parameters
- On loop-level observables depend on every parameter Simple inversion of the relations not possible
 - \Rightarrow Parameter scans
- Error estimates on parameters in the minimum

- MSSM parameter space is high-dimensional:
 - SM: 3+ parameters $(m_t, \alpha_s, \alpha, ...)$
 - mSUGRA: 5 parameters $(m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
 - General MSSM: 105 parameters
- On loop-level observables depend on every parameter Simple inversion of the relations not possible
 - \Rightarrow Parameter scans
- Error estimates on parameters in the minimum

Find best points (best χ^2) using different fitting techniques:

Gradient search (Minuit) (+ Reasonably fast - Limited convergence, only best fit)

- MSSM parameter space is high-dimensional:
 - SM: 3+ parameters $(m_t, \alpha_s, \alpha, ...)$
 - mSUGRA: 5 parameters $(m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
 - General MSSM: 105 parameters
- On loop-level observables depend on every parameter Simple inversion of the relations not possible
 - \Rightarrow Parameter scans
- Error estimates on parameters in the minimum

Find best points (best χ^2) using different fitting techniques:

- Gradient search (Minuit) (+ Reasonably fast - Limited convergence, only best fit)
- fixed Grid scan $\begin{pmatrix} + \text{ scans complete parameter space} \\ \text{ many points needed } (\mathcal{O}(e^N)) \end{pmatrix}$

- MSSM parameter space is high-dimensional:
 - SM: 3+ parameters $(m_t, \alpha_s, \alpha, ...)$
 - mSUGRA: 5 parameters $(m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
 - General MSSM: 105 parameters
- On loop-level observables depend on every parameter Simple inversion of the relations not possible
 - \Rightarrow Parameter scans
- Error estimates on parameters in the minimum

Find best points (best χ^2) using different fitting techniques:

- Gradient search (Minuit) (+ Reasonably fast - Limited convergence, only best fit)
 - fixed Grid scan $\begin{pmatrix} + \text{ scans complete parameter space} \\ \text{ many points needed } (\mathcal{O}(e^N)) \end{pmatrix}$
- Weighted Markov Chains

Markov Chains

Markov Chain (MC):

- Sequence of points, chosen by an algorithm (Metropolis-Hastings), only depending on its direct predecessor
- Picks a set of "average" points according to a potential V (e.g. inverse log-likelihood, $1/\chi^2$)
- Point density resembles the value of V (i.e. more points in region with high V)
- Scans high dimensional parameter spaces efficiently [Baltz, Gondolo 2004]
- mSUGRA MC scans with current exp. limits [Allanach, Cranmer, Lester, Weber 2005-7; Roszkowski, Ruiz de Austra, Trotta 2006/7]

Weighted Markov Chains

Weighted Markov Chains:

Improved evaluation algorithm for binning:

- Weight points with value of V:
- Take care of
 - Overcounting because point density is already weighted $\left(\frac{\text{number of points}}{\sum_{\text{points}} 1/V(\text{point})}\right)$

[based on Ferrenberg, Swendsen 1988]

- Correct account for regions with zero probability (maintain additional chain which stores points rejected because V(point) = 0)
- + Fast scans of high-dimensional spaces $\mathcal{O}(N)$
- + Does not rely on shape of χ^2 (no derivatives used)
- + Can find secondary distinct solutions
- Exact minimum difficult to find \Rightarrow Additional gradient fit
- Bad choice of proposal function for next point leads to bad coverage of the space

[Plehn, MR]

mSUGRA as a Toy Model

mSUGRA with LHC measurements (SPS1a kinematic edges): pick one set of "measurements", randomly smeared from the true values

Free parameters:

 $m_0, m_{1/2}, \tan(\beta), A_0, \operatorname{sgn}(\mu), m_t$

SFitter output 1:

Fully-dimensional exclusive likelihood map (colour:

minimum χ^2 over all unseen parameters)

SFitter output 2:

Ranked list of minima:

	χ^2	m_0	$m_{1/2}$	$\tan(eta)$	A_0	μ	m_t
1)	1.32	100.4	251.2	12.7	-71.7	+	171.9
2)	7.18	106.3	243.6	14.3	-103.3	—	170.7
3)	13.9	103.5	258.2	12.2	848.4	+	174.4
4)	75.1	107.3	251.4	15.1	778.8	_	173.6

Bayesian or Frequentist?

SFitter provides full-dimensional log-likelihood map

 \rightarrow "project" onto plotable 1- or 2-dimensional spaces

Bayesian:

Marginalisation of χ^2 in all other directions

Frequentist:

Profile likelihood: Value of bin is value of smallest χ^2 occuring in this bin

Bayesian or Frequentist?

SFitter provides full-dimensional log-likelihood map

 \rightarrow "project" onto plotable 1- or 2-dimensional spaces

Bayesian:

Marginalisation of χ^2 in all other directions

Frequentist:

Profile likelihood: Value of bin is value of smallest χ^2 occuring in this bin

Different methods answer different questions.

 \Rightarrow Bayesian and Frequentist!

Everybody can choose his/her favourite analysis ...

Michael Rauch

Purely high-scale model

 $m_0, m_{1/2}, A_0$ defined at the GUT-scale $\Leftrightarrow \tan(\beta)$ defined at the weak scale \Rightarrow Replace $\tan(\beta)$ with high-scale quantity B \Rightarrow Flat prior in B yields prior $\propto \frac{1}{\tan(\beta)^2}$

SPS1a with LHC kinematic edges ($tan(\beta)$ vs. $1/\chi^2$):

tan(β)

Large influence of choice of prior

Choosing flat *B* prior strongly favours low values of $tan(\beta)$.

Frequentist:

Two plots should be identical (no prior in χ^2 calculation) Indirect influence via Markov Chain proposal function

tan(β)

Error determination

Treatment of errors:

All experimental errors are Gaussian

$$\sigma_{\exp}^2 = \sigma_{\text{stat}}^2 + \sigma_{\text{syst}(j)}^2 + \sigma_{\text{syst}(l)}^2$$

Systematic errors from jet $(\sigma_{syst(j)})$ and lepton energy scale $(\sigma_{syst(l)})$ assumed 99% correlated each

Theory error added as box-shaped (RFit scheme [Hoecker, Lacker, Laplace, Lediberder])

$$\Rightarrow -2\log L \equiv \chi^2 = \sum_{\text{measurements}} \begin{cases} 0 & \text{for } |x_{\text{data}} - x_{\text{pred}}| < \sigma_{\text{theo}} \\ \left(\frac{|x_{\text{data}} - x_{\text{pred}}| - \sigma_{\text{theo}}}{\sigma_{\text{exp}}}\right)^2 & \text{for } |x_{\text{data}} - x_{\text{pred}}| \ge \sigma_{\text{theo}} \end{cases}$$

\Rightarrow Parameter errors:

	SPS1a	$\Delta_{\mathrm{flat}}^{\mathrm{theo-exp}}$	$\Delta_{ m zero}^{ m theo-exp}$	$\Delta_{ m gauss}^{ m theo-exp}$	$\Delta_{\mathrm{flat}}^{\mathrm{theo-exp}}$
		LHC masses		LHC edges	
m_0	100	4.89	0.50	2.96	2.17
$m_{1/2}$	250	3.27	0.73	2.99	2.64
aneta	10	2.73	0.65	3.36	2.45
A_0	-100	56.4	21.2	51.5	49.6
m_t	171.4	0.98	0.26	0.89	0.97

 \Rightarrow Use kinematic edges for parameter determination instead of masses

Weak-scale MSSM

- No need to assume specific SUSY-breaking scenario ⇒ SUSY-breaking mechanism should be induced from data
- Use of Markov Chains makes scanning the 19-dimensional parameter space feasible
- Lack of sensitivity on one parameter does not slow down the scan (no need to fix parameters)
- Same SFitter output as before: Minima list and Likelihood map

MSSM using SPS1a spectrum and LHC kinematic edges: (Bayesian, full parameter space)

Search Strategy (1)

Full scan of 19D parameter space challenging Four-step procedure yields better and faster results:

Weighted-Markov-Chain run with flat pdf over full parameter space
 5 best points additionally minimised
 (full scan, no bias on starting point)

Correlations not aligned with parameters \Rightarrow washed out in plots

Search Strategy (2)

Full scan of 19D parameter space challenging Four-step procedure yields better and faster results:

- Weighted-Markov-Chain run with flat pdf over full parameter space
 5 best points additionally minimised
 (full scan, no bias on starting point)
- Weighted-Markov Chain with flat pdf on Gaugino-Higgsino subspace:
 M₁, M₂, M₃, μ, tan β, m_t
 Additional Minuit run with 15 best solutions

Step 1

Step 2

1e+09

1e+07

100000

1000

Search Strategy (2) - results

- Only three neutralinos (χ_1^0 , χ_2^0 , χ_4^0) with masses (97.2 GeV, 180.5 GeV, 375.6 GeV) and no charginos observable at the LHC in SPS1a
- ⇒ Mapping $(M_1, M_2, \mu) \rightarrow (\chi_1^0, \chi_2^0, \chi_4^0)$ not unique
- **9** sgn μ basically undetermined by collider data
- \Rightarrow 8-fold solution

Search Strategy (2) - results

- Only three neutralinos (χ_1^0 , χ_2^0 , χ_4^0) with masses (97.2 GeV, 180.5 GeV, 375.6 GeV) and no charginos observable at the LHC in SPS1a
- ⇒ Mapping $(M_1, M_2, \mu) \rightarrow (\chi_1^0, \chi_2^0, \chi_4^0)$ not unique
- $\operatorname{sgn} \mu$ basically undetermined by collider data
- > 8 fold solution

	$\mu < 0$				$\mu > 0$			
					SPS1a			
M_1	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3
M_2	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8
μ	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5
aneta	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1
M_3	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4
m_t	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4

Search Strategy (3)

Full scan of 19D parameter space challenging Four-step procedure yields better and faster results:

- Weighted-Markov-Chain run with flat pdf over full parameter space
 5 best points additionally minimised
 (full scan, no bias on starting point)
- Weighted-Markov Chain with flat pdf on Gaugino-Higgsino subspace:
 M₁, M₂, M₃, μ, tan β, m_t
 Additional Minuit run with 15 best solutions
- Weighted-Markov Chain with Breit-Wigner-shaped pdf on remaining parameters for all solutions of previous step Minimisation for best 5 points

Search Strategy (4)

Full scan of 19D parameter space challenging Four-step procedure yields better and faster results:

- Weighted-Markov-Chain run with flat pdf over full parameter space
 5 best points additionally minimised
 (full scan, no bias on starting point)
- Weighted-Markov Chain with flat pdf on Gaugino-Higgsino subspace:
 M₁, M₂, M₃, μ, tan β, m_t
 Additional Minuit run with 15 best solutions
- Weighted-Markov Chain with Breit-Wigner-shaped pdf on remaining parameters for all solutions of previous step Minimisation for best 5 points
- Minuit run for best points of last step keeping all parameters variable

Best points

	$\mu < 0$				$\mu > 0$			
					SPS1a			
M_1	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3
M_2	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8
μ	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5
aneta	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1
M_3	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4
$M_{ ilde{ au}_L}$	114.9	2704.3	128.3	4794.2	128.0	229.9	3269.3	118.6
$M_{\tilde{ au}_R}$	348.8	129.9	1292.7	130.1	2266.5	138.5	129.9	255.1
$M_{\tilde{\mu}_L}$	192.7	192.7	192.7	192.9	192.6	192.6	192.7	192.8
$M_{\tilde{\mu}_R}$	131.1	131.1	131.1	131.3	131.0	131.0	131.1	131.2
$M_{\tilde{e}_L}$	186.3	186.4	186.4	186.5	186.2	186.2	186.4	186.4
$M_{\tilde{e}_R}$	131.5	131.5	131.6	131.7	131.4	131.4	131.5	131.6
$M_{\tilde{q}3_L}$	497.1	497.2	494.1	494.0	495.6	495.6	495.8	495.0
$M_{\tilde{t}_{R}}$	1073.9	920.3	547.9	950.8	547.9	460.5	978.2	520.0
$M_{\tilde{b}_{R}}^{n}$	497.3	497.3	500.4	500.9	498.5	498.5	498.7	499.6
$M_{\tilde{q}_L}$	525.1	525.2	525.3	525.5	525.0	525.0	525.2	525.3
$M_{\tilde{q}_R}$	511.3	511.3	511.4	511.5	511.2	511.2	511.4	511.5
$A_t(-)$	-252.3	-348.4	-477.1	-259.0	-470.0	-484.3	-243.4	-465.7
$A_t(+)$	384.9	481.8	641.5	432.5	739.2	774.7	440.5	656.9
m_A	350.3	725.8	263.1	1020.0	171.6	156.5	897.6	256.1
m_t	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4

Degenerate Solutions

- In total 19 parameters constrained by 22 measurements
- Measurements constructed from only 15 underlying masses
- \blacksquare \Rightarrow Complete determination of parameter set not possible
- Five parameters not well constrained
 - m_A
 - \leftarrow no heavy Higgses measurable
 - $M_{\tilde{t}_R}$
 - A_t

 \leftarrow stop sector parameters do not enter edge measurements

- $M_{\tilde{\tau}_L}$ or $M_{\tilde{\tau}_R}$
 - ← only the lighter stau measured
- $\tan\beta$

 \leftarrow change can always be accomodated by rotating M_1 , M_2 , $M_{\tilde{q}_3}$, ...

- Single common link: m_{h^0}
- \blacksquare \Rightarrow 4-dimensional hyperplane in parameter space undetermined
- Can still assign errors to some of the badly determined parameters

Error analysis

- Technical procedure as in mSUGRA case:
 - 10000 smeared data sets
 - Minimum determined for each data set individually
 - Error determined from fit with Gaussian
- Most constrained parameters determinable with $\sim 5\%$ accuracy
- Inclusion of theory errors leads to an increase of factor 2 on the parameter errors
- ILC data complementary to LHC
- Combination of the two experiments allows for precise determination of all parameters

	LHC		ILC		LHC+ILC	SPS1a
M_1	102.1±	7.8	103.0±	1.1	103.1±0.84	103.1
$M_{\tilde{e}_R}$	135.0±	8.3	135.8±	0.81	135.9±0.77	135.8
m_A	406.3 $\pm O(10^3)$		393.8±	1.6	393.9± 1.6	394.9
$M_{\tilde{t}_R}$	415.8± $O(10^2)$		$440.0 \pm \mathcal{O}(4 \cdot 10^2)$		410.7±48.4	408.3

Testing Unification

Apparent unification of gauge coupling parameters in the MSSM

Question arises: Do other parameters unify as well?

- \Rightarrow Should be tested by bottom-up running from weak scale to Planck scale
- \Rightarrow Can give hints about supersymmetry breaking
 - (e.g. test scalar-mass sum rules with a sliding scale)

Bottom-up running of gaugino masses and 3rd-generation sfermion masses:

[Schmaltz et al.]

Testing Unification

Apparent unification of gauge coupling parameters in the MSSM

Question arises: Do other parameters unify as well?

- \Rightarrow Should be tested by bottom-up running from weak scale to Planck scale
- \Rightarrow Can give hints about supersymmetry breaking
 - (e.g. test scalar-mass sum rules with a sliding scale)

Bottom-up running of gaugino masses and 3rd-generation sfermion masses:

[Schmaltz et al.]

Summary & Outlook

- Current status: Low-energy supersymmetry fits precision data very well
- Parameter scans important to determine Lagrangian parameters from observables
- Problem of high-dimensional parameter spaces
- Markov Chains can do this effectively
- Improved algorithm developed
- Two types of output: Likelihood map and list of best points
- Both Bayesian and Frequentist from likelihood map
- Bayesian output significantly dependent on priors
- Tested with mSUGRA SPS1a: can reconstruct SPS1a from (simulated) LHC data
- Repeated procedure with weak-scale MSSM: reconstruction works as well
- SFitter (despite its name) not tied to SUSY → extend to other models/problems

Backup Slides

Experimental Input (Edges)

mSUGRA SPS1a as a benchmark point:

 $m_0 = 100 \text{ GeV}$, $m_{1/2} = 250 \text{ GeV}$, $A_0 = -100 \text{ GeV}$, $\tan \beta = 10$, $\operatorname{sgn} \mu = +1$, $m_t = 171.4 \text{ GeV}$ LHC "experimental" data from cascade decays (best precision obtainable)

Measurement	Value	Errors	(GeV)
	(GeV)	(stat)	(syst)
(m_{llq}^{\max}) :Edge($ ilde{q}_L, \chi^0_2, \chi^0_1$)	446.44	1.4	4.3
(m_{llq}^{\min}) :Thres($ ilde{q}_L$, χ^0_2 , $ ilde{\mu}_R$, χ^0_1)	211.95	1.6	2.0
$(m_{lq}^{ m low})$:Edge($ ilde{c}_L$, χ^0_2 , $ ilde{\mu}_R$)	316.51	0.9	3.0
$(m_{lq}^{ ext{high}})$:Edge($ ilde{c}_L, \chi^0_2, ilde{\mu}_R, \chi^0_1$)	392.8	1.0	3.8

Theoretical Errors:

- mSUGRA: 3% for gluino and squark masses, 1% for all other sparticle masses
- MSSM: 1% for gluino and squark masses, 0.5% for all other sparticle masses
- m_{h^0} : 2 GeV (unknown higher order terms)

Metropolis-Hastings Algorithm

Experimental Input (edges)

(Obs)	$=$ (meas) \pm (e	exp) \pm (theo)	
m_{h^0}	$= 109.53 \pm 0$	$0.25 \pm$	2.0	
m_t	$= 171.4 \pm$	$1.0~\pm$	0.0	
$\Delta m_{ ilde{\mu}_L,\chi_1^0}$	$= 106.26 \pm$	$1.6 \pm$	0.1	
$\Delta m_{ ilde{g},\chi_1^0}$	$= 509.96 \pm$	$2.3 \pm$	6.0	
$\Delta m_{\tilde{c}_R,\chi_1^0}$	$= 450.52 \pm 3$	$10.0 \pm$	4.2	
$\Delta m_{ ilde{g}, ilde{b}_1}$	$= 98.971 \pm$	$1.5 \pm$	1.0	
$\Delta m_{ ilde{g}, ilde{b}_2}$	$= 64.016 \pm$	$2.5~\pm$	0.7	
$Edge(\chi^0_2,\! ilde{\mu}_R,\!\chi^0_1)$	$= 79.757 \pm 0$	$0.03 \pm$	0.08	(m_{ll}^{\max})
Edge($ ilde{c}_L$, χ^0_2 , χ^0_1)	$= 446.44 \pm$	$1.4 \pm$	4.3	(m_{llq}^{\max})
Edge($ ilde{c}_L, \chi^0_2, ilde{\mu}_R$)	$= 316.51 \pm$	$0.9 \pm$	3.0	$(m_{lq}^{ m low})$
Edge($ ilde{c}_L, \chi^0_2, ilde{\mu}_R, \chi^0_1$)	$= 392.8 \pm$	$1.0 \pm$	3.8	$(m_{lq}^{ m high})$
$Edge(\chi_4^0,\! ilde{\mu}_R,\!\chi_1^0)$	$= 257.41 \pm$	$2.3 \pm$	0.3	$(m_{ll}^{ m max}(\chi_4^0))$
$Edge(\chi_4^0, ilde{ au}_L, \chi_1^0)$	$= 82.993 \pm$	$5.0 \pm$	0.8	$(m_{ au au}^{ m max})$
Threshold($ ilde{c}_L$, χ^0_2 , $ ilde{\mu}_R$, χ^0_1	$) = 211.95 \pm$	$1.6 \pm$	2.0	(m_{llq}^{\min})
Threshold($ ilde{b}_1, \chi^0_2, ilde{\mu}_R, \chi^0_1$)	$= 211.95 \pm$	$1.6 \pm$	2.0	(m_{llb}^{\min})

mSUGRA around Minima – positive μ

 A_0

0

A₀

-1000 -500

500 1000 1500 2000

170

160

180

m_t

190

200

mSUGRA around Minima – negative μ

Error determination

Minuit output not usable for flat theory errors:

- Migrad function depends on parabolic approximation
- Cannot determine $\Delta \chi^2$ for Minos to yield 68% CL intervals
- \Rightarrow Need more general approach
 - Perform 10,000 toy experiments with measurements smeared around correct value
 - Minimise each toy experiment
 - Plot resulting distribution of parameter points and fit with Gaussian

MSSM errors

	LHC	,	IL	ILC		LHC+ILC	
aneta	10.0±	4.5	13.4±	6.8	12.3±	5.3	10.0
M_1	102.1±	7.8	$103.0\pm$	1.1	103.1 \pm	0.84	103.1
M_2	193.3±	7.8	193.4 \pm	3.1	193.2 \pm	2.3	192.9
M_3	577.2±	14.5	fixed	500	$579.7\pm$	12.8	577.9
$M_{ ilde{ au}_L}$	227.8±0	$P(10^3)$	$183.8\pm$	16.6	$187.3\pm$	12.9	193.6
$M_{\tilde{\tau}_R}$	164.1± <i>C</i> ∕	$P(10^3)$	$143.9\pm$	17.9	$140.1\pm$	14.1	133.4
$M_{\tilde{\mu}_L}$	193.2±	8.8	194.4 \pm	1.1	$194.5\pm$	1.0	194.4
$M_{\tilde{\mu}_R}$	135.0±	8.3	$135.9\pm$	1.0	$136.0\pm$	0.89	135.8
$M_{\tilde{e}_L}$	193.3±	8.8	194.4 \pm	0.89	194.4 \pm	0.84	194.4
$M_{\tilde{e}_R}$	135.0±	8.3	$135.8\pm$	0.81	$135.9\pm$	0.77	135.8
$M_{\tilde{q}3_L}$	481.4±	22.0	507.2±C	$9(4 \cdot 10^2)$	$486.6\pm$	19.5	480.8
$M_{\tilde{t}_B}$	415.8± <i>C</i>	$P(10^2)$	440.0± <i>C</i>	$O(4 \cdot 10^2)$	$410.7\pm$	48.4	408.3
$M_{\tilde{b}_{R}}^{n}$	501.7±	17.9	fixed	500	$504.0\pm$	17.4	502.9
$M_{\tilde{q}_L}^n$	524.6±	14.5	fixed	500	526.1±	7.2	526.6
$M_{\tilde{q}_R}$	$507.3\pm$	17.5	fixed	500	508.4 \pm	16.7	508.1
$A_{ au}$	fixed	0	$633.2\pm$	$\mathcal{O}(10^4)$	139.6±C	$\mathcal{P}(10^4)$	-249.4
A_t	-509.1±	86.7	-516.1 \pm	$\mathcal{O}(10^3)$	-500.1 \pm	143.4	-490.9
A_b	fixed	0	fixe	d 0	-686.2±℃	$\mathcal{P}(10^4)$	-763.4
m_A	406.3± <i>C</i> ∕	$P(10^3)$	$393.8\pm$	1.6	$393.9\pm$	1.6	394.9
μ	$350.5\pm$	14.5	$343.7\pm$	3.1	$354.8\pm$	2.8	353.7
m_t	171.4±	1.0	$171.4\pm$	0.12	$171.4\pm$	0.12	171.4

Dark Matter

Content of the universe:

- 73% Dark energy
- 4% Ordinary matter
- 23% Dark matter

- SFitter: Determine Lagrangian parameters Spectrum and couplings
- e.g. micrOMEGAs: Calculate relic density $\Omega_{CDM}h^2 = n_{LSP}m_{LSP}$
- Prediction of $\Omega_{CDM}h^2$ LHC : $\Omega_{CDM}h^2 = 0.1906 \pm 0.0033$ LHC+ILC: $\Omega_{CDM}h^2 = 0.1910 \pm 0.0003$ (improvement by one order of magnitude)
- Compare with experiment (Measurement of the fluctuations of the cosmic microwave background):

WMAP: $\Omega_{CDM}h^2 = 0.1277 \pm 0.008$ [astro-ph/0603449] Planck: $\Omega_{CDM}h^2 = ? \pm 0.0016$

0

[Bélanger et al.]

,NASA/WMAP

Example

Test function (5-dim):

- **Small Hypersphere** $r = 100, V_{max} = 75 @ (650, 250, 350, 350, 350)$
- **Cuboid** $d = (173, 120, 200, 200, 200), V_{max} = 60 @ (850, 225, 650, 650, 650)$
- **Cube** $d = (100, 100, 300, 300, 300), V_{max} = 25 @ (750, 750, 450, 450, 450)$
- **Gaussian** $\sigma = (50, 150, 150, 150, 150), V_{max} = 16 @ (250, 250, 550, 550)$
- **Big Hypersphere** $r = 300, V_{max} = 12 @ (350, 650, 650, 650, 650)$
- **Background** $V = 0.1 + 4 \cdot 10^{-30} \cdot x_1^2 x_2^2 x_3^2 x_4^2 x_5^2$

	1.	V=74.929@(655.00,253.72,347.83,348.57,349.59)
9 3	2.	V=59.972@(850.04,224.99,650.00,649.99,654.56)
7 6 5	3.	V=58.219@(849.97,225.01,587.08,650.01,650.02)
4 3 2	4.	V=25.110@(750.00,749.99,450.00,450.01,450.01)
1	5.	V=16.042@(245.45,253.44,552.51,542.58,544.75)
	6.	V=12.116@(350.70,650.40,650.36,650.40,650.38)
	7.	•••

Plot Details

- Parameters: $x_1, \ldots, x_5 \in [0, 1000]$
- Bins: 50×50
- PDF: Breit-Wigner $(\frac{1}{1+\Delta x_i^2/\sigma^2})$ with $\sigma = 100$
- Number of Markov chains: 9
- Number of points per chain: 10^7
- Number of function evaluations: 33, 797, 153
- Acceptance ratio: 0.19
- Final r (measure of convergence): 1.815
- CPU time (3 GHz): 150 min