

SFitter

Parameter Determination at the LHC

Michael Rauch

Institut für Theoretische Physik

Universität Karlsruhe

Karlsruhe Institute of Technology

KIT

https://trac.lal.in2p3.fr/SFitter

Outline

Supersymmetry

Reconstructing the Supersymmetric Lagrangian

Determining the Higgs boson couplings

Supersymmetry

Symmetry between bosons and fermions:

 $Q |\text{boson}\rangle = |\text{fermion}\rangle;$

Q: Supersymmetry Operator

Simplest model:

Minimal Supersymmetric Standard Model (MSSM)

- Supersymmetric partner to each Standard Model particle
- Two Higgs doublets \Rightarrow 5 Higgs bosons (h^0, H^0, A^0, H^{\pm})
- Particles with same quantum numbers mix (e.g. Zino, Photino, 2 Higgsino → 4 Neutralino)

 $Q |\text{fermion}\rangle = |\text{boson}\rangle$

mSUGRA

Unification at the GUT scale ($\sim 10^{16}$ GeV):

- Apparent unification of gauge couplings (general feature of MSSM)
- **9** Common scalar mass: m_0
- Common sfermion mass: $m_{1/2}$
- Common trilinear coupling: A_0

plus

- If a ratio of the Higgs vacuum expectation values at the electro-weak scale: $\tan \beta = \frac{v_2}{v_1}$
- one sign: $\operatorname{sgn} \mu$

Evolve three parameters defined at the GUT scale via renormalisation group equations down to electro-weak scale:

- \Rightarrow Weak-scale MSSM parameters
- \Rightarrow Masses and couplings

Standard Model experimentally very well confirmed

- Standard Model experimentally very well confirmed
- Few experimental deviations
 - Dark matter

 $\sim 23\%$ Dark Matter content in the universe

- Possible candidate in the SM: Neutrinos
- \leftrightarrow neutrino mass limits prevent accounting for total content
- M_W
 - $\sim 1\sigma$ deviation
- g-2 of the Muon 3.4σ deviation

- Standard Model experimentally very well confirmed
- Few experimental deviations
 - Dark matter

 $\sim 23\%$ Dark Matter content in the universe

- Possible candidate in the SM: Neutrinos
- \leftrightarrow neutrino mass limits prevent accounting for total content
- M_W
 - $\sim 1\sigma$ deviation
- g-2 of the Muon 3.4σ deviation
- Some theoretical problems
 - No gauge coupling unification

- Standard Model experimentally very well confirmed
- Few experimental deviations
 - Dark matter

 $\sim 23\%$ Dark Matter content in the universe

Possible candidate in the SM: Neutrinos

- \leftrightarrow neutrino mass limits prevent accounting for total content
- M_W
 - $\sim 1\sigma$ deviation
- g-2 of the Muon 3.4σ deviation
- Some theoretical problems
 - No gauge coupling unification
 - Hierarchy problem

(higher-order corrections to the Higgs-boson mass

proportional to mass of the heaviest coupling particle

- \rightarrow GUT scale (?))
- Look for possible ultra-violet completions Supersymmetry

Determining SUSY parameters

 \Rightarrow Tools to reconstruct SUSY parameters

Current Fits

If TeV-scale supersymmetry is out there, what can we tell today? \rightarrow Fits of current data to supersymmetry (only mSUGRA)

[Allanach, Cranmer, Lester, Weber 2005-7]

[Roszkowski, Ruiz de Austra, Trotta 2006/7]

[Buchmüller, Cavanaugh, De Roeck, Heinemeyer, Isidori, Paradisi, Ronga, Weber, Weiglein 2007]

Observables:

- **)** Dark Matter $\Omega_{\rm DM} h^2$
- $g 2_{\mu}$
- M_W
- **9** $\mathsf{BR}(b \to s\gamma)$
- BR($B_s \to \mu^+ \mu^-$)
- **9** ...

\Rightarrow Predictions for SUSY mass spectrum

Current Fits

Predictions for SUSY mass spectrum

Low-energy TeV-scale SUSY fits data very well

[right-hand plot by Buchmüller et al.]

[plots by Allanach et al.]

- Mass ranges for SUSY particles
- Mass of the lightest Higgs boson compatible with LEP limit
- Discovery of SUSY at the LHC \Rightarrow Additional observables from collider data
 - ⇒ SFitter [Lafaye, Plehn, MR, Zerwas] (or Fittino [Bechtle, Desch, Wienemann])

Reconstructing the Supersymmetric Lagrangian

Eur. Phys. J. C54:617-644,2008

[arXiv:0709.3985]

What SFitter does

- Set of measurements
 - LHC measurements: kinematic edges, thresholds, masses, mass differences cross sections, branching ratios
 - ILC measurements
 - Indirect Constraints
 - electro-weak: M_W , $\sin^2 \theta_W$; $(g-2)_\mu$ flavour: BR $(b \to s\gamma)$, BR $(B_s \to \mu^+ \mu^-)$; dark matter: Ωh^2
 - or even ATLAS and CMS measurements separately
- Compare to theoretical predictions
 - Spectrum calculators: SoftSUSY, SuSPECT, ISASUSY

[Allanach; Djouadi, Kneur, Moultaka; Baer, Paige, Protopopescu, Tata]

LHC cross sections: Prospino2	[Plehn et al.]
LC cross sections: MsmLib	[Ganis]
 Branching Ratios: SUSYHit (HDecay + SDecay) 	[Djouadi, Mühlleitner, Spira]
micrOMEGAs	[Bélanger, Boudjema, Pukhov, Semenov]
● g-2	[Alexander, Stöckinger]
Using as glue: SLHAio	[Kreiss]

- MSSM parameter space is high-dimensional:
 - SM: 3+ parameters $(m_t, \alpha_s, \alpha, ...)$
 - mSUGRA: 5 parameters $(m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
 - General MSSM: 105 parameters
- On loop-level observables depend on every parameter Simple inversion of the relations not possible
 - \Rightarrow Parameter scans
- Error estimates on parameters in the minimum

- MSSM parameter space is high-dimensional:
 - SM: 3+ parameters $(m_t, \alpha_s, \alpha, ...)$
 - mSUGRA: 5 parameters $(m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
 - General MSSM: 105 parameters
- On loop-level observables depend on every parameter Simple inversion of the relations not possible
 - \Rightarrow Parameter scans
- Error estimates on parameters in the minimum

Find best points (best χ^2) using different fitting techniques:

Gradient search (Minuit) (+ Reasonably fast - Limited convergence, only best fit)

SFitter: Parameter Determination at the LHC

- MSSM parameter space is high-dimensional:
 - SM: 3+ parameters $(m_t, \alpha_s, \alpha, ...)$
 - mSUGRA: 5 parameters $(m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
 - General MSSM: 105 parameters
- On loop-level observables depend on every parameter Simple inversion of the relations not possible
 - \Rightarrow Parameter scans
- Error estimates on parameters in the minimum

Find best points (best χ^2) using different fitting techniques:

- Gradient search (Minuit) (+ Reasonably fast - Limited convergence, only best fit)
- fixed Grid scan $\begin{pmatrix} + \text{ scans complete parameter space} \\ \text{ many points needed } (\mathcal{O}(e^N)) \end{pmatrix}$

- MSSM parameter space is high-dimensional:
 - SM: 3+ parameters $(m_t, \alpha_s, \alpha, ...)$
 - mSUGRA: 5 parameters $(m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu))$
 - General MSSM: 105 parameters
- On loop-level observables depend on every parameter Simple inversion of the relations not possible
 - \Rightarrow Parameter scans
- Error estimates on parameters in the minimum

Find best points (best χ^2) using different fitting techniques:

- Gradient search (Minuit) (+ Reasonably fast - Limited convergence, only best fit)
 - fixed Grid scan $\begin{pmatrix} + \text{ scans complete parameter space} \\ \text{ many points needed } (\mathcal{O}(e^N)) \end{pmatrix}$
- Weighted Markov Chains

[Bechtle, Desch, Wienemann]

Markov Chains

Markov Chain (MC):

- Sequence of points, chosen by an algorithm (Metropolis-Hastings), only depending on its direct predecessor
- Picks a set of "average" points according to a potential V (e.g. inverse log-likelihood, $1/\chi^2$)
- Point density resembles the value of V (i.e. more points in region with high V)
- Scans high dimensional parameter spaces efficiently

[Baltz, Gondolo 2004]

mSUGRA MC scans with current exp. limits

[Allanach, Cranmer, Lester, Weber 2005-7; Roszkowski, Ruiz de Austra, Trotta 2006/7]

Weighted Markov Chains

Weighted Markov Chains:

Improved evaluation algorithm for binning:

- Weight points with value of V:
- Take care of
 - Overcounting because point density is already weighted $\left(\frac{\text{number of points}}{\sum_{\text{points}} 1/V(\text{point})}\right)$

[based on Ferrenberg, Swendsen 1988]

- Correct account for regions with zero probability (maintain additional chain which stores points rejected because V(point) = 0)
- + Fast scans of high-dimensional spaces $\mathcal{O}(N)$
- + Does not rely on shape of χ^2 (no derivatives used)
- + Can find secondary distinct solutions
- Exact minimum difficult to find \Rightarrow Additional gradient fit
- Bad choice of proposal function for next point leads to bad coverage of the space

[Plehn, MR]

Experimental Input (Edges)

mSUGRA SPS1a as a benchmark point:

 $m_0 = 100 \text{ GeV}$, $m_{1/2} = 250 \text{ GeV}$, $A_0 = -100 \text{ GeV}$, $\tan \beta = 10$, $\operatorname{sgn} \mu = +1$, $m_t = 171.4 \text{ GeV}$ LHC "experimental" data from cascade decays (best precision obtainable)

Measurement	Value	Errors (GeV)	
	(GeV)	(stat)	(syst)
(m_{llq}^{\max}) :Edge($ ilde{q}_L$, χ^0_2 , χ^0_1)	446.44	1.4	4.3
(m_{llq}^{\min}) :Thres($ ilde{q}_L$, χ^0_2 , $ ilde{\mu}_R$, χ^0_1)	211.95	1.6	2.0
$(m_{lq}^{ m low})$:Edge($ ilde{c}_L$, χ^0_2 , $ ilde{\mu}_R$)	316.51	0.9	3.0
(m_{lq}^{high}) :Edge($ ilde{c}_L, \chi^0_2, ilde{\mu}_R, \chi^0_1$)	392.80	1.0	3.8

Theoretical Errors:

- mSUGRA: 3% for gluino and squark masses, 1% for all other sparticle masses
- MSSM: 1% for gluino and squark masses, 0.5% for all other sparticle masses
- m_{h^0} : 2 GeV (unknown higher order terms)

mSUGRA as a Toy Model

mSUGRA with LHC measurements (SPS1a kinematic edges): pick one set of "measurements", randomly smeared from the true values

Free parameters:

 $m_0, m_{1/2}, \tan(\beta), A_0, \operatorname{sgn}(\mu), m_t$

SFitter output 1:

Fully-dimensional exclusive likelihood map (colour:

minimum χ^2 over all unseen parameters)

SFitter output 2: Ranked list of minima:

	χ^2	m_0	$m_{1/2}$	$\tan(eta)$	A_0	μ	m_t
SPS1a		100.0	250.0	10.0	-100.0	+	171.4
1)	0.09	102.0	254.0	11.5	-95.2	+	172.4
2)	1.50	104.8	242.1	12.9	-174.4	—	172.3
3)	73.2	108.1	266.4	14.6	742.4	+	173.7
4)	139.5	112.1	261.0	18.0	632.6	_	173.0

Error determination

Treatment of errors:

All experimental errors are Gaussian

$$\sigma_{\exp}^2 = \sigma_{\text{stat}}^2 + \sigma_{\text{syst}(j)}^2 + \sigma_{\text{syst}(l)}^2$$

Systematic errors from jet $(\sigma_{syst(j)})$ and lepton energy scale $(\sigma_{syst(l)})$ assumed 99% correlated each

Theory error added as box-shaped (RFit scheme [Hoecker, Lacker, Laplace, Lediberder])

$$\Rightarrow -2\log L \equiv \chi^2 = \sum_{\text{measurements}} \begin{cases} 0 & \text{for } |x_{\text{data}} - x_{\text{pred}}| < \sigma_{\text{theo}} \\ \left(\frac{|x_{\text{data}} - x_{\text{pred}}| - \sigma_{\text{theo}}}{\sigma_{\text{exp}}}\right)^2 & \text{for } |x_{\text{data}} - x_{\text{pred}}| \ge \sigma_{\text{theo}} \end{cases}$$

 \Rightarrow Parameter errors:

	SPS1a	$\Delta_{ m zero}^{ m theo-exp}$	$\Delta_{ m zero}^{ m theo-exp}$	$\Delta_{ m gauss}^{ m theo-exp}$	$\Delta_{\mathrm{flat}}^{\mathrm{theo-exp}}$
		LHC masses		LHC edges	
m_0	100	4.11	0.50	2.97	2.17
$m_{1/2}$	250	1.81	0.73	2.99	2.64
$\tan \beta$	10	1.69	0.65	3.36	2.45
A_0	-100	36.2	21.2	51.5	49.6
m_t	171.4	0.94	0.26	0.89	0.97

 \Rightarrow Use kinematic edges for parameter determination instead of masses

Weak-scale MSSM

- No need to assume specific SUSY-breaking scenario
 SUSY-breaking mechanism should be induced from data
- Use of Markov Chains makes scanning the 19-dimensional parameter space feasible
- Lack of sensitivity on one parameter does not slow down the scan (no need to fix parameters)
- Same SFitter output as before: Minima list and Likelihood map

Weak-scale MSSM

- No need to assume specific SUSY-breaking scenario ⇒ SUSY-breaking mechanism should be induced from data
- Use of Markov Chains makes scanning the 19-dimensional parameter space feasible
- Lack of sensitivity on one parameter does not slow down the scan (no need to fix parameters)
- Same SFitter output as before: Minima list and Likelihood map

Full scan of 19D parameter space challenging Four-step procedure yields better and faster results:

Weighted-Markov-Chain run with flat pdf over full parameter space
 5 best points additionally minimised
 (full scan, no bias on starting point)

Weak-scale MSSM

- No need to assume specific SUSY-breaking scenario SUSY-breaking mechanism should be induced from data
- Use of Markov Chains makes scanning the 19-dimensional parameter space feasible
- Lack of sensitivity on one parameter does not slow down the scan (no need to fix parameters)
- Same SFitter output as before: Minima list and Likelihood map

Full scan of 19D parameter space challenging Four-step procedure yields better and faster results:

- Weighted-Markov-Chain run with flat pdf over full parameter space
 5 best points additionally minimised
 (full scan, no bias on starting point)
- Weighted-Markov Chain with flat pdf on Gaugino-Higgsino subspace:
 M₁, M₂, M₃, μ, tan β, m_t
 Additional Minuit run with 15 best solutions

Search Strategy (2) - results

- Only three neutralinos (χ_1^0 , χ_2^0 , χ_4^0) with masses (97.2 GeV, 180.5 GeV, 375.6 GeV) and no charginos observable at the LHC in SPS1a
- ⇒ Mapping $(M_1, M_2, \mu) \rightarrow (\chi_1^0, \chi_2^0, \chi_4^0)$ not unique
- **9** sgn μ basically undetermined by collider data
- > 8 fold solution

Search Strategy (2) - results

- Only three neutralinos (χ_1^0 , χ_2^0 , χ_4^0) with masses (97.2 GeV, 180.5 GeV, 375.6 GeV) and no charginos observable at the LHC in SPS1a
- ⇒ Mapping $(M_1, M_2, \mu) \rightarrow (\chi_1^0, \chi_2^0, \chi_4^0)$ not unique
- $\operatorname{sgn} \mu$ basically undetermined by collider data
- > 8 fold solution

	$\mu < 0$					$\mu >$	· 0	
					SPS1a			
M_1	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3
M_2	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8
μ	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5
aneta	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1
M_3	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4
m_t	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4

Search Strategy (3+4)

Full scan of 19D parameter space challenging Four-step procedure yields better and faster results:

- Weighted-Markov-Chain run with flat pdf over full parameter space
 5 best points additionally minimised
 (full scan, no bias on starting point)
- Weighted-Markov Chain with flat pdf on Gaugino-Higgsino subspace:
 M₁, M₂, M₃, μ, tan β, m_t
 Additional Minuit run with 15 best solutions
- Weighted-Markov Chain with Breit-Wigner-shaped pdf on remaining parameters for all solutions of previous step Minimisation for best 5 points
- Minuit run for best points of last step keeping all parameters variable

Best points

		μ <	< 0		$\mu > 0$			
					SPS1a			
M_1	96.6	175.1	103.5	365.8	98.3	176.4	105.9	365.3
M_2	181.2	98.4	350.0	130.9	187.5	103.9	348.4	137.8
μ	-354.1	-357.6	-177.7	-159.9	347.8	352.6	178.0	161.5
aneta	14.6	14.5	29.1	32.1	15.0	14.8	29.2	32.1
M_3	583.2	583.3	583.3	583.5	583.1	583.1	583.3	583.4
$M_{ ilde{ au}_L}$	114.9	2704.3	128.3	4794.2	128.0	229.9	3269.3	118.6
$M_{\tilde{\tau}_R}$	348.8	129.9	1292.7	130.1	2266.5	138.5	129.9	255.1
$M_{ ilde{\mu}_L}$	192.7	192.7	192.7	192.9	192.6	192.6	192.7	192.8
$M_{\tilde{\mu}_R}$	131.1	131.1	131.1	131.3	131.0	131.0	131.1	131.2
$M_{\tilde{e}_L}$	186.3	186.4	186.4	186.5	186.2	186.2	186.4	186.4
$M_{\tilde{e}_R}^-$	131.5	131.5	131.6	131.7	131.4	131.4	131.5	131.6
$M_{\tilde{q}3_L}$	497.1	497.2	494.1	494.0	495.6	495.6	495.8	495.0
$M_{\tilde{t}_B}$	1073.9	920.3	547.9	950.8	547.9	460.5	978.2	520.0
$M_{\tilde{b}_B}$	497.3	497.3	500.4	500.9	498.5	498.5	498.7	499.6
$M_{\tilde{q}_L}^n$	525.1	525.2	525.3	525.5	525.0	525.0	525.2	525.3
$M_{\tilde{q}_R}$	511.3	511.3	511.4	511.5	511.2	511.2	511.4	511.5
$A_t(-)$	-252.3	-348.4	-477.1	-259.0	-470.0	-484.3	-243.4	-465.7
$A_t(+)$	384.9	481.8	641.5	432.5	739.2	774.7	440.5	656.9
m_A	350.3	725.8	263.1	1020.0	171.6	156.5	897.6	256.1
m_t	171.4	171.4	171.4	171.4	171.4	171.4	171.4	171.4

Degenerate Solutions

- In total 19 parameters constrained by 22 measurements
- Measurements constructed from only 15 underlying masses
- \blacksquare \Rightarrow Complete determination of parameter set not possible
- Five parameters not well constrained
 - m_A
 - $\leftarrow \text{ no heavy Higgses measurable}$
 - $M_{\tilde{t}_R}$
 - A_t

← stop sector parameters do not enter edge measurements

- $\ \ \, {\cal M}_{\tilde\tau_L} \ \, {\rm or} \ \, M_{\tilde\tau_R}$
 - $\leftarrow \text{ only the lighter stau measured}$
- $\tan\beta$

 \leftarrow change can always be accomodated by rotating M_1 , M_2 , $M_{\tilde{q}_3}$, ...

- Single common link: m_{h^0}
- \blacksquare \Rightarrow 4-dimensional hyperplane in parameter space undetermined
- Can still assign errors to some of the badly determined parameters

Error analysis

- Technical procedure as in mSUGRA case:
 - 10000 smeared data sets
 - Minimum determined for each data set individually
 - Error determined from fit with Gaussian
- Most constrained parameters determinable with $\sim 5\%$ accuracy
- Inclusion of theory errors leads to an increase of factor 2 on the parameter errors
- ILC data complementary to LHC
- Combination of the two experiments allows for precise determination of all parameters

	LHC		ILC	ILC		SPS1a
M_1	102.1±	7.8	103.0±	1.1	103.1±0.84	103.1
$M_{\tilde{e}_R}$	135.0±	8.3	135.8±	0.81	135.9±0.77	135.8
m_A	406.3± <i>O</i>	(10^3)	393.8±	1.6	393.9± 1.6	394.9
$M_{\tilde{t}_R}$	415.8± <i>O</i>	(10^2)	440.0± <i>O</i> ($4 \cdot 10^{2})$	410.7±48.4	408.3

difficult even in mSUGRA

	SPS1a	$\Delta_{ m zero}^{ m theo-exp}$	$\Delta_{\rm zero}^{\rm theo-exp}$ $\Delta_{\rm gauss}^{\rm theo-exp}$		$\Delta_{\rm flat}^{\rm theo-exp}$
		LHC masses		LHC edges	
aneta	10	1.69	0.65	3.36	2.45

profile likelihood:

difficult even in mSUGRA

- LHC rates: tan β from heavy Higgses (for large tan β) $\propto (tan β)^2$
 - \rightarrow in general: challenging
 - \rightarrow for SPS1a: no heavy Higgses observed

[Kinnunen, Lehti, Moortgat, Nikitenko, Spira]

- difficult even in mSUGRA
- LHC rates: $\tan \beta$ from heavy Higgses (for large $\tan \beta$)
- - $\propto (\tan\beta)^6$
 - LHCb will be able to probe the SM value
 - Errors largely theory-dominated (main source: f_{B_s} from lattice simulations)
 - In a simple proof-of-concept analysis: $\tan \beta = 30 \pm 6.5$

[Kinnunen, Lehti, Moortgat, Nikitenko, Spira]

[Jäger, Spannowsky, SFitter]

- difficult even in mSUGRA
- **LHC rates:** $\tan \beta$ from heavy Higgses (for large $\tan \beta$)
- anomaluos magnetic moment of the muon

[Kinnunen, Lehti, Moortgat, Nikitenko, Spira]

[Jäger, Spannowsky, SFitter]

[review: Stöckinger]

$\tan\beta$ from other sectors

Electro-weak sector: Anomalous Magnetic Moment of the Muon $(g-2)_{\mu}$ [Alexander, Kreiss, SFitter]

- Currently 3.4σ deviation from Standard Model
- Leading order $\simeq 130 \cdot 10^{-11} \tan \beta \, \mathrm{sgn}(\mu) \, \left(\frac{100 \, \mathrm{GeV}}{M_{\mathrm{SUSY}}}\right)^2$
- Sector Secto

	LHC	$LHC\otimes(g$	$(-2)\mu$	SPS1a
$\tan eta$	10.0± 4.5	10.3 ±	2.0	10.0
M_1	102.1± 7.8	102.7±	5.9	103.1
M_2	193.3± 7.8	193.2±	5.8	192.9
M_3	577.2±14.5	578.2±	12.1	577.9
μ	350.5±14.5	352.5±	10.8	353.7
$M_{ ilde{\mu}_R}$	135.0± 8.3	135.6±	6.3	135.8
$M_{{ ilde q}_R}$	507.3±17.5	507.6±	15.8	508.1

 \Rightarrow Need to combine information on $\tan\beta$ from all sectors

Determining Higgs boson couplings

JHEP, in print

[arXiv:0904.3866]

[SFitter, Dührssen]

Production Modes

Main Higgs-boson production modes:

Vector-Boson Fusion

Associated Production with a Gauge Boson $\swarrow^{q} \qquad \swarrow^{W,Z}$

Associated Production with Top-Quark–Antiquark Pair

- - Main decay mode ($\sim 90\%$) for light Higgs bosons, as suggested by electroweak precision data
 - Hard to extract from QCD backgrounds
 - Combination with *ttH* production difficult to observe because of combinatorial background (4 bottom quarks in final state)
 - Recent suggestion of WH/ZH production plus jet substructure analysis looks promising

[Butterworth, Davison, Rubin, Salam]

- - Main decay mode for heavier Higgs bosons $(m_H\gtrsim 140~{\rm GeV})$
 - Two leptonic decays of the W allow only reconstruction of transverse mass of the WW pair
 - Gluon and vector-boson fusion relevant even if Ws are off-shell

[CMS-TDR]

- - Golden Channel" due to four-lepton final state
 - Statistically limited to larger Higgs masses
- - Need to reconstruct invariant mass of the two taus
 - Limits production channel to vector-boson fusion
 - One of the discovery channels for light Higgs bosons

[Plehn, Rainwater, Zeppenfeld]

- - Loop-induced coupling by (mainly) W and t
 - Only fully reconstructable channel for a light Higgs boson
 - Small branching ratio ($\lesssim 0.2\%$)
 - Promising discovery channel for light Higgs bosons, background can be subtracted via sidebands

General Higgs Sector

- Theory: Standard Model plus general Higgs sector
- For Higgs couplings present in the Standard Model $j = W, Z, t, b, \tau$ replace general couplings by

$$g_{jjH} \longrightarrow g_{jjH}^{\mathrm{SM}} \left(1 + \Delta_{jjH}\right)$$

For loop-induced Higgs couplings $j = \gamma, g$ replace by

$$g_{jjH} \longrightarrow g_{jjH}^{\mathrm{SM}} \left(1 + \Delta_{jjH}^{\mathrm{SM}} + \Delta_{jjH}\right)$$

- where g_{jjH}^{SM} : (loop-induced) coupling in the Standard Model Δ_{jjH}^{SM} : contribution from modified tree-level couplings to Standard-Model particles Δ_{jjH} : additional (dimension-five) contribution
- Additional free parameters:
 - Higgs boson mass m_H
 - Top-quark mass m_t
 - Bottom-quark mass m_b
- Experimental input:
 - ATLAS study on Higgs couplings
 - Jet substructure analysis for WH/ZH, $H
 ightarrow bar{b}$

[Dührssen, references therein; ATLAS & CMS-TDR]

[Butterworth, Davison, Rubin, Salam]

Results

Can reconstruct Standard Model solution, alternative solutions due to sign degeneracy

See expected correlations (e.g. Δ_{ttH} vs Δ_{ggH})

Results

Non-decoupling Supersymmetric Higgs

SPS1a-inspired scenario with $t_{\beta} = 7$, $A_t = -1100 \text{ GeV}$, $m_A = 151 \text{ GeV}$, $m_{h^0} = 120 \text{ GeV}$ LHC data set with 30 fb^{-1} , Profile likelihood, true data set

- Clear deviation from Standard Model: $q(d_{SUSY}|m_{SM}) < q(d_{SM}|m_{SM})$: 70% at 90% CL
- Strong correlation between Δ_{bbH} and $\Delta_{\tau\tau H}$ via total width
- No upper limit on g_{bbH} as $BR \simeq 1$ compatible with data

Errors

- Statistical errors on individual channels of Poisson type
- Systematic errors (luminosity, tagging efficiency, ...) extracted from large event samples
 Gaussian
- Need to combine
 - Poisson $P_P(d,m) = \frac{\exp(-m)m^d}{\Gamma(d+1)}$ and
 - Gaussian $P_G(d, m, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(d-m)^2}{2\sigma^2})$ errors
- Mathematically correct way: convolution
- No analytic solution, numerical integration too time-consuming

$$\frac{1}{\tilde{\chi}^2} \equiv \frac{1}{-2\log L} = \sum_i \frac{1}{-2\log L_i}$$

- Yields exact formula for Gaussian-only (adding errors in quadrature)
- Gives correct result when one error approaches 0 or ∞

Errors

Approximate formula for Gauss and Poisson errors:

$$\frac{1}{\tilde{\chi}^2} = \frac{1}{-2\log L} = \sum_i \frac{1}{-2\log L_i}$$
$$\to \frac{1}{-2\log L_P} + \frac{1}{-2\log L_G}$$
$$= \frac{1}{-2\log P_P(d,m)/P_P(m,m)} + \frac{\sigma^2}{-2(d-m)^2}$$

• Example: Poisson(d = 5), Gauss($\sigma = 0.5$)

Solution $\Rightarrow \text{Very good agreement with exact convolution}$

Difference almost always positive \Rightarrow slight overestimation of Higgs-coupling errors (good!)

Determination of errors on couplings

Determination of errors on Higgs couplings:

- Perform 10,000 toy experiments with measurements smeared around correct value
- Minimise each toy experiment
- Plot resulting distribution of parameter points and fit with Gaussian

	full r	neasurem	ents	only	$t\bar{t}H$, H –	$\rightarrow b\overline{b}$
	$\sigma_{ m symm}$	$\sigma_{\sf neg}$ $\sigma_{\sf pos}$		$\sigma_{ m symm}$	$\sigma_{\sf neg}$	$\sigma_{\sf pos}$
m_H	± 0.25	-0.26	+0.25	± 0.25	-0.26	+0.25
$\Delta_{b\bar{b}H}$	± 0.44	-0.30	+0.59	± 0.78	-0.43	+0.84
Δ_{WWH}	± 0.24	-0.21	+0.27	± 0.33	-0.24	+0.43
$\Delta_{\tau\bar{\tau}H}$	± 0.31	-0.19	+0.46	± 0.39	-0.20	+0.60
Δ_{ggH}	± 0.61	-0.59	+0.62	± 0.66	-0.48	+0.82

- Can determine all couplings with good accuracy
- Subjet analysis crucial for precise determination of $g_{b\bar{b}H}$ Without this additional peak at $g_{b\bar{b}H} = 0$ (not fitted abvove)
- Accuracy on $g_{b\bar{b}H}$ feeds back into all other couplings via total width

Summary & Outlook

The SFitter program:

- High-dimensional parameter scans important to determine Lagrangian parameters from observables
- Improved Weighted Markov Chain algorithm can do this efficiently
- Two types of SFitter output: Likelihood map and list of best points

SUSY analysis :

- mSUGRA:
 - Can reconstruct SPS1a from (simulated) LHC data
 - Bayesian output significantly dependent on priors
- weak-scale MSSM:
 - Reconstruction works as well
 - Degenerate solutions in gaugino-higgsino-sector and
 - General underdetermination of parameter space, in particular $\tan \beta$
 - Additional $(g-2)_{\mu}$ measurement greatly reduces errors

Summary & Outlook

The SFitter program:

- High-dimensional parameter scans important to determine Lagrangian parameters from observables
- Improved Weighted Markov Chain algorithm can do this efficiently
- Two types of SFitter output: Likelihood map and list of best points

SUSY analysis

Higgs couplings analysis:

- Determining the Higgs-boson couplings next step after discovery Important for our understanding of electroweak symmetry breaking
- Independent of explicit realisation of new physics (if any): Standard Model with effective Higgs couplings
- Obtain Standard Model couplings within errors for SM scenario Clear deviation for non-degenerate SPS1a-inspired scenario
- Recent jet substructure analysis significantly improves result on bottom-quark coupling Influences accuracy of all other couplings via total width

Backup Slides

Metropolis-Hastings Algorithm

Experimental Input (edges)

(Obs)	= (meas) \pm (exp) \pm	\pm (theo)	
m_{h^0}	$= 109.53 \pm 0.25$	\pm 2.0	
m_t	$= 171.4 \pm 1.0 \pm$	\pm 0.0	
$\Delta m_{ ilde{\mu}_L,\chi_1^0}$	$= 106.26 \pm 1.6 \pm$	\pm 0.1	
$\Delta m_{ ilde{g},\chi_1^0}$	$= 509.96 \pm 2.3 \pm$	\pm 6.0	
$\Delta m_{\tilde{c}_R,\chi_1^0}$	$= 450.52 \pm 10.0 \pm$	\pm 4.2	
$\Delta m_{ ilde{g}, ilde{b}_1}$	$= 98.971 \pm 1.5 \pm$	\pm 1.0	
$\Delta m_{ ilde{g}, ilde{b}_2}$	$= 64.016 \pm 2.5 \pm$	\pm 0.7	
$Edge(\chi^0_2,\! ilde{\mu}_R,\!\chi^0_1)$	$= 79.757 \pm 0.03 \pm$	± 0.08	(m_{ll}^{\max})
$Edge(ilde{c}_L,\chi^0_2,\chi^0_1)$	$= 446.44 \pm 1.4 \pm$	\pm 4.3	(m_{llq}^{\max})
Edge($ ilde{c}_L, \chi^0_2, ilde{\mu}_R$)	$= 316.51 \pm 0.9 \pm$	\pm 3.0	$(m_{lq}^{ m low})$
Edge($ ilde{c}_L, \chi^0_2, ilde{\mu}_R, \chi^0_1$)	$= 392.8 \pm 1.0 \pm$	\pm 3.8	$(m_{lq}^{ m high})$
$Edge(\chi_4^0,\! ilde{\mu}_R,\!\chi_1^0)$	$= 257.41 \pm 2.3 \pm$	\pm 0.3	$(m_{ll}^{ m max}(\chi_4^0))$
$Edge(\chi_4^0,\! ilde{ au}_L,\!\chi_1^0)$	$= 82.993 \pm 5.0 \pm$	\pm 0.8	$(m_{ au au}^{ m max})$
Threshold($ ilde{c}_L$, χ^0_2 , $ ilde{\mu}_R$, χ^0_1	$) = 211.95 \pm 1.6 \pm$	\pm 2.0	(m_{llq}^{\min})
Threshold($ ilde{b}_1, \chi^0_2, ilde{\mu}_R, \chi^0_1$)	$0 = 211.95 \pm 1.6 \pm$	\pm 2.0	(m_{llb}^{\min})

mSUGRA around Minima – positive μ

SFitter: Parameter Determination at the LHC

mSUGRA around Minima – negative μ

Error determination

Minuit output not usable for flat theory errors:

- Migrad function depends on parabolic approximation
- Cannot determine $\Delta \chi^2$ for Minos to yield 68% CL intervals
- \Rightarrow Need more general approach
 - Perform 10,000 toy experiments with measurements smeared around correct value
 - Minimise each toy experiment
 - Plot resulting distribution of parameter points and fit with Gaussian

MSSM errors

	LHC	,	IL	С	LHC+I	LC	SPS1a
aneta	10.0±	4.5	13.4±	6.8	12.3±	5.3	10.0
M_1	102.1±	7.8	$103.0\pm$	1.1	$103.1\pm$	0.84	103.1
M_2	193.3±	7.8	193.4 \pm	3.1	193.2 \pm	2.3	192.9
M_3	577.2±	14.5	fixed	500	$579.7\pm$	12.8	577.9
$M_{\tilde{\tau}_L}$	227.8±0	$P(10^3)$	$183.8\pm$	16.6	$187.3\pm$	12.9	193.6
$M_{\tilde{\tau}_R}$	164.1± <i>C</i>	$P(10^3)$	$143.9\pm$	17.9	$140.1\pm$	14.1	133.4
$M_{\tilde{\mu}_L}$	193.2±	8.8	194.4 \pm	1.1	$194.5\pm$	1.0	194.4
$M_{\tilde{\mu}_R}^-$	135.0±	8.3	$135.9\pm$	1.0	$136.0\pm$	0.89	135.8
$M_{\tilde{e}_L}$	193.3±	8.8	194.4 \pm	0.89	194.4 \pm	0.84	194.4
$M_{\tilde{e}_R}^-$	135.0±	8.3	$135.8\pm$	0.81	$135.9\pm$	0.77	135.8
$M_{\tilde{q}3_L}$	481.4±	22.0	507.2±C	$\mathcal{O}(4 \cdot 10^2)$	$486.6\pm$	19.5	480.8
$M_{\tilde{t}_{R}}$	415.8± <i>C</i>	(10^2)	440.0 $\pm \mathcal{O}(4 \cdot 10^2)$		$410.7\pm$	48.4	408.3
$M_{\tilde{b}_{R}}^{n}$	501.7±	17.9	fixed	fixed 500		17.4	502.9
$M_{\tilde{q}_L}^n$	524.6±	14.5	fixed	500	526.1±	7.2	526.6
$M_{\tilde{q}_R}$	507.3±	17.5	fixed	500	$508.4\pm$	16.7	508.1
A_{τ}	fixed	0	$633.2\pm$	$\mathcal{O}(10^4)$	139.6±C	$P(10^4)$	-249.4
A_t	-509.1±	86.7	-516.1 \pm	$\mathcal{O}(10^3)$	-500.1 \pm	143.4	-490.9
A_b	fixed 0		fixe	d 0	-686.2±℃	$P(10^4)$	-763.4
m_A	406.3± <i>C</i> ∕	$P(10^3)$	$393.8\pm$	1.6	$393.9\pm$	1.6	394.9
μ	$350.5\pm$	14.5	$343.7\pm$	3.1	$354.8\pm$	2.8	353.7
m_t	171.4±	1.0	$171.4\pm$	0.12	$171.4\pm$	0.12	171.4

Dark Matter

Content of the universe:

- 73% Dark energy
- **9** 4% Ordinary matter
- 23% Dark matter

MSSM: χ_1^0 as LSP ideal candidate for cold dark matter (CDM): massive, weakly interacting

- SFitter: Determine Lagrangian parameters \Rightarrow Spectrum and couplings
- e.g. micrOMEGAs: Calculate relic density $\Omega_{CDM}h^2 = n_{LSP}m_{LSP}$
- Prediction of $\Omega_{CDM}h^2$ LHC : $\Omega_{CDM}h^2 = 0.1906 \pm 0.0033$ LHC+ILC: $\Omega_{CDM}h^2 = 0.1910 \pm 0.0003$ (improvement by one order of magnitude)
- Compare with experiment (Measurement of the fluctuations of the cosmic microwave background):

WMAP: $\Omega_{CDM}h^2 = 0.1277 \pm 0.008$ [astro-ph/0603449] Planck: $\Omega_{CDM}h^2 = ? \pm 0.0016$

[Bélanger et al.]

Michael Rauch

Testing Unification

Apparent unification of gauge coupling parameters in the MSSM

Question arises: Do other parameters unify as well?

- \Rightarrow Should be tested by bottom-up running from weak scale to Planck scale
- \Rightarrow Can give hints about supersymmetry breaking
 - (e.g. test scalar-mass sum rules with a sliding scale)

Bottom-up running of gaugino masses and 3rd-generation sfermion masses:

[Schmaltz et al.]

Testing Unification

Apparent unification of gauge coupling parameters in the MSSM

Question arises: Do other parameters unify as well?

- \Rightarrow Should be tested by bottom-up running from weak scale to Planck scale
- \Rightarrow Can give hints about supersymmetry breaking
 - (e.g. test scalar-mass sum rules with a sliding scale)

Bottom-up running of gaugino masses and 3rd-generation sfermion masses:

[Schmaltz et al.]

Example

Test function (5-dim):

- **Small Hypersphere** $r = 100, V_{\text{max}} = 75 @ (650, 250, 350, 350, 350)$
- **Cuboid** $d = (173, 120, 200, 200, 200), V_{max} = 60 @ (850, 225, 650, 650, 650)$
- **Cube** $d = (100, 100, 300, 300, 300), V_{max} = 25 @ (750, 750, 450, 450, 450)$
- **Gaussian** $\sigma = (50, 150, 150, 150, 150), V_{max} = 16 @ (250, 250, 550, 550)$
- **Big Hypersphere** r = 300, $V_{max} = 12$ **@** (350, 650, 650, 650, 650)
- **Background** $V = 0.1 + 4 \cdot 10^{-30} \cdot x_1^2 x_2^2 x_3^2 x_4^2 x_5^2$

Plot Details

- Parameters: $x_1, \ldots, x_5 \in [0, 1000]$
- Bins: 50×50
- PDF: Breit-Wigner $(\frac{1}{1+\Delta x_i^2/\sigma^2})$ with $\sigma = 100$
- Number of Markov chains: 9
- Number of points per chain: 10^7
- Number of function evaluations: 33, 797, 153
- Acceptance ratio: 0.19
- Final r (measure of convergence): 1.815
- CPU time (3 GHz): 150 min