$W Z_{\gamma}$ production at NLO QCD
in collaboration with F. Campanario, H. Rzehak and D. Zeppenfeld

Michael Rauch | March 2010

Institute for Theoretical Physics

Motivation

Physics motivation:

- Trilepton final state with missing transverse energy
\Rightarrow Background to searches beyond the Standard Model (e.g. SUSY)
- Possibility to obtain information about quartic gauge-boson couplings ($W W Z \gamma$ and $W W \gamma \gamma$)

Current Status

Triple vector-boson production part of NLO wishlist

- NLO QCD corrections to $Z Z Z$ production
- NLO QCD corrections to $W W Z$ production with leptonic decays
- NLO QCD corrections to $Z Z Z, W W Z, Z Z W, W W W$ production
[Binoth, Ossola, Papadopoulos, Pittau 08]
- NLO QCD corrections to $Z Z W, W W W$ production with leptonic decays
[Campanario, Hankele, Oleari, Prestel, Zeppenfeld 08]
- NLO QCD corrections to $W W \gamma, Z Z_{\gamma}$ production with leptonic decays
[Bozzi, Campanario, Hankele, Zeppenfeld 09]
- NLO QCD corrections to $W \gamma \gamma$ production
[Baur, Wackeroth, Weber in progress]
This Talk: with leptonic decays

Current Status

Triple vector-boson production part of NLO wishlist

- NLO QCD corrections to $Z Z Z$ production
- NLO QCD corrections to $W W Z$ production with leptonic decays
- NLO QCD corrections to $Z Z Z, W W Z, Z Z W, W W W$ production
[Binoth, Ossola, Papadopoulos, Pittau 08]
- NLO QCD corrections to $Z Z W$, $W W W$ production with leptonic decays
\rightarrow VBFNLO
[Campanario, Hankele, Oleari, Prestel, Zeppenfeld 08]
- NLO QCD corrections to $W W \gamma, Z Z_{\gamma}$ production with leptonic decays
[Bozzi, Campanario, Hankele, Zeppenfeld 09]
- NLO QCD corrections to $W \gamma \gamma$ production
[Baur, Wackeroth, Weber in progress]
This Talk: with leptonic decays

Current Status

Triple vector-boson production part of NLO wishlist

- NLO QCD corrections to $Z Z Z$ production
- NLO QCD corrections to $W W Z$ production with leptonic decays
- NLO QCD corrections to $Z Z Z, W W Z, Z Z W, W W W$ production
[Binoth, Ossola, Papadopoulos, Pittau 08]
- NLO QCD corrections to $Z Z W$, $W W W$ production with leptonic decays
- NLO QCD corrections to $W W \gamma, Z Z_{\gamma}$ production with leptonic decays
- NLO QCD corrections to $W \gamma \gamma$ production
[Baur, Wackeroth, Weber in progress]
- This Talk:

NLO QCD corrections to $W Z \gamma$ production with leptonic decays

$W Z_{\gamma}$ production

Karlssuhe Institute of Technology

- All resonant and non-resonant matrix elements as well as spin correlations of final state leptons included
- γ taken as real (otherwise part of $W Z Z$)
- Interference terms due to identical particles in the final state neglected
- All fermion mass effects neglected
- In total 71 Feynman graphs for LO and 194 for LO plus jet (\rightarrow real emission part) \Rightarrow helicity amplitude method
- Same building blocks for different Feynman graphs \Rightarrow Compute only once per phase-space point and reuse ("leptonic tensors")
- Hand-written code up to factor 10 faster than SHERPA

Checks - LO and LO+j Comparison

- Comparison with MadGraph pointwise in phase-space $\left(W^{+} Z_{\gamma}\right)$:
- Three qqV vertices

```
VBFNLO
MadGraph ratio of absolute values
```

- Two qqV vertices VBFNLO MadGraph ratio of absolute values
$2.67043931319751927 \cdot 10^{-6}+7.93930367436647552 \cdot 10^{-6} i$ $2.67043931319726770 \cdot 10^{-6}+7.93930367436614009 \cdot 10^{-6}{ }_{i}$
$1.0000000000000953 \simeq 1+10^{-13}$
$1.68921080432822916 \cdot 10^{-5}-1.82679493447941318 \cdot 10^{-5} \mathrm{i}$
$1.68921080432817664 \cdot 10^{-5}-1.82679493447928884 \cdot 10^{-5} \mathrm{i}$
$1.0000000000001021 \simeq 1+10^{-13}$
- One qqV vertex (s-channel)
VBFNLO
$-1.72717755320785464 \cdot 10^{-5}+1.65363967675760989 \cdot 10^{-5} \mathrm{i}$
MadGraph
$-1.72717755320779500 \cdot 10^{-5}+1.65363967675749198 \cdot 10^{-5} \mathrm{i}$
ratio of absolute values
$1.0000000000001041 \simeq 1+10^{-13}$
- Similar accuracy for all other process types ($W^{-} Z_{\gamma}, W^{+} Z_{\gamma j}, W^{-} Z_{\gamma j}$)
- Comparison with Sherpa and MadGraph/MadEvent integrated over phase-space (cross sections in ab)

process	VBFNLO	Sherpa	MadEvent
$W^{+} Z_{\gamma}$	327.87 ± 0.21	327.83 ± 0.19	325.95 ± 1.13
$W^{-} Z_{\gamma}$	219.04 ± 0.13	219.20 ± 0.13	217.58 ± 0.70
$W^{+} Z_{\gamma j}$	378.20 ± 0.68	379.42 ± 0.72	-
$W^{-} Z_{\gamma j}$	268.32 ± 0.25	268.02 ± 0.55	-

Catani-Seymour Dipole Subtraction

$$
\sigma_{\mathrm{NLO}}=\int \mathrm{d} \sigma_{\mathrm{NLO}}=\underbrace{\int_{m+1} \mathrm{~d} \sigma^{R}}_{\text {real emission }}+\underbrace{\int_{m}^{\mathrm{d} \sigma^{V}}}_{\text {virtual contributions }}
$$

$\int_{m+1} \mathrm{~d} \sigma^{R}$ and $\int_{m} \mathrm{~d} \sigma^{V}$ are separately infrared divergent in 4 dimensions
Divergences cancel in sum
\Rightarrow Introduce local counterterm $\mathrm{d} \sigma^{A}$ with the same singular behaviour as $\mathrm{d} \sigma^{R}$

$$
\sigma_{\mathrm{NLO}}=\int_{m+1}\left[\left.\mathrm{~d} \sigma^{R}\right|_{\epsilon=0}-\left.\mathrm{d} \sigma^{A}\right|_{\epsilon=0}\right]+\int_{m}\left[\mathrm{~d} \sigma^{V}+\int_{1} \mathrm{~d} \sigma^{A}\right]_{\epsilon=0}+\underbrace{\int_{m} \mathrm{~d} \sigma^{C}}_{\text {finite collinear term }}
$$

Numerical integration in 4 dimensions

Poles cancel
analytically

Checks - Cancellation of infrared divergencies

Catani-Seymour subtraction formalism:
$\sigma_{\mathrm{NLO}}=\int_{5+1}\left[\left.\mathrm{~d} \sigma^{R}\right|_{\epsilon=0}-\left.\mathrm{d} \sigma^{A}\right|_{\epsilon=0}\right]+\ldots$
About 1 million phase-space points

- Soft Divergencies

- Collinear Divergencies

Exact cancellation as we approach the relevant limits

Checks - Correspondence between (5) and (5+1)-particle PS

Constant terms can be shifted between virtual (cvirt) and finite-collinear (creal) part

Only sum physically meaningful: csum $=\mathrm{cvirt}+\operatorname{creal}=\frac{\pi^{2}}{3}-3$
Process $W^{+} \boldsymbol{Z} \gamma$, c.s. in ab

	cvirt $=\frac{4}{3} \pi^{2}-8$	cvirt $=-30$	cvirt $=+30$
$\sigma_{\text {virt }}$	450.32 ± 0.33	160.83 ± 0.16	654.85 ± 0.46
$\sigma_{\text {real }}$	184.81 ± 0.84	473.44 ± 0.84	-20.06 ± 0.74
$\sigma_{\text {tot }}$	635.13 ± 0.90	634.27 ± 0.86	634.79 ± 0.86

Comparison checks

- mapping of finite collinear terms onto (5+1)-particle PS
- consistency of settings between virtual and real emission calculation (α_{s}, colour factors, ...)

Checks \& Tricks - Shifting Polarization Vectors

Effective polarization vector of the vector boson can be split: $\epsilon_{V}^{\mu}=x_{V} q_{V}^{\mu}+\tilde{\epsilon}_{V}^{\mu}$ Use identity

to shift contributions from pentagons to boxes
Box integration quicker
Can use less MC points for pentagons for same final accuracy
Best choice (by trying): $\tilde{\epsilon}_{V}^{\mu} \cdot\left(q_{\mu}^{W}+q_{\mu}^{Z}\right)=0$
Cross-check (Process $W^{+} Z \gamma$, c.s. in ab):

c.s. in ab	with shift	no shift	single int.
born-virtual	402.6	402.6	-
boxes	38.7	33.6	-
pentagons	9.0	13.9	-
sum	450.3	450.2	450.2
error	0.3	0.3	0.3

Photon Isolation

Simple (e.g. R) separation cut between photon and jet not infrared safe:

- Complete divergence in virtual part (integration over loop momentum)
- Part of divergence in real part removed by separation cuts
- \Rightarrow Cancellation of infrared divergencies between virtual and real part broken

Use Frixione cut (infrared safe):

$$
\sum_{i} E_{T_{i}} \Theta\left(\delta-R_{i \gamma}\right) \leq p_{T_{\gamma}} \frac{1-\cos \delta}{1-\cos \delta_{0}} \quad\left(\text { for all } \quad \delta \leq \delta_{0}\right)
$$

$\delta_{0}=0.7$ is fixed separation cut

- Sufficiently soft parton ($E_{T_{i}}$ small)
\rightarrow arbitrarily close to photon axis possible
- Collinear parton ($R_{i \gamma}=0$)
\rightarrow only accepted for vanishing energy

Numerical Results - Gauge dependence

No distinction between e and μ in the final state \Rightarrow multiplicity factor 4
Scale choice $\mu_{0}=$ invariant mass of $W Z \gamma$ system
Combined factorization and renormalization scale dependence $\mu=\mu_{F}=\mu_{R}=\xi \mu_{0}$

Numerical Results - Distributions

Transverse momentum distribution of the photon (solid red: LO; dashed blue: NLO)

- K-factor varies strongly over photon momentum
- Simple rescaling of LO cross section not a good approximation
- \Rightarrow Need NLO differential distributions

Numerical Results - Distributions

Transverse momentum of lepton 1 and 2 (p_{T}-ordered) (solid red: LO; dashed blue: NLO)

Conclusions

- NLO QCD corrections to $W^{ \pm} Z \gamma$ with leptonic decays evaluated
- All off-shell effects included
- Important background for supersymmetry Test of $W W Z \gamma$ and $W W \gamma \gamma$ gauge couplings in SM
- Sizable K-factors, strong variation within distributions
\Rightarrow simple multiplication of LO result with K-factor not a good approximation

Outlook:

- Calculation of $W^{ \pm} \gamma \gamma, Z \gamma \gamma$ and $\gamma \gamma \gamma$ in progress [Bozzi, Campanario, MR, Zeppenfeld]

Experimental cuts

Experimental values:

$$
\begin{array}{cc}
p_{j}^{T}>20 \mathrm{GeV} & \left|\eta_{j}\right|<4.5 \\
p_{l}^{T}>20 \mathrm{GeV} & \left|\eta_{l}\right|<2.5 \\
p_{\gamma}^{T}>10 \mathrm{GeV} & \left|\eta_{\gamma}\right|<2.5 \\
\Delta m_{/ /}>15 \mathrm{GeV} \quad \Delta R_{\| /}>0.3 & \Delta R_{l \gamma}>0.4 \quad \Delta R_{j \gamma}>0.4 \\
\Delta R_{p \gamma, \text { Frixione }}=0.7 & \text { Eff.Frixione }=1.0 \\
m_{W}=80.398 \mathrm{GeV} & m_{Z}=91.1876 \mathrm{GeV} \\
\text { PDFs : LO : CTEQ611 } & \text { NLO : CTEQ6m }
\end{array}
$$

Numerical Results - Distributions

Missing transverse momentum
(solid red: LO; dashed blue: NLO)

