

Bestimmung der Higgsboson-Eigenschaften

Michael Rauch | 18. November 2011

INSTITUT FÜR THEORETISCHE PHYSIK

www.kit.edu

Bislang beobachtete Teilchen

- Materieteilchen: Quarks, Leptonen
- Kraftteilchen: Photon, W/Z-Boson, Gluon

Mathematische Formulierung: Eichtheorie $(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y)$

$$\begin{split} \mathcal{L} &= \sum_{L} \bar{\psi}_{L} i \not{D}_{L} \psi_{L} + \sum_{R} \bar{\psi}_{R} i \not{D}_{R} \psi_{R} \\ &- \frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \end{split}$$

$$\begin{split} D^{\mu}_{L} &= \partial^{\mu} + ig_{s}t^{a}G^{a,\mu} + ig'\frac{Y}{2}B^{\mu} - igt^{a}W^{a,\mu} \\ D^{\mu}_{R} &= \partial^{\mu} + ig_{s}t^{a}G^{a,\mu} + ig'\frac{Y}{2}B^{\mu} \end{split}$$

Bislang beobachtete Teilchen

- Materieteilchen: Quarks, Leptonen
- Kraftteilchen: Photon, W/Z-Boson, Gluon

Mathematische Formulierung: Eichtheorie $(SU(3)_c \otimes \frac{SU(2)_L}{2} \otimes \frac{U(1)_Y}{2})$

linkshändige Fermionen rechtshändige Fermionen

$$\begin{aligned} \mathcal{L} &= \sum_{L} \bar{\psi}_{L} i \not{D}_{L} \psi_{L} + \sum_{R} \bar{\psi}_{R} i \not{D}_{R} \psi_{R} \\ &- \frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ & \text{Gluon} \end{aligned}$$

Karlsruher Institut für Technologie

wobei

$$\begin{split} D_{L}^{\mu} &= \partial^{\mu} + ig_{s}t^{a}G^{a,\mu} + ig'\frac{Y}{2}B^{\mu} - \underbrace{igt^{a}W^{a,\mu}}_{\text{schwache Wechselwirkung}} \\ D_{R}^{\mu} &= \partial^{\mu} + ig_{s}t^{a}G^{a,\mu} + ig'\frac{Y}{2}B^{\mu} \quad \begin{array}{c} \text{schwache Wechselwirkung} \\ \text{maximal paritätsverletzend [Wu]} \\ \end{split}$$

Bislang beobachtete Teilchen

- Materieteilchen: Quarks, Leptonen
- Kraftteilchen: Photon, W/Z-Boson, Gluon

Mathematische Formulierung: Eichtheorie $(SU(3)_c \otimes \frac{SU(2)_L}{2} \otimes \frac{U(1)_Y}{2})$

linkshändige Fermionen rechtshändige Fermionen

$$\begin{aligned} \mathcal{L} &= \sum_{L} \bar{\psi}_{L} i \not{D}_{L} \psi_{L} + \sum_{R} \bar{\psi}_{R} i \not{D}_{R} \psi_{R} \\ &- \frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ & \text{Gluon} \end{aligned}$$

Karlsruher Institut für Technologie

wobei

$$\begin{split} D_{L}^{\mu} &= \partial^{\mu} + ig_{s}t^{a}G^{a,\mu} + ig'\frac{Y}{2}B^{\mu} - \underbrace{igt^{a}W^{a,\mu}}_{\text{schwache Wechselwirkung}} \\ D_{R}^{\mu} &= \partial^{\mu} + ig_{s}t^{a}G^{a,\mu} + ig'\frac{Y}{2}B^{\mu} \xrightarrow{\text{schwache Wechselwirkung}}_{\text{maximal paritätsverletzend [Wu]} \\ \text{keine Massenterme Fermion:} \quad \mathcal{L}_{\text{mass},f} &= -m_{f}(\bar{\psi}_{L}\psi_{R} + \bar{\psi}_{R}\psi_{L} \\ &= \operatorname{Eichboson:} \quad \mathcal{L}_{\text{mass},V} &= -\frac{m_{V}^{2}}{2}V_{\mu}V^{\mu} \end{split}$$

Spontane Symmetriebrechung

Lösung: Spontane Symmetriebrechung

Idee: zusätzliches Feld Φ sodass \mathcal{L} invariant unter Eichtransformationen aber Grundzustand nicht

 \Rightarrow nichtverschwindender Vakuumerwartungswert von Φ

Bsp. Ferro-Magnetismus:

- $T > T_c$: keine Magnetisierung \rightarrow Drehsymmetrie
- $T < T_c$: spontane Magnetisierung \rightarrow ausgezeichnete Richtung, Symm. gebrochen

Spontane Symmetriebrechung

Lösung: Spontane Symmetriebrechung

Idee: zusätzliches Feld Φ sodass ${\cal L}$ invariant unter Eichtransformationen aber Grundzustand nicht

 \Rightarrow nichtverschwindender Vakuumerwartungswert von Φ

Bsp. Ferro-Magnetismus:

- $T > T_c$: keine Magnetisierung \rightarrow Drehsymmetrie
- $T < T_c$: spontane Magnetisierung \rightarrow ausgezeichnete Richtung, Symm. gebrochen

Feldtheorie:

- globale kontinuierliche Symmetrie: masseloses Goldstone-Boson für jeden gebrochenen Generator
- lokale Eichsymmetrie: durch Eichtransformation eliminiert (would-be Goldstone-Bosonen) longitudinale Moden der Eichbosonen

$$\mathcal{L} \propto -\mu^2 (\Phi^\dagger \Phi) - \lambda (\Phi^\dagger \Phi)^2$$

Spontane Symmetriebrechung

Lösung: Spontane Symmetriebrechung

Idee: zusätzliches Feld Φ sodass ${\cal L}$ invariant unter Eichtransformationen aber Grundzustand nicht

 \Rightarrow nichtverschwindender Vakuumerwartungswert von Φ

Bsp. Ferro-Magnetismus:

- $T > T_c$: keine Magnetisierung \rightarrow Drehsymmetrie
- $T < T_c$: spontane Magnetisierung \rightarrow ausgezeichnete Richtung, Symm. gebrochen

Feldtheorie:

- globale kontinuierliche Symmetrie: masseloses Goldstone-Boson für jeden gebrochenen Generator
- lokale Eichsymmetrie: durch Eichtransformation eliminiert (would-be Goldstone-Bosonen) longitudinale Moden der Eichbosonen

$$\mathcal{L} \propto -\mu^2 (\Phi^\dagger \Phi) - \lambda (\Phi^\dagger \Phi)^2$$

Higgs-Mechanismus im Standardmodell

Standardmodell: Higgs-Mechanismus [Higgs; Guralnik, Hagen, Kibble; Englert, Brout 1964] (basierend auf ähnlichen Ideen in der Festkörperphysik) [Anderson 1963]

• Füge Higgsfeld als SU(2)-Dublett mit Hyperladung +1 ein:

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \mathbf{G}^+ \\ \frac{1}{\sqrt{2}}(\mathbf{v} + \mathbf{H} + i\mathbf{G}^0) \end{pmatrix}$$

Higgs-Mechanismus im Standardmodell

Standardmodell: Higgs-Mechanismus

[Higgs; Guralnik, Hagen, Kibble; Englert, Brout 1964]

(basierend auf ähnlichen Ideen in der Festkörperphysik)

• Füge Higgsfeld als *SU*(2)-Dublett mit Hyperladung +1 ein:

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \mathsf{G}^+ \\ \frac{1}{\sqrt{2}}(\mathsf{v} + \mathsf{H} + \mathsf{i}\mathsf{G}^0) \end{pmatrix}$$

- Bricht $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{em} (\rightarrow Photon masselos)$
- $G^{\pm}, \ G^0 \rightarrow$ longitudinale Moden von W^{\pm}, Z
- *H* reelles Skalarfeld → Higgs-Boson
- $v = \frac{2M_W}{e\sqrt{1-\frac{M_W^2}{M_Z^2}}} \simeq 246 \text{ GeV}$ Vakuumerwartungswert
- Beitrag zur Lagrangedichte:

$$\begin{split} \mathcal{L}_{H} &= (D_{L,\mu} \Phi)^{\dagger} (D_{L}^{\mu} \Phi) \\ &+ \frac{m_{H}^{2}}{2} \Phi^{\dagger} \Phi - \frac{m_{H}^{2}}{2v^{2}} (\Phi^{\dagger} \Phi)^{2} \\ &- (\lambda_{\ell} \bar{L} \Phi e_{R} + \lambda_{u} \bar{Q} \Phi^{c} u_{R} + \lambda_{d} \bar{Q} \Phi d_{R} + h.c.) \end{split}$$

[Anderson 1963]

Yukawa-Kopplung an Fermionen

Higgs-Mechanismus im Standardmodell

Standardmodell: Higgs-Mechanismus [Higgs; Guralnik, Hagen, Kibble; Englert, Brout 1964]

• Füge Higgsfeld als SU(2)-Dublett mit Hyperladung +1 ein:

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \mathsf{G}^+ \\ \frac{1}{\sqrt{2}}(\mathsf{v} + \mathsf{H} + \mathsf{i}\mathsf{G}^0) \end{pmatrix}$$

Beitrag zur Lagrangedichte:

$$\begin{aligned} \mathcal{L}_{H} &= (D_{L,\mu} \Phi)^{\dagger} (D_{L}^{\mu} \Phi) \\ &+ \frac{m_{H}^{2}}{2} \Phi^{\dagger} \Phi - \frac{m_{H}^{2}}{2v^{2}} (\Phi^{\dagger} \Phi)^{2} \\ &- (\lambda_{\ell} \bar{L} \Phi e_{R} + \lambda_{u} \bar{Q} \Phi^{c} u_{R} + \lambda_{d} \bar{Q} \Phi d_{R} + h.c.) \\ \frac{\text{SSB}}{=} \frac{1}{2} (\partial_{\mu} H) (\partial^{\mu} H) - \frac{m_{H}^{2}}{2} H^{2} - \frac{m_{H}^{2}}{2v} H^{3} - \frac{m_{H}^{2}}{8v^{2}} H^{4} \\ &- (\text{Massen- und WW-terme mit Eichbosonen}) \\ &- \sum_{\text{Fermionen}} \frac{\lambda_{f}}{\sqrt{2}} (v + H) \bar{\psi}_{f} \psi_{f} \\ \\ \text{Massenterm} (m_{f} = \frac{\lambda_{f} v}{\sqrt{2}}) & \text{Fermion-Higgs-Kopplung} \end{aligned}$$

Unitaritätsverletzung

Higgs löst weiteres Problem:

Iongitudinale W-Streuung ohne Higgs

Hochenergielimes: Schwerpunktsenergie $\sqrt{S} \to \infty$ Wirkungsquerschnitt divergiert $\sigma \propto S \to \infty$

zusätzliche Higgs-Diagramme

heben Divergenz exakt weg $\sigma \propto 1/S \rightarrow 0$

Auftreten der Unitaritätsverletzung $O(1 \text{ TeV}) \Rightarrow$ zugänglich bei LHC-Energien

Vor-LHC Status

- Direkte Suchen bei LEP und Tevatron
 - \rightarrow kein Higgs in getesteten Massenbereichen
- Higgs erzeugt indirekte Effekte durch Auftreten in Schleifenkorrekturen $\propto \log M_H^2$
 - \Rightarrow Vorhersage möglich

Η

Erzeugungskanäle des Higgs

Haupt-Higgsboson-Erzeugungskanäle:

- Vektorboson-Fusion $\frac{q}{W,Z}$ $\frac{W,Z}{q}$ $\frac{W,Z}{q}$
- Assoziierte Erzeugung mit Top-Quark–Antiquark-Paar

Higgs-Zerfallskanäle

- $H \rightarrow b\bar{b}$
 - Haupt-Zerfallskanal (~ 90%) f
 ür leichte Higgsbosonen ($m_H \leq 140 \text{ GeV}$), wie von experimentellen Daten bevorzugt
 - schwer aus QCD-Untergründen zu rekonstruieren
 - kürzlicher Vorschlag von WH/ZH Produktion plus Jet-Substruktur-Analyse vielversprechend $(3.7\sigma @ 30 \text{ fb}^{-1} \& 14 \text{ TeV})$

[Butterworth, Davison, Rubin, Salam; ATL-PHYS-PUB-088]

 $H \to \tau \bar{\tau}$

- Rekonstruktion der invarianten Masse der beiden Taus notwendig
 - → beschränkt Produktionskanal auf
 - Vektorboson-Eusion
- einer der Entdeckungskanäle f
 ür leichte Higgsbosonen

Higgs-Zerfallskanäle

- $H \rightarrow b\bar{b}$
- $H \to \tau \bar{\tau}$
- $H \rightarrow WW$
 - Hauptzerfallskanal für schwerere Higgsbosonen $(m_H\gtrsim 140~{
 m GeV})$
 - Gluon- und Vektorboson-Fusion relevant selbst f
 ür off-shell Ws
- $H \rightarrow ZZ$
 - "Goldener Kanal" aufgrund des Vier-Lepton-Endzustands
 - statistisch limitiert auf höhere Higgsmassen

• $H \rightarrow \gamma \gamma$

M_H [GeV]

Branching ratios

10

10-2

10⁻³ 100 120 140 160 180 200

Higgs-Zerfallskanäle

- $H \rightarrow b\bar{b}$
- $\bullet \ H \to \tau \bar{\tau}$
- $H \rightarrow WW$
- $H \rightarrow ZZ$
- $\bullet \ H \to \gamma \gamma$
 - schleifeninduzierte Kopplung durch (hauptsächlich) W und t
 - einziger voll rekonstruierbarer Kanal f
 ür leichte Higgsbosonen
 - kleines Verzweigungsverhältnis ($\lesssim 0.2\%$)
 - vielversprechender Entdeckungskanal f
 ür leichte Higgsbosonen,

Untergrund kann über Seitenbänder subtrahiert werden

 Higgs-Massenbestimmung bis zu 100 MeV genau

Higgs-Suchen am LHC

Karlsruher Institut für Technologie

Higgs-Ereignisse am LHC

Erstes Higgs-Ereignis im CMS-Detektor am 04. April 2008

Higgs-Suchen am LHC

Higgs-Ereignisse am LHC

Erstes Higgs-Ereignis im CMS-Detektor am 04. April 2008

• "Higgs-Kandidat" ($e^+e^-\mu^+\mu^-$) in CMS

ATLAS

CMS

Tevatron

Entdeckungsaussichten

Higgseigenschaften

Ist beobachtete Resonanz wirklich "Higgs"?

Spin-0-Teilchen Spin-1 ausgeschlossen durch $H \rightarrow \gamma \gamma$ Spin-2: betrachte Winkelverteilungen

[Landau-Yang theorem] [Hagiwara, Mawatari, Li; Frank, MR, Zeppenfeld]

Spin-2 Teilchen

Effektive Theorie \rightarrow allg. Dimension-5-Operatoren Übergang zur vollen Theorie an Skala Λ Spin-2-Teilchen T koppelt nur an elektroschwachen Sektor

$$\mathcal{L}_{\text{Spin-2}} = \frac{1}{\Lambda} T_{\mu\nu} \left(f_1 B^{\sigma\nu} B_{\mu\sigma} + f_2 W_a^{\sigma\nu} W_{\sigma}^{a\nu} + 2f_5 (D^{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) \right)$$

Betrachte Vektorboson-Fusion mit Zerfall in Photon-Paar

 \rightarrow Unterscheidung am LHC möglich aber: keine Unitarisierung longitudinaler *WW*-Streuung

[Frank, MR, Zeppenfeld] [Frank, Schissler, Zeppenfeld]

Higgseigenschaften

Ist beobachtete Resonanz wirklich "Higgs"?

- Spin-0-Teilchen Spin-1 ausgeschlossen durch $H \rightarrow \gamma \gamma$ Spin-2: betrachte Winkelverteilungen
- CP-Eigenschaft

erweiterte Higgssektoren auch CP-ungerade oder gemischte Zustände betrachte Winkelverteilungen

[Hagiwara, Mawatari, Li; Frank, MR, Zeppenfeld]

[Plehn, Rainwater, Zeppenfeld; Klämke, MR, Zeppenfeld]

[Choi, Eberle, Miller, Mühlleitner, Zerwas]

[Englert, Hackstein, Spannowsky]

[Landau-Yang theorem]

Higgseigenschaften

Ist beobachtete Resonanz wirklich "Higgs"?

- Spin-0-Teilchen Spin-1 ausgeschlossen durch $H \rightarrow \gamma \gamma$ Spin-2: betrachte Winkelverteilungen
- CP-Eigenschaft

[Hagiwara, Mawatari, Li; Frank, MR, Zeppenfeld]

SM-Higgs CP-gerade erweiterte Higgssektoren auch CP-ungerade oder gemischte Zustände betrachte Winkelverteilungen [Plehn, Rainwater, Zeppenfeld; Klämke, MR, Zeppenfeld]

[Choi, Eberle, Miller, Mühlleitner, Zerwas]

[Englert, Hackstein, Spannowsky]

[Landau-Yang theorem]

Kopplungen

- Unitarität in W_LW_L → W_LW_L-Streuung
 - \longrightarrow Kopplung $g_{WWH} \propto m_W$ festgelegt
- Fermionmassen

 $\longrightarrow g_{f\bar{f}H} \propto m_f$

Higgs-Selbstkopplungen

bestimmen Form des Higgspotentials über 3- und 4-Higgs-Kopplungen Operatoren höherer Ordnung (Skala neuer Physik Λ):

$$V(\Phi) = \sum_{n \ge 0} \frac{\tilde{\lambda}^n}{\Lambda^{2n}} \left(|\Phi|^2 + \frac{v^2}{2} \right)^{2+1}$$

Higgs-Selbstwechselwirkungen

Vermessung des Higgs-Potentials über Higgs-Selbstwechselwirkung

3-Higgs-Kopplung λ_3

[Baur, Plehn, Rainwater; Djouadi, Mühlleitner, Kilian, Zerwas] [Miller, Moretti; Castanier, Gay, Lutz, Orloff]

Н

Collider (\sqrt{S})	Genauigkeit	Vertrauensniveau	Luminosität
LHC (14 TeV)	$\lambda_3 eq 0$	95%	300 fb ⁻¹
SLHC (14 TeV)	$\delta\lambda_{3}\gtrsim$ 20%	95%	3 ab^{-1}
VLHC (200 TeV)	$\delta\lambda_{3}\lesssim$ 10%	95%	1 ab ⁻¹
ILC (500 GeV)	$\delta\lambda_{3}pprox$ 20%	1σ	1 ab ⁻¹
CLIC (3 TeV)	$\delta\lambda_3 \approx 8\%$	1σ	5 ab ⁻¹

4-Higgs-Kopplung λ_4

[Plehn, MR; Binoth, Karg, Kauer, Rückl; CLIC WG]

verallgemeinerte Kopplungen (λ_3 , λ_4) Collider: VLHC ($\sqrt{S} = 200 \text{ TeV}$); $M_H = 120 \text{ GeV}$; $\sigma_{\text{SM}} = 9.45 \text{ fb}$ (Wirkungsquerschnitt zu klein für e^+ - e^- -Collider (ILC, CLIC))

—> große Herausforderung f
ür LHC und dar
über hinaus

Verallgemeinerter Higgssektor

Wie gut können wir die SM-Higgskopplungen bestimmen? Können wir ein nicht-Standardmodell-artiges Higgs unterscheiden?

- Theorie: Standardmodell plus verallgemeinerter Higgssektor
- Für im Standardmodell vorhandene Higgskopplungen $j = W, Z, t, b, \tau$ ersetze Kopplungen durch

 $g_{jjH} \longrightarrow g^{SM}_{jjH} \ (1 + \Delta_{jjH}) \qquad (\rightarrow \Delta = -2 \text{ bedeutet Vorzeichenwechsel})$

• Für schleifeninduzierte Higgskopplungen $j = \gamma, g$ ersetze durch

$$g_{jjH} \longrightarrow g^{ ext{SM}}_{jjH} \, \left(1 + \Delta^{ ext{SM}}_{jjH} + \Delta_{jjH}
ight)$$

wobei g_{jjH}^{SM} : (schleifeninduzierte) Kopplung im Standardmodell Δ_{jjH}^{SM} : Beitrag von modifizierter Baumgraph-Kopplung an Standardmodellteilchen

Δ_{ijH}: zusätzlicher (Dimension-fünf-)Beitrag

- Zusätzliche freie Parameter:
 - Higgsboson-Masse m_H
 - Top- und Bottomquark-Masse m_t, m_b
- Vernachlässige Kopplungen, die nur von Analysen mit hoher integrierter Luminosität verfügbar sind (g_{Hµµ}, g^{eff}_{HZ¬γ}, g_{HHH}, g_{HHHH})

M. Rauch - Bestimmung der Higgsboson-Eigenschaften

17/33

SFitter

- Benötige Scans hoch-dimensionaler Parameterräume
- ⇒ SFitter
- Verallgemeinerte Higgskopplungen aus modifizierter Version von HDecay [Spira]
- Vier Scantechniken:
 - Gewichtete Markovketten
 - Gekühlte Markovketten (äguivalent zu Simulierter Abkühlung)
 - Gradientenminimierung (Minuit)
 - Nested Sampling
- Ausgabe von SFitter:
 - Volldimensionale Log-likelihood-Karte
 - Reduzierung auf darstellbare ein- oder zwei-dimensionale Verteilungen über
 - Bavesische (Marginalisierung) or
 - Frequentist (Profile-likelihood) Techniken
 - Liste der besten Punkte
- Bereits erfolgreich f
 ür SUSY Parameterbestimmungsstudien benutzt

[Skilling: Feroz, Hobson]

18 November 2011

[Lafaye, Plehn, MR, Zerwas]

Higgs am LHC

[Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

[Lafaye, Plehn, MR, Zerwas, Dührssen 2009]

Totale Breite

• Entartung
$$\sigma \cdot BR \propto g_{\rho}^2 \frac{g_d^2}{\Gamma_H}$$
 ($\Gamma_H \propto g^2$)

0

• Hier:
$$\Gamma_H = \Sigma_{SM} \Gamma_i$$

Fehleranalyse

Fehler mit Hilfe von 10.000 Toyexperimenten ermittelt:

SM-Hypothese, $m_H = 120 \text{ GeV}, \mathcal{L} = 30 \text{ fb}^{-1}$

Fit mit Gaussverteilung der zentralen Regionen innerhalb einer Standardabweichung

Fehleranalyse

Fehler mit Hilfe von 10.000 Toyexperimenten ermittelt: SM-Hypothese, $m_H = 120 \text{ GeV}, \mathcal{L} = 30 \text{ fb}^{-1}$ Fit mit Gaussverteilung der zentralen Regionen innerhalb einer Standardabweichung

ohne eff. Kopplungen mit eff. Kopplungen Verhältnis AjjH / WWH $\sigma_{\rm symm}$ $\sigma_{\rm neg}$ $\sigma_{\rm symm}$ $\sigma_{\rm neg}$ $\sigma_{\rm neg}$ $\sigma_{\rm pos}$ $\sigma_{\rm pos}$ $\sigma_{
m symm}$ $\sigma_{\rm pos}$ Δ_{WWH} ± 0.23 0.21 + 0.26 ± 0.24 -0.21 + 0.27 ± 0.36 $-0.40 \pm 0.35 \pm 0.31$ -0.35 + 0.29 ± 0.41 -0.40 + 0.41 Δ_{77H} Δ_{ttH} +0.41 -0.37 ± 0.45 +0.53 $-0.65 \pm 0.43 \pm 0.51$ -0.54 + 0.48 ± 0.45 $-0.33 \pm 0.56 \pm 0.44$ $-0.30 \pm 0.59 \pm 0.31$ -0.24 + 0.38 Δ_{bbH} ± 0.33 $0.21 + 0.46 \pm 0.31$ -0.19 ± 0.46 +0.28-0.16 + 0.40 $\Delta_{\tau\tau H}$ $-0.30 \pm 0.33 \pm 0.30$ -0.27 + 0.33 $\Delta_{\gamma\gamma H}$ ± 0.31 ± 0.61 -0.59 + 0.62 $\pm 0.6^{\circ}$ -0.71 + 0.46 Δ_{ggH}

Unsichtbar vs. unbeobachtet

Unsichtbare Higgszerfälle sind beobachtbar

- Vektorboson-Fusion: Tagging Jets plus fehlende Transversalenergie [Eboli, Zeppenfeld]
- WH/ZH: Rückstoß gegen nichts [Choudhury, Roy; Godbole, Guchait, Mazumdar, Moretti, Roy]

Unbeobachtbare Zerfälle in Teilchen mit großem Untergrund (wie H → jets) z.B. erhöhte ccH Kopplung (entsprechend 15.4 GeV Yukawakopplung)

Unsichtbar vs. unbeobachtet

Higgs-Portal

Zusätzlicher versteckter Sektor als Singlett unter SM-Eichgruppen

Einzig mögliche Verbindung zum SM:

 $\mathcal{L} \propto \Phi_s^{\dagger} \Phi_s \Phi_h^{\dagger} \Phi_h$

Φ_{s/h}: Higgsfeld des SM/versteckten Sektors

Elektroschwache H_s and H_h mischen in Symmetriebrechung: Masseneigenzustände: $\phi_{s/h} \rightarrow (v_{s/h} + H_{s/h})/\sqrt{2}$ $\begin{pmatrix}H_s\\H_1\\H_2\end{pmatrix} = \begin{pmatrix}\cos \chi & \sin \chi\\ -\sin \chi & \cos \chi\end{pmatrix} \begin{pmatrix}H_s\\H_h\end{pmatrix}$ $\sigma = \cos^2 \chi \cdot \sigma^{SM}$ $\Gamma_{vis} = \cos^2 \chi \cdot \Gamma_{vis}^{SM}$

$$\begin{split} & \Gamma_{\text{inv}} = \cos^2 \chi \cdot \Gamma_{\text{inv}}^{\text{VSM}} + \Gamma_{\text{hid}} \\ & (\Gamma_{\text{inv}}^{\text{SM}} : \text{Zerfall } H \to ZZ \to 4\nu \text{ (vernachlässigbar))) \end{split}$$

[Patt, Wilczek]

Das Higgsportal

Fit von $\cos^2 \chi_{\text{fit}}$ ohne Einschränkungen

 \Rightarrow Falls cos² χ_{th} < 0.6 kann SM auf 95% CL mit 30 fb⁻¹ ausschließen

Messen unsichtbarer Zerfälle in VBF-Higgsproduktion
 Charakteristik: Zwei VBF-jets plus fehlende Transversalenergie

$$\Gamma_{\text{hid}} = \sin^2 \chi \cdot \Gamma_{\text{tot}}^{\text{SM}}$$
 (rhs: $\cos^2 \chi_{\text{th}} = 0.6$)

[Eboli, Zeppenfeld; MC-study: ATLAS]

Stark wechselwirkendes leichtes Higgs

[Giudice, Grojean, Pomarol, Rattazzi; Espinosa, Grojean, Mühlleitner]

Higgs Pseudo-Goldstoneboson eines neuen, stark wechselwirkenden Sektors Modifikationen parametrisiert durch $\xi = (v/f)^2$ (*f: Goldstoneskala*)

MCHM4:

Skalieren aller Kopplungen mit
$$\sqrt{1-\xi}$$

 \Rightarrow Identifiziere $\cos^2 \chi = 1 - \xi$
 $\Gamma_{hid} = 0$

MCHM5:

Skalieren:

$$egin{aligned} g_{VVH} &= g_{VVH}^{ ext{SM}} \cdot \sqrt{1-\xi} \ g_{far{f}H} &= g_{far{f}H}^{ ext{SM}} \cdot rac{1-2\xi}{\sqrt{1-\xi}} \end{aligned}$$

Signifikante und beobachtbare Abweichungen auch in Higgs-Selbstkopplungen

[Gröber, Mühlleitner]

MCHM5

[Bock, Lafaye, Plehn, MR, D. Zerwas, P.M. Zerwas] Sekundäre Lösungen erscheinen (Vorzeichen der ff H-Kopplung)

 $m_H = 120 \text{ GeV}$

 $m_H = 160 \text{ GeV}$

 $m_H = 200 \text{ GeV}$

Keine echte Entartung \rightarrow Jedes (verschmierte) Toy-Experiment hat eindeutige Lösung

MCHM5

[Bock, Lafaye, Plehn, MR, D. Zerwas, P.M. Zerwas] Sekundäre Lösungen erscheinen (Vorzeichen der ff H-Kopplung)

m_H = 120 GeV

m_H = 160 GeV

 $m_H = 200 \text{ GeV}$

Unabhängiger Fit der gemeinsamen Vektor- und Fermion-Kopplungen

 $\xi_{th} = 0 \qquad \xi_{th} = 0.2 \qquad \xi_{th} = 0.6$

Keine echte Entartung \rightarrow Jedes (verschmierte) Toy-Experiment hat eindeutige Lösung

Zusammenfassung

- Higgs-Boson letzter noch fehlender Baustein des Standardmodells
- wichtig, um Massen der Elementarteilchen zu erklären und Unitaritätsverletzung in longitudinaler W-Streuung zu vermeiden
- nächster Schritt: Messen seiner Eigenschaften
- Spin und CP-Art: Winkelverteilungen
- Kopplungen:
 - Unabhängig von Realisierung neuer Physik: Standardmodell plus effektive Higgskopplungen
 - Genauigkeit f
 ür Vektorbosonen und 3.-Generation-Fermionen von 20 – 50% mit 30 fb⁻¹ bei 14 TeV
 - Erweiterte Modelle (Higgs-Portal, SILH) können zu einfachen Einparameter-Abweichungen führen
 - Higgs-Selbstkopplungen bestimmen Form des Higgspotentials Messung große experimentelle Herausforderung

Zusammenfassung

- Higgs-Boson letzter noch fehlender Baustein des Standardmodells
- wichtig, um Massen der Elementarteilchen zu erklären und Unitaritätsverletzung in longitudinaler W-Streuung zu vermeiden
- nächster Schritt: Messen seiner Eigenschaften
- Spin und CP-Art: Winkelverteilungen
- Kopplungen:
 - Unabhängig von Realisierung neuer Physik: Standardmodell plus effektive Higgskopplungen
 - Genauigkeit f
 ür Vektorbosonen und 3.-Generation-Fermionen von 20 – 50% mit 30 fb⁻¹ bei 14 TeV
 - Erweiterte Modelle (Higgs-Portal, SILH) können zu einfachen Einparameter-Abweichungen führen
 - Higgs-Selbstkopplungen bestimmen Form des Higgspotentials Messung große experimentelle Herausforderung

Zusammenfassung

- Higgs-Boson letzter noch fehlender Baustein des Standardmodells
- wichtig, um Massen der Elementarteilchen zu erklären und Unitaritätsverletzung in longitudinaler W-Streuung zu vermeiden
- nächster Schritt: Messen seiner Eigenschaften
- Spin und CP-Art: Winkelverteilungen
- Kopplungen:
 - Unabhängig von Realisierung neuer Physik: Standardmodell plus effektive Higgskopplungen
 - Genauigkeit f
 ür Vektorbosonen und 3.-Generation-Fermionen von 20 – 50% mit 30 fb⁻¹ bei 14 TeV
 - Erweiterte Modelle (Higgs-Portal, SILH) können zu einfachen Einparameter-Abweichungen führen
 - Higgs-Selbstkopplungen bestimmen Form des Higgspotentials Messung große experimentelle Herausforderung

Discovering the Higgs boson

Tevatron results

Prospects for 7 and 8 TeV

Higgs at the LHC

Input data [Dührssen (ATL-PHYS-2002-030), ATLAS CSC Note; CMS results comparable] $m_H = 120 \text{ GeV}; \quad \mathcal{L} = 30 \text{ fb}^{-1}$

production	decay	S + B	В	S	$\Delta S^{(exp)}$	$\Delta S^{(theo)}$
gg ightarrow H	ZZ	13.4	6.6 (× 5)	6.8	3.9	0.8
qqH	ZZ	1.0	0.2 (× 5)	0.8	1.0	0.1
gg ightarrow H	WW	1019.5	882.8 (× 1)	136.7	63.4	18.2
qqH	WW	59.4	37.5 (× 1)	21.9	10.2	1.7
tīH	WW(3ℓ)	23.9	21.2 (× 1)	2.7	6.8	0.4
tīH	$WW(2\ell)$	24.0	19.6 (× 1)	4.4	6.7	0.6
inclusive	$\gamma\gamma$	12205.0	11820.0 (× 10)	385.0	164.9	44.5
qqH	$\gamma\gamma$	38.7	26.7 (× 10)	12.0	6.5	0.9
tīH	$\gamma\gamma$	2.1	0.4 (× 10)	1.7	1.5	0.2
WH	$\gamma\gamma$	2.4	0.4 (× 10)	2.0	1.6	0.1
ZH	$\gamma\gamma$	1.1	0.7 (× 10)	0.4	1.1	0.1
qqH	$\tau \tau(2\ell)$	26.3	10.2 (× 2)	16.1	5.8	1.2
qqH	$\tau \tau(1\ell)$	29.6	11.6 (× 2)	18.0	6.6	1.3
tīH	bb	244.5	219.0 (× 1)	25.5	31.2	3.6
WH/ZH	bb	228.6	180.0 (× 1)	48.6	20.7	4.0

Last line obtained using subjet techniques ([Butterworth, Davison, Rubin, Salam]), theoretical results confirmed by ATLAS ([ATL-PHYS-PUB-2009-088]) (stricter cuts, statistical significance basically unchanged)

Beobachtungsverzerrung

Signifikante Untergründe in Higgsboson-Kanälen

- Messe Signal plus Untergrund in Signalregion
- Extrapoliere Untergrund aus signalfreier Kontrollregion (Seitenbänder, etc.) und subtrahiere
- Untergrund aus Theorie typischerweise nicht besser
- $\bullet \Rightarrow B$ aus Kontrollregionen kann größer sein als S+B in Signalregion

⇒ Sorgfältige Behandlung notwendig Beobachtung von Higgsbosonen bevorzugt größere Kopplungen Kontrolle über alle vorhergesagten Kanäle

One-dimensional distributions

- Slow-falling distributions with single peaks prefer profile likelihood
- Higher luminosity qualitatively similar, quantitatively better
- Including effective couplings allows sign degeneracy for ttH coupling
- Smearing the dataset does not change picture substantially either

True dataset, 30 fb⁻¹; Profile likelihood vs. Bayesian

One-dimensional distributions

- Slow-falling distributions with single peaks prefer profile likelihood
- Higher luminosity qualitatively similar, quantitatively better
- Including effective couplings allows sign degeneracy for ttH coupling
- Smearing the dataset does not change picture substantially either

True dataset, Profile likelihood; 30 fb⁻¹ vs. 300 fb⁻¹

Karlsruher Institut für Technologie

One-dimensional distributions

- Slow-falling distributions with single peaks prefer profile likelihood
- Higher luminosity qualitatively similar, quantitatively better
- Including effective couplings allows sign degeneracy for ttH coupling
- Smearing the dataset does not change picture substantially either

One-dimensional distributions

- Slow-falling distributions with single peaks prefer profile likelihood
- Higher luminosity qualitatively similar, quantitatively better
- Including effective couplings allows sign degeneracy for ttH coupling
- Smearing the dataset does not change picture substantially either

Non-decoupling Supersymmetric Higgs

- Favouring of new physics more difficult: only 4% better described by SUSY model
- Strong correlation between Δ_{bbH} and $\Delta_{\tau\tau H}$ via total width
- No upper limit on g_{bbH} as $BR \simeq 1$ compatible with data

Fat Jets

Decay into $b\bar{b}$ main channel for light Higgs (~ 80%) Suffers from large QCD backgrounds \rightarrow Use high- p_T region • Higgs and W/Z more likely to be central, $Z \rightarrow \nu \bar{\nu}$ visible tt kinematics cannot simulate background • Much smaller cross section (1/20 for $p_T(H) > 200 \text{ GeV}$) Require $y_{12} = \frac{\min(p_{T1}^2, p_{T2}^2)}{m_{T2}^2} \Delta R_{12} \simeq \frac{\min(z_1, z_2)}{\max(z_1, z_2)} > 0.09$ Take 3 hardest subjets b R_{bb} R_{bb} ,g mass drop filter

- $R \gtrsim \frac{3m_H}{p_T}$: resolve one jet in 75% of cases Algorithm to find fat iet":
 - Start with high- p_T jet (Cambridge/Aachen algorithm)
 - Undo last stage of clustering (\equiv reduce R): $J \rightarrow J1, J2$
 - If $max(m_1, m_2) \leq 0.67m$, call this a mass drop

[else goto 1]

- [else aoto 1]
 - Require each subjet to have b-tag

[else reject event]

[Butterworth, Davison, Rubin, Salam]

Filter the jet: Reconsider region of interest at smaller $R_{\text{filt}} = \min(0.3, R_{bb}/2)$

Fat Jets in Higgs channels

Fat Jets in Higgs channels

MCHM5

Secondary solutions appear (sign of $f\bar{f}H$ coupling)

 $m_H = 120 \text{ GeV}$

 $m_H = 160 \text{ GeV}$

 $m_H = 200 \text{ GeV}$

Not a true degeneracy \rightarrow Each (smeared) toy experiment has unique solution

MCHM5

[Bock, Lafaye, Plehn, MR, D. Zerwas, P.M. Zerwas]

Secondary solutions appear (sign of $f\bar{f}H$ coupling)

 $m_H = 120 \text{ GeV}$ $m_{H} = 160 \, {\rm GeV}$ $m_{H} = 200 \, {\rm GeV}$ 95% CL 95% CL 68% CL 95% CL 68% CL 0.6 0.6 Şrit Šŕit Šťit -0.6 -0.6 -0 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9 $\xi_{\rm th}$ $\xi_{\rm th}$ $\xi_{\rm th}$

Independent fit of common vector and fermion couplings

 $\xi_{th} = 0$ $\xi_{th} = 0.2$ $\xi_{th} = 0.6$

Not a true degeneracy

 \rightarrow Each (smeared) toy experiment has unique solution