





# **Determination of Higgs Couplings – present and future**

Michael Rauch | Higgs Couplings 2012, Tokyo

INSTITUTE FOR THEORETICAL PHYSICS



www.kit.edu

# **Higgs properties**

Verify nature of observed resonance ↔ "Higgs" properties

• spin-0 particle spin-1 disfavoured by  $H \rightarrow \gamma \gamma$  spin-2: look at angular correlations





[Landau-Yang theorem]

[Hagiwara, Mawatari, Li; Frank, MR, Zeppenfeld; Ellis et al.; Alves; Boughezal et al.; ...]

#### CP-nature

SM-Higgs CP-even; extended Higgs sectors also CP-odd or mixed states look at angular correlations

[Zeppenfeld et al.; Choi et al.; Godbole et al.; Englert et al.; Ellis et al.; Boughezal et al.; ...]

#### couplings

SM prediction fixed by already known quantities

- unitarity in  $W_L W_L \rightarrow W_L W_L$  scattering
  - $\longrightarrow$  fixed coupling  $g_{WWH} \propto m_W$
- fermion masses

$$\longrightarrow g_{f\bar{f}H} \propto m_f$$

Higgs self-couplings

determine shape of Higgs potential via trilinear and quartic couplings

SM:  $V = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 + \text{const.}$ 

new scale A: 
$$V = \sum_{n \ge 0} \frac{\lambda^n}{\Lambda^{2n}} \left( |\Phi|^2 + \frac{v^2}{2} \right)^{2+n}$$

 $\longrightarrow$  very challenging for LHC (and ILC)

[Djouadi et al.; Plehn et al.; Baur et al.; MR et al.; Binoth et al.; Dolan et al.; ...]

### **Generalized Higgs sector**

How well can we determine the SM Higgs couplings? Can we distinguish a non-Standard-Model-like Higgs sector?

 Theory: Standard Model plus free Higgs couplings Couplings from modified version of HDecay [Djot

[Djouadi, Kalinowski, Mühlleitner, Spira]

• For Higgs couplings present in the Standard Model  $x = W, Z, t, b, \tau$ 

$$g_{xxH} \equiv g_x \longrightarrow g_x^{SM} (1 + \Delta_x) \qquad (\rightarrow \Delta = -2 \text{ means sign flip})$$

• For loop-induced Higgs couplings  $x = \gamma, g$ 

$$g_x \longrightarrow g_x^{\rm SM} \left(1 + \Delta_x^{\rm SM} + \Delta_x\right)$$

where  $g_X^{SM}$ : (loop-induced) coupling in the Standard Model  $\Delta_X^{SM}$ : contribution from modified tree-level couplings to Standard-Model particles

 $\Delta_x$ : additional (dimension-five) contribution

• Ratios 
$$\frac{g_x}{g_y} = \frac{g_x^{SM}}{g_y^{SM}}(1 + \Delta_{x/y})$$

- Neglecting couplings only available from high-luminosity analyses  $(g_{\mu}, g_{HZ\gamma}^{\rm eff}, g_{HHH}, g_{HHHH})$
- $\Delta_H$ : single parameter modifying all (tree-level) couplings
- Total width

 $\Gamma_{tot} = \Sigma_{obs} \Gamma_x < 2 \text{ GeV}$  (plus generation universality)

Electro-weak corrections not yet relevant



### SFitter

Algorithms:

- Weighted Markov chain
- Cooling Markov chain (~ simulated annealing)
- Modified gradient fit (Minuit)
- Grid scan
- Nested Sampling [Skilling; Feroz, Hobson]

Errors:

- three types:
  - Gaussian arbitrary correlations possible (→ systematic errors)
  - Poisson
  - box-shaped (RFit) [CKMFitter]
- assignment as in exp. studies
- adaption to likelihood input easy
- Output of SFitter:
  - fully-dimensional log-likelihood map
  - one- and two-dimensional distributions via
    - marginalization (Bayesian)
    - profile likelihood (Frequentist)
  - list of best points



[Lafaye, Plehn, MR,Zerwas]

[Eur.Phys.J.C54:617-644,2008, [arXiv:0709.3985 [hep-ph]]]

[JHEP08(2009)009 [arXiv:0904.3866 [hep-ph]]]



### Higgs Couplings after ICHEP 2012



7 TeV  $\mathcal{L}$  = 4.6-5.1 fb<sup>-1</sup>

 $\otimes$  8 TeV  $\mathcal{L}$  = 5.1-5.9 fb<sup>-1</sup>

| ATLAS                                                                                                                                                                          |                                                                                           | CMS                                                                                                                                                                                                        |                                                                                                                  | ATLAS                                                                                                           |                                                                                              | CMS                                                                                                                                                                    |                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} \gamma\gamma\\ ZZ\left(4\ell\right)\\ WW\\ WW\\ WW\\ WW\\ \tau\tau\\ \tau\tau\\ \tau\tau\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b} \end{array}$ | 0-jet<br>1-jet<br>2-jet<br>0-jet<br>1-jet<br>VBF<br>VH<br>WH<br>$Z_{\ell}H$<br>$Z_{\nu}H$ | $\begin{array}{l} \gamma\gamma\\ \gamma\gamma\\ ZZ\left(4\ell\right)\\ WW\\ WW\\ WW\\ WW\\ \tau\tau\\ \tau\tau\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ \end{array}$ | di-jet<br>0-jet<br>1-jet<br>2-jet<br>0/1-jet<br>Boosted<br>VBF<br>WH<br>$Z_{\ell}H$<br>$Z_{\nu}H$<br>$T_{\ell}H$ | $\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ ZZ \rightarrow 4\ell\\ WW\\ WW\\ WW \end{array}$ | low- <i>p<sub>T</sub></i><br>high- <i>p<sub>T</sub></i><br>di-jet<br>0-jet<br>1-jet<br>2-jet | $\begin{array}{l} \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma$ | Cat0<br>Cat1<br>Cat2+3<br>di-jet tight<br>di-jet loose<br>0-jet<br>1-jet<br>2-jet<br>0/1-jet<br>Boosted<br>VBF<br>$Z_{\ell}$ H low- $p_T$<br>$Z_{\ell}$ H high- $p_T$<br>$Z_{\ell}$ H high- $p_T$ |
| <ul> <li>background expectations,<br/>exp. errors, etc. from<br/>analyses</li> </ul>                                                                                           |                                                                                           |                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                 |                                                                                              | b <u>b</u><br>b <u>b</u><br>b <u>b</u>                                                                                                                                 | $Z_{\nu}$ H high- $p_T$<br>WH low- $p_T$<br>WH high- $p_T$                                                                                                                                        |

 cross-checked with exclusion and signal-strength plots

 $\Delta_W$  vs.  $\Delta_t$ 

SM hypothesis (bkgd. + SM-strength signal injected)



Expected 2012 results:

- Correct solution around SM value  $\Delta = 0$
- Secondary solution for flipped top Yukawa coupling

   photon coupling enhanced
- Large-∆<sub>t</sub> solution of 2011 killed by tt
  H, H → bb
  measurement



 $\Delta_W$  vs.  $\Delta_t$ 



SM hypothesis (bkgd. + SM-strength signal injected)



Expected 2012 results:

- Correct solution around SM value  $\Delta = 0$
- Secondary solution for flipped top Yukawa coupling

   photon coupling enhanced
- Large- $\Delta_t$  solution of 2011 killed by  $t\bar{t}H, H \rightarrow b\bar{b}$  measurement

#### measured data



2012 results:

- similar to expectation
- flipped-top coupling basically equal log-likelihood
- small remnant of large- $\Delta_t$  solution



 $\Delta_W$  vs.  $\Delta_{ au}$ 





 $\Delta_W$  vs.  $\Delta_{ au}$ 



More  $H \rightarrow \tau \tau$  data needed for significant statement on  $H \tau \tau$  coupling



 $\Delta_W$  vs.  $\Delta_{\tau}$ 



More  $H \rightarrow \tau \tau$  data needed for significant statement on  $H \tau \tau$  coupling

Best-fitting solutions:

| $\Delta_W$ | $\Delta_Z$ | $\Delta_t$ | $\Delta_b$ | $\Delta_{	au}$ | $\chi^2$ /d.o.f. |
|------------|------------|------------|------------|----------------|------------------|
| -0.03      | -0.02      | -0.25      | -0.25      | -0.90          | 27.7/49          |
| -0.05      | -0.04      | -0.34      | -1.73      | -0.70          | 27.6/49          |
| -0.29      | -0.09      | -1.65      | -0.32      | -0.70          | 27.7/49          |

7/16



Independent contribution to photon coupling  $\Delta_{\gamma}$ 



Standard Model-like solution plus secondary flipped-sign solutions No surprising new features

Best-fitting solutions:

| $\Delta_W$ | $\Delta_Z$ | $\Delta_t$ | $\Delta_b$ | $\Delta_{	au}$ | $\Delta_{\gamma}$ | $\chi^2$ /d.o.f. |
|------------|------------|------------|------------|----------------|-------------------|------------------|
| -0.13      | -0.05      | -0.22      | -0.27      | -0.98          | 0.16              | 27.3/48          |
| -0.17      | -0.07      | -1.67      | -0.34      | -0.87          | -0.22             | 27.3/48          |





- Δ<sub>H</sub> already very precise
- Δ<sub>V</sub>-Δ<sub>f</sub> also well determined g<sub>f</sub> lower than expected

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%





- $\Delta_H$  already very precise
- $\Delta_V \Delta_f$  also well determined  $g_f$  lower than expected
- g<sub>W</sub>, g<sub>Z</sub> okay
- g<sub>b</sub> and g<sub>t</sub> indirectly preferred smaller
- $g_{ au}$  inconclusive in data

ratios:

no improvement over direct measurements

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%





- $\Delta_H$  already very precise
- $\Delta_V \Delta_f$  also well determined  $g_f$  lower than expected
- g<sub>W</sub>, g<sub>Z</sub> okay
- g<sub>b</sub> and g<sub>t</sub> indirectly preferred smaller
- $g_{ au}$  inconclusive in data

ratios:

no improvement over direct measurements

• 
$$g_\gamma$$
 possible  $\Delta_\gamma=0.16$ 

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%





- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%

Moving towards Standard Model?

# **Couplings beyond LHC at ICHEP**



Tevatron impact (no subjet measurement at LHC yet):

- Assume meas. determine mainly  $\Delta_{b}^{\text{input}} = 0.4 \pm 0.25$
- $\Rightarrow$  central value of  $\Delta_b$  moves up
- error on  $\Delta_b$ ,  $\Delta_\tau$  reduced  $\Delta_b = 0.3^{-0.34}_{+0.25}$

#### HCP update of ATLAS & CMS

(personal ad-hoc interpretation)

|                              |       | ICHEP                                                                    |                         | HCP           |        |  |
|------------------------------|-------|--------------------------------------------------------------------------|-------------------------|---------------|--------|--|
| H  ightarrow WW              | ATLAS | $\begin{array}{c} 0.5 \pm 0.6 \\ 1.9 \pm 0.7 \\ 1.3 \pm 0.5 \end{array}$ | (5+0)<br>(0+6)<br>(5+6) | 1.4 ± 0.6     | (0+13) |  |
|                              | CMS   | $0.82\pm0.38$                                                            | (5+5)                   | $0.74\pm0.25$ | (5+12) |  |
| <u>ц</u> , 77                | ATLAS | $1.2\pm0.6$                                                              | (5+6)                   | —             |        |  |
| $\Pi \rightarrow ZZ$         | CMS   | $\sim$ 0.7 $\pm$ 0.4                                                     | (5+5)                   | $0.8\pm0.3$   | (5+12) |  |
|                              | ATLAS | $1.8\pm0.5$                                                              | (5+6)                   | —             |        |  |
| $\Pi \to \gamma\gamma\gamma$ | CMS   | $1.56 \pm 0.43$                                                          | (5+5)                   | -             |        |  |
|                              | ATLAS | $\sim$ 0.5 $\pm$ 1.5                                                     | (5+0)                   | $0.7\pm0.7$   | (5+13) |  |
| $\Pi \rightarrow \tau \tau$  | CMS   | $\sim$ 0.0 $\pm$ 0.9                                                     | (5+0)                   | $0.72\pm0.52$ | (5+12) |  |
| $H  ightarrow bar{b}$        | ATLAS | $\sim$ 0.5 $\pm$ 2.0                                                     | (5+0)                   | -0.4 ± 1.1    | (5+13) |  |
|                              | CMS   | $\sim$ 0.5 $\pm$ 0.8                                                     | (5+5)                   | $1.3\pm0.7$   | (5+12) |  |

10/16

Higgs at the LHC



14 TeV expectations (30 fb<sup>-1</sup>)

[Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al. ]

(Standard Model hypothesis)



[Lafaye, Plehn, MR, Zerwas, Dührssen 2009]

### Impact of subjet analysis





Top to bottom:  $\mathbf{I}$  VH,  $H \rightarrow b\bar{b}$  subjet analysis with full strength

[Butterworth, Davison, Rubin, Salam; ATLAS-MC]

- sensitivity reduced by 50%
   subjet analysis removed
- $\leftrightarrow$  No test of subjet analysis with data yet



Additional decays into "invisible" final states possible

$$\Gamma_{\text{tot}} = \Gamma^{SM}_{\text{tot}} + \Gamma_{\text{inv}} \equiv \Gamma^{SM}_{\text{tot}} \left(1 + \Delta_{\Gamma}\right)$$

Can be compensated by global scaling of couplings

$$\sigma \cdot BR = rac{\Delta_{H}^{2}}{1 + rac{\Delta_{\Gamma}}{\Delta_{H}^{2}}} \left( \sigma \cdot BR 
ight)_{\mathrm{SM}}$$

Invisible Higgs decays actually observable

Vector-Boson Fusion: tagging jets plus missing E<sub>T</sub>

[Eboli, Zeppenfeld]

 WH/ZH: recoil against nothing [Choudhury, Roy; Godbole, Guchait, Mazumdar, Moretti, Roy; Englert, Spannowsky, Wymant]

■ Unobservable decays into particles with large backgrounds (like H → jets) e.g. increased ccH coupling (corresponding to 15.4 GeV Yukawa coupling)















• Unobservable decays into particles with large backgrounds (like  $H \rightarrow$  jets) e.g. increased ccH coupling (corresponding to 15.4 GeV Yukawa coupling)  $\mathcal{L} = 30 \text{ fb}^{-1}$ , SM data / increased *ccH* / increased *ccH* plus free width  $1/\chi^2$ only free width 0.8 Yc 0.6 SM15.4 50 100 0.4 0.2 0.8 0 0.6 -3 2 3-5 -1 3-5 -3 -1 0 1 1 -1 1 3 0.4 1 0.2 0.8 0 0.6 5 10 15 20 0 0.4 ΔΓ 0.2 0 3-5 -3 3-5 -3 -1 0 2 -1 -1 1 1 3 1 0.8 0.6 0.4 0.2 0 2 3-5 -3 -1 1 3-5 -3 10 15 20 **-**1 0 1 -1 1 3 0 5  $\Delta_{WWH}$  $\Delta_{ttH}$ Δг  $\Delta_{ggH}$ 

# LHC in the future

LHC high-luminosity run: 14 TeV, 3000 fb<sup>-1</sup> Standard Model hypothesis





- extrapolation done blindly (only stat. improvements) starting from MC expectation at 14 TeV, 30 fb<sup>-1</sup>
- full set including effective couplings

■ gain factor less than 3 (30 $\rightarrow$ 300 fb<sup>-1</sup>),  $\sqrt{3}$  (300 $\rightarrow$ 1000 fb<sup>-1</sup>, 1000 $\rightarrow$ 3000 fb<sup>-1</sup>)

- ightarrow ightarrow statistical scaling does not apply any longer
- best obtainable precison  $\simeq 10\%$
- all couplings limited by systematic and theory error

# Linear Collider

Linear Collider: proposed first run:  $\sqrt{S} = 250$  GeV, L = 250 fb<sup>-1</sup> ILC precision from DBD draft, errors only Gauss



• testing 
$$\Delta_t \stackrel{?}{=} \Delta_c$$
 possible

+ ILC( $\sqrt{S}$  = 500 GeV, L = 500 fb<sup>-1</sup>) run: ILC precision surpasses LHC everywhere



 $(\rightarrow$  talk by Keisuke Fujii)

- reminder:  $\Delta_t = \Delta_c$  (generation universality)
- LHC: no Δ<sub>c</sub> (no obs. channel)
- ILC: no  $\Delta_t$ (below  $t\bar{t}H$  threshold)

### Conclusions



- Determining the Higgs-boson couplings important for our understanding of electroweak symmetry breaking → Standard Model with effective Higgs couplings
- All errors including correlations fully implemented
- Already wealth of measurements from LHC
- Precision on single-parameter modifier  $\Delta_H \simeq 10\%$  already now
- SM Higgs Boson good explanation of observed resonance







- Need to scan high-dimensional parameter space
- $\blacksquare \Rightarrow SFitter$
- General Higgs couplings from modified version of HDecay
- Three scanning techniques:
  - Weighted Markov Chain
  - Cooling Markov Chain (equivalent to simulated annealing)
  - Gradient Minimisation (Minuit)
  - Nested Sampling
- Output of SFitter:
  - Fully-dimensional log-likelihood map
  - Reduction to plotable one- or two-dimensional distributions via both
    - Bayesian (marginalisation) or
    - Frequentist (profile likelihood) techniques
  - List of best points
- Also successfully used for SUSY parameter extraction studies

[partly in coll. with Adam, Kneur; Turlay]

[Lafave, Plehn, MR, Zerwas]

[Djouadi, Kalinowski, Spira]

[Skilling; Feroz, Hobson]

The 7 TeV Case



Higgs boson channels,  $\mathcal{L} = 4.6-4.9 \text{ fb}^{-1}$ 

| ATLAS                                |                                   | CMS                                                                                             |                                   |
|--------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
| $\gamma \gamma ZZ \rightarrow 4\ell$ | 0-iet                             | $\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ 77\\ 77 \rightarrow \mathbf{4\ell} \end{array}$ | di-jet                            |
| ŴŴ                                   | 1-jet                             | WW                                                                                              | 0-jet                             |
| WW                                   | 2-jet                             | WW                                                                                              | 1-jet                             |
| $\tau \tau$                          | 0-jet                             | WW                                                                                              | 2-jet                             |
| au	au                                | 1-jet                             | au	au                                                                                           | 0/1-jet                           |
| $\tau \tau$                          | VBF                               | au	au                                                                                           | Boosted                           |
| $\tau \tau$                          | VH                                | au	au                                                                                           | VBF                               |
| bb                                   | WH                                | bb                                                                                              | WH                                |
| bb                                   | $Z(\rightarrow \ell \bar{\ell})H$ | bb                                                                                              | $Z(\rightarrow \ell \bar{\ell})H$ |
| bb                                   | $Z(\rightarrow \nu \bar{\nu})H$   | bb                                                                                              | $Z(\rightarrow \nu \bar{\nu})H$   |

- background expectations, exp. errors, etc. from analyses
- cross-checked with exclusion and signal-strength plots



#### The 7 TeV Case



Higgs boson channels,  $\mathcal{L} = 4.6-4.9 \text{ fb}^{-1}$ 

| ATLAS                                                              |                                   | CMS                                                                                             |                                   |
|--------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
| $\begin{array}{c} \gamma \gamma \\ ZZ \to 4\ell \\ WW \end{array}$ | 0-iet                             | $\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ 7\gamma\\ 77 \longrightarrow 4\ell \end{array}$ | di-jet                            |
| WW                                                                 | 1-jet                             | WW                                                                                              | 0-jet                             |
| WW                                                                 | 2-jet                             | WW                                                                                              | 1-jet                             |
| $\tau \tau$                                                        | 0-jet                             | WW                                                                                              | 2-jet                             |
| $\tau \tau$                                                        | 1-jet                             | au	au                                                                                           | 0/1-jet                           |
| $\tau \tau$                                                        | VBF                               | au	au                                                                                           | Boosted                           |
| $\tau \tau$                                                        | VH                                | au	au                                                                                           | VBF                               |
| bb                                                                 | WH                                | bb                                                                                              | WH                                |
| bb                                                                 | $Z(\rightarrow \ell \bar{\ell})H$ | bb                                                                                              | $Z(\rightarrow \ell \bar{\ell})H$ |
| bb                                                                 | $Z(\rightarrow \nu \bar{\nu})H$   | bb                                                                                              | $Z(\rightarrow \nu \bar{\nu})H$   |

- background expectations, exp. errors, etc. from analyses
- cross-checked with exclusion and signal-strength plots



-1

X X X X X X

V.Ch

4

Higgs at the LHC



Input data [Dührssen (ATL-PHYS-2002-030), ATLAS CSC Note; CMS results comparable]  $m_H = 120 \text{ GeV}; \quad \mathcal{L} = 30 \text{ fb}^{-1}$ 

| production      | decay              | S + B   | В              | S     | $\Delta S^{(exp)}$ | $\Delta S^{(theo)}$ |
|-----------------|--------------------|---------|----------------|-------|--------------------|---------------------|
| gg  ightarrow H | ZZ                 | 13.4    | 6.6 (× 5)      | 6.8   | 3.9                | 0.8                 |
| qqH             | ZZ                 | 1.0     | 0.2 (× 5)      | 0.8   | 1.0                | 0.1                 |
| gg  ightarrow H | WW                 | 1019.5  | 882.8 (× 1)    | 136.7 | 63.4               | 18.2                |
| qqH             | WW                 | 59.4    | 37.5 (× 1)     | 21.9  | 10.2               | 1.7                 |
| tīH             | WW(3ℓ)             | 23.9    | 21.2 (× 1)     | 2.7   | 6.8                | 0.4                 |
| tīH             | <i>WW</i> (2ℓ)     | 24.0    | 19.6 (× 1)     | 4.4   | 6.7                | 0.6                 |
| inclusive       | $\gamma\gamma$     | 12205.0 | 11820.0 (× 10) | 385.0 | 164.9              | 44.5                |
| qqH             | $\gamma\gamma$     | 38.7    | 26.7 (× 10)    | 12.0  | 6.5                | 0.9                 |
| tīH             | $\gamma\gamma$     | 2.1     | 0.4 (× 10)     | 1.7   | 1.5                | 0.2                 |
| WH              | $\gamma\gamma$     | 2.4     | 0.4 (× 10)     | 2.0   | 1.6                | 0.1                 |
| ZH              | $\gamma\gamma$     | 1.1     | 0.7 (× 10)     | 0.4   | 1.1                | 0.1                 |
| qqH             | $\tau \tau(2\ell)$ | 26.3    | 10.2 (× 2)     | 16.1  | 5.8                | 1.2                 |
| qqH             | $\tau \tau(1\ell)$ | 29.6    | 11.6 (× 2)     | 18.0  | 6.6                | 1.3                 |
| tīH             | bb                 | 244.5   | 219.0 (× 1)    | 25.5  | 31.2               | 3.6                 |
| WH/ZH           | bb                 | 228.6   | 180.0 (× 1)    | 48.6  | 20.7               | 4.0                 |

Last line obtained using subjet techniques ([Butterworth, Davison, Rubin, Salam]), theoretical results confirmed by ATLAS ([ATL-PHYS-PUB-2009-088]) (stricter cuts, statistical significance basically unchanged)

19/16

### In the future

2012, 2014, ... (assuming  $m_H = 125 \text{ GeV}$ )

Standard Model hypothesis

Extrapolation 7→8 TeV done blindly

(only statistical improvements, based on 2011 measurements)





Additional hidden sector as singlet under SM gauge groups

[Binoth, van der Bij; Hill, van der Bij; Schabinger, Wells; Patt, Wilczek; ...]

Only possible connection to SM:

 $\mathcal{L} \propto \Phi_{s}^{\dagger} \Phi_{s} \Phi_{h}^{\dagger} \Phi_{h}$ 

 $\Phi_{s/h}$ : Higgs field of SM/hidden sector

Electro-weak symmetry breaking:  $\phi_{s/h} \rightarrow (v_{s/h} + H_{s/h})/\sqrt{2}$ 

 $H_{s}$  and  $H_{h}$  mix into mass eigenstates:

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \chi & \sin \chi \\ -\sin \chi & \cos \chi \end{pmatrix} \begin{pmatrix} H_s \\ H_h \end{pmatrix}$$

Modifications for  $H_1$ : (cos  $\chi \cong \Delta_H$ )

$$\begin{split} &\sigma = \cos^2 \chi \cdot \sigma^{\text{SM}} \\ &\Gamma_{\text{vis}} = \cos^2 \chi \cdot \Gamma^{\text{SM}}_{\text{vis}} \\ &\Gamma_{\text{inv}} = \cos^2 \chi \cdot \Gamma^{\text{SM}}_{\text{inv}} + \Gamma_{\text{hid}} \\ &(\Gamma^{\text{SM}}_{\text{inv}}: \text{Decay } H \to ZZ \to 4\nu \text{ (negligible) )} \end{split}$$

similarly for  $H_2$  with  $\cos \chi \leftrightarrow \sin \chi$  plus possibly  $\Gamma_2^{HH}: H_2 \to H_1 H_1$ 

Fit of  $\cos^2 \chi_{\rm fit}$  without constraints (14 TeV, 30 fb<sup>-1</sup>)





 $\Rightarrow$  If cos<sup>2</sup>  $\chi_{\text{th}}$  < 0.6 can exclude SM at the 95% CL with 30 fb<sup>-1</sup>

 Measuring invisible decays in VBF-Higgs production Signature: Two VBF-jets plus missing *E<sub>T</sub>*

$$\Gamma_{\rm hid} = \sin^2 \chi \cdot \Gamma_{\rm tot}^{\rm SM}$$
 (rhs:  $\cos^2 \chi_{\rm th} = 0.6$ )

[Eboli, Zeppenfeld; MC-study: ATLAS]





[C. Englert, Plehn, Rauch, D. Zerwas, P.M. Zerwas]

bounds are determined by measurement of twin ratios

$$\left(\frac{\Gamma_{\rho}\Gamma_{d}}{\Gamma_{\text{tot}}}\right) / \left(\frac{\Gamma_{\rho}\Gamma_{d}}{\Gamma_{\text{tot}}}\right)^{\text{SM}} = (\sigma_{\rho} \times \text{BR}_{d}) / (\sigma_{\rho} \times \text{BR}_{d})^{\text{SM}}$$

$$\frac{\sigma(pp \to H_1 \to F)}{\sigma(pp \to H_1 \to F)^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi(\Gamma_1^{\text{hid}}/\Gamma_{\text{tot},1}^{\text{SM}})} \le \mathcal{R}$$
$$\frac{\sigma(pp \to H_1 \to inv)}{\sigma(pp \to H_1)^{\text{SM}}} = \frac{\sin^2 \chi(\Gamma_1^{\text{hid}}/\Gamma_{\text{tot},1}^{\text{SM}})}{1 + \tan^2 \chi(\Gamma_1^{\text{hid}}/\Gamma_{\text{tot},1}^{\text{SM}})} \le \mathcal{J}$$

additional constraint: electroweak precision data (dots: compatible points)



Example:  $M_{H_1} = 155 \text{ GeV}$  $\Rightarrow \mathcal{R} \lesssim 0.4 @ 95\% \text{ CL}$ 

- bound weakened by invisible decays
- whole area left of it still possible
- significant improvement with higher statistics



23/16

[C. Englert, Plehn, Rauch, D. Zerwas, P.M. Zerwas]

bounds are determined by measurement of twin ratios

$$\left(\frac{\Gamma_{\rho}\Gamma_{d}}{\Gamma_{\text{tot}}}\right) / \left(\frac{\Gamma_{\rho}\Gamma_{d}}{\Gamma_{\text{tot}}}\right)^{\text{SM}} = (\sigma_{\rho} \times \text{BR}_{d}) / (\sigma_{\rho} \times \text{BR}_{d})^{\text{SM}}$$

$$\frac{\sigma(pp \to H_1 \to F)}{\sigma(pp \to H_1 \to F)^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi(\Gamma_1^{\text{hid}} / \Gamma_{\text{tot},1}^{\text{SM}})} \le \mathcal{R}$$
$$\frac{\sigma(pp \to H_1 \to inv)}{\sigma(pp \to H_1)^{\text{SM}}} = \frac{\sin^2 \chi(\Gamma_1^{\text{hid}} / \Gamma_{\text{tot},1}^{\text{SM}})}{1 + \tan^2 \chi(\Gamma_1^{\text{hid}} / \Gamma_{\text{tot},1}^{\text{SM}})} \le \mathcal{J}$$

additional constraint: electroweak precision data (dots: compatible points)



# **Strongly-Interacting Light Higgs**



[Giudice, Grojean, Pomarol, Rattazzi; Espinosa, Grojean, Mühlleitner]

Higgs pseudo-Goldstone boson of new strongly interacting sector Modifications parametrized by  $\xi = (v/f)^2$  (*f: Goldstone scale*)

#### MCHM4:

Scaling of all couplings with 
$$\sqrt{1-\xi}$$
  
 $\Rightarrow$  Identify  $\cos^2 \chi = 1 - \xi$   
 $\Gamma_{hid} = 0$ 

#### MCHM5:

Scaling:

$$egin{aligned} g_{VVH} &= g_{VVH}^{ ext{SM}} \cdot \sqrt{1-\xi} \ g_{far{f}H} &= g_{far{f}H}^{ ext{SM}} \cdot rac{1-2\xi}{\sqrt{1-\xi}} \end{aligned}$$

Significant and observable deviations also in Higgs self-couplings

[Gröber, Mühlleitner]

#### MCHM5



Secondary solutions appear (sign of  $f\bar{f}H$  coupling)

 $m_H = 120 \text{ GeV}$ 

 $m_H = 160 \text{ GeV}$ 

 $m_H = 200 \text{ GeV}$ 



Not a true degeneracy

 $\rightarrow$  Each (smeared) toy experiment has unique solution

25/16

### MCHM5



#### [Bock, Lafaye, Plehn, MR, D. Zerwas, P.M. Zerwas]

Secondary solutions appear (sign of  $f\bar{f}H$  coupling)

 $m_H = 120 \text{ GeV}$  $m_H = 160 \text{ GeV}$  $m_{H} = 200 \, {\rm GeV}$ 95% CL 95% CL 95% CL 68% CL 0.6 0.6 Šŕit Şrit 2 Lit -0.6 -0.6 -0 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9  $\xi_{\rm th}$  $\xi_{\rm th}$  $\xi_{\rm th}$ 

Independent fit of common vector and fermion couplings

 $\xi_{th} = 0 \qquad \xi_{th} = 0.2 \qquad \xi_{th} = 0.6$ 

#### Not a true degeneracy

 $\rightarrow$  Each (smeared) toy experiment has unique solution

25/16

# **Top-associated Higgs Subjets**



Add additional measurement for  $t\bar{t}H$ ,  $H \rightarrow b\bar{b}$  using subjet techniques

[Plehn, Salam, Spannowsky]

# extrapolated to 7 TeV SM hypothesis



 $\Rightarrow$  Secondary solution strongly suppressed  $\rightarrow$  large  $g_t$  disfavoured by new measurement