

Higgs Properties at the LHC and beyond

Michael Rauch | Bonn, Jun 2013

INSTITUTE FOR THEORETICAL PHYSICS

[Andersen; Englert, Brout; Higgs; Hagen, Guralnik, Kibble]

Standard Model of Elementary Particle Physics

Gauge theory $(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y)$

Direct mass terms for elementary particles forbidden by gauge invariance

[Andersen; Englert, Brout; Higgs; Hagen, Guralnik, Kibble]

Standard Model of Elementary Particle Physics

Gauge theory $(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y)$

Direct mass terms for elementary particles forbidden by gauge invariance

 \rightarrow Use trick: Spontaneous Symmetry Breaking Introduce scalar *SU*(2) doublet Φ (Higgs field)

- \mathcal{L} invariant under gauge transformations
- but ground state not \rightarrow vacuum expectation value v

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \mathbf{G}^+ \\ \frac{1}{\sqrt{2}}(\mathbf{v} + \mathbf{H} + \mathbf{i}\mathbf{G}^0) \end{pmatrix}$$

[Andersen; Englert, Brout; Higgs; Hagen, Guralnik, Kibble]

Standard Model of Elementary Particle Physics

Gauge theory $(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y)$

Direct mass terms for elementary particles forbidden by gauge invariance

 \rightarrow Use trick: Spontaneous Symmetry Breaking Introduce scalar *SU*(2) doublet Φ (Higgs field)

- *L* invariant under gauge transformations
- but ground state not \rightarrow vacuum expectation value v

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v + H + iG^0) \end{pmatrix}$$

[Andersen; Englert, Brout; Higgs; Hagen, Guralnik, Kibble]

Standard Model of Elementary Particle Physics

Gauge theory $(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y)$

Direct mass terms for elementary particles forbidden by gauge invariance

 \rightarrow Use trick: Spontaneous Symmetry Breaking Introduce scalar *SU*(2) doublet Φ (Higgs field)

- *L* invariant under gauge transformations
- but ground state not \rightarrow vacuum expectation value v

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \mathsf{G}^+ \\ \frac{1}{\sqrt{2}}(\mathsf{v} + \mathsf{H} + \mathsf{i}\mathsf{G}^0) \end{pmatrix}$$

 $G^{\pm}, G^{0} \rightarrow$ longitudinal modes of W^{\pm}, Z *H* real scalar field \rightarrow Higgs boson

[Andersen; Englert, Brout; Higgs; Hagen, Guralnik, Kibble]

Standard Model of Elementary Particle Physics

Gauge theory $(SU(3)_c \otimes SU(2)_L \otimes U(1)_Y)$

Direct mass terms for elementary particles forbidden by gauge invariance

 \rightarrow Use trick: Spontaneous Symmetry Breaking Introduce scalar *SU*(2) doublet Φ (Higgs field)

- *L* invariant under gauge transformations
- but ground state not \rightarrow vacuum expectation value v

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \mathsf{G}^+ \\ \frac{1}{\sqrt{2}}(\mathsf{v} + \mathsf{H} + \mathsf{i}\mathsf{G}^0) \end{pmatrix}$$

 $G^{\pm}, G^{0} \rightarrow$ longitudinal modes of W^{\pm}, Z *H* real scalar field \rightarrow Higgs boson

masses of fermions via Yukawa couplings $\mathcal{L}_{Yukawa} = -\lambda_f \bar{\psi}_L \Phi \psi_R + h.c.$

Higgs production modes

Main Higgs-boson production modes:

Higgs decay modes

- $H \rightarrow \gamma \gamma$
 - loop-induced coupling by (mainly) W and t
 - small branching ratio ($\leq 0.2\%$)
 - clear peak, background can be subtracted via sidebands
 - Higgs mass measurement up to 100 MeV
- $H \rightarrow ZZ$
 - "Golden Channel" due to four-lepton final state
- $H \rightarrow WW$
- $\bullet \ H \to \tau \bar{\tau}$
 - \blacksquare need to reconstruct invariant mass of the two taus \rightarrow most sensitivity from vector-boson fusion
- $H \rightarrow b\bar{b}$
 - main decay mode for light Higgs bosons
 - hard to extract from QCD backgrounds
 - WH/ZH production with boosted kinematics plus possibly jet substructure analysis looks promising

[Butterworth, Davison, Rubin, Salam]

Higgs decay modes

- $\bullet \ H \to \gamma \gamma$
 - loop-induced coupling by (mainly) W and t
 - small branching ratio ($\lesssim 0.2\%$)
 - clear peak, background can be subtracted via sidebands
 - Higgs mass measurement up to 100 MeV
- $H \rightarrow ZZ$
 - "Golden Channel" due to four-lepton final state
- $H \rightarrow WW$
- $\bullet \ H \to \tau \bar{\tau}$
 - \blacksquare need to reconstruct invariant mass of the two taus \rightarrow most sensitivity from vector-boson fusion
- $H \rightarrow b\bar{b}$
 - main decay mode for light Higgs bosons
 - hard to extract from QCD backgrounds
 - WH/ZH production with boosted kinematics plus possibly jet substructure analysis looks promising

[Butterworth, Davison, Rubin, Salam]

 \rightarrow 126 GeV ideal value for testing different modes

Higgs discovery

Clear resonance observed in both LHC experiments

"Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC"

Higgs properties

Verify nature of observed resonance ↔ "Higgs" properties

• spin-0 particle spin-1 excluded by $H \rightarrow \gamma \gamma$ spin-2: look at angular correlations

[Landau-Yang theorem]

CP-nature

SM-Higgs CP-even; extended Higgs sectors also CP-odd or mixed states look at angular correlations

[Zeppenfeld *et al.*; Choi *et al.*; Godbole *et al.*; Hagiwara, Mawatari, Li; Englert *et al.*; Ellis *et al.*; Frank, MR, Zeppenfeld; Alves; Boughezal *et al.*; ...]

Spin-2 Particle

Effective model for interaction of spin-2 particle with bosons

- Start from effective Lagrangian approach $\mathcal{L}_{eff} = \sum_{i} \frac{f_i}{\Lambda} T_{\mu\nu} O_i^{\mu\nu}$
- construct all possible operators of dimension 5

SU(2) singlet $T_{\mu\nu}$

$$\mathcal{L}_{\text{singlet}} = \frac{1}{\Lambda} T_{\mu\nu} \left(f_1 B^{\alpha\nu} B^{\mu}{}_{\alpha} + f_2 W_i^{\alpha\nu} W^{i,\mu}{}_{\alpha} + 2f_5 (D^{\mu}\Phi)^{\dagger} (D^{\nu}\Phi) + f_9 G_a^{\alpha\nu} G^{a,\mu}{}_{\alpha} \right)$$

SU(2) triplet $T_{\mu\nu,j}$ (3 particles T^0 , T^{\pm} with same mass)

$$\mathcal{L}_{\text{triplet}} = \frac{1}{\Lambda} T_{\mu\nu,j} \left(f_6 (D^{\mu} \Phi)^{\dagger} \sigma^j (D^{\nu} \Phi) + f_7 W^{j,\mu}{}_{\alpha} B^{\alpha\nu} \right)$$

- Spin-2 field $T_{\mu\nu}$ symmetric, transverse, $T^{\mu}_{\mu} = 0$.
- Terms with dual field strength tensors do not contribute for on-shell T
- \Rightarrow Occurring vertices: TW^+W^- , TZZ, $T\gamma Z$, $T\gamma \gamma$, Tgg
- implemented in program package VBFNLO [Zeppenfeld, MR, ...]
- Results in the following for singlet case

Considered processes

Gluon-fusion

Calculation at LO, higher-orders up to known NNLL included as constant K factors Assume same factor for Higgs and spin-2 (\leftrightarrow different operator structure)

Calculation at NLO QCD

can be adapted from SM case, spin-2 only affects electro-weak part

- final states: $W^+W^- \rightarrow 2\ell 2\nu$, $ZZ \rightarrow 4\ell$, $\gamma\gamma$
- Spin-2 resonance narrow → interference small → non-resonant graphs and SM background omitted

Feynman Rules

$$\begin{split} TW^+W^-: & \frac{2if_2}{\Lambda}K_1^{\alpha\beta\mu\nu} + \frac{if_5g^2v^2}{2\Lambda}K_2^{\alpha\beta\mu\nu} \\ TZZ: & \frac{2i}{\Lambda}(f_2c_w^2 + f_1s_w^2)K_1^{\alpha\beta\mu\nu} + \frac{if_5v^2}{2\Lambda}(g^2 + g'^2)K_2^{\alpha\beta\mu\nu} \\ T\gamma\gamma: & \frac{2i}{\Lambda}(f_1c_w^2 + f_2s_w^2)K_1^{\alpha\beta\mu\nu} \\ T\gamma Z: & \frac{2i}{\Lambda}c_ws_w(f_2 - f_1)K_1^{\alpha\beta\mu\nu} \\ Tgg: & \frac{2if_9}{\Lambda}K_1^{\alpha\beta\mu\nu} \\ \end{split}$$
with $K_1^{\alpha\beta\mu\nu} = p_1^{\nu}p_2^{\mu}g^{\alpha\beta} - p_1^{\beta}p_2^{\nu}g^{\alpha\mu} - p_2^{\alpha}p_1^{\nu}g^{\beta\mu} + p_1 \cdot p_2g^{\alpha\nu}g^{\beta\mu} \\ K_2^{\alpha\beta\mu\nu} = g^{\alpha\nu}g^{\beta\mu} \end{split}$

 f_i , Λ free coupling parameters

 $g_{HWW}, g_{HZZ} \gg g_{H\gamma\gamma}, g_{H\gamma Z} \leftrightarrow$ measured rates approx. SM-like $\Rightarrow f_5 \gg f_1, f_2, f_9$

Cross sections

⇒ Can adjust couplings such that SM-Higgs-like cross sections can be obtained

Final State	Production mode	Higgs cross sec. [fb]	Spin-2 cross sec. [fb]	
$\gamma\gamma$	VBF	0.7448	0.8780	
	Gluon Fusion	14.273	13.942	
$W^+W^- ightarrow$	VBF	0.3887	0.4108	
e $^+$ $ u_{ m e}\mu^-\overline{ u}_{\mu}$	Gluon Fusion	11.918	11.575	
$ZZ \rightarrow VBF$		$1.639 \cdot 10^{-3}$	$2.453 \cdot 10^{-3}$	
e $^+$ e $^ \mu^+\mu^-$	Gluon Fusion	0.2565	0.2194	

using $f_1 = 0.04$, $f_2 = 0.08$, $f_5 = 10$, $f_9 = 0.04$, $\Lambda = 6.4$ TeV not possible in Graviton-like models

Formfactor multiplying amplitude:

$$f_{\text{Spin-2}} = \left(\frac{\Lambda_{\text{ff}}^2}{|p_1^2| + \Lambda_{\text{ff}}^2} \cdot \frac{\Lambda_{\text{ff}}^2}{|p_2^2| + \Lambda_{\text{ff}}^2} \cdot \frac{\Lambda_{\text{ff}}^2}{|k_{\text{sp2}}^2| + \Lambda_{\text{ff}}^2}\right)^{n_t} p_1, p_2: \text{momenta of vector bosons}$$

solves unitarity violation at high energies

can be used to make p_T distributions SM-like (e.g. of VBF-tagging jets) (here: $\Lambda_{ff} = 400$ GeV, $n_{ff} = 3$)

 $\Rightarrow p_T$ -distributions not sufficient for distinction

[Ellis et al.]

Observables for Distinction

Observables left for distinction:

- angular distributions
- invariant-mass distributions

Gottfried-Jackson angle:

angle between momentum of resonance in lab frame and final-state photon in rest frame of resonance

(for gluon-fusion equal to $\cos \theta^*$ in Collins-Soper frame)

Example: Diphoton production in VBF

 \Rightarrow Good distinction power independent of parameter choice

Higgs properties

Invariant $\ell\ell$ mass in WW decay mode

Spin-0 nature of Higgs forces leptons parallel

Higgs properties – couplings

Couplings:

SM prediction fixed by already known quantities

- unitarity in $W_L W_L \rightarrow W_L W_L$ scattering
 - \longrightarrow fixed coupling $g_{WWH} \propto m_W$
- fermion masses

 $\longrightarrow g_{f\bar{f}H} \propto m_f$

 Higgs self-couplings determine shape of Higgs potential via trilinear and quartic couplings SM: V = μ²|Φ|² + λ|Φ|⁴ + const.

new scale A:
$$V = \sum_{n \ge 0} \frac{\lambda^n}{\Lambda^{2n}} \left(|\Phi|^2 + \frac{v^2}{2} \right)^{2+n}$$

 \longrightarrow very challenging for LHC (and ILC)

[Djouadi et al.; Plehn et al.; Baur et al.; MR et al.; Binoth et al.; Englert et al.; Baglio et al.; ...]

- \leftrightarrow New-physics models modifying Higgs couplings
 - Additional Higgs particles (Higgs portal, THDM, ...)
 - Composite Higgs models
 - Supersymmetry
- \rightarrow Expected deviations: $\mathcal{O}(10\%)$

[Gupta, Rzehak, Wells]

Generalized Higgs sector

How well can we determine the SM Higgs couplings? Can we distinguish a non-Standard-Model-like Higgs sector?

 Theory: Standard Model plus free Higgs couplings Couplings from modified version of HDecay

[Djouadi, Kalinowski, Mühlleitner, Spira]

• For Higgs couplings present in the Standard Model $x = W, Z, t, b, \tau$ $g_{xxH} \equiv g_x \longrightarrow g_x^{SM} (1 + \Delta_x) \equiv g_x^{SM} \kappa_x \quad (\rightarrow \Delta = -2 \text{ means sign flip})$

• For loop-induced Higgs couplings $x = \gamma, g$

$$g_x \longrightarrow g_x^{SM} \left(1 + \Delta_x^{SM} + \Delta_x\right) \equiv \kappa_x g_x^{SM}$$

where g_X^{SM} : (loop-induced) coupling in the Standard Model Δ_X^{SM} : contribution from modified tree-level couplings

ASM: contribution from modified tree-level couplings to Standard-Model particles

 Δ_x : additional (dimension-five) contribution

• Ratios
$$\frac{g_x}{g_y} = \frac{g_x^{SM}}{g_y^{SM}} (1 + \Delta_{x/y}) \equiv \frac{g_x^{SM}}{g_y^{SM}} \lambda_{xy}$$

- Neglecting couplings only available from high-luminosity analyses $(g_{\mu}, g_{\mu Z\gamma}^{\text{eff}}, g_{\mu H\mu}, g_{\mu H\mu \mu})$
- Δ_H : single parameter modifying all (tree-level) couplings

Total width

 $\Gamma_{tot} = \Sigma_{obs} \Gamma_x < 2 \text{ GeV}$ (plus generation universality)

Electro-weak corrections not yet relevant for later consistency: QCD corrections scale with couplings, EW ones not

SFitter

Algorithms:

- Weighted Markov chain
- Cooling Markov chain (~ simulated annealing)
- Modified gradient fit (Minuit)
- Grid scan
- Nested Sampling [Skilling; Feroz, Hobson]

Errors:

- three types:
 - Gaussian arbitrary correlations possible (→ systematic errors)
 - Poisson
 - box-shaped (RFit) [CKMFitter]
- assignment as in exp. studies
- adaption to likelihood input easy
- Output of SFitter:
 - fully-dimensional log-likelihood map
 - one- and two-dimensional distributions via
 - marginalization (Bayesian)
 - profile likelihood (Frequentist)
 - list of best points

[Lafaye, Plehn, MR,Zerwas]

[Eur.Phys.J.C54:617-644,2008, [arXiv:0709.3985 [hep-ph]]]

[JHEP08(2009)009 [arXiv:0904.3866 [hep-ph]]]

Higgs Couplings after Moriond 2013

7 TeV \mathcal{L} = 4.6-5.1 fb⁻¹

-

 \otimes 8 TeV \mathcal{L} = 12-21 fb⁻¹

ATLAS		CMS		ATLAS		CMS	
$\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ ZZ (4\ell)\\ WW\\ WW\\ \tau\tau\\ \tau\tau\\ \tau\tau\\ b\bar{b}\\ $	0-jet 1-jet 2-jet 0-jet 1-jet VH VH WH $Z_{\ell}H$ $Z_{\nu}H$	$\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ ZZ (\ell\ell)\\ WW\\ WW\\ WW\\ \tau\tau\\ \tau\tau\\ \tau\tau\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ b\bar{b}\\ \end{array}$	di-jet 0-jet 1-jet 2-jet 0/1-jet Boosted VBF WH $Z_{\ell}H$ $Z_{\ell}H$ $Z_{\ell}H$ tions,	$\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma$	$\begin{array}{c} \text{low-} p_T \\ \text{high-} p_T \\ \text{di-jet Iml} \\ \text{di-jet Iml} \\ \text{di-jet tight} \\ E_T(\text{miss}) \\ 1\ell \\ 0\text{-jet} \\ 2\text{-jet} \\ 2\text{-jet} \\ 0\text{-jet} \\ 1\text{-jet} \\ \text{Boosted} \\ \text{VBF} \\ \text{VH} \\ \text{WH} \end{array}$	$\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ \gamma\gamma\\ ZZ \rightarrow 4\ell\\ WW\\ WW\\ WW\\ WW\\ WW\\ \tau\tau\\ \tau\tau\\ \tau\tau\\ b\bar{b}\\ c\bar{b}\\ c\bar{b}\\$	Cat0 Cat1 Cat2+3 di-jet tight di-jet loose 0-jet 1-jet 2-jet 0/1-jet Boosted VBF Z_{ℓ} H low- p_T Z_{ν} H low- p_T Z_{ν} H low- p_T
analyses				bb bb bb	$Z_{\ell}H$ $Z_{\nu}H$	bb bb	WH high- p_T

 cross-checked with exclusion and signal-strength plots

16/29

Karlsruher Institut für Technologi [Plehn, MR]

 Δ_V vs. Δ_f

SM hypothesis (bkgd. + SM-strength signal injected)

Expected 2012 results:

- Correct solution around SM value $\Delta = 0$
- Secondary solution for opposite fermion coupling → photon coupling enhanced
- $\sim 2.5\sigma$ discrimination power between both signs

 Δ_V vs. Δ_f

SM hypothesis (bkgd. + SM-strength signal injected)

Expected 2012 results:

- Correct solution around SM value $\Delta = 0$
- Secondary solution for opposite fermion coupling → photon coupling enhanced
- $\sim 2.5\sigma$ discrimination power between both signs

measured data

2012 results:

- similar to expectation
- opposite-sign solution clearly disfavoured

Karlsruher Institut für Technologie

 Δ_W vs. Δ_t

SM hypothesis (bkgd. + SM-strength signal injected)

Expected 2012 results:

- Correct solution around SM value $\Delta = 0$
- Secondary solution for flipped top Yukawa coupling

 photon coupling enhanced

 Δ_W vs. Δ_t

SM hypothesis

(bkgd. + SM-strength signal injected)

Expected 2012 results:

- Correct solution around SM value $\Delta = 0$
- Secondary solution for flipped top Yukawa coupling

 photon coupling enhanced
- Large- Δ_t solution of 2011 killed by $t\bar{t}H, H \rightarrow b\bar{b}$ measurement

measured data

2012 results:

- similar to expectation
- flipped-top coupling disfavoured by $\sim 1\sigma$

 Δ_W vs. Δ_{τ}

Expected 2012 results:

 Clear indication of non-vanishing *H*ττ coupling

 Δ_W vs. Δ_{τ}

Expected 2012 results:

 Clear indication of non-vanishing *H*ττ coupling

- Finally seen
- First direct evidence for coupling to fermions!

 Δ_W vs. Δ_{τ}

Expected 2012 results:

• Clear indication of non-vanishing $H\tau\tau$ coupling

Best-fitting solutions:

- Finally seen
- First direct evidence for coupling to fermions!

Δ_W	Δ_Z	Δ_t	Δ_b	$\Delta_{ au}$	χ^2 /d.o.f.	
-0.11	-0.04	-0.20	-0.27	-0.04	15.8/58	$\chi^2(SM) = 16.4$
-0.26	-0.02	-1.70	-0.30	0.03	16.8/58	

Independent contribution to photon coupling Δ_{γ}

Standard Model-like solution plus secondary flipped-sign solutions

(Anti-)correlations between parameters as expected

No surprising new features

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%

- Δ_H already very precise
- Δ_V-Δ_f also well determined

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%

- Δ_H already very precise
- Δ_V-Δ_f also well determined
- **a** g_W, g_Z, g_b, g_t okay
- $g_{ au}$ now SM-like as well
- ratios:

no improvement over direct measurements but less assumptions

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%

- Δ_H already very precise
- Δ_V-Δ_f also well determined
- **a** g_W, g_Z, g_b, g_t okay
- g_{τ} now SM-like as well
- ratios:

no improvement over direct measurements but less assumptions

• g_γ possible $\Delta_\gamma \sim 0$

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%

- Δ_H already very precise
- Δ_V-Δ_f also well determined
- **a** g_W, g_Z, g_b, g_t okay
- g_{τ} now SM-like as well

ratios:

no improvement over direct measurements but less assumptions

• g_γ possible $\Delta_\gamma \sim 0$

Standard Model-like Higgs

- best-fit point from Markov-chain Monte Carlo
- Error bars: 5000 toy MC, 68% CL coverage
- horizontal lines: ±20%

Higgs Couplings – ATLAS & CMS

Higgs at the LHC

14 TeV expectations (30 fb $^{-1}$)

[Zeppenfeld, Kinnunen, Nikitenko, Richter-Was; Dührssen et al.]

(Standard Model hypothesis)

[Lafaye, Plehn, MR, Zerwas, Dührssen 2009]

Impact of subjet analysis

Top to bottom: \square VH, $H \rightarrow b\bar{b}$ subjet analysis with full strength

[Butterworth, Davison, Rubin, Salam; ATLAS-MC]

- sensitivity reduced by 50%
- subjet analysis removed
- \leftrightarrow No test of subjet analysis with data yet
- \leftrightarrow Recent ATLAS study on boosted W, Z, $t\bar{t}$ in 7 TeV data very promising

Additional decays into "invisible" final states possible

$$\Gamma_{\text{tot}} = \Gamma^{SM}_{\text{tot}} + \Gamma_{\text{inv}} \equiv \Gamma^{SM}_{\text{tot}} \left(1 + \Delta_{\Gamma}\right)$$

Can be compensated by global scaling of couplings

$$\sigma \cdot BR = \frac{\Delta_H^2}{1 + \frac{\Delta_\Gamma}{\Delta_H^2}} \left(\sigma \cdot BR \right)_{\text{SM}}$$

Invisible Higgs decays actually observable

Vector-Boson Fusion: tagging jets plus missing E_T

[Eboli, Zeppenfeld]

- WH/ZH: recoil against nothing [Choudhury, Roy; Godbole, Guchait, Mazumdar, Moretti, Roy; Englert, Spannowsky, Wymant]
- Unobservable decays into particles with large backgrounds (like H → jets) e.g. increased ccH coupling (corresponding to 15.4 GeV Yukawa coupling)

LHC in the future

LHC high-luminosity run: 14 TeV, 3000 fb⁻¹ Standard Model hypothesis

- extrapolation done blindly (only stat. improvements) starting from MC expectation at 14 TeV, 30 fb⁻¹
- full set including effective couplings

- gain factor less than 3 (30 \rightarrow 300 fb⁻¹), $\sqrt{3}$ (300 \rightarrow 1000 fb⁻¹, 1000 \rightarrow 3000 fb⁻¹)
- statistical scaling does not apply any longer
- best obtainable precision $\simeq 10\%$
- all couplings limited by systematic and theory error

Linear Collider

Linear Collider: proposed first run: $\sqrt{S} = 250 \text{ GeV}, L = 250 \text{ fb}^{-1}$, upgrade to $\sqrt{S} = 500 \text{ GeV}, L = 500 \text{ fb}^{-1}$ ILC measurements (from ILC DBD draft)

Main production mode ZH

WW-fusion channel

Allows measuring inclusive ZH cross section via recoil technique (use all events where Z decay products kinematically compatible with ZH production; H decay products stay unobserved)

Important ingredient to reconstruct total width

Combine four measurements

Higgs-strahlung inclusive (σ_{ZH})

2 Higgs-strahlung,
$$H \rightarrow b\bar{b} (\sigma_{Zbb})$$

Higgs-strahlung, $H \rightarrow WW (\sigma_{ZWW})$

WW-fusion with
$$H \rightarrow b\bar{b} (\sigma_{\nu\nu bb})$$

and four unknowns Δ_W , Δ_Z , Δ_b , and Γ_{tot} : $\Gamma_{\text{tot}} \leftarrow \frac{\sigma_{\nu\nu bb}/\sigma_{Zbb}}{\sigma_{ZWW}/\sigma_{ZH}} \times \sigma_{ZH}$

[Peskin (ed.) et al.]

LHC-ILC interplay

• dramatic improvement on Δ_Z , Δ_b

• complementary: combination better than each alone

• testing
$$\Delta_t \stackrel{?}{=} \Delta_c$$
 possible

[Klute, Lafaye, Plehn, MR, Zerwas]

- reminder: Δ_t = Δ_c
 (generation universality)
- LHC: no Δ_c (no obs. channel)
- ILC: no Δ_t (below $t\bar{t}H$ threshold)

LHC-ILC interplay

- dramatic improvement on Δ_Z, Δ_b
- complementary: combination better than each alone
- testing $\Delta_t \stackrel{?}{=} \Delta_c$ possible
- + 500 GeV run: ILC precision surpasses LHC everywhere

Conclusions & Outlook

- Determining the Higgs-boson properties important for our understanding of electroweak symmetry breaking
- Angular and invariant-mass distributions can distinguish spin and CP
 - Minimal graviton-like couplings already excluded at > 99% CL
 - Cross sections and p_T distributions not sufficient can be made SM-Higgs-like
 - task left: exclude general spin-2 scenarios
- Standard Model with effective Higgs couplings
 - All errors including correlations fully implemented
 - Already wealth of measurements from LHC
 - Precision on single-parameter modifier $\Delta_H \simeq 10\%$ already now
- SM Higgs Boson good explanation of observed resonance

- Need to scan high-dimensional parameter space
- $\blacksquare \Rightarrow SFitter$
- General Higgs couplings from modified version of HDecay
- Three scanning techniques:
 - Weighted Markov Chain
 - Cooling Markov Chain (equivalent to simulated annealing)
 - Gradient Minimisation (Minuit)
 - Nested Sampling
- Output of SFitter:
 - Fully-dimensional log-likelihood map
 - Reduction to plotable one- or two-dimensional distributions via both
 - Bayesian (marginalisation) or
 - Frequentist (profile likelihood) techniques
 - List of best points
- Also successfully used for SUSY parameter extraction studies

[partly in coll. with Adam, Kneur; Turlay]

[Lafaye, Plehn, MR, Zerwas]

[Djouadi, Kalinowski, Spira]

[Skilling; Feroz, Hobson]

The 7 TeV Case

Higgs boson channels, $\mathcal{L} = 4.6-4.9 \text{ fb}^{-1}$

ATLAS		CMS	
$\gamma \gamma ZZ \rightarrow 4\ell$	0-iet	$\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ 77\\ 77 \rightarrow \mathbf{4\ell} \end{array}$	di-jet
ŴŴ	1-jet	WW	0-jet
WW	2-jet	WW	1-jet
$\tau \tau$	0-jet	WW	2-jet
au au	1-jet	au au	0/1-jet
$\tau \tau$	VBF	au au	Boosted
$\tau \tau$	VH	au au	VBF
bb	WH	bb	WH
bb	$Z(\rightarrow \ell \bar{\ell})H$	bb	$Z(\rightarrow \ell \bar{\ell})H$
bb	$Z(\rightarrow \nu \bar{\nu})H$	bb	$Z(\rightarrow \nu \bar{\nu})H$

- background expectations, exp. errors, etc. from analyses
- cross-checked with exclusion and signal-strength plots

The 7 TeV Case

Higgs boson channels, $\mathcal{L} = 4.6-4.9 \text{ fb}^{-1}$

ATLAS		CMS	
$\begin{array}{c} \gamma \gamma \\ ZZ \to 4\ell \\ WW \end{array}$	0-iet	$\begin{array}{c} \gamma\gamma\\ \gamma\gamma\\ 7\gamma\\ 77 \longrightarrow 4\ell \end{array}$	di-jet
WW	1-jet	WW	0-jet
WW	2-jet	WW	1-jet
$\tau \tau$	0-jet	WW	2-jet
$\tau \tau$	1-jet	au au	0/1-jet
$\tau \tau$	VBF	au au	Boosted
$\tau \tau$	VH	au au	VBF
bb	WH	bb	WH
bb	$Z(\rightarrow \ell \bar{\ell})H$	bb	$Z(\rightarrow \ell \bar{\ell})H$
bb	$Z(\rightarrow \nu \bar{\nu})H$	bb	$Z(\rightarrow \nu \bar{\nu})H$

- background expectations, exp. errors, etc. from analyses
- cross-checked with exclusion and signal-strength plots

Higgs Couplings – ATLAS

Correlation of the coupling scale factors κ_F and κ_V

Higgs Couplings – ATLAS

$$\kappa_{XX} = \frac{\kappa_X \cdot \kappa_X}{\kappa_H}$$

Higgs Couplings – CMS

Correlation of the coupling scale factors κ_F and κ_V

Higgs Couplings – CMS

Higgs at the LHC

Input data [Dührssen (ATL-PHYS-2002-030), ATLAS CSC Note; CMS results comparable] $m_H = 120 \text{ GeV}; \quad \mathcal{L} = 30 \text{ fb}^{-1}$

production	decay	S + B	В	S	$\Delta S^{(exp)}$	$\Delta S^{(theo)}$
gg ightarrow H	ZZ	13.4	6.6 (× 5)	6.8	3.9	0.8
qqH	ZZ	1.0	0.2 (× 5)	0.8	1.0	0.1
gg ightarrow H	WW	1019.5	882.8 (× 1)	136.7	63.4	18.2
qqH	WW	59.4	37.5 (× 1)	21.9	10.2	1.7
tīH	WW(3ℓ)	23.9	21.2 (× 1)	2.7	6.8	0.4
tīH	$WW(2\ell)$	24.0	19.6 (× 1)	4.4	6.7	0.6
inclusive	$\gamma\gamma$	12205.0	11820.0 (× 10)	385.0	164.9	44.5
qqH	$\gamma\gamma$	38.7	26.7 (× 10)	12.0	6.5	0.9
tīH	$\gamma\gamma$	2.1	0.4 (× 10)	1.7	1.5	0.2
WH	$\gamma\gamma$	2.4	0.4 (× 10)	2.0	1.6	0.1
ZH	$\gamma\gamma$	1.1	0.7 (× 10)	0.4	1.1	0.1
qqH	$\tau \tau(2\ell)$	26.3	10.2 (× 2)	16.1	5.8	1.2
qqH	$\tau \tau(1\ell)$	29.6	11.6 (× 2)	18.0	6.6	1.3
tīH	bb	244.5	219.0 (× 1)	25.5	31.2	3.6
WH/ZH	bb	228.6	180.0 (× 1)	48.6	20.7	4.0

Last line obtained using subjet techniques ([Butterworth, Davison, Rubin, Salam]), theoretical results confirmed by ATLAS ([ATL-PHYS-PUB-2009-088]) (stricter cuts, statistical significance basically unchanged)

In the future

2012, 2014, ... (assuming $m_H = 125 \text{ GeV}$)

Standard Model hypothesis

Extrapolation 7→8 TeV done blindly

(only statistical improvements, based on 2011 measurements)

Additional hidden sector as singlet under SM gauge groups

[Binoth, van der Bij; Hill, van der Bij; Schabinger, Wells; Patt, Wilczek; ...]

Only possible connection to SM:

 $\mathcal{L} \propto \Phi_{s}^{\dagger} \Phi_{s} \Phi_{h}^{\dagger} \Phi_{h}$

 $\Phi_{s/h}$: Higgs field of SM/hidden sector

Electro-weak symmetry breaking: $\phi_{s/h} \rightarrow (v_{s/h} + H_{s/h})/\sqrt{2}$

 $H_{\rm s}$ and $H_{\rm h}$ mix into mass eigenstates:

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \chi & \sin \chi \\ -\sin \chi & \cos \chi \end{pmatrix} \begin{pmatrix} H_s \\ H_h \end{pmatrix}$$

Modifications for H_1 : (cos $\chi \cong \Delta_H$)

$$\begin{split} &\sigma = \cos^2 \chi \cdot \sigma^{\text{SM}} \\ &\Gamma_{\text{vis}} = \cos^2 \chi \cdot \Gamma^{\text{SM}}_{\text{vis}} \\ &\Gamma_{\text{inv}} = \cos^2 \chi \cdot \Gamma^{\text{SM}}_{\text{inv}} + \Gamma_{\text{hid}} \\ &(\Gamma^{\text{SM}}_{\text{inv}}: \text{Decay } H \to ZZ \to 4\nu \text{ (negligible))} \end{split}$$

similarly for H_2 with $\cos \chi \leftrightarrow \sin \chi$ plus possibly $\Gamma_2^{HH}: H_2 \to H_1 H_1$

Fit of $\cos^2 \chi_{\rm fit}$ without constraints (14 TeV, 30 fb⁻¹)

 \Rightarrow If cos² χ_{th} < 0.6 can exclude SM at the 95% CL with 30 fb⁻¹

• Measuring invisible decays in VBF-Higgs production Signature: Two VBF-jets plus missing E_T

 $\Gamma_{\rm hid} = \sin^2 \chi \cdot \Gamma_{\rm tot}^{\rm SM}$ (rhs: $\cos^2 \chi_{\rm th} = 0.6$)

[C. Englert, Plehn, Rauch, D. Zerwas, P.M. Zerwas]

bounds are determined by measurement of twin ratios

$$\left(\frac{\Gamma_{\rho}\Gamma_{d}}{\Gamma_{\text{tot}}}\right) / \left(\frac{\Gamma_{\rho}\Gamma_{d}}{\Gamma_{\text{tot}}}\right)^{\text{SM}} = (\sigma_{\rho} \times \text{BR}_{d}) / (\sigma_{\rho} \times \text{BR}_{d})^{\text{SM}}$$

$$\frac{\sigma(pp \to H_1 \to F)}{\sigma(pp \to H_1 \to F)^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi(\Gamma_1^{\text{hid}}/\Gamma_{\text{tot},1}^{\text{SM}})} \le \mathcal{R}$$
$$\frac{\sigma(pp \to H_1 \to inv)}{\sigma(pp \to H_1)^{\text{SM}}} = \frac{\sin^2 \chi(\Gamma_1^{\text{hid}}/\Gamma_{\text{tot},1}^{\text{SM}})}{1 + \tan^2 \chi(\Gamma_1^{\text{hid}}/\Gamma_{\text{tot},1}^{\text{SM}})} \le \mathcal{J}$$

additional constraint: electroweak precision data (dots: compatible points)

Example: $M_{H_1} = 155 \text{ GeV}$ $\Rightarrow \mathcal{R} \lesssim 0.4 @ 95\% \text{ CL}$

- bound weakened by invisible decays
- whole area left of it still possible
- significant improvement with higher statistics

[C. Englert, Plehn, Rauch, D. Zerwas, P.M. Zerwas]

bounds are determined by measurement of twin ratios

$$\left(\frac{\Gamma_{\rho}\Gamma_{d}}{\Gamma_{\text{tot}}}\right) / \left(\frac{\Gamma_{\rho}\Gamma_{d}}{\Gamma_{\text{tot}}}\right)^{\text{SM}} = (\sigma_{\rho} \times \text{BR}_{d}) / (\sigma_{\rho} \times \text{BR}_{d})^{\text{SM}}$$

$$\frac{\sigma(pp \to H_1 \to F)}{\sigma(pp \to H_1 \to F)^{\text{SM}}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi(\Gamma_1^{\text{hid}} / \Gamma_{\text{tot},1}^{\text{SM}})} \le \mathcal{R}$$
$$\frac{\sigma(pp \to H_1 \to inv)}{\sigma(pp \to H_1)^{\text{SM}}} = \frac{\sin^2 \chi(\Gamma_1^{\text{hid}} / \Gamma_{\text{tot},1}^{\text{SM}})}{1 + \tan^2 \chi(\Gamma_1^{\text{hid}} / \Gamma_{\text{tot},1}^{\text{SM}})} \le \mathcal{J}$$

additional constraint: electroweak precision data (dots: compatible points)

Strongly-Interacting Light Higgs

[Giudice, Grojean, Pomarol, Rattazzi; Espinosa, Grojean, Mühlleitner]

Higgs pseudo-Goldstone boson of new strongly interacting sector Modifications parametrized by $\xi = (v/f)^2$ (*f: Goldstone scale*)

MCHM4:

Scaling of all couplings with
$$\sqrt{1-\xi}$$

 \Rightarrow Identify $\cos^2 \chi = 1 - \xi$
 $\Gamma_{hid} = 0$

MCHM5:

Scaling:

$$egin{aligned} g_{VVH} &= g_{VVH}^{ ext{SM}} \cdot \sqrt{1-\xi} \ g_{f ar{f} H} &= g_{f ar{f} H}^{ ext{SM}} \cdot rac{1-2\xi}{\sqrt{1-\xi}} \end{aligned}$$

Significant and observable deviations also in Higgs self-couplings [G

[Gröber, Mühlleitner]

MCHM5

Secondary solutions appear (sign of $f\bar{f}H$ coupling)

 $m_H = 120 \text{ GeV}$

 $m_H = 160 \text{ GeV}$

 $m_H = 200 \text{ GeV}$

Not a true degeneracy \rightarrow Each (smeared) toy experiment has unique solution

MCHM5

[Bock, Lafaye, Plehn, MR, D. Zerwas, P.M. Zerwas]

Secondary solutions appear (sign of $f\bar{f}H$ coupling)

 $m_H = 120 \text{ GeV}$ $m_H = 160 \text{ GeV}$ $m_{H} = 200 \, {\rm GeV}$ 95% CL 95% CL 68% CL 95% CL 68% CL 0.6 0.6 Šŕit Şrit 2 Lit -0.6 -0.6 -0 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9 $\xi_{\rm th}$ $\xi_{\rm th}$ $\xi_{\rm th}$

Independent fit of common vector and fermion couplings

 $\xi_{th} = 0 \qquad \xi_{th} = 0.2 \qquad \xi_{th} = 0.6$

Not a true degeneracy

 \rightarrow Each (smeared) toy experiment has unique solution

Top-associated Higgs Subjets

Add additional measurement for $t\bar{t}H$, $H \rightarrow b\bar{b}$ using subjet techniques

[Plehn, Salam, Spannowsky]

extrapolated to 7 TeV SM hypothesis

 \Rightarrow Secondary solution strongly suppressed \rightarrow large g_t disfavoured by new measurement