

Vector-Boson-Fusion: Parton-shower and Anomalous-coupling Effects

Michael Rauch | 25 Jul 2016

INSTITUTE FOR THEORETICAL PHYSICS

www.kit.edu

VBF event topology

VBF (vector-boson fusion) topology shows distinct signature

- two tagging jets in forward region
- reduced jet activity in central region
- leptonic decay products typically between tagging jets
- \rightarrow two-sided deep-inelastic scattering

First studied in context of Higgs searches [Han, Valencia, Willenbrock; Figy, Oleari, Zeppenfeld; ...]

- $\blacksquare \sim 10\%$ compared to main production mode gluon fusion
- NLO QCD corrections moderate ($O(\leq 10\%)$)
- NLO EW same size
 [Ciccolini et al. , Figy et al.]
- NNLO QCD known for subsets: no significant contributions for integrated c.s.

[Harlander et al., Bolzoni et al.]

corrections up to 10% in distributions

[Cacciari et al.]

- incl. NNNLO QCD: tiny effects [Dreyer, Karlberg]
- advantageous scale choice: momentum transfer q² of intermediate vector bosons

Diboson-VBF production

[Bozzi, Jäger, Oleari, Zeppenfeld (VV); Campanario, Kaiser, Zeppenfeld ($W^{\pm}\gamma$)] [Denner, Hosekova, Kallweit (W⁺W⁺)]

- Important process for LHC run-II
- Part of the NLO wish list

[Les Houches 2005]

- background to Higgs searches
- access to anomalous triple and quartic gauge couplings
- NLO QCD implementation of
 - all boson combinations
 - leptonic and semi-leptonic decavs
 - including off-shell and non-resonant contributions
 - VBF approximation

→ VBFNLO

[MR, Zeppenfeld et al.]

(e)

Introduction

VBFNLO

Vector-Boson-Fusion at Next-to-Leading Order

Introduction

VBFNLO

Physics Vector-Boson-Eusion at Next-to-Leading Order

Introduction

VBFNLO

F Physics Vector-Boson-Eusion at Next-to-Leading Order

Fully flexible parton-level Monte Carlo for processes with electroweak bosons

- accurate predictions needed for LHC (both signal and background)
- MC efficient solution for high number of final-state particles (decays of electroweak bosons included)
- general cuts and distributions of final-state particles
- various choices for renormalization and factorization scales
- any pdf set available from LHAPDF (or hard-wired CTEQ6L1, CT10, MRST2004qed, MSTW2008)
- event files in Les Houches Accord (LHA) or HepMC format (LO only)
- BLHA interface to Monte-Carlo event generators \rightarrow NLO event output

Process overview

NLO plus Parton Shower

Combine advantages of NLO calculations and parton shower

NLO calculation

- normalization correct to NLO
- additional jet at high-p_T accurately described
- theoretical uncertainty reduced

State of the Art

Implementations for specific VBF processses

POWHEG-BOX currently available VBF implementations: Ζ

[Jäger, Schneider, Zanderighi] $W^{\pm}.Z$ $W^{\pm}W^{\pm}, W^{\pm}W^{\mp}$ ΖZ [Jäger, Karlberg, Zanderighi]

VBF-H with POWHEG method

HJets++

Parton shower

[Schissler, Zeppenfeld]

[Jäger, Zanderighi]

- Sudakov suppression at small p_T
- events at hadron level possible

[Alioli, Hamilton, Nason, Oleari, Re]

[D'Errico, Richardson]

[Campanario, Figy, Plätzer, Sjödahl]

Herwig 7 H7

- fully automated matching of NLO to parton showers through Matchbox module [work led by S. Plåtzer with substantial contributions by J. Bellm, A. Wilcock, MR, C. Reuschle]
- subtractive (MC@NLO-type, \oplus) and multiplicative (POWHEG-type, \otimes) matching
- angular-ordered (QTilde, PS) and dipole (Dipoles) shower
- matrix elements through binary interface, no event files

VBFNLO 3 & Herwig 7 – this talk

matrix elements from VBFNLO via BLHA2 interface

[Binoth et al., Alioli et al.]

- extensions to make accessible
 - phase-space sampling
 - (electroweak) random helicity summation
 - anomalous couplings

Validation

Compare LO results between VBFNLO stand-alone run and interfaced to Herwig 7 via Matchbox

(inclusive cuts, with leptonic gauge boson decays into single different-flavour combination, Higgs non-decaying)

Validation

Compare NLO results between VBFNLO stand-alone run and interfaced to Herwig 7 via Matchbox

(inclusive cuts, with leptonic gauge boson decays into single different-flavour combination, Higgs non-decaying)

Setup

Process:

[Plätzer, MR]

 $pp
ightarrow ig((\textit{Hjj}
ightarrow)\textit{W}^{+}\textit{W}^{-}\textit{jj}
ightarrowig)e^{+}
u_{e}\mu^{-}ar{
u}_{\mu}\textit{jj}$ via VBF

Cuts:

 $\begin{array}{ll} p_{T,j} > 30 \; {\rm GeV} \,, & |y_j| < 4.5 \,, \\ {\rm anti-}k_T \; {\rm jets} \; {\rm with} \; R = 0.4 \,, & b\mbox{-quark veto} \\ p_{T,\ell} > 20 \; {\rm GeV} \,, & |y_\ell| < 2.5 \,, \\ m_{e^+,\mu^-} > 15 \; {\rm GeV} \,, & \\ m_{j1,j2} > 600 \; {\rm GeV} \,, & |y_{j1} - y_{j2}| > 3.6 \end{array}$

(inspired from ATLAS VBF category in $H \rightarrow WW$, CMS similar)

PDF: MMHT2014

central scale choice: transverse momentum of the leading jet

$$\mu_0 = p_{T,j1}$$

Distributions

Process as example: $pp \rightarrow ((Hjj \rightarrow)W^+W^-jj \rightarrow)e^+\nu_e\mu^-\bar{\nu}_\mu jj$ via VBF Four-lepton invariant mass

Distributions

Process as example: $pp \rightarrow ((Hjj \rightarrow)W^+W^-jj \rightarrow)e^+\nu_e\mu^-\bar{\nu}_\mu jj$ via VBF Four-lepton invariant mass

- all parton-shower results smaller than NLO cross section
- additional K-factor effect for LO \oplus Dipoles result (K = 1.077)
- no relevant shape changes (as expected: insensitive to QCD effects)

Migration Effects

Vary transverse momentum cut of jets (default: $p_{T,j} > 30 \text{ GeV}$)

- same effect when slightly raising p_{T,j} cut
- additional parton splittings: if hard & wide-angle emission \rightarrow separate jet
- $\blacksquare \rightarrow$ reduces energy and transverse momentum of emitting parton
- $\leftrightarrow p_{T,j}$ cut, VBF cut $m_{jj} > 600$ GeV

Migration Effects

Vary transverse momentum cut of jets (default: $p_{T,j} > 30 \text{ GeV}$)

- \leftrightarrow generation-level vs. analysis-level cuts
- $\blacksquare \Rightarrow$ no tuning of acceptance criteria required
- generation-level cuts nevertheless chosen weaker

Four-lepton Invariant Mass

- ← central scale µ₀ = p_{T,j1} transverse momentum of leading jet
- $\leftarrow \bullet \text{ band: scale variation} \\ \{\mu_F, \mu_R, \mu_Q\} / \mu_0 \in [\frac{1}{2}; 2] \\ \mu_i / \mu_j \in [\frac{1}{2}; 2] \end{cases}$
- ← factorization scale $\mu_F/\mu_0 \in [\frac{1}{2}; 2]$
- ← renormalization scale $\mu_R/\mu_0 \in [\frac{1}{2}; 2]$
- ← shower scale $\mu_Q/\mu_0 \in [\frac{1}{2}; 2]$
- \leftarrow \blacksquare all three scales

Four-lepton Invariant Mass

- consistent variation of scales between hard process and parton shower
- large factorization scale dependence for LO result
- larger dependence for down variation of renormalization scale in angular-ordered shower:

larger $\alpha_s \rightarrow$ more splittings \rightarrow bigger migration effects

- small variations from shower-scale changes
- modest remaining overall uncertainty

Transverse Momentum Third Jet

- large scale variation bands for
 - shower scale in LO⊕Dipoles

 $\rightarrow \text{pure parton-shower} \\ \text{effect}$

fact./ren. scale in "NLO"

 $\rightarrow \text{LO accuracy of } \\ \text{observable}$

- reduced for both NLO + parton-shower curves
- still significant remaining uncertainty O(10 – 20%)
- $\blacksquare \rightarrow call$ for multi-jet merging

Rapidity of third jet

Rapidity of third jet relative to two tagging jets $y_3^* = y_3 - \frac{y_1 + y_2}{2}$ 22000000 12222222222222

- 000000
- VBF colour structure suppresses additional central jet radiation
- colour connection between tagging jet and remnant
- \leftrightarrow distinction from QCD-induced production

Rapidity of third jet

Rapidity of third jet relative to two tagging jets

$$y_3^* = y_3 - \frac{y_1 + y_2}{2}$$

- impact of parton showers (+LO) long unclear
- Herwig predicts very low radiation in central region
- large shower-scale unc.
- stabilised when combining with NLO
- still reduction present
- scale variation bands not overlapping
- only small effects in forward region (mostly global normalization)

Rapidity of third jet - POWHEG

18/24

Rapidity of third jet - POWHEG

• band: joint variation $\mu_F = \mu_R = \mu_Q \in [\frac{1}{2}, 2] \mu_0$

- similar predictions from MC@NLO-like (\oplus) and POWHEG-like (\otimes) matching
- also holds for other distributions

Effective Field Theory

Assumption: new physics is heavy

Classic example: μ decay \rightarrow Fermi theory (t-channel W integrated out)

 \Rightarrow Effective Lagrangian

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d > 4} \sum_{i} \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- operators O contain SM fields only
- respect SM gauge symmetries
- suppressed by $1/\Lambda^{d-4}$ (Λ : scale of new physics)
 - \rightarrow keep only leading order(s) (lowest dimension d = 6)
- building blocks:
 - Higgs field Φ
 - (covariant) derivative ∂^{μ} , D^{μ}
 - field strength tensors $G^{\mu\nu}$, $W^{\mu\nu}$, $B^{\mu\nu}$
 - fermion fields ψ

Unitarity Violation

Important gauge cancellations between different diagram types

Iongitudinal W scattering through quartic gauge boson vertex

high energy limit: centre-of-mass energy $\sqrt{s} \to \infty$ $\mathcal{M}_{quartic vertex} \propto s^2 \to cross section diverges \quad \sigma \propto s^4/s = s^3 \to \infty$ add triple gauge boson vertices

remove divergence exactly $\sigma \propto 1/s \rightarrow 0$ Anomalous gauge couplings spoil cancellation \rightarrow stringent tests

20/24

Unitarization

Anomalous gauge couplings spoil cancellation \leftrightarrow effects can become large \rightarrow unitarity violation

Several solutions:

- \blacksquare consider only unitarity-conserving phase-space regions throws away information \rightarrow reduced sensitivity
- (dipole) form factor multiplying amplitudes

$$\mathcal{F}(s) = rac{1}{\left(1 + rac{s}{\Lambda_{FF}^2}
ight)^n} \qquad \qquad \Lambda_{FF}^2, \; n: ext{ free parameters}$$

 K-matrix unitarization [Alboteanu, Kilian, Reuter, Sekulla] based on partial-wave analysis [Jacob, Wick] project amplitude back onto Argand circle

Cross Section Results

Example Process: $pp (\rightarrow W^+W^+jj) \rightarrow e^+\nu_e\mu^+\nu_\mu jj$ at NLO QCD accuracy

kink form factor (simplified projection for comparison):

$$F_{kink}(E) = \begin{cases} 1 & \text{for } E \leq \Lambda_{FF,kink} \ , \\ \left(\frac{\Lambda_{FF,kink}}{E}\right)^4 & \text{for } E > \Lambda_{FF,kink} \ , \end{cases}$$

- huge effects for un-unitarized result ↔ unphysical
- K-matrix method maximising contribution while staying in physical region
- lacksquare \rightarrow study parton-shower and hadronization impact

Combination with Parton Shower

[VBFNLO 3 & Herwia 7]

Can also combine K-matrix in setup with parton shower Example: VBF- W^+W^+ ($pp \rightarrow e^+\nu_e \mu^+\nu_\mu jj$) anom. coupl.: $f_{S,1} = 100 \text{ TeV}^{-4}$

cs/GeV [fb/GeV] cs/GeV [fb/GeV] 10 10 10 10 10 10-5 10 10 PS+SM 10^{-7} 10-7 anom, coupl. PS+anom, coupl matrix 10^{-8} S+K-matrix 10⁻⁸ 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 m_4l [GeV] m_4l [GeV]

No significant shape changes in $m_{4\ell}$ when switching on PS (integrated c.s. PS/NLO: -3.0% (SM) / -3.8% (K-matrix))

fixed-order NLO

NLO+PS (MC@NLO + dipole shower)

Combination with Parton Shower

No significant shape changes in $m_{4\ell}$ when switching on PS (integrated c.s. PS/NLO: -3.0% (SM) / -3.8% (K-matrix))

 $\leftrightarrow p_{i,3}^T$ mostly sensitive to parton-shower effects

Conclusions

Parton-shower and scale variation effects in

 W^+W^-jj production via vector-boson-fusion

- important process for the LHC
 - Higgs properties unitarity in WW scattering
 - testing anomalous (triple and) quartic gauge couplings
- study performed with Herwig 7 & VBFNLO 3
- compatible behavior of both parton showers and matching schemes
- small parton-shower effects for distributions of variables already present at LO

mostly reduction of inclusive cross section due to additional jet radiation

- presence of central rapidity gap stabilised
- $\blacksquare \rightarrow$ multi-jet merging to further reduce uncertainties
- \bullet \rightarrow study hadronization impact

Conclusions

Parton-shower and scale variation effects in

 W^+W^-jj production via vector-boson-fusion

- important process for the LHC
 - Higgs properties unitarity in WW scattering
 - testing anomalous (triple and) quartic gauge couplings
- study performed with Herwig 7 & VBFNLO 3
- compatible behavior of both parton showers and matching schemes
- small parton-shower effects for distributions of variables already present at LO

mostly reduction of inclusive cross section due to additional jet radiation

- presence of central rapidity gap stabilised
- $\blacksquare \rightarrow$ multi-jet merging to further reduce uncertainties
- \bullet \rightarrow study hadronization impact

24/24

Conclusions

Parton-shower and scale variation effects in

 W^+W^-jj production via vector-boson-fusion

- important process for the LHC
 - Higgs properties unitarity in WW scattering
 - testing anomalous (triple and) quartic gauge couplings
- study performed with Herwig 7 & VBFNLO 3
- compatible behavior of both parton showers and matching schemes
- small parton-shower effects for distributions of variables already present at LO

mostly reduction of inclusive cross section due to additional jet radiation

- presence of central rapidity gap stabilised
- $\blacksquare \rightarrow$ multi-jet merging to further reduce uncertainties
- \bullet \rightarrow study hadronization impact

24/24

BLHA Interface

Defined standardized interface between Monte Carlo tools and one-loop programs

→Binoth Les Houches Accord (BLHA)

[arXiv:1001.1307, arXiv:1308.3462]

- tree-level evaluation of matrix elements well under control
- modular structure of NLO calculations
- algorithms for treatment of infrared singularities (Catani-Seymour, FKS, ...)
- lacksquare \rightarrow incorporate one-loop matrix element information into MC tools

Distribution of tasks:

- MC tool:
 - cuts, histograms, parameters
 - Monte Carlo integration
 - phasespace ($\rightarrow VBFNLO$)
 - IR subtraction
 - Born, colour- and spin-correlated Born (only BLHA1)
- One-loop provider (OLP):
 - one-loop matrix elements $2\Re(\mathcal{M}_{LO}^{\dagger}\mathcal{M}_{virt})$ (coefficients of ϵ^{-2} , ϵ^{-1} , ϵ^{0} ; $|\mathcal{M}_{LO}|^{2}$)
 - Born, colour- and spin-correlated Born (only BLHA2)

Setup stage via "contract" file

(needed for tools which generate code on the fly)

Run-time stage via binary interface (function calls) \rightarrow fast

Validation

Compare LO+j results between VBFNLO stand-alone run and interfaced to Herwig 7 via Matchbox

(inclusive cuts, with leptonic gauge boson decays into single different-flavour combination, Higgs non-decaying)

Setup

Generation-level cuts:

 $p_{T,j} > 20 \text{ GeV},$ anti- k_T jets with R = 0.4, $p_{T,\ell} > 15 \text{ GeV},$ $m_{e^+,\mu^-} > 15 \text{ GeV},$ $m_{j1,j2} > 400 \text{ GeV},$ $egin{aligned} |y_j| &< 5.0\,, \ b ext{-quark veto} \ |y_\ell| &< 3.0\,, \end{aligned}$

 $|y_{j1} - y_{j2}| > 3.0$

Analysis-level cuts:

 $\begin{array}{ll} p_{T,j} > 30 \; {\rm GeV}\,, & |y_j| < 4.5\,, \\ {\rm anti-}k_T \; {\rm jets} \; {\rm with} \; R = 0.4\,, & b\mbox{-quark veto} \\ p_{T,\ell} > 20 \; {\rm GeV}\,, & |y_\ell| < 2.5\,, \\ m_{e^+,\mu^-} > 15 \; {\rm GeV}\,, & \\ m_{j1,j2} > 600 \; {\rm GeV}\,, & |y_{j1} - y_{j2}| > 3.6 \end{array}$

Missing Transverse Momentum

Transverse Momentum of Leading Lepton

R Separation of Leading Jet and Leading Lepton

$$\Delta R = \sqrt{\Delta y^2 + \Delta \phi^2}$$

Jacobian peak at $\Delta R_{i1\ell 1} = \pi$

M. Rauch - Vector-Boson-Fusion: Parton-shower and Anomalous-coupling Effects

NNLO QCD Correction to VBF-H

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi]

 NNLO effects well approximated by NLO plus parton-shower results