$\mathcal{P}rospects$ of $\mathcal{H}iggs$ $\mathcal{P}hysics$ at the \mathcal{LHC}

 \mathcal{M} . \mathcal{M} argarete \mathcal{M} ühlleitner (KIT)

Karlsruhe 15. Dezember 2011

Outline

I Introduction

- Higgs mechanism
- Supersymmetry

II Test of the Higgs mechanism at the LHC

- $-\,$ Higgs search at the LHC
- Higgs couplings to fermions, bosons
- Higgs boson quantum numbers
- Higgs self-couplings
- **III** The Composite Higgs Boson

IV Conclusion

Research at the Large Hadron Collider LHC

Research at the LHC

$\mathsf{Discoveries} \Rightarrow$

Understanding of matter and its interactions:

- $\rightarrow\,$ Verification of the Higgs mechanism
- $\rightarrow\,$ Search for supersymmetric particles
- $\rightarrow\,$ Search for extra dimensions

The Standard Model of Particle Physics

Symmetry group $SU(3) \times SU(2)_L \times U(1)_Y$

III Higgs mechanism Masses of the fundamental particles

The Standard Model of Particle Physics

Symmetry group $SU(3) \times SU(2)_L \times U(1)_Y$

The Higgs mechanism

- Why? Explain the existence of massive particles consistently with the underlying symmetries of the Standard Model
- **Solution** Mechanism, which "breaks" the gauge symmetry in a specific way
- **Realisation** Higgs mechanism \rightsquigarrow Higgs particle

How it works Mass generation through spontaneous symmetry breaking (SSB)

- $\circ\,$ Self-interaction of the scalar field $\rightsquigarrow\,\infty\,$ number of degenerate ground states with non-vanishing field strength
- $\circ~$ Choice of one ground state as the physical ground state $\rightsquigarrow~$ $SU(2)_L \times U(1)_Y$ symmetry hidden, $U(1)_{em}$ symmetry left: SSB
- Particles acquire mass through the interaction with the scalar field in the ground state

 $\circ~$ Non-vanishing field strength $v=246~{\rm GeV} \leftarrow$ typical minimax form of the Higgs potential

The Higgs mechanism

- Why? Explain the existence of massive particles consistently with the underlying symmetries of the Standard Model
- **Solution** Mechanism, which "breaks" the gauge symmetry in a specific way
- **Realisation** Higgs mechanism \rightsquigarrow Higgs particle

How it works Mass generation through spontaneous symmetry breaking (SSB)

- Self-interaction of the scalar field $\rightsquigarrow \infty$ number of degenerate ground states with non-vanishing field strength
- $\circ~$ Choice of one ground state as the physical ground state $\rightsquigarrow~$ $SU(2)_L \times U(1)_Y$ symmetry hidden, $U(1)_{em}$ symmetry left: SSB

Test of the Higgs mechanism? Accelerator experiments!

- Particles acquire mass through the interaction with the scalar field in the ground state
- $\circ~$ Non-vanishing field strength $v=246~{\rm GeV} \leftarrow$ typical minimax form of the Higgs potential

Standard Model: incomplete picture of the universe

- Common origin of all three forces of the Standard Model?
- How can we incorporate gravity?
- Candidate for Dark Matter? ...

Why Supersymmetry?

Standard Model: incomplete picture of the universe

- Common origin of all three forces of the Standard Model?
- How can we incorporate gravity?
- Candidate for Dark Matter? ...

Supersymmetry: provides answers

 $\mathsf{Fermions} \leftrightarrow \mathsf{Bosons}$

Price: doubling of the particle spectrum

SUSY's answers

♦ **Unification of the coupling constants** electromagnetic - weak - strong

SUSY's Antworten

- ♦ Unification of the couplings constants
- ♦ Solution of the hierarchy problem

elektromagnetic - weak - strong

bosonic masses (\rightarrow Higgs mass) kept small in a natural way \leftarrow fermions \leftrightarrow bosons

◊ Candidate for Cold Dark Matter

SUSY with R parity (DM $\sim 25\%$ of the universe)

SUSY's answers

♦ Unification of the coupling constants

- ◊ Solution of the hierarchy problem
- ◊ Candidate for cold Dark Matter
- ♦ Local supersymmetry
- ◊ Higgs mechanism

bosonic masses (\rightarrow Higgs mass) kept small in a natural way \leftarrow fermions \leftrightarrow bosons

electromagnetic - weak - strong

SUSY with *R*-Parity (DM $\sim 25\%$ of the universe)

enforces gravity

generated through radiative corrections

Experimental verification of the Higgs mechanism

Higgs mechanism:

Creation of particle masses without violating gauge principles

Experimental verification of the Higgs mechanism

Higgs mechanism:

Creation of particle masses without violating gauge principles

The SM Higgs Sector

The Higgs potential: [v = 246 GeV]

$$V(\Phi) = \lambda [\Phi^{\dagger} \Phi - \frac{v^2}{2}]^2 \qquad \Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+H \end{pmatrix} \rightarrow$$

$$V(H) = \frac{1}{2}M_H^2 H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$$

${\cal H}$ iggs boson mass	$M_H = \sqrt{2\lambda}v$	
\mathcal{G} auge couplings	$g_{VVH} = \frac{2M_V^2}{v}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$\mathcal Y$ ukawa couplings	$g_{ffH} = \frac{m_f}{v}$	·····
\mathcal{T} rilinear coupling [units $\lambda_0 = 33.8 \text{ GeV}$]	$\lambda_{HHH} = 3 \frac{M_H^2}{M_Z^2}$	
\mathcal{Q} uartic coupling $_{[units \ \lambda_0^2]}$	$\lambda_{HHHH} = 3 \frac{M_H^2}{M_Z^4}$	· · · · · · · · · · · · · · · · · · ·

$\mathcal{SM} \mathcal{H}iggs \mathcal{M}ass \mathcal{L}imits$

• Triviality \rightarrow upper bound Vacuum stability \rightarrow lower bound Cabibbo,...;Sher; Lindner;Hasenfratz,...; Lüscher, Weisz; Hambye,...;...

$$\Lambda = 1 \text{ TeV}:$$
 55 GeV $\lesssim M_H \lesssim$ 700 GeV
 $\Lambda_{GUT} = 10^{16} \text{ GeV}:$ 130 GeV $\lesssim M_H \lesssim$ 190 GeV

SM Higgs Mass Limits

Cabibbo....;Sher;

Lüscher, Weisz;

Hambye,...;...

Lindner; Hasenfratz,...;

• Triviality \rightarrow upper bound Vacuum stability \rightarrow lower bound

 $\Lambda = 1 \text{ TeV}$: 55 GeV $\lesssim M_H \lesssim$ 700 GeV $\Lambda_{GUT} = 10^{16} \text{ GeV}$: 130 GeV $\lesssim M_H \lesssim$ 190 GeV

• Fits to electroweak precision data

EWWG

 $M_{H} = 92^{+34}_{-26}$ GeV, $M_{H} \lesssim 185$ GeV @ 95% CL

SM Higgs Mass Limits

Hambye, Riesselmann Cabibbo....;Sher; Triviality upper bound \rightarrow Lindner; Hasenfratz,...; 800 Lüscher, Weisz; Vacuum stability lower bound \rightarrow Hambye,...;... $m_t = 175 \text{ GeV}$ 600 $M_{\rm H}$ [GeV] 400 $\Lambda = 1 \; {
m TeV}$: 55 GeV $\lesssim M_H \lesssim$ 700 GeV 200 $\Lambda_{\scriptscriptstyle GUT} = 10^{16}~{
m GeV}$: 130 GeV $\lesssim M_H \lesssim$ 190 GeV 1 | 1 | 1 | 1 | 1 $10^9 10^{12} 10^{15} 10^{18}$ 106 $\Lambda [GeV]_{m_{\text{Light}} = 161 \text{ GeV}}$ $\Delta \alpha_{had}^{(5)}$ 5 Fits to electroweak precision data LEP Coll. 0.02750±0.00033 0 02749+0 00010 incl. low O² data EWWG [∞]X[∞] 3 $M_H = 92^{+34}_{-26}$ GeV, $M_H \lesssim 185$ GeV @ 95% CL 2 1 Excluded 0-30 100 300 m_н [GeV] Direct search @ LEP: $[M_H = 115.3 \text{ GeV}]$ e^+ LEP Coll. $M_H > 114.4 \,\, {\rm GeV} \,\, {\rm @} \,\, {\rm 95\%} \,\, {\rm CL}$ W^* - - H

Η

\mathcal{T} evatron \mathcal{E} xclusion

$\mathcal{H}iggs\ \mathcal{S}uche$ am \mathcal{LHC}

Higgsboson Produktion im SM

• Gluon Gluon Fusion

• W/Z Fusion

$$pp \rightarrow gg \rightarrow H$$

 $pp \rightarrow qq \rightarrow qq + WW/ZZ \rightarrow qq + H$

• Higgs-strahlung

 $pp \to W^*/Z^* \to W/Z + H$

• Bremsstrahlung

 $pp \to t\bar{t} + H$

\mathcal{SM} $\mathcal{H}iggs$ $\mathcal{B}oson$ $\mathcal{P}roduction$ at the \mathcal{LHC}

LHC Higgs XS WG, arXiv:1101.0593

M.Mühlleitner, 15 Dez 2011, KIT

Higgsboson-Verzweigungsverhältnisse

Higgs koppelt proportional zur Masse des Teilchen \rightsquigarrow Zerfälle in schwere Teilchen dominant (falls kinematisch erlaubt)

M.Mühlleitner, 15 Dez 2011, KIT

\mathcal{SM} $\mathcal{H}iggsboson$ $\mathcal{S}uche$ am \mathcal{LHC}

CMS

ATLAS

Genauigkeit: $\delta M_H/M_H \sim 10^{-3}$

${\cal CMS} \ {\cal E}$ rgebnisse

- Daten entsprechend 4.7 fb⁻¹ integrierter Luminosität ausgewertet
- CMS kann den gesamten Massenbereich 114 GeV 600 GeV untersuchen
- Kombination der Higgssuchen in den Higgszerfallskanälen in $WW^{(*)}, ZZ^{(*)}, bb, \tau\tau, \gamma\gamma$
- Ausschluß: 127-600 GeV auf 95% CL und 128-525 GeV auf 99% CL

\mathcal{CMS} Ergebnisse

- Im Vergleich zum SM ein Überschuß an Daten in der Region 115-127 GeV konsistent in 5 unabh. Kanälen
- Mit den bisherigen Daten schwierig, zu unterscheiden zwischen den beiden Hypothesen Existenz bzw. Nicht-Existenz in der niedrigen Massenregion
- Überschuß ist kompatibel mit SM Higgs Hypothese bei etwa 124 GeV mit weniger als 2σ bei Einschluß von LEE; ohne LEE 2.6 σ .

ATLAS Ergebnisse

- Higgsboson am wahrscheinlichsten in der Region 115-130 GeV
- Kombination der Higgssuchen in den Higgszerfallskanälen in $WW^{(*)} \rightarrow l\nu l\nu, ZZ^{(*)} \rightarrow 4l, \gamma\gamma$
- Ausschluß: 112.7-115.5 GeV, 131-453 GeV, außer 237-251 GeV auf 95% CL
 - (hohe Massenregion noch nicht untersucht)
- Überschuß ist kompatibel mit SM Higgs Hypothese bei etwa 126 GeV mit 2.6 σ bei Einschluß von LEE; ohne LEE 3.6 σ .

$\mathcal{M}inimal \ \mathcal{S}upersymmetric \ \mathcal{E}xtension \ of \ the \ \mathcal{SM} \ (\mathcal{MSSM})$

MSSM Higgs sector – supersymmetry & anomaly-free theory \Rightarrow 2 complex Higgs doublets

neutral, CP-even h, H neutral, CP-odd A charged H^+, H^-

$\mathcal{M}inimal \ \mathcal{S}upersymmetric \ \mathcal{E}xtension \ of \ the \ \mathcal{SM} \ (\mathcal{MSSM})$

 $\begin{array}{l} \textbf{MSSM Higgs sector} - \text{supersymmetry \& anomaly-free theory} \Rightarrow 2 \text{ complex Higgs doublets} \\ \hline \\ \textbf{EWSB} & \textbf{neutral, CP-even } h, H & \textbf{neutral, CP-odd } A & \textbf{charged } H^+, H^- \\ \hline \\ \textbf{Higgs masses} & M_h & \lesssim & 140 \text{ GeV} \\ M_{A,H,H^{\pm}} & \sim & \mathcal{O}(v)...1 \text{ TeV} \end{array}$

$\mathcal{M}inimal \ \mathcal{S}upersymmetric \ \mathcal{E}xtension \ of \ the \ \mathcal{SM} \ (\mathcal{MSSM})$

MSSM Higgs sector – supersymmetry & anomaly-free theory \Rightarrow 2 complex Higgs doublets

 $\stackrel{\text{EWSB}}{\rightarrow} \qquad \text{neutral, CP-even } h, H \qquad \text{neutral, CP-odd } A \qquad \text{charged } H^+, H^-$ Higgs masses $M_h \qquad \lesssim \qquad 140 \text{ GeV}$ $M_{A,H,H^{\pm}} \qquad \sim \qquad \mathcal{O}(v)...1 \text{ TeV}$ Ellis et al;Okada et al;Haber,Hempfling; Hoang et al;Carena et al;Heinemeyer et al; Zhang et al;Brignole et al;Harlander et al;...}

Decoupling limit:

 $M_A \sim M_H \sim M_{H^\pm} \gg v$ $M_h \rightarrow$ max. value, $\tan \beta$ fixed; h SM-like

\mathcal{M} inimal \mathcal{S} upersymmetric \mathcal{E} xtension of the \mathcal{SM} (\mathcal{MSSM})

MSSM Higgs sector – supersymmetry & anomaly-free theory \Rightarrow 2 complex Higgs doublets

Decoupling limit:

 $M_A \sim M_H \sim M_{H^{\pm}} \gg v$ $M_h \rightarrow \text{max.}$ value, $\tan \beta$ fixed; h SM-like

Modified couplings w/ respect to the SM: (decoupling limit Gunion, Haber)

Φ	$g_{\Phi u ar u}$	$g_{\phi d ar d}$	$g_{\Phi VV}$
h	$c_{\alpha}/s_{\beta} \rightarrow 1$	$-s_{\alpha}/c_{\beta} \rightarrow 1$	$s_{eta-lpha} ightarrow 1$
H	$s_{lpha}/s_{eta} ightarrow 1/\mathrm{tg}eta$	$c_{lpha}/c_{eta} ightarrow { m tg}eta$	$c_{eta-lpha} ightarrow 0$
A	$1/{ m tg}eta$	${ m tg}eta$	0

MSSM Higgs Mass Limits

 \triangleright Direct Search at LEP $e^+e^- \rightarrow Z + h/H, \ A + h/H, \ \nu_e \bar{\nu}_e + h/H$

M.Mühlleitner, 15 Dez 2011, KIT

Higgs boson production in SM/MSSM

• Gluon Gluon Fusion

• W/Z Fusion

$$pp \rightarrow qq \rightarrow qq + WW/ZZ \rightarrow qq + H^{SM} / h, H$$

• Higgs-strahlung

 $pp \rightarrow W^*/Z^* \rightarrow W/Z + H^{SM}/h, H$ $pp \rightarrow t\bar{t}/b\bar{b} + (H^{SM})/h, H, A$

Associated Production

\mathcal{MSSM} $\mathcal{H}iggs$ $\mathcal{B}oson$ $\mathcal{P}roduction$ at the \mathcal{LHC}

\mathcal{MSSM} $\mathcal{H}iggs$ $\mathcal{B}oson$ $\mathcal{P}roduction$ at the \mathcal{LHC}

${\mathcal H}iggs$ Boson Production in gluon fusion

(i) Dominant: Gluon Fusion $pp
ightarrow gg
ightarrow H^{SM}/h, H, A$ (small & moderate an eta)

Georgi et al; Gamberini et al

- ▷ NLO (SM, MSSM): increase σ by $\sim 10...100\%$ [moderate for large tan $\beta \leftarrow b$ -loop]
- \triangleright SM; tg $\beta \lesssim 5$: limit $M_{\Phi} \ll m_t$ approximation \sim 20-30%
- \triangleright NNLO @ $M_{\Phi} \ll m_t \Rightarrow$ further increase by 20-30%
- ▷ Estimate of NNNLO effects @ $M_{\Phi} \ll m_t \rightsquigarrow$ scale stabilisation scale dependence: $\Delta \leq 10 - 15\%$
- \triangleright NNLL resummation: $+ \sim 10\%$
- \triangleright resummation of soft gluons @ N³LL and of π^2 enhanced terms

Spira, Djouadi, Graudenz, Zerwas Dawson; Kauffman, Schaffer

Krämer, Laenen, Spira

Harlander,Kilgore Anastasiou,Melnikov Ravindran,Smith,van Neerven Moch,Vogt Ravindran

Catani, de Florian, Grazzini, Nason

Ahrens, Neubert, Becher, Yang

${\mathcal H}iggs$ Boson Production in gluon fusion

Corrections to top & bottom loops

- $\triangleright \quad \mathsf{NNLO mass effects (t loops)}$ for $M_H \lesssim 300 \; \mathsf{GeV} \Rightarrow \mathcal{O}(0.5\%)$
- \triangleright NLO electroweak corrections $\sim -4\% 6\%$ (SM)
- \triangleright mixed QCD and EW corrections

NLO corrections to squark loops

- \triangleright in the heavy mass limit
- ▷ full SUSY-QCD corrections in heavy mass limit
- arphi bottom/sbottom contributions asymptotic expansion in $ilde{M} \gg m_b, M_\phi$

$m_{ ilde{Q}} \lesssim 400$ GeV:

- ho NLO squark mass effects $\sim 15\%$
- ▷ full NLO SUSY QCD calculation

Harlander,Ozeren;Pak,Rogal,Steinhauser; Marzani et al.

Aglietti et al.;Degrassi,Maltoni; Actis et al

Anastasiou, Boughezal, Petriello

Dawson, Djouadi, Spira

Harlander, Steinhauser; Harlander, Hofmann; Degrassi, Slavich '11

Degrassi,Slavich '11 Harlander,Hofmann,Mantler '11

MMM,Spira;Anastasiou,Beerli,Bucherer, Daleo,Kunszt;Aglietti,Bonciani,Degrassi,Vicini

Anastasiou, Beerli, Daleo; MMM, Rzehak, Spira

NNLO SUSY-QCD corrections from t/\tilde{t} sector

Pak,Steinhauser,Zerf '10
$\mathrm{gg}
ightarrow \mathrm{H} ~~ \mathcal{N}\mathcal{NLO}$

gg ightarrow H, h at leading order

Lowest order - 1 loop

Georgi,...;Gamberini,...

$$\begin{split} \sigma_{0}^{h/H} &= \frac{G_{F} \alpha_{S}^{2}(\mu_{R})}{288\sqrt{2\pi}} \Big| \sum_{Q} g_{Q}^{h/H} F_{Q}^{h/H}(\tau_{Q}) + \sum_{\tilde{Q}} g_{\tilde{Q}}^{h/H} F_{\tilde{Q}}^{h/H}(\tau_{\tilde{Q}}) \Big|^{2} \qquad \sigma_{0}^{A} = \frac{G_{F} \alpha_{s}^{2}}{128\sqrt{2\pi}} \Big| \sum_{Q} g_{Q}^{A} F_{Q}^{A}(\tau_{Q}) \Big|^{2} \\ F_{Q}^{h/H}(\tau_{Q}) &= \frac{3}{2} \tau_{Q} \Big[1 + (1 - \tau_{Q}) f(\tau_{Q}) \Big] \qquad F_{Q}^{A}(\tau_{Q}) = \tau_{Q} f(\tau_{Q}) \\ F_{\tilde{Q}}^{h/H}(\tau_{\tilde{Q}}) &= -\frac{3}{4} \tau_{\tilde{Q}} \Big[1 - \tau_{\tilde{Q}} f(\tau_{\tilde{Q}}) \Big] \end{split}$$

$$f(\tau) = \begin{cases} \arcsin^2 \frac{1}{\sqrt{\tau}} & \tau \ge 1 \\ -\frac{1}{4} \left[\log \left(\frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}} \right) - i\pi \right]^2 & \tau < 1 \end{cases} \qquad \tau_{\Phi} = \frac{M_{\Phi}^2}{s}, \quad \tau_{Q,\tilde{Q}} = \frac{4m_{Q,\tilde{Q}}^2}{M_{\Phi}^2}$$

$\mathcal{F}irst \ \mathcal{S}tep: \ QCD \ corrections$

Virtual corrections [2 loops, first step: no gluino contributions]

UV-,IR-,Coll-singularities in $n = 4 - 2\epsilon$ dimensions.

Real Corrections

After renormalization: IR & coll. singularities \rightsquigarrow real corrections have to be added.

3 incoherent processes:

Phase space integration in $n = 4 - 2\epsilon$ dimensions \rightsquigarrow IR, Coll. singularities: poles in ϵ

Result

- α_S : $\overline{\mathrm{MS}}$ scheme, 5 active flavours - μ =Ren. scale, Q=Fact. scale, $\mu^2 = Q^2 = M_\phi^2$

$$\begin{split} \sigma(pp \to \phi + X) &= \sigma_0^{\phi} [1 + C^{\phi} \frac{\alpha_S}{\pi}] \tau_{\phi} \frac{d\mathcal{L}_{gg}}{d\tau_{\phi}} + \Delta \sigma_{gg}^{\phi} + \Delta \sigma_{gq}^{\phi} + \Delta \sigma_{q\bar{q}}^{\phi} \\ C^{\phi}(\tau_Q, \tau_{\tilde{Q}}) &= \pi^2 + C_1^{\phi} (\tau_Q, \tau_{\tilde{Q}}) + \frac{33 - 2N_F}{6} \log \frac{\mu^2}{M_{\phi}^2} \\ \Delta \sigma_{gg}^{\phi} &= \int_{\tau_{\phi}}^1 d\tau \frac{d\mathcal{L}_{gg}}{d\tau} \frac{\alpha_S}{\pi} \sigma_0^{\phi} \Big\{ -\hat{\tau} P_{gg}(\hat{\tau}) \log \frac{Q^2}{\hat{s}} + d_{gg}^{\phi}(\hat{\tau}, \tau_Q, \tau_{\tilde{Q}}) \\ &+ 12 \Big[\Big(\frac{\log(1 - \hat{\tau})}{1 - \hat{\tau}} \Big)_+ - \hat{\tau} [2 - \hat{\tau}(1 - \hat{\tau})] \log(1 - \hat{\tau}) \Big] \Big\} \\ \Delta \sigma_{gq}^{\phi} &= \int_{\tau_{\phi}}^1 d\tau \sum_{q, \bar{q}} \frac{d\mathcal{L}_{gq}}{d\tau} \frac{\alpha_S}{\pi} \sigma_0^{\phi} \Big\{ - \frac{\hat{\tau}}{2} P_{gq}(\hat{\tau}) \Big[\log \frac{Q^2}{\hat{s}(1 - \hat{\tau})^2} \Big] d_{gq}^{\phi}(\hat{\tau}, \tau_Q, \tau_{\tilde{Q}}) \Big\} \\ \Delta \sigma_{q\bar{q}}^{\phi} &= \int_{\tau_{\phi}}^1 d\tau \sum_q \frac{d\mathcal{L}_{q\bar{q}}}{d\tau} \frac{\alpha_S}{\pi} \sigma_0^{\phi} d_{q\bar{q}}^{\phi}(\hat{\tau}, \tau_Q, \tau_{\tilde{Q}}) \end{split}$$

-
$$\tau_{Q,\tilde{Q}} = \frac{4m_{Q,\tilde{Q}}^2}{M_{\Phi}^2}, \qquad \hat{\tau} = \frac{m_{\phi}^2}{\hat{s}}$$

The gluophobic Higgs scenario $[m_t = 174.3 \text{ GeV}]$

Carena, Heinemeyer, Wagner, Weiglein

$$M_{SUSY} = 350$$
 GeV, $\mu = M_2 = 300$ GeV, $X_t = -770$ GeV, $A_b = A_t$, $m_{\tilde{g}} = 500$ GeV

$$\tan \beta = 3 \qquad \qquad \tan \beta = 30$$

$$m_{\tilde{t}_1} = 156 \text{ GeV} \quad m_{\tilde{t}_2} = 517 \text{ GeV} \qquad m_{\tilde{t}_1} = 155 \text{ GeV} \quad m_{\tilde{t}_2} = 516 \text{ GeV}$$

$$m_{\tilde{b}_1} = 346 \text{ GeV} \quad m_{\tilde{b}_2} = 358 \text{ GeV} \qquad m_{\tilde{b}_1} = 314 \text{ GeV} \quad m_{\tilde{b}_2} = 388 \text{ GeV}$$

NLO cross section \rightarrow

$\sigma_{\rm NLO}$ w/ full squark mass dependence / $\sigma_{\rm NLO}$ in the heavy squark limit

 $\sigma(pp \to h/H + X)/\sigma_{\infty}$ up to 20% Kinks, bumps, spikes: $\tilde{t}_1 \overline{\tilde{t}}_1, \tilde{b}_1 \overline{\tilde{b}}_1, \tilde{b}_2 \overline{\tilde{b}}_2$ thresholds in consecutive order with rising Higgs mass.

 $\tilde{\mathbf{Q}}\bar{\tilde{\mathbf{Q}}}$ thresholds: Formation of 0^{++} states \rightsquigarrow Coulomb singularities

Singular behaviour can be derived from the Sommerfeld rescattering corrections \rightsquigarrow

At each specific $\tilde{Q}_0\bar{\tilde{Q}}_0$ threshold:

$$C_1(\tau_Q, \tau_{\tilde{Q}}) \to \mathsf{Re}\left\{\frac{g_{\tilde{Q}_0}^{\Phi}\tilde{F}(\tilde{Q}_0)\frac{16\pi^2}{3(\pi^2-4)}\left[-\ln\left(\tau_{\tilde{Q}_0}^{-1}-1\right)+i\pi+const\right]}{\sum_Q g_Q^{\Phi}F(\tau_Q)+\sum_{\tilde{Q}} g_{\tilde{Q}}^{\Phi}\tilde{F}(\tau_{\tilde{Q}})}\right\}$$

Agrees quantitatively with numerical results.

Genuine SUSY-QCD corrections

• Limit heavy SUSY masses $\rightarrow \mathcal{O}(10 \ \%)$

Harlander, Steinhauser, Hofmann

Anastasiou, Beerli, Daleo MMM, Rzehak, Spira

• Small α_{eff} scenario [modified]

$$\begin{array}{rclrcl} \tan\beta & = & 30 \\ M_{\tilde{Q}} & = & 800 \ {\rm GeV} \\ M_{\tilde{g}} & = & 1000 \ {\rm GeV} & \longleftarrow \\ M_2 & = & 500 \ {\rm GeV} \\ A_b = A_t & = & -1.133 \ {\rm TeV} \\ \mu & = & 2 \ {\rm TeV} \\ \end{array}$$

$$\begin{array}{rcl} m_{\tilde{t}_1} & = & 679 \ {\rm GeV} & m_{\tilde{t}_2} & = & 935 \ {\rm GeV} \\ m_{\tilde{b}_1} & = & 601 \ {\rm GeV} & m_{\tilde{b}_2} & = & 961 \ {\rm GeV} \end{array}$$

Genuine SUSY-QCD Corrections - K-factor

MMM, Rzehak, Spira

MMM, Rzehak, Spira

${\cal H}igher$ order corrections to ${\cal H}iggs$ boson production at the ${\cal LHC}$

• W/Z F	usion								
NLO QC	$D\sigma$	\sim 5 bis	10%	Han,Valencia, Willenbrock	EW & QCD		$\sim 5~\%$		Ciccolini,Denner Dittmaier
distributi	ons [/]	\sim 10 %		Figy,Oleari, Zeppenfeld; Berger,Campbell	SUSY Q	CD	kleir	1	Djouadi,Spira
NLO QC	D H+3j			Figy,Hankele, Zeppenfeld	SUSY Q	CD&EW	kleir	ı	Hollik et al. Figy et al.
• Higgs-st	trahlung								
NLO QC NNLO Q	D (SM/MS CD (SM/M	SSM) (ISSM)	$\sim +30$ $\sim +5$) % (Drell-Yan) — 10 %	Han,Wille Harlander	nbrock ,Kilgore;Hambe	erg et a	al.	$\Delta_{ t theor}\sim 5$ %
SUSY Q	CD: klein	Djouadi, Spira	Volle E	EW(SM):-5-10	Brein, Djoi 0% Ciccolini,	Dittmaier,Krär	ner		
• Associa	ted produc	ction							
$b ar{b} \Phi^0$	$bar{b}\Phi^0$ NLO $\overset{ ext{Dit}}{\overset{ ext{Walk}}{ ext{Rei}}}$		Dittmaier,Krämer,Spira, Walser;Dawson,Jackson, b Reina,Wackeroth		$b\bar{b} \to \Phi^0$	$\bar{b} \rightarrow \Phi^0$ NLO,NNLO		Dicus,Willenbrock;Stelzer et al.; Balazs et al.;Campbell et al.; Harlander,Kilgore;Kidonakis	
t Beitr.	NNLO		Boudjema	,Ninh		EW		Dittmai Mück,S	er,Krämer, chlüter
	SUSY QC	D	Gao et al. Hollik,Rau	; ıch	$b\bar{b} \to \Phi^0$ $bg \to b\Phi^0$	SUSY Q SUSY E	CD W	Dawsor Dawsor Beccari	n,Jackson (also $bg o b\Phi^0)$ n,Jaiswal; a et al. et al.
$t\bar{t}\Phi^0$	NLO QCE	D+20%	Beenakker Dawson e	r et al.; t al.	SUSY QC	D 20-30%		Peng et Dittmai	al.; er et al.

CMS

ATLAS

accuracy: $\delta M_H/M_H(\mathrm{SM}/\mathrm{MSSM}) \sim 10^{-3}$

Experimental verification of the Higgs mechanism

Higgs mechanism:

Creation of particle masses without violating gauge principles

$\mathcal{D}etermination$ of the $\mathcal{H}iggs$ $\mathcal{C}ouplings$

Strategy

Combination of the Higgs production and decay channels \Rightarrow Higgs decay rates, absolute couplings

Problem

- total Higgs production cross section not measurable
- some Higgs decay channels not observable

 \Rightarrow only ratios of couplings are measurable

Ansatz

Mild theoretical assumptions \Rightarrow total Higgs width and absolute couplings

- Light Higgs with SM-like couplings Kinnunen, Nikitenko, Richter-Was, Zeppenfeld
- General two-Higgs doublet model Dührssen, Heinemeyer, Logan, Rainwater, Weiglein, Zeppenfeld

$\mathcal{D}etermination of the \ensuremath{\mathcal{H}iggs}\xspace \ensuremath{\mathcal{C}ouplings}\xspace$

Dührssen, Heinemeyer, Logan, Rainwater, Weiglein, Zeppenfeld

Experimental verification of the Higgs mechanism

Higgs mechanism:

Creation of particle masses without violating gauge principles

Quantum numbers of the Higgs boson:

- J spin J^{PC} P parity
 - C charge conjugation

 $\diamond \ \gamma \gamma \to H \text{ or } H \to \gamma \gamma \rightsquigarrow J \neq 1.$

Spin and *CP* quantum numbers: angular correlations

- angular correlations in production: Hjj in vector boson fusion, gluon gluon fusion
- angular correlations in Higgs decays, e.g. $H \rightarrow ZZ \rightarrow l^+ l^- l^+ l^-$

observables sensitive to CP-violation

• below ZZ threshold: angular correlations, threshold effects

Plehn, Rainwater, Zeppenfeld; Hankele, Klämke, Zeppenfeld

Dell'Aquila,Nelson; Kramer,Kühn,Stong,Zerwas; Choi,Miller,MMM,Zerwas;Bluj; Buszello,Fleck,Marquard,van der Bij Godbole,Miller,MMM

Choi, Miller, MMM, Zerwas Buszello, Marquard

Miller, Choi, Eberle, MMM, Zerwas; Choi, Miller, MMM, Zerwas

♦ Determination of spin and parity in

 $gg \to H \to ZZ^{(*)} \to (f_1\bar{f}_1)(f_2\bar{f}_2)$

 \diamond Helicity methods: general HZZ coupling for arbitrary spin and parity

$$\langle Z(\lambda_1) Z(\lambda_2) | H_{\mathcal{J}}(m) \rangle = \frac{g_W M_Z}{\cos \theta_W} \mathcal{T}_{\lambda_1 \lambda_2} d_{m,\lambda_1 - \lambda_2}^{\mathcal{J}}(\Theta) e^{-i(m - \lambda_1 + \lambda_2)\Phi}$$

 \diamond Determination of spin and parity in

 $gg \to H \to ZZ^{(*)} \to (f_1\bar{f}_1)(f_2\bar{f}_2)$

 \diamond Helicity methods: general HZZ coupling for arbitrary spin and parity

 \diamond Threshold behaviour and angular correlations \rightsquigarrow determination of $\mathcal{J}^{\mathcal{P}}$

•
$$\underline{M_H} < 2M_Z$$
: $d\Gamma/dM_*^2 \sim \beta$ for $\mathcal{J}^{\mathcal{P}} = 0^+$ Choi,Miller,MM,Zerwas
 $\diamond d\Gamma/dM_*^2$ rules out $\mathcal{J}^{\mathcal{P}} = 0^-, 1^-, 2^-, 3^{\pm}, 4^{\pm}$
 $\diamond d\Gamma/dM_*^2$ and no $[1 + \cos^2 \theta_1] \sin^2 \theta_2$
 $[1 + \cos^2 \theta_2] \sin^2 \theta_1$ rules out $\mathcal{J}^{\mathcal{P}} = 1^+, 2^+$

 \diamond Determination of spin and parity in

 $gg \to H \to ZZ^{(*)} \to (f_1\bar{f}_1)(f_2\bar{f}_2)$

 \diamond Helicity methods: general HZZ coupling for arbitrary spin and parity

 \diamond Threshold behaviour and angular correlations $~~\leadsto~$ determination of $\mathcal{J}^\mathcal{P}$

 $\begin{array}{ll} \diamond \text{ odd normality:} & \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{+}, 2^{-}, 3^{+}, \dots & \text{excluded by non-zero } \sin^{2}\theta_{1} \sin^{2}\theta_{2} \\ \diamond \text{ even normality:} & \mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots & \text{excluded by non-zero } \sin^{2}\theta_{1} \sin^{2}\theta_{2} \\ \diamond \text{ rule out} & \mathcal{J}^{\mathcal{P}} = 2^{+}, 4^{+} \text{ with:} \\ & \frac{d\sigma}{d\cos\theta} [gg/\gamma\gamma \to H \to ZZ] & \text{only isotropic for spin 0} \end{array}$

• $M_H > 2M_Z$:

\mathcal{CP} Violation

• CP Violation: Examine behaviour with

most general vertex = sum of even and odd normality tensors

• Case spin 0: $p = p_{Z_1} + p_{Z_2}$, $k = p_{Z_1} - p_{Z_2}$

Vertex $HZZ: \quad \frac{igM_Z}{\cos\theta_W} \left[a g_{\mu\nu} + \frac{b}{M_Z^2} p_\mu p_\nu + i \frac{c}{M_Z^2} \epsilon_{\mu\nu\alpha\beta} p^\alpha k^\beta \right]$

a = 1, b = c = 0: SM (a ≠ 0 ∧ c ≠ 0) ∨ (b ≠ 0 ∧ c ≠ 0): CP-violation

• Observables sensitive to \mathcal{CP}

 \diamond angle ϕ between oriented Z decay planes in the Higgs rest frame

 \diamond cos of the fermion polar angle θ in the Z rest frame

angular distribution in $\cos \theta$

Godbole, Miller, MMM

angular distribution in ϕ

Godbole, Miller, MMM

Godbole, Miller, MMM

Asymmetries sensitive to \mathcal{CP}

 \diamond Example:

$$O_{5} = \sin \theta_{1} \sin \theta_{2} \sin \phi [\sin \theta_{1} \sin \theta_{2} \cos \phi - \cos \theta_{1} \cos \theta_{2}]$$

$$O_{5} = \frac{[(\vec{p}_{4H} \times \vec{p}_{3H}) \cdot \vec{p}_{1H}][(\vec{p}_{1Z} - \vec{p}_{2Z}) \cdot \vec{p}_{3Z}]}{|\vec{p}_{3H} + \vec{p}_{4H}||\vec{p}_{3Z} - \vec{p}_{4Z}|^{2}|\vec{p}_{1Z} - \vec{p}_{2Z}|^{2}/8}$$

$$\mathcal{A}_{5} = \frac{\Gamma(O_{5} > 0) - \Gamma(O_{5} > 0)}{\Gamma(O_{5} > 0) + \Gamma(O_{5} > 0)}$$

gluon gluon fusion	CP-even Htt can be distinguished from CP-odd at $> 5\sigma$ ($M_H = 160$ GeV)	Klämke,Zeppenfeld
H ightarrow ZZ ightarrow 4l	consistency with SM; $0^-, 1^\pm$ excluded ($\int \mathcal{L} = 100 \text{fb}^{-1}$, $M_H = 200 \text{ GeV}$)	Buszello,Fleck, Marquard,van der Bij
CMS: $H \rightarrow ZZ \rightarrow 4l$	scalar, pseudoscalar can be distinguished at 3σ ($\int \mathcal{L} = 60 \text{fb}^{-1}$, $M_H = 300 \text{ GeV}$)	CMS
ALTAS: $H ightarrow ZZ ightarrow 4l$	strong limits to anomalous couplings	Buszello,Fleck,Marquard, van der Bij
ALTAS: $H ightarrow ZZ ightarrow 4l$	strong limits to anomalous couplings \triangleright CP-odd excluded at 8.7 σ (2.9 σ) for	Buszello,Fleck,Marquard, van der Bij Strässner
ALTAS: $H \rightarrow ZZ \rightarrow 4l$	strong limits to anomalous couplings \triangleright CP-odd excluded at 8.7 σ (2.9 σ) for $M_H = 200$ GeV (130 GeV), $\int \mathcal{L} = 100$ fb ⁻¹	Buszello,Fleck,Marquard, van der Bij Strässner
ALTAS: $H \rightarrow ZZ \rightarrow 4l$	strong limits to anomalous couplings \triangleright CP-odd excluded at 8.7 σ (2.9 σ) for $M_H = 200$ GeV (130 GeV), $\int \mathcal{L} = 100$ fb ⁻¹ \triangleright b/c w/ precision 1 (0.35/0.2)	Buszello,Fleck,Marquard, van der Bij Strässner
ALTAS: $H \rightarrow ZZ \rightarrow 4l$	strong limits to anomalous couplings \triangleright CP-odd excluded at 8.7 σ (2.9 σ) for $M_H = 200$ GeV (130 GeV), $\int \mathcal{L} = 100$ fb ⁻¹ \triangleright b/c w/ precision 1 (0.35/0.2) for $M_H = 130$ GeV (higher M_H)	Buszello,Fleck,Marquard, van der Bij Strässner
ALTAS: $H \rightarrow ZZ \rightarrow 4l$	strong limits to anomalous couplings \triangleright CP-odd excluded at 8.7 σ (2.9 σ) for $M_H = 200$ GeV (130 GeV), $\int \mathcal{L} = 100$ fb ⁻¹ \triangleright b/c w/ precision 1 (0.35/0.2) for $M_H = 130$ GeV (higher M_H) \triangleright include info from measured signal cxn	Buszello,Fleck,Marquard, van der Bij Strässner

Experimental verification of the Higgs mechanism

Higgs mechanism:

Creation of particle masses without violating gauge principles

$\mathcal{D}etermination \ of \ the \ \mathcal{H}iggs \ \mathcal{S}elf\text{-}\mathcal{C}ouplings$

The Higgs potential:

$$V(H) = \frac{1}{2!}\lambda_{HH}H^2 + \frac{1}{3!}\lambda_{HHH}H^3 + \frac{1}{4!}\lambda_{HHHH}H^4$$

${\mathcal T}$ rilinear coupling	$\lambda_{HHH} = 3 \frac{M_H^2}{v}$	
${\cal Q}$ uartic coupling	$\lambda_{HHHH} = 3 \frac{M_H^2}{v^2}$	· · · · · · · · · · · · · · · · · · ·

${\cal M}$ easurement of the Higgs self-couplings	\mathcal{E} xperimental verification		
and	\mathcal{O} f the scalar sector of the		
${\cal R}$ econstruction of the Higgs potential	${\cal H}$ iggs mechanism		

Determination of the Higgs self-couplings at colliders:

λ_{HHH}	via Higgs pair production
λ_{HHHH}	via triple Higgs production

Higgs-strahlung, WW/ZZ fusion, gg fusion

$\mathcal{T}he \ \mathcal{T}rilinear \ \mathcal{H}iggs \ \mathcal{S}elf\text{-}\mathcal{C}oupling \ at \ the \ \mathcal{LHC}$

Determination of λ_{HHH} at the LHC

Djouadi,Kilian,MMM,Zerwas; Lafaye,Miller,Moretti,MMM

double Higgs-strahlung:	$qar{q}$	\rightarrow	W/Z + HH	Barger, Han, Phillips
WW/ZZ fusion:	qq	\rightarrow	qq + HH	Dicus, Kallianpur, Willenbrock Abbasabadi, Repko, Dicus, Vega Dobrovolskaya, Novikov Eboli, Marques, Novaes, Natale
gluon gluon fusion:	gg	\rightarrow	HH	Glover,van der Bij Plehn,Spira,Zerwas Dawson,Dittmaier,Spira

gluon gluon fusion - dominant process

$\mathcal{D} ouble \; \mathcal{SM} \; \mathcal{H} iggs \; \mathcal{P} roduction \; at \; the \; \mathcal{LHC}$

 100_{f} SM: pp \rightarrow HH +X LHC: σ [fb] $gg \rightarrow HH$ 10 WW+ZZ \rightarrow HH WHH+ZHH 1 WHH:ZHH ≈ 1.6 WW:ZZ ≈ 2.3 0.1 180 <u>190</u> 90 100 120 140 160 $M_{\rm H}[{\rm GeV}]$

Djouadi, Kilian, MMM, Zerwas

small signal + large QCD background ~> challenge!

$$\begin{array}{l} \underline{M}_{H} < 140 \; \mathrm{GeV}: \; \underline{gg} \rightarrow HH \rightarrow b\bar{b}\gamma\gamma: \\ \circ \; \mathrm{SLHC} \; [\int \mathcal{L} = 6 \; \mathrm{ab}^{-1}]: \\ M_{H} = 120 \; \mathrm{GeV} \qquad \lambda_{HHH} = 0 \; \mathrm{exclusion} \qquad \mathrm{at} \; 90\% \; \mathrm{CL} \\ \circ \; \mathrm{VLHC} \; [\sqrt{s} = 200 \; \mathrm{TeV}]: \\ M_{H} = 120 \; \mathrm{GeV}: \qquad \delta\lambda_{HHH}/\lambda_{HHH} = 20 - 40\% \quad \mathrm{at} \; 1 \; \sigma \end{array}$$

Gianotti et al.;Blondel,Clark,Mazzucato

$$\begin{array}{ll} \underline{M_H} > 140 \; \text{GeV:} \; \underline{gg} \rightarrow \underline{HH} \rightarrow W^+ W^- W^+ W^-: & \text{Baur,Plehn,Rainwater} \\ \circ \; \mathsf{LHC} \; [\int \mathcal{L} = 300 \; \mathrm{fb^{-1}}]: & \text{Dahlhoff} \\ 150 \lesssim M_H \lesssim 200 \; \mathrm{GeV}: & \lambda_{HHH} = 0 \; \text{exclusion} & \text{at } 95\% \; \mathrm{CL} \\ \circ \; \mathsf{SLHC} \; [\int \mathcal{L} = 3 \; \mathrm{ab^{-1}}]: & \\ 150 < M_H < 200 \; \mathrm{GeV} & \delta \lambda_{HHH} / \lambda_{HHH} = 20 - 30\% & \text{at } 1 \; \sigma \end{array}$$

Composite Higgs Boson - Introduction

• Impact on BR's, Γ_{tot} , production cross sections, Higgs searches at the LHC Espinosa, Grojean, MMM (gg fusion at NNLO Furlan '11)

Espinosa, Grojean, Mühlleitner

• Significances MCHM5

Sensitivity to the triple Higgs self-coupling

- Can we extract the Higgs self-coupling?
- First step: plot sensitivity areas
- Sensitivity criteria: $\int \mathcal{L} = 300 \text{ fb}^{-1}$

 $\text{Demand:} \qquad N^{\lambda=0} + \beta \sqrt{N^{\lambda=0}} < N^{\lambda\neq 0} \qquad \text{or} \qquad N^{\lambda=0} - \beta \sqrt{N^{\lambda=0}} > N^{\lambda\neq 0} \qquad (\beta=1,2,3,5)$

- Plots: $gg \rightarrow HH$ for MCHM4, MCHM5
- Final states: $HH \rightarrow bb\gamma\gamma$, $HH \rightarrow W^+W^-W^+W^-$, $HH \rightarrow bb\tau\tau$, $HH \rightarrow bb\mu\mu$

Gröber, Mühlleitner

• Significances to non-vanishing λ_{HHH} in MCHM4

• Significances to non-vanishing λ_{HHH} in MCHM5

The LHC is a discovery machine

- Higgs particle(s) can be discovered
- First tests of the Higgs mechanism are possible
 - ◊ Determination of the Higgs couplings to fermions and bosons
 - ♦ Determination of the Higgs quantum numbers (spin and CP)
 - ◊ Determination of the trilinear Higgs self-coupling(s)
- \Rightarrow Important steps towards the understanding of the creation of masses

The LHC is a discovery machine

- Higgs particle(s) can be discovered
- First tests of the Higgs mechanism are possible
 - ◊ Determination of the Higgs couplings to fermions and bosons
 - ◊ Determination of the Higgs quantum numbers (spin and CP)
 - ◊ Determination of the trilinear Higgs self-coupling(s)
- \Rightarrow Important steps towards the understanding of the creation of masses
 - Composite Higgs Model Higgs as pseudo-Goldstone boson of strong sector
 - After discovery: Which Higgs boson have we discovered?

\mathcal{C} onclusions

Backup Slides

 \diamond Double polar angular distribution (\mathcal{CP} invariant theory)

$$\frac{d\Gamma_H}{d\cos\theta_1 d\cos\theta_2} \sim \sin^2\theta_1 \sin^2\theta_2 |\mathcal{T}_{00}|^2 + \frac{1}{2}(1+\cos^2\theta_1)(1+\cos^2\theta_2) \left[|\mathcal{T}_{11}|^2 + |\mathcal{T}_{1,-1}|^2\right] \\ + (1+\cos^2\theta_1) \sin^2\theta_2 |\mathcal{T}_{10}|^2 + \sin^2\theta_1 (1+\cos^2\theta_2) |\mathcal{T}_{01}|^2 \\ + 2\eta_1\eta_2 \cos\theta_1 \cos\theta_2 \left[|\mathcal{T}_{11}|^2 - |\mathcal{T}_{1,-1}|^2\right]$$

SM:
$$\mathcal{T}_{00} = M_H^2 / (2M_Z^2) - 1$$
, $\mathcal{T}_{11} = -1$, $\mathcal{T}_{10} = \mathcal{T}_{01} = \mathcal{T}_{1,-1} = 0$

 \diamond Azimuthal angular distribution (CP invariant theory)

$$\frac{d\Gamma_H}{d\varphi} \sim |\mathcal{T}_{11}|^2 + |\mathcal{T}_{10}|^2 + |\mathcal{T}_{1,-1}|^2 + |\mathcal{T}_{01}|^2 + |\mathcal{T}_{00}|^2/2 + \eta_1 \eta_2 \left(\frac{3\pi}{8}\right)^2 \Re(\mathcal{T}_{11}\mathcal{T}_{00}^* + \mathcal{T}_{10}\mathcal{T}_{0,-1}^*) \cos\varphi + \frac{1}{4} \Re(\mathcal{T}_{11}\mathcal{T}_{-1,-1}^*) \cos 2\varphi$$

Determination of spin and parity

• $\underline{M_H} < 2M_Z$: $d\Gamma/dM_*^2 \sim \beta$ for $\mathcal{J}^{\mathcal{P}} = 0^+$ $\diamond d\Gamma/dM_*^2$ rules out $\mathcal{J}^{\mathcal{P}} = 0^-, 1^-, 2^-, 3^\pm, 4^\pm$ $\diamond d\Gamma/dM_*^2$ and no $[1 + \cos^2 \theta_1] \sin^2 \theta_2$ $[1 + \cos^2 \theta_2] \sin^2 \theta_1$ rules out $\mathcal{J}^{\mathcal{P}} = 1^+, 2^+$

• $M_H > 2M_Z$:

 $\begin{array}{ll} \diamond \text{ odd normality:} & \mathcal{J}^{\mathcal{P}} = 0^{-}, 1^{+}, 2^{-}, 3^{+}, \dots & \text{excluded by non-zero } \sin^{2}\theta_{1} \sin^{2}\theta_{2} \\ \diamond \text{ even normality:} & \mathcal{J}^{\mathcal{P}} = 1^{-}, 3^{-}, \dots & \text{excluded by non-zero } \sin^{2}\theta_{1} \sin^{2}\theta_{2} \\ \diamond \text{ rule out} & \mathcal{J}^{\mathcal{P}} = 2^{+}, 4^{+} \text{ with:} \\ & \frac{d\sigma}{d\cos\theta} [gg/\gamma\gamma \to H \to ZZ] & \text{only isotropic for spin 0} \end{array}$

• Branching ratios MCHM5

Espinosa, Grojean, Mühlleitner

Constraints from EWPT, LEP, Tevatron

• EWPT constraints

 $\hat{T} = c_T \frac{v^2}{f^2} \Rightarrow |c_T \frac{v^2}{f^2}| < 2 \times 10^{-3}$ $\hat{S} = (c_W + c_B) \frac{m_W^2}{m_\rho^2} \Rightarrow$

removed by custodial symmetry

$$m_{
ho} \ge (c_B + c_W)^{1/2} \ 2.5 \ {
m TeV}$$

- ♦ 1-loop IR effects Barbieri eal
 - $\hat{S}, \hat{T} = a \ln m_H + b$ $\hat{S}, \hat{T} = a((1 c_H \xi) \ln m_H + c_H \xi \ln \Lambda) + b$

effective Higgs mass:

LEPII, $m_H \approx 115$ GeV:

 $m_H^{eff} = m_H \left(\frac{\Lambda}{m_H}\right)^{c_H v^2/f^2} > m_H$ $c_H \frac{v^2}{f^2} < \frac{1}{3} \sim \frac{1}{2}$

modified Higgs coupling to matter \Rightarrow

IR effects can be cancelled by heavy fermions (model-dependent)

- Searches at LEP $e^+e^- \rightarrow ZH \rightarrow Zb\bar{b}$
- Tevatron search most relevant $H \to WW$

LEP/Tevatron exclusion limits generated with Higgsbounds Bechtle eal

Constraints from EWPT, LEP, Tevatron

Espinosa, Grojean, Mühlleitner

Production Processes

• Production cross sections

• Higgs gauge boson couplings

MCHM4/5: $g_{HVV} = g_{HVV}^{SM} \sqrt{1-\xi}$

• Higgs fermion couplings

MCHM4:
$$g_{Hff} = g_{Hff}^{SM} \sqrt{1-\xi}$$

MCHM5: $g_{Hff} = g_{Hff}^{SM} \frac{1-2\xi}{\sqrt{1-\xi}}$ vanishes for $\xi = 0.5!!$

$$\begin{split} \sigma_{NLO}(gg \to H) &= \left\{ \begin{array}{l} (1-\xi) \\ \frac{(1-2\xi)^2}{(1-\xi)} \end{array} \right\} \sigma_{NLO}^{SM}(gg \to H) & \sigma_{NLO}(Ht\bar{t}) \text{ analogous} \\ \\ \sigma_{NLO}(qqH) &= (1-\xi) & \sigma_{NLO}^{SM}(qqH) & \sigma_{NLO}(VH) \text{ analogous} \end{split}$$

M.Mühlleitner, 15 Dez 2011, KIT

• Composite Higgs search:

Composite couplings affect signal events, not background events

 \diamond Rescaling factor

$$\kappa = \frac{\sigma_{prod}^{\xi} BR^{\xi}(H \to X)}{\sigma_{prod}^{SM} BR^{SM}(H \to X)}$$

 \diamond Exp analyses provide signal & bkg events after cuts, s^{SM} , $b^{SM} \rightsquigarrow$ significances composite model from $s^{\xi} = \kappa s^{SM}$ and $b^{\xi} = b^{SM}$

• Investigated Channels: CMS analyses (similar results expected for ATLAS)

Inclusive production with subsequent decay : $H \rightarrow \gamma \gamma$

$$\begin{split} H &\to ZZ \to 2e2\mu, 4e, 4\mu \\ H \to WW \to 2l2\nu \end{split} \end{split}$$
 boson fusion with subsequent decay : $H \to WW \to l\nu jj \\ H \to \tau\tau \to l+j + E_T^{miss}$.

Vector