$\mathrm{WS}\ 2012/13$

Supersymmetrie an Collidern

V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch

Übungsblatt 3

Besprechung: Mo, 05.11.12

Aufgabe 4: Lorentzskalar

(3 Punkte)

Ein allgemeiner Dirac-Spinor ist gegeben durch $\Psi = \begin{pmatrix} \psi_L \\ \phi_R \end{pmatrix}$ in der chiralen Darstellung und transformiert sich gemäß $\Psi \to \Psi' = S\Psi$ mit $S = \begin{pmatrix} A_L & 0 \\ 0 & A_R \end{pmatrix}$. Der konjugierte Dirac-Spinor ist definiert durch $\bar{\Psi} = \Psi^\dagger \gamma_0 = (\phi_R^\dagger, \psi_L^\dagger)$.

Zeigen Sie, dass $\bar{\Psi}\Psi$ ein Lorentzskalar ist, indem Sie seine Transformationseigenschaften unter Lorentz-Transformationen betrachten.

Aufgabe 5: SUSY-Oszillator

(3+5+4+3+2=17 Punkte)

Wir betrachten einen eindimensionalen harmonischen Oszillator. Betrachten Sie zunächst den Standardfall aus Quantenmechanik II, den wir im folgenden als Bose-Oszillator bezeichnen. Sein Hamiltonoperator lautet

$$H_B = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{q}^2$$

mit Masse m und Frequenz ω , und wir definieren die zueinander adjungierten Erzeugungsund Vernichtungsoperatoren

$$b^{\pm} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{q} \mp \frac{i\hat{p}}{m\omega} \right)$$

(a) Berechnen Sie die Kommutatoren $[b^{\pm}, b^{\pm}]$ und $[b^{\pm}, b^{\mp}]$ sowie den Teilchenzahloperator $N_B = b^+b^-$. Drücken Sie den Hamiltonoperator mit Hilfe dessen aus. Was sind die Energieeigenwerte?

Als nächstes betrachten wir den Fermi-Oszillator, gegeben durch die Hamiltonfunktion

$$H_F = i\omega \hat{\psi}\hat{\pi}$$

mit den hermiteschen Operatoren $\hat{\psi}$, $\hat{\pi}$ mit Dimension $\sqrt{[\text{Wirkung}]}$ und den folgenden Antivertauschungsrelationen

$$\{\hat{\psi}, \hat{\pi}\} = 0$$
, $\{\hat{\psi}, \hat{\psi}\} = \{\hat{\pi}, \hat{\pi}\} = \hbar$.

Analog zum Bose-Oszillator definieren wir zueinander adjungierte Erzeuger und Vernichter

$$f^{\pm} = \sqrt{\frac{1}{2\hbar}} \left(\hat{\psi} \mp i \hat{\pi} \right) .$$

(b) Berechnen Sie die Antikommutatoren $\{f^{\pm}, f^{\pm}\}$ und $\{f^{\pm}, f^{\mp}\}$. Definieren Sie $\hat{\psi}$ bzw. $\hat{\pi}$ als Funktion der f^{\pm} . Drücken Sie wieder den Hamiltonoperator durch den Teilchenzahloperator $N_F = f^+ f^-$ aus. Was sind die Energieeigenwerte? Wie viele gibt es?

Als letztes betrachten wir den SUSY-Oszillator, gegeben durch $H_S = H_B + H_F$. Die zugehörigen Zustände bezeichnen wir mit $|n_B, n_F\rangle = |n_B\rangle |n_F\rangle$. Die SUSY-Operatoren sind definiert als $Q_+ = \sqrt{\hbar\omega} \, b^- f^+$ sowie $Q_- = \sqrt{\hbar\omega} \, b^+ f^-$.

- (c) Berechnen Sie die folgenden Größen:
 - (i) $Q_+|n_B,n_F\rangle$, $Q_-|n_B,n_F\rangle$;
 - (ii) $Q_{+}^{2}, Q_{-}^{2}, \{Q_{+}, Q_{-}\};$
 - (iii) Q_{+}^{\dagger} ;
 - (iv) $[H_S, Q_{\pm}].$
- (d) Wir definieren Linearkombinationen als

$$Q_1 = Q_+ + Q_- ,$$
 $Q_2 = -i(Q_+ - Q_-) .$

Berechnen Sie $\{Q_1, Q_2\}$ sowie Q_1^2 und Q_2^2 . Als welche Größe lassen sich die letzten beiden identifizieren?

(e) Wie sieht das Spektrum von H_S aus? Was gilt für die Entartung?