Physics beyond the Standard Model

L: Prof. Dr. M. Mühlleitner, T: Dr. M. Rauch

Exercise Sheet 8

Discussion: Fr, 09.01.15

Exercise 10: SUSY Oscillator

We examine a one-dimensional harmonic oscillator. Consider first the standard case from Advanced Quantum Mechanics, which we will label as bosonic oscillator in the following. Its Hamilton operator is given by

$$H_B = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{q}^2$$

with mass m and frequency ω . Additionally, we define the creation and annihilation operators

$$b^{\pm} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{q} \mp \frac{i\hat{p}}{m\omega} \right) \,,$$

which are adjoint to each other.

(a) Calculate the commutators $[b^{\pm}, b^{\pm}]$ and $[b^{\pm}, b^{\mp}]$ as well as the number operator $N_B = b^+ b^-$. Express the Hamilton operator by the number operator. What are the energy eingenvalues?

As next step we consider the Fermi oscillator, which is given by the Hamilton function

$$H_F = i\omega\hat{\psi}\hat{\pi}$$

with the hermitian operators $\hat{\psi}$, $\hat{\pi}$ with dimension $\sqrt{[action]}$ and the following anticommutator relations

$$\{\hat{\psi}, \hat{\pi}\} = 0$$
, $\{\hat{\psi}, \hat{\psi}\} = \{\hat{\pi}, \hat{\pi}\} = \hbar$.

In analogy to the Bose oscillator, we define creation and annihilation operators adjoint to each other,

$$f^{\pm} = \sqrt{\frac{1}{2\hbar}} \left(\hat{\psi} \mp i\hat{\pi} \right) \; .$$

(b) Calculate the anti-commutators $\{f^{\pm}, f^{\pm}\}$ and $\{f^{\pm}, f^{\mp}\}$. Define $\hat{\psi}$ and $\hat{\pi}$ as function of f^{\pm} . Express the Hamilton operator by the number operator $N_F = f^+ f^-$ again. What are the energy eingevalues? How many are there?

Finally we consider the SUSY oscillator, given by $H_S = H_B + H_F$. The corresponding eigenstates are labelled by $|n_B, n_F\rangle = |n_B\rangle |n_F\rangle$. The SUSY operators are defined as $Q_+ = \sqrt{\hbar\omega} b^- f^+$ and $Q_- = \sqrt{\hbar\omega} b^+ f^-$.

- (c) Calculate the following quantities:
 - (i) $Q_+|n_B, n_F\rangle$, $Q_-|n_B, n_F\rangle$;
 - (ii) $Q_{+}^{2}, Q_{-}^{2}, \{Q_{+}, Q_{-}\};$
 - (iii) $Q_{\pm}^{\dagger};$
 - (iv) $[H_S, Q_{\pm}].$
- (d) We now define linear combinations as

$$Q_1 = Q_+ + Q_-$$
, $Q_2 = -i(Q_+ - Q_-)$.

Calculate $\{Q_1, Q_2\}$ as well as Q_1^2 and Q_2^2 . As which quantity can you identify the last two operators?

(e) How does the spectrum of H_S look like? What can you say about degenerate states?