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This lecture will treat the Higgs sectors of the extensions beyond the Standard Model.

1. Revision of the Standard Model (SM) Higgs Sector

2. 2 Higgs Doublet Model
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4. The Next-to-Minimal Supersymmetric Extension of the SM (NMSSM)
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iii



iv CONTENTS



Chapter 1

The Standard Model Higgs Sector

Literature:

1. A lot of material for this chapter can be found in my lectures TTP1 SS13, TTP2 WS
11/12 and TTP2 WS13/14.

2. Recent physics results are presented at the webpages of the LHC experiments ATLAS
and CMS.

3. A. Djouadi, “The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in
the standard model,” Phys. Rept. 457 (2008) 1 [hep-ph/0503172].

4. M. Spira, “QCD effects in Higgs physics,” Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337].

5. S. Dittmaier et al. [LHC Higgs Cross Section Working Group Collaboration], “Hand-
book of LHC Higgs Cross Sections: 1. Inclusive Observables,” arXiv:1101.0593 [hep-
ph].

6. S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, S. Alekhin, J. Alwall
and E. A. Bagnaschi et al., “Handbook of LHC Higgs Cross Sections: 2. Differential
Distributions,” arXiv:1201.3084 [hep-ph].

7. S. Heinemeyer et al. [LHC Higgs Cross Section Working Group Collaboration], “Hand-
book of LHC Higgs Cross Sections: 3. Higgs Properties,” arXiv:1307.1347 [hep-ph].

8. H. E. Logan, “TASI 2013 lectures on Higgs physics within and beyond the Standard
Model,” arXiv:1406.1786 [hep-ph].

1.1 The Introduction of the Higgs Boson

There are two reasons for the introduction of the Higgs boson [1, 2] in the Standard Model
(SM) of particle physics:

1. A theory of massive gauge bosons and fermions, which is weakly interacting up to very
high energies, requires for unitarity reasons the existence of a Higgs particle. The Higgs
particle is a scalar 0+ particle, i.e. a spin 0 particle with positive parity, which couples
to the other particles with a coupling strength proportional to the mass (squared) of
the particles.
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2 The Standard Model Higgs Sector

Figure 1.1: The scattering of longitudinal gauge bosons in longitudinal gauge bosons. Upper:
without a Higgs boson. Lower: with a Higgs boson

Look e.g. at the amplitude for the scattering of longitudinal gauge bosons WL into a pair
of longitudinal gauge bosons WL, see Fig. 1.1. Without a Higgs boson the amplitude
diverges proportional to the center-of-mass (c.m) energy squared, s, cf. Fig. 1.1 (upper),
where GF denotes the Fermi constant. The introduction of a Higgs boson which
couples proportional to the mass squared of the gauge boson, regularizes the amplitude,
cf. Fig. 1.1 (lower), where MH denotes the Higgs boson mass.

2. The introduction of mass terms for the gauge bosons violates the SU(2)L × U(1)
symmetry of the SM Lagrangian. The same problem arises for the introduction of
mass terms for the fermions.

Let us have a closer look at point 2. We look at the Lagrangian

Lf = Ψ̄(iγµDµ −m)Ψ . (1.1)

In the chiral respresentation the 4× 4 γ matrices are given by

γµ =

((
0 1

1 0

)

,

(
0 −~σ
~σ 0

))

=

(
0 σµ−
σµ+ 0

)

(1.2)

γ5 =

(
1 0
0 −1

)

, (1.3)

where σi (i = 1, 2, 3) are the Pauli matrices. With

Ψ =

(
χ
ϕ

)

und Ψ̄ = Ψ†γ0 = (χ†, ϕ†)

(
0 1

1 0

)

= (ϕ†, χ†) (1.4)

we get

Ψ̄iγµDµΨ = i(ϕ†, χ†)

(
0 σµ−
σµ+ 0

)(
Dµχ
Dµϕ

)

︸ ︷︷ ︸
0

@

σµ−Dµϕ
σµ+Dµχ

1

A

= ϕ†iσµ−Dµϕ + χ†iσµ+Dµχ . (1.5)
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The gauge interaction holds independently for

ΨL =

(
0
ϕ

)

=
1

2
(1− γ5)Ψ and ΨR =

(
χ
0

)

=
1

2
(1+ γ5)Ψ . (1.6)

The ΨL and ΨR can transform differently under gauge transformations,

Ψ′L = ULΨL and Ψ′R = URΨR . (1.7)

But

mΨ̄Ψ = m(ϕ†, χ†)

(
χ
ϕ

)

= m(ϕ†χ + χ†ϕ) = m(Ψ̄LΨR + Ψ̄RΨL) . (1.8)

The mass term mixes ΨL and ΨR. From this follows symmetry breaking if ΨL and ΨR

transform differently.

What about the mass term for gauge bosons? We have the Lagrangian

L = −1

4
F aµνF a

µν
︸ ︷︷ ︸

gauge invariant

+
m2

2
AaµAa

µ
︸ ︷︷ ︸

not gauge invariant

. (1.9)

For example for the U(1) we get

(AµA
µ)′ = (Aµ + ∂µθ)(A

µ + ∂µθ) = AµA
µ + 2Aµ∂

µθ + (∂µθ)(∂
µθ) . (1.10)

The mass term Aµ breaks the gauge symmetry.

1.2 The Standard Model Higgs sector

The problem of mass generation without violating gauge symmetries can be solved by intro-
ducing an SU(2)L Higgs doublet with weak isospin I = 1/2 and hypercharge Y = 1 and the
SM Higgs potential given by

V (Φ) = λ[Φ†Φ− v2

2
]2 . (1.11)

�������

� �	� �

� ��
 �

Introducing the Higgs field in a physical gauge,

Φ =
1√
2

(
0

v + H

)

, (1.12)

the Higgs potential can be written as

V (H) =
1

2
M2

HH2 +
M2

H

2v
H3 +

M2
H

8v2
H4 . (1.13)

Here we can read off directly the mass of the Higgs boson and the Higgs trilinear and quartic
self-interactions. Adding the couplings to gauge bosons and fermions we have
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Mass of the Higgs boson MH =
√

2λv

Couplings to gauge bosons gV V H =
2M2

V

v

Yukawa couplings gffH =
mf

v

T rilinear coupling λHHH = 3
M2

H

M2
Z[units λ0 = 33.8 GeV]

Quartic coupling λHHHH = 3
M2

H

M4
Z[units λ2

0
]

In the SM the trilinear and quartic Higgs couplings are uniquely determined by the mass of
the Higgs boson.

The Higgs potential with its typical form leads to a non-vanishing vacuum expectation
value (VEV) v in the ground state

v =
1

√√
2GF

≈ 246 GeV. (1.14)

Expansion of Φ around the minimum of the Higgs potential leads to one massive scalar
particle, the Higgs boson, and three massless Goldstone bosons, that are absorbed to give
masses to the charged W bosons and the Z boson. (For a toy example, see Appendix 5.1.)
The appearance of Goldstone bosons is stated in the Goldstone theorem, which says:

Be

N = dimension of the algebra of the symmetry group of the complete Lagrangian.
M = dimension of the algebra of the group, under which the vacuum

is invariant after spontaneous symmetry breaking.

⇒ There are N-M Goldstone bosons without mass in the theory.

The Goldstone theorem states, that for each spontaneously broken degree of freedom of the
symmetry there is one massless Goldstone boson.

In gauge theories, however, the conditions for the Goldstone theorem are not fulfilled:
Massless scalar degrees of freedom are absorbed by the gauge bosons to give them mass.
The Goldstone phenomenon leads to the Higgs phenomenon.

1.3 Verification of the Higgs mechanism

On the 4th July 2012, the LHC experiments ATLAS and CMS announced the disovery
of a new scalar particle with mass MH ≈ 125 GeV. The discovery triggered immediately
the investigation of the properties of this particle in order to test if it is indeed the Higgs
particle, that has been disovered. In order to verify experimentally the Higgs mechanism as
the mechanism which allows to generate particle masses without violating gauge principles,
we have to perform several steps:

1.) First of all the Higgs particle has to be discovered.

2.) In the next step its couplings to gauge bosons and fermions are measured. If the Higgs
mechanism acts in nature these couplings are proportional to the masses (squared) of
the respective particles.
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3.) Its spin and parity quantum numbers have to be determined.

4.) And finally, the Higgs trilinear and quartic self-couplings must be measured. This
way, the Higgs potential can be reconstructed which, with its typical minimax form,
is responsible for the non-vanishing vacuum expectation value, that is essential for the
non-zero particle masses.

In the following, we will see how this program can be performed at the hadron collider LHC.

1.4 Higgs boson decays

In order to search for the Higgs boson at existing and future colliders, one has to know
what to look for. Hence, one has to study the Higgs decay channels. Since the Higgs boson
couples proportional to the mass of the particle its preferred decays will be those into heavy
particles, i.e. heavy fermions and, when kinematically allowed, into gauge bosons. The
branching ratios into fermions are

�

�

��

�

���

�

BR(H → bb̄) <∼ 85%
BR(H → τ+τ−) <∼ 8%
BR(H → cc̄) <∼ 4%
BR(H → tt̄) <∼ 20%

. (1.15)

They are obtained from the partial width Γ(H → f f̄) into fermions and the total width Γtot,
which is given by the sum of all partial decay widths of the Higgs boson,

BR(H → f f̄) =
Γ(H → f f̄)

Γtot

. (1.16)

The tree-level partical decay width into fermions is given by

Γ(H → f f̄) =
NcfGFMH

4
√

2π
m2
fβ

3 , (1.17)

with the velocity

β = (1− 4m2
f/M

2
H)1/2 (1.18)

of the fermions, their mass mf , and the colour factor Ncf = 1(3) for leptons (quarks).
These decays receive large QCD corrections which have been calculated by various groups
and can amount up to -50%. [Braaten, Leveille; Sakai; Inami, Kubota; Drees, Hikasa; Gor-

ishnii, Kataev, Larin, Surguladze; Kataev, Kim; Larin, van Ritbergen, Vermaseren; Chetyrkin,

Kwiatkowski; Baikov, Chetyrkin, Kühn]

The branching ratios into gauge bosons reach
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�

�������

�	�
���

�

��
�
�

BR(H → W +W−) <∼ 60− 95%
BR(H → ZZ) <∼ 30%

. (1.19)

The tree-level decay width into a pair of on-shell massive gauge bosons V = Z, W is given
by

Γ(H → V V ) = δV
GFM3

H

16
√

2π
β(1− 4x + 12x2) , (1.20)

with x = M2
V /M2

H , β =
√

1− 4x and δV = 2(1) for V = W (Z). The electroweak corrections
to these decays are of the order 5-20%.
[Fleischer, Jegerlehner; Bardin, ...; Kniehl; Ghinculov; Frink, ...] For a Higgs boson of mass MH =
125 GeV off-shell decays H → V ∗V ∗ → 4l are important. The program PROPHECY4F includes
the complete QCD and EW next-to-leading order (NLO) corrections to H → WW/ZZ → 4f
[Bredenstein, Denner; Dittmaier, Mück, Weber].

The decay into gluon pairs proceeds via a loop with the dominant contributions from top
and bottom quarks:

� �����

�

�

BR(H → gg) <∼ 6% . (1.21)

At leading order (LO) the decay width can be cast into the form

ΓLO(H → gg) =
GFα2

sM
3
H

36
√

2π3

∣
∣
∣
∣
∣

∑

Q=t,b

AH
Q (τQ)

∣
∣
∣
∣
∣

2

, (1.22)

with the form factor

AH
Q =

3

2
τ [1 + (1− τ)f(τ)] (1.23)

f(τ) =

{
arcsin2 1√

τ
τ ≥ 1

−1
4

[

log 1+
√

1−τ
1−√1−τ − iπ

]2

τ < 1
(1.24)

The parameter τQ = 4M2
Q/M2

H is defined by the pole mass MQ of the heavy loop quark
Q. Note that for large quark masses the form factor approaches unity. The strong coupling
constant is denoted by αs. The QCD corrections have been calculated [Baikov, Chetyrkin;

Chetyrkin, Kniehl, Steinhauser; Krämer, Laenen, Spira; Schröder, Steinhauser; Chetyrkin, Kühn,
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Sturm; Inami eal; Djouadi, Graudenz, Spira, Zerwas; Dawson eal; Harlander, Steinhauser; Harlan-

der, Hofmann]. They are large and increase the branching ratio by about 70% at next-to-
leading order (NLO). They are known up to next-to-next-to-next-to leading order(N3LO).

Further loop-mediated decays are those into 2 photons or a photon and a Z boson. They
are mediated by charged fermion and W boson loops, the latter being dominant.

� �

�

�����

� �

�

�����

�

�

�

�����

Although they amount only up to

BR(H → γγ, Zγ) <∼ 2× 10−3 (1.25)

the γγ final state is an important search mode for light Higgs bosons at the LHC. The partial
decay width into photons reads

Γ(H → γγ) =
GFα2M3

H

128
√

2π3

∣
∣
∣
∣
∣

∑

f

Ncfe
2
fA

H
f (τf ) + AH

W (τW )

∣
∣
∣
∣
∣

2

, (1.26)

with the form factors

AH
f (τ) = 2τ [1 + (1− τ)f(τ)] (1.27)

AH
W (τ) = −[2 + 3τ + 3τ(2− τ)f(τ)] , (1.28)

with the function f(τ) defined in Eq. (1.24). The parameters τi = 4M2
i /M

2
H (i = f, W )

are defined by the corresponding masses of the heavy loop particles. Ncf denotes again the
colour factor of the fermion and ef the electric charge. For large loop masses the form factors
approach constant values,

AH
f → 4

3
for M2

H � 4M2
Q

AH
W → −7 for M2

H � 4M2
W .

(1.29)

The W loop provides the dominant contribution in the intermediate Higgs mass regime,
and the fermion loops interfere destructively. The QCD corrections have been calculated
and are small in the intermediate Higgs boson mass region. [Zheng, Wu; Djouadi, Graudenz

Spira, Zerwas; Melnikov, Spira, Yakovlev; Dawson, Kauffmann; Melnikov, Yakovlev; Inoue, Najima,

Okada, Saito] The tree-level decay width into Zγ is given

Γ(H → Zγ) =
G2
FM2

WαM3
H

64π4

(

1− M2
Z

M2
H

)3
∣
∣
∣
∣
∣

∑

f

AH
f (τf , λf) + AH

W (τW , λW )

∣
∣
∣
∣
∣

2

, (1.30)

with the form factors

AH
f (τ, λ) = 2Ncf

ef(I3f − 2ef sin2 θW )

cos θW
[I1(τ, λ)− I2(τ, λ)]

AH
W (τ, λ) = cos θW

{

4(3− tan2 θW )I2(τ, λ)

+

[(

1 +
2

τ

)

tan2 θW −
(

5 +
2

τ

)]

I1(τ, λ)
}

. (1.31)
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The functions I1 and I2 read

I1(τ, λ) =
τλ

2(τ − λ)
+

τ 2λ2

2(τ − λ)2
[f(τ)− f(λ)] +

τ 2λ

(τ − λ)2
[g(τ)− g(λ)] (1.32)

I2(τ, λ) = − τλ

2(τ − λ)
[f(τ)− f(λ)] . (1.33)

The function g(τ) can be cast into the form

g(τ) =

{ √
τ − 1 arcsin 1√

τ
τ ≥ 1

√
1−τ
2

[

log 1+
√

1−τ
1−√1−τ − iπ

]

τ < 1
(1.34)

The parameters τi = 4M2
i /M

2
H and λi = 4M2

i /M
2
Z (i = f, W ) are defined in terms of the

corresponding masses of the heavy loop particles. The W loop dominates in the intermediate
Higgs mass range, and the heavy fermion loops interfere destructively.

BR(H)

bb
_

τ+τ−

cc
_

gg

WW

ZZ

tt-

γγ Zγ

MH [GeV]
50 100 200 500 1000

10
-3

10
-2

10
-1

1

10
2

10
3

Γ(H) [GeV]

MH [GeV]
50 100 200 500 1000

10
-3

10
-2

10
-1

1

10

10 2

10
2

10
3

Figure 1.2: The Higgs boson branching ratios (upper) and the total width (lower) as a
function of the Higgs boson mass. Made with HDECAY [Djouadi, Kalinowski, Mühlleitner, Spira]
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Figs.1.2 show the Higgs boson branching ratios and total width as a function of the Higgs
boson mass. One can infer from the figures that the total Higgs boson width is rather small,
less than ∼ 10 MeV, for masses below about 140 GeV. Once the threshold for gauge boson
decays is reached the total widths increases rapidly up to about 600 GeV for MH = 1 TeV.
The gauge boson decay widths are proportional to M 3

H . Below the gauge boson threshold
the main decay is into bb̄, followed by the decay into τ+τ−.

1.5 Higgs boson production at the LHC

There are several Higgs boson production mechanisms at the LHC.

- Gluon fusion: The dominant production mechanism for Standard Model Higgs bosons at
the LHC is gluon fusion

[Georgi, et al.;Gamberini, et al.]

��������������� � �

	

	

pp→ gg → H . (1.35)

In the Standard Model it is mediated by top and bottom quark loops. The QCD corrections
(the next-to leading order calculation involves 2-loop diagrams!) have been calculated and
turn out to be large. They are of the order 10-100%. [Spira, Djouadi, Graudenz, Zerwas;

Dawson, Kauffmann, Schaffer]; see Fig. 1.3, which shows the NLO K-factor, i.e. the ratio of
the NLO cross section to the leading order (LO) cross section as a function of the Higgs
boson mass for the virtual and real corrections.

K(pp→H+X)

√s = 14 TeV

µ = M = MH

Mt = 175 GeV

CTEQ4

Ktot

Kgg

Kvirt
Kqq

Kgq

MH [GeV]
50 100 200 500 1000

-0.5

0

0.5

1

1.5

2

2.5

3

10
2

10
3

Figure 1.3: The K factor for the gluon fusion process as a function of the Higgs boson mass.
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σ(pp→H+X) [pb]
√s = 14 TeV

µ = M = ξ MH

Mt = 175 GeV
MH = 150 GeV
CTEQ4

NLO

LO

ξ

5

7

10

20

30

50

σ(pp→H+X) [pb]
√s = 14 TeV

µ = M = ξ MH

Mt = 175 GeV
MH = 500 GeV
CTEQ4

NLO

LO

ξ

1

2

3

5

7

10

6

7
8
9

10

20

30

40

0 0.5 1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

6

7
8
9

10

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 1.4: The scale dependence of the gluon fusion cross section for two different Higgs
masses.

Due to the inclusion of the NLO QCD corrections the scale dependence of the gluon fusion
cross section is decreased, cf. Fig. 1.4.

The next-to-next-to leading order (NNLO) corrections have been calculated in the limit
of heavy top quark masses (MH � mt) [Harlander,Kilgore;Anastasiou,Melnikov;Ravindran,...].
They lead to a further increase of the cross section by 20-30%. The scale dependence is
reduced to ∆ <∼ 10− 15%. Resummation of the soft gluons [Catani, et al.; ...] adds another
10%.

There has been a lot of progress in the computation of the higher order corrections to gluon
fusion in the last years.
Status of higher order (HO) corrections:

� complete NLO: increase σ by ∼ 80-100% Spira,Djouadi,Graudenz,Zerwas
Dawson;Kauffman,Schaffer

� SM: limit MΦ � mt - approximation ∼ 20-30% Krämer,Laenen,Spira
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� NNLO @ MΦ � mt ⇒ further increase by 20-30%
Harlander,Kilgore
Anastasiou,Melnikov
Ravindran,Smith,van Neerven

� Estimate of NNNLO effects @ MΦ � mt ; scale stabilisation Moch,Vogt
Ravindran

scale dependence: ∆ <∼ 10− 15%

� NNLL resummation: ∼ 6− 9% Catani,de Florian,Grazzini,Nason
Moch,Vogt; Laenen,Magnea; Idilbi eal

� leading soft contribution at N3LO in limit mt →∞ Ravindran,Smith,van Nerven; Ahrens eal

� NNLO mass effects (t loops) Harlander,Ozeren;Pak,Rogal,Steinhauser;
Marzani et al.

for MH <∼ 300 GeV ⇒ O(0.5%)

� NLO electroweak corrections ∼ O(5%) (SM) Aglietti et al.;Degrassi,Maltoni;
Actis et al

� mixed QCD and EW corrections Anastasiou,Boughezal,Petriello

� NLO for H+jet <∼ 1% Keung,Petriello; Brein

- WW/ZZ fusion: Higgs bosons can be produced in the WW/ZZ fusion processes [Cahn,

Dawson; Hikasa; Altarelli, Mele, Pitolli]

�����

�

�

� ���

� ���

pp→ W ∗W ∗/Z∗Z∗ → H . (1.36)

The QCD corrections have been calculated and amount up to ∼ 10% [Han, Valencia, Willen-

brock]. In the meantime more higher order QCD and EW corrections have been calculated.
(Not treated here.)

- Higgs-strahlung: Higgs bosons production in Higgs-strahlung [Glashow et al.; Kunszt et al.]

proceeds via

	�

���

�

��
��

��
��

pp→ W ∗/Z∗ → W/Z + H . (1.37)

The QCD corrections are∼ 30% [Han,Willenbrock]. The NNLO QCD corrections add another
5-10% [Harlander, Kilgore; Hamberg, Van Neerven, Matsuura; Brein, Djouadi, Harlander]. The
theoretical error is reduced to about 5%. The complete electroweak (EW) corrections reduce
the cross section by 5-10% [Ciccolini, Dittmaier, Krämer].
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- Associated Production: Higgs bosons can also be produced in association with top and
bottom quarks [Kunszt; Gunion; Marciano, Paige]

���

�

��

�

� �	�

�� � ��

���

�

�

� �	�

�� � ��

pp→ tt̄/bb̄ + H . (1.38)

The NLO QCD corrections to associated top production increase the cross section at the
LHC by 20% [Beenakker, et al.;Dawson, et al.].

For all the production and background processes a lot of progress has been made in the
last years on the calculation of the higher order (HO) QCD and EW corrections. They are
not subject of this lecture, though. For details, see the corresponding literature.

Fig. 1.5 shows the production cross section in pb as a function of the Higgs boson mass.

σ(pp→H+X) [pb]
√s = 14 TeV

Mt = 175 GeV

CTEQ4M
gg→H

qq→Hqq
qq

_
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_

MH [GeV]
0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

1

10

10 2

0 100 200 300 400 500 600 700 800 900 1000

Figure 1.5: The Higgs boson production cross sections at the LHC as a function of the Higgs
boson mass.

1.6 Higgs Boson Discovery

The main Higgs discovery channels are the γγ and ZZ∗ final states. The decay into γγ
final states has a very small branching ratios, but is very clean. (CMS and ATLAS have
an excellent photon-energy resolution. Look for narrow γγ invariant mass peak, extrapolate
background into the signal region from thresholds.). The ZZ∗ final state is the other impor-
tant search channel. For MH = 125 Gev it is an off-shell decay. It leads to a clean 4 lepton
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Figure 1.6: Best fits for the µ values reported by ATLAS [Phys. Lett. B726 (2013) 88,
ATLAS-CONF-2013-079, ATLAS-CONF-2013-108] (upper) and CMS [CMS-PAS-HIG-14-
009] (lower). The green bands/error bars are the 1σ errors.
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Figure 1.7: The main Higgs discovery channels: Upper: The photon final state, here shown
for the ATLAS experiment [ATLAS-CONF-2013-12]. Lower: The ZZ∗ final state, here
shown for the CMS experiment [CMS-PAS-HIG-13-002].

(4l) final state from the decay of the Z bosons. Also the WW final state is off-shell. The
final state signature includes missing energy from the neutrinos of the W boson decays. The
bb̄ final state is exploited as well. It has the largest branching ratio, but suffers from a large
QCD background. Finally, the ττ channel is also used.

The experiments give the best fit values to the reduced µ values in the final state X.
These are the production rate times branching ratio into the final state X = γ, Z, W, b, τ
normalized to the corresponding value for a SM Higgs boson,

µ =
σprod × BR(H → XX)

(σprod × BR(H → XX))SM

. (1.39)

In case the discovered Higgs boson is a SM Higgs boson they are all equal to 1. Figure 1.6
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shows the µ values reported by the LHC experiments. At present the the various final states
suffer from uncertainties that leave room for beyond the SM (BSM) physics.

The main discovery channels for the 125 GeV Higgs boson at ATLAS and CMS, i.e. the
photon and the Z boson final states, are shown in Fig. 1.7.

1.7 Higgs boson couplings at the LHC

In principle the strategy to measure the Higgs boson couplings is to combine various Higgs
production and decay channels, from which the couplings can then be extracted. For ex-
ample, the production of the Higgs boson in W boson fusion with subsequent decay into
τ leptons, Fig. 1.8, is proportional to the partial width into WW and the branching ratio
into ττ . Combination with other production/decay channels and the knowledge of the total
width allow then to extract the Higgs couplings. The problem at the LHC, however, is that
the total width, which is small for a SM 125 GeV Higgs boson, cannot be measured without
model-assumptions, and also not all final states are experimentally accessible. Therefore
without applying model-assumptions only ratios of couplings are measureable.

The theoretical approach is to define an effective Lagrangian with modified Higgs cou-
plings. In a first approach the couplings are modified by overall scale factors κi and the
tensor structure is not changed. With this Lagrangian the signal rates, respectively µ val-
ues, are calculated as function of the scaling factors, µ(κi). These are then fitted to the
experimentally measured µ values. The fits provide then the κi values. Such a theoretical
Lagrangian for the SM field content with a scalar particle h looks like

L = Lh − (M2
WW+

µ W µ− +
1

2
M2

ZZµZ
µ)[1 + 2 κV

h

v
+O(h2)]

−mψi
ψ̄iψi[1 + κF

h

v
+O(h2)] + ... (1.40)

It is valid below the scale Λ where new physics (NP) becomes important. It implements
the electroweak symmetry breaking (EWSB) via Lh and the custodial symmetry through
κW = κZ = κV . Furthermore, there are no tree-level flavour changing neutral current
(FCNC) couplings as κF is chosen to be the same for all fermion generations and does not
allow for transitions between fermion generations. The best fit values for κf and κV are
shown in Fig. 1.9.

If the discovered particle is the Higgs boson the coupling strengths are proportional to

W
H

τ

τ

• •

q

q

Figure 1.8: Feynman diagram for the production of a Higgs boson in W boson fusion with
subsequent decay into ττ . It is proportional to the partial width ΓWW and the branching
ratio into ττ , BR(H → ττ).
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Figure 1.9: The best fit values for κf and κV by ATLAS [Phys. Lett. B726 (2013) 88]
(upper) and CMS [CMS-PAS-HIG-13-005] (lower).

the masses (squared) of the particles to which the Higgs boson couples. This trend can be
seen in the plot published by CMS, see Fig. 1.10.

1.8 Higgs Boson Quantum Numbers

The Higgs boson quantum numbers can be extracted by looking at the threshold distributions
and the angular distributions of various production and decay processes. The SM Higgs
boson has spin 0, positive parity P and is even under charge conjugation C. From the
observation of the Higgs boson in the γγ final state one can already conclude that it does
not have spin 1, due to the Landau-Yang theorem, and that it has C = +1, assuming
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Figure 1.10: Coupling strenghts as function of the mass of the particles coupled to the Higgs
boson, CMS [CMS-PAS-HIG-13-005]

charge invariance. However, these are theoretical considerations and have to be proven also
experimentally.

The theoretical tools to provide angular distributions for a particle with arbitrary spin
and parity are helicity analyses and operator expansion. Let us look as an example at the
Higgs decay into ZZ∗, and the Z bosons subsequently decay into 4 leptons,

H → ZZ(∗) → (f1f̄1)(f2f̄2) . (1.41)

The decay is illustrated in Fig. 1.11. The angle ϕ is the azimuthal angle between the decay
planes of the Z bosons in the H rest frame. The θ1 and θ2 are the polar angles, respectively,
of the fermion pairs in, respectively, the rest frame of the decaying Z boson.

For the SM the double polar angle distribution reads

1

Γ′
dΓ′

d cos θ1d cos θ2

=
9

16

1

γ4 + 2

[
γ4 sin2 θ1 sin2 θ2

+
1

2
(1 + cos2 θ1)(1 + cos2 θ2)

]

(1.42)

and the azimuthal angular distribution is given by

1

Γ′
dΓ′

dφ
=

1

2π

[

1 +
1

2

1

γ4 + 2
cos 2φ

]

(1.43)

The verification of these distributions is a necessary step for the proof of the 0+ nature of
the Higgs boson.
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Figure 1.11: The decay H → ZZ (∗) → (f1f̄1)(f2f̄2).

The calculation of the azimuthal angular distribution delivers a different behaviour for a
scalar and a pseudoscalar boson:

0+ : dΓ/dφ ∼ 1 + 1/(2γ4 + 4) cos 2φ
0− : dΓ/dφ ∼ 1− 1/4 cos 2φ

(1.44)

Here γ2 = (M2
H−M2

∗−M2
Z)/(2M∗MZ) and M∗ is the mass of the virtual Z boson. Figure 1.12

shows how the azimuthal angular distribution can be exploited to test the parity of the
particle. A pseudoscalar with spin-parity 0− shows the opposite behaviour in this distribution
than the scalar, which is due to the minus sign in front of cos 2φ in Eq. (1.44). The threshold
behaviour on the other hand can be used to determine the spin of the particle. We have for
spin 0 a linear rise with the velocity β,

dΓ[H → Z∗Z]

dM2
∗

∼ β =
√

(MH −MZ)2 −M2
∗ /MH . (1.45)

A spin 2 particle, e.g. shows a flatter rise, ∼ β3, cf. Fig. 1.13.
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Figure 1.12: The azimuthal distribtuion for the H → ZZ∗ → 4l decay for the SM scalar
Higgs (black) and a pseudoscalar (red). [Choi,Mühlleitner,Zerwas]
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Figure 1.13: The threshold distribution for the H → ZZ∗ → 4l decay for the SM spin-0
Higgs (black) and a spin-2 particle (red).[Choi,Mühlleitner,Zerwas]

The experiments cannot perform an independent spin-parity measurement. Instead they
test various spin-parity hypotheses. Various non-SM spin-parity hypotheses have been ruled
out at more than 95% confidence level (C.L.), see e.g. Figs. 1.14 and 1.15.

1.9 Determination of the Higgs self-interactions

In order to fully establish the Higgs mechanism as the one responsible for the generation
of particle masses without violating gauge principles, the Higgs potential has to be recon-
structed. This can be done once the Higgs trilinear and quartic self-interactions have been
measured. The trilinear coupling λHHH is accessible in double Higgs production. The quartic
coupling λHHHH is to be obtained from triple Higgs production.

1.9.1 Determination of the Higgs self-couplings at the LHC

The processes for the extraction of λHHH [Djouadi,Kilian,Mühlleitner,Zerwas] at the LHC are
gluon fusion into a Higgs pair, double Higgs strahlung, double WW/ZZ fusion and radiation
of a Higgs pair off top quarks.

gluon fusion: gg → HH
double Higgs-strahlung: qq̄ → W ∗/Z∗ → W/Z + HH
WW/ZZ double Higgs fusion: qq → qq + WW/ZZ → HH
associated production: pp → tt̄HH

(1.46)

The dominant gluon fusion production process proceeds via triangle and box diagrams, see
Fig. 1.16.

Due to smallness of the cross sections, cf. Fig. 1.17, and the large QCD background the
extraction of the Higgs self-coupling at the LHC is extremely difficult. There is an enormous
theoretical activity to determine the production processes with high accuracy including HO
corrections and to develop strategies and observables for the measurement of the di-Higgs
production processes and the trilinear Higgs self-couplings.
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Figure 1.14: Spin-parity hypotheses tests by ATLAS. Details in Phys. Lett. B726 (2013)
120.

1.10 Summary

The measurements of the properties of the discovered particle have identified it as the Higgs
boson. CERN therefore officially announced in a press release of March 2013, that the
discovered particle is the Higgs boson, cf. Fig. 1.18. This lead then to the Nobel Prize for
Physics in 2013 to Francois Englert and Peter Higgs.

The SM of particle physics has been very successful so far. At the experiments it has
been tested to highest accuracy, including higher order corrections. And with the discovery
of the Higgs particle we have found the last missing piece of the SM of particle physics. Still
there are many open questions that cannot be answered by the SM. To name a few of them

1. In the SM the Higgs mechanism is introduced ad hoc. There is no dynamical mecha-
nism behind it.

2. In the presence of high energy scales, the Higgs boson mass receives large quantum
corrections, inducing the hierarchy problem.

3. We have no explanation for the fermion masses and mixings.

4. The SM does not contain a Dark Matter candidate.

5. In the SM the gauge couplings do not unify.

6. The SM does not incorporate gravity.

7. The CP violation in the SM is not large enough to allow for baryogenesis.
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Figure 1.15: Spin-parity hypotheses tests by CMS. Left: 0− excluded at 95% C.L. [CMS-
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Figure 1.16: The diagrams which contribute to the gluon gluon fusion process gg → HH.

8. ...

We therefore should rather see the SM as an effective low-energy theory which is embedded
in some more fundamental theory that becomes apparent at higher scales. The Higgs data
so far, although pointing towards a SM Higgs boson, still allow for interpretations within
theories beyond the SM. Theses BSM theories can solve some of the problems of the SM. A
few of these BSM models shall be presented in this lecture.
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Figure 1.17: Di-Higgs production processes at the LHC with c.m. energy 14 TeV, including
HO corrections. [Baglio,Djouadi,Gröber,Mühlleitner,Quévillon,Spira].

Figure 1.18: CERN press release.



Chapter 2

The 2-Higgs Doublet Model

Disclaimer: A lot of material for this chapter has been taken from Refs. [3, 4, 5].

So far the experimental Higgs data are compatible with a SM Higgs boson. Still there is
room for interpretations of the Higgs data within beyond the SM (BSM) Higgs physics. The
SM contains only one complex Higgs doublet. A straightforward minimal extension is given
by adding an additional singlet field or another Higgs doublet. When extending our model
to BSM physics we have to be careful, however, not to violate experimental and theoretical
constraints. Two major constraints are given by the ρ parameter and the severe limits on
the existence of flavour-changing neutral currents (FCNC).

The ρ parameter constraint: The ρ parameter

ρ =
M2

W

M2
Z cos2 θW

(2.1)

has been experimentally measured and is very close to one. In the SM the ρ parameter is
determined by the Higgs structure of the theory and the tree-level value ρ = 1 is automatic.
Introducing more generally n scalar multiplets φi with weak isospin Ii, weak hypercharge Yi
and VEV vi of the neutral components, we have for the ρ parameter at tree level (demonstrate
this)

ρ =

∑n
i=1

[
Ii(Ii + 1)− 1

4
Y 2
i

]
vi

∑n
i=1

1
2
Y 2
i vi

. (2.2)

Both SU(2) singlets with Y = 0 and SU(2) doublets with Y = ±1 satisfy

I(I + 1) =
3

4
Y 2 (2.3)

and hence ρ = 1. Also models with larger SU(2) multiplets, scalar particles with small or
vanishing VEVs and models with triplets and a custodial SU(2) global symmetry satisfy the
ρ parameter constraint. But they lead to larger and more complex Higgs sectors.

Flavour-changing neutral currents: The existence of FCNC is experimentally severly con-
strained. In the SM tree-level FCNC are autmatically absent, as the mass matrix auto-
matically diagonalizes the Higgs-fermion couplings. This is in general not the case for non-
minimal Higgs models. A solution to this problem is given by a theorem by Glashow and

23
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Weinberg [6] and shall be discussed below.

Unitarity Constraints: Finally in any model of EWSB it must be ensured, that the amplitude
for the scattering of longitudinal gauge bosons V (V = W, Z),

VLVL → VLVL (2.4)

or for fermions f scattering into longitudinal gauge bosons,

f+f̄+ → VLVL , (2.5)

where + denotes the positive helicity of the fermion, do not violate unitarity bounds. This
requires non-trivial cancellations of the Feynman diagrams contributing to a process. For
example, in WW →WW scattering, the cancellation happens in the SM due to the existence
of a light Higgs boson H with its couplings to the W bosons given by gHWW = gmW . In
models with extended Higgs sectors it is not necessary that a single scalar boson ensures the
unitary constraints. It is only necessary that sum rules for the scalar boson hi couplings to
V V and f f̄ are fulfilled, namely
∑

i

g2
hiV V

= g2
HV V (2.6)

and
∑

i

ghiV V ghiff̄ = gHV V gHff̄ . (2.7)

Note that these sum rules only hold for models with doublet and singlet Higgs fields. In
extensions with triplets or higher Higgs representations there are more complicated sum
rules.

The 2-Higgs Doublet Model (2HDM) with 2 complex Higgs doublets is - together with
the singlet extension - the simplest possible extension of the SM and shall be discussed in
the following. Besides the simple fact that extended Higgs sectors have not been ruled out
yet experimentally, one main motivation for considering 2HDMs is supersymmetry (SUSY).
Supersymmetry requires the introduction of two Higgs doublets due to the structure of the
superpotential and also in order to have an anomaly-free theory. Another motivation is the
fact that within the SM it is impossibly to generate a sufficiently large baryon asymmetry of
the universe. On the other hand, 2HDMs have more freedom due to their enlarged parameter
space and also additional sources for explicit or spontanuous CP violation. The latter is one
of the three Sakharov conditions to generate the baryon asymmetry.1

2.1 The Higgs Potential

The 2HDM has a very rich vacuum structure due to the large number of parameters. Taking
care of respecting the SU(2)L × U(1)Y gauge symmetry and requiring that the theory is
renormalizable in d = 4 dimensions, there are altogether 14 operator products possible
built of the two Higgs doublets Φ1 and Φ2 and that have operator dimension ≤ 4. The
most general scalar potential can have CP-conserving, CP-violating and charge-violating

1The three conditions are baryon number violating processes, C and CP violation and departure from
the thermal equilibrium.
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minima. When writing up the potential care has to be taken in defining the various bases
and in distinguishing between parameters which can be rotated away and those which have
physical implications. If we assume, that CP is conserved and not sponaneously broken and
if we impose discrete symmetries2 that eliminate from the potential all quartic terms odd in
either of the doublets, while allowing for all real quadratic coefficients, one of which softly
breaks these symmetries, then the most general scalar potential for two doublets Φ1 and Φ2

with hypercharge +1 is given by [4]

V = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 −m2

12

(

Φ†1Φ2 + Φ†2Φ1

)

+
λ1

2

(

Φ†1Φ1

)2

+
λ2

2

(

Φ†2Φ2

)2

+λ3Φ
†
1Φ1Φ

†
2Φ2 + λ4Φ

†
1Φ2Φ

†
2Φ1 +

λ5

2

[(

Φ†1Φ2

)2

+
(

Φ†2Φ1

)2
]

, (2.8)

where all parameters are real.3 In the minimum of the Higgs potential the real components
of the Higgs doublet take the VEVs

〈Φ1〉 =

(
0
v1√
2

)

and 〈Φ2〉 =

(
0
v2√
2

)

. (2.9)

The two complex Higgs doublets contain eight real fields,

Φa =

(
φ+
a

va+ρa+iηa√
2

)

, a = 1, 2 . (2.10)

Three out of them provide the longitudinal degrees of freedom for the massive W ± and Z
bosons. After EWSB we are hence left with five Higgs fields. Assuming CP conservation, we
have two neutral scalars, one neutral pseudoscalar and two charged Higgs bosons. Expansion
about the minima leads to the mass term for the charged Higgs bosons, given by

Lφ±,mass = −[m2
12 − (λ4 + λ5)

v1v2

2
](φ−1 , φ−2 )

( v2
v1
−1

−1 v1
v2

)

︸ ︷︷ ︸

M′
C

(
φ+

1

φ+
2

)

. (2.11)

Here we have already exploited the minimum conditions

∂V

∂Φ†i

∣
∣
∣
∣
∣
〈Φi〉=vi/

√
2

= 0 , i = 1, 2 , (2.12)

which imply

m2
11 +

λ1v
2
1

2
+

λ3v
2
2

2
= m2

12

v2

v1
− (λ4 + λ5)

v2
2

2
, (2.13)

m2
22 +

λ2v
2
2

2
+

λ3v
2
1

2
= m2

12

v1

v2
− (λ4 + λ5)

v2
1

2
. (2.14)

The mass matrix is diagonalized by the orthogonal transformation matrix

UC =

(
cos β sin β
− sin β cos β

)

, (2.15)

2We come back to this point when we discuss the constraints from FCNC couplings.
3Note, that in [3], the parameter m2

11
is called m2

1
, m2

22
is m2

2
and m2

12
is named m2

3
.
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where

tan β =
v2

v1

. (2.16)

The parameter tan β is a key parameter of the model. In order to reproduce the W and Z
boson masses as in the SM we have

v2
1 + v2

2 = v2 , (2.17)

with

v2 =
1√
2GF

≈ 2462 (GeV)2 , (2.18)

where GF denotes the Fermi constant. The mass matrix Eq. (2.11) has one zero eigenvalue,
which corresponds to the charged Goldstone boson G±. The mass squared of the charged
Higgs boson reads

m2
H± =

(
m2

12

v1v2

− λ4 + λ5

2

)

(v2
1 + v2

2) = M2 − 1

2
(λ4 + λ5)v

2 , (2.19)

where we have introduced

M2 =
m2

12

sin β cos β
. (2.20)

Due to CP-invariance, as assumed here, the imaginary and the real parts of the neutral scalar
fields decouple. The mass term for the pseudoscalars is given by the imaginary components
of the neutral Higgs fields and, again by exploiting the minimum conditions, can be cast into
the form

Lη,mass = −1

2

m2
A

v2
1 + v2

2

(η1, η2)

(
v2
2 −v1v2

−v1v2 v2
1

)

︸ ︷︷ ︸

M′
P

(
η1

η2

)

. (2.21)

The mass matrix is diagonalized by the orthogonal transformation matrix UP , for which at
tree-level

UP = UC . (2.22)

This leads to one neutral Goldstone boson G0 and a pseusoscalar, denoted by A, with mass
squared

m2
A =

(
m2

12

v1v2
− λ5

)

(v2
1 + v2

2) = M2 − λ5v
2 . (2.23)

Note, that when m12 = 0 and λ5 = 0, then the pseudoscalar is massless. The reason
behind this is the existence of an additional global U(1) symmetry in that limit, which is
spontaneously broken. The mass terms for the scalars, derived by collecting the bilinear
terms of the real parts of the neutral Higgs fields and exploiting the minimum conditions,
read

Lρ,mass = −1

2
(ρ1, ρ2)

(
m2

12
v2
v1

+ λ1v
2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v1
v2

+ λ2v
2
2

)

︸ ︷︷ ︸

MN

(
ρ1

ρ2

)

, (2.24)
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where we have defined

λ345 ≡ λ3 + λ4 + λ5 . (2.25)

The mass matrix is diagonalized by the orthogonal transformation matrix

UN =

(
cos α sin α
− sin α cos α

)

. (2.26)

The mixing angle α is given in terms of the matrix elements of the mass matrixMN as

sin 2α =
2M12

√

(M11 −M22)2 + 4M2
12

(2.27)

cos 2α =
M11 −M22

√

(M11 −M22)2 + 4M2
12

(2.28)

and

tan 2α =
(M2 − λ345v

2) sin 2β

(M2 − λ1v2) cos2 β − (M2 − λ2v2) sin2 β
. (2.29)

This leads to the CP-even mass eigenstates h and H

H = ρ1 cos α + ρ2 sin α (2.30)

h = −ρ1 sin α + ρ2 cos α , (2.31)

with the mass values

m2
H,h =

1

2

[

M11 +M22 ±
√

(M11 −M22)2 + 4M2
12

]

. (2.32)

By convention the lighter CP-even state is called h and the heavier one H. Note that the
SM Higgs boson would be

HSM = ρ1 cos β + ρ2 sin β

= H cos(α− β)− h sin(α− β) . (2.33)

The SM Higgs boson hence corresponds to h for cos α = sin β and sin α = − cos β. It
corresponds to H for cos α = cos β and sin α = sin β. That Eq. (2.33) defines the SM Higgs
can be seen by multiplying the Higgs doublets with the mixing matrix UC , respectively UP ,

(
cos β sin β
− sin β cos β

)(
Φ1

Φ2

)

=

(
cos βΦ1 + sin βΦ2

− sin βΦ1 + cos βΦ2

)

, (2.34)

This leads to two Higgs doublets, one of which

ΦHB
1 = cos βΦ1 + sin βΦ2 =

(
cos βφ+

1 + sin βφ+
2

1√
2
[cos β(v1 + ρ1 + iη1) + sin β(v2 + ρ2 + iη2)]

)

=

(
G±

1√
2
[iG0 + (cos βρ1 + sin βρ2) + v]

)

≡
(

G±
1√
2
[iG0 + S1 + v]

)

, (2.35)
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contains the massless Goldstone bosons and the VEV v in the neutral component, so that
S1 ≡ (cos βρ1 + sin βρ2) can be identified with the SM Higgs boson. The superscript HB
stands for ’Higgs Basis’. The other Higgs doublet reads

ΦHB
2 = − sin βΦ1 + cos βΦ2 =

( − sin βφ+
1 + cos βφ+

2
1√
2
[− sin β(v1 + ρ1 + iη1) + cos β(v2 + ρ2 + iη2)]

)

=

(
H+

1√
2
(− sin βρ1 + cos βρ2) + i√

2
(− sin βη1 + cos βη2)

)

≡
(

H+

S2+iS3√
2

)

. (2.36)

The advantage of the Higgs Basis is that the three Goldstone fields G± and G0 get isolated as
components of Φ1. The three neutral scalar mass eigenstates of the physical scalar spectrum,
ϕ0
i = (h, H, A)T are related through an orthogonal transformation R with the Si fields,

ϕ0
i = RijSj . (2.37)

In general the CP-odd component S3 mixes with the CP-even fields S1,2 and the resulting
mass eigenstates do not have a definite CP quantum number. If the scalar potential is CP
symmetric this admixture disappears. In this case A ≡ S3.

Without loss of generality it can be assumed that β is in the first quadrant, i.e. that both
v1 and v2 are non-negative and real. Furthermore, π can be added to α, which inverts the
sign of both the h and H fields, witout affecting any physics. The angle α will be chosen
either in the first or the fourth quadrant.

The decoupling and the non-decoupling effect:
The masses of the heavier Higgs bosons (H, H± and A) take the form

m2
Φ = M2 + λiv

2(+O(v4/M2)) , (2.38)

where Φ ≡ H, H±, A and λi is a linear combination of λ1–λ5. In case M2 � λiv
2 the mass

m2
Φ is determined by the soft-breaking scale of the discrete symmetry, M 2. The effective

theory below M is then described by one Higgs doublet. And all the tree-level couplings
related to the lightest Higgs boson h approach SM values. The loop effects of Φ vanish in
the large mass limit due to the decoupling theorem.

In case M2 is limited to be at the weak scale (M 2 <∼ λiv
2) a large value of mφ is realized

by taking λi to be large, so that one is in the strong coupling regime. The squared mass
of Φ is then effectively proportional to λi, so that the decoupling theorem does not apply,
leading to a power-like contribution of mφ in the radiative corrections. This effect is called
the non-decoupling effect of Φ. However, theoretical and experimental constraints have to be
considered. Thus too large λi lead to the breakdown of the validity of perturbation theory.
And low-energy precision data impose important constraints on the model parameters.

Parameters of the Higgs Potential:
The parameters of the Higgs potential are m2

11, m
2
22, m

2
12 and λ1–λ5. They can be ex-

pressed in terms of eight ’physical’ parameters, which are the four Higgs mass parameters
mh, mH , mA, mH±, the two mixing angles α, β, the vacuum expectation value v and the
soft-breaking scale of the discrete symmetry, M . The quartic coupling constants can be
expressed in terms of these parameters. (Derive the expressions!)
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2.2 The problem with flavour conservation

The 2HDM faces the serious problem of possible FCNCs at tree-level. To see this let us look
at e.g. the Yukawa Lagrangian. The most general Yukawa Lagrangian is given by

LY = −
{

Q̄′L(Γ1Φ1 + Γ2Φ2)D
′
R − Q̄′L(∆1Φ̃1 + ∆2Φ̃2)U

′
R

+L̄′(Π1Φ1 + Π2Φ2)E
′
R + h.c.

}

, (2.39)

where Q′L, L
′
L denote the left-handed quark and lepton doublets and Q ≡ (U, D)T , L ≡

(ν, E)T , with U ≡ (u, c, t)T , D ≡ (d, s, b)T , ν ≡ (νe, νµ, ντ )
T and E ≡ (e, µ, τ)T . The indices

L, R denote left- and right-handed fermions f given by

fL,R = PL,Rf ≡ 1

2
(1∓ γ5)f . (2.40)

We have defined Φ̃a = (ΦT
a ε)†, with

ε =

(
0 1
−1 0

)

. (2.41)

The couplings Γa, ∆a and Πa (a = 1, 2) are 3× 3 complex matrices in flavour space. In the
Higgs basis the Lagrangian can be cast into the form

LY = −
√

2

v

{

Q̄′L(M
′
dΦ

HB
1 + Y ′dΦ

HB
2 )D′R − Q̄′L(M

′
uΦ̃

HB
1 + Y ′uΦ̃

HB
2 )U ′R

+L̄′(M ′
lΦ

HB
1 + Y ′l Φ

HB
2 )E ′R + h.c.

}

, (2.42)

where M ′
f (f = d, u, l) are the non-diagonal fermion mass matrices. The matrices Y ′f contain

the Yukawa couplings to the scalar doublet with zero vacuum expectation value.

In the basis of the mass eigenstates D, U, E, ν, with diagonal mass matrices Mf (Mν = 0),
the corresponding matrices Yf are in general non-diagonal and unrelated to the fermion
masses. Therefore the Yukawa Lagrangian leads to FCNC couplings, as there are two differ-
ent Yukawa matrices coupling to a right-handed fermion field. These can in general not be
diagonalized simultaneously. Thus neutral Higgs scalars φ can mediate FCNC, as e.g. d̄sφ.
This would lead to serious phenomenological conflicts. This coupling would lead e.g. to K-K
mixing at tree level. Assuming the coupling to be as large as the b-quark Yukawa coupling,
this would require the mass of the exchanged scalar to exceed 10 TeV, in order to achieve a
suppression that is in accordance with the experiments.

The problem can be avoided by forcing one of the two matrices to be zero, which can be
achieved by imposing that only one scalar doublet couples to a given right-handed fermion
field. In other words, if all fermions with the same quantum numbers (so that they can mix)
couple to the same Higgs multiplet, then FCNCs are absent. This has been stated in the
Paschos-Glashow-Weinberg theorem [7]. It says that a necessary and sufficient condition for
the absence of FCNCs at tree level is that all fermions of a given charge and helicity transform
according to the same irreducible representation of SU(2), correspond to the same eigenvalue
of T3 and that a basis exists in which they receive their contributions to the mass matrix
from a single source. For the SM with left-handed doublets and right-handed singlets, this
means that all right-handed quarks of a given charge must couple to a single Higgs multiplet.
In the 2HDM, this can only be ensured by introducing discrete or continuous symmetries.

In the 2HDM there are two possibilities to achieve this:
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• type I 2HDM: All quarks couple to just one of the Higgs doublets (conventionally
chosen to be Φ2).

• type II 2HDM: The Q = 2/3 right-handed (RH) quarks couple to one Higgs doublet
(conventionally chosen to be Φ2) and the Q = −1/3 RH quarks couple to the other
(Φ1).

In order to get the type I 2HDM a simple discrete symmetry Φ1 → −Φ1 is imposed. For
the type II 2HDM a Φ1 → −Φ1, diR → −diR discrete symmetry is enforced. Note, that
SUSY models lead to the same Yukawa couplings as the type II model. They use, however,
continuous symmetries.

In the type I and type II 2HDMs it is conventionally assumed, that the right-handed
leptons satisfy the same discrete symmetry as the diR, so that the leptons couple to the same
Higgs boson as the down-typ quarks. The Glashow-Weinberg theorem, however, does not
require this. There are therefore two more possibilities:

• Lepton-specific model: The RH quarks all couple to Φ2 and the RH leptons couple to
Φ1.

• Flipped model: The RH up-type quarks couple to Φ2, the RH down-type quarks couple
to Φ1, as in type II, but now the RH leptons couple to Φ2.

There circulate a lot of different names for these models in the literature. Thus Model III
and Model IV were used for the flipped and lepton-specific models, respectively, in one of the
earliest works on them. In other papers lepton-specific and flipped were named, respectively,
Model I and Model II. Also the terms IIA and IIB were used. Recently, lepton-specific was
called X-type and flipped Y-type models.

The explicit implementation of the discrete symmetry is scalar-basis dependent. If it
is imposed in the Higgs Basis, all fermions are forced to couple to the field ΦHB

1 in order
to get non-vanishing masses. This inert doublet model provides a natural frame for dark
matter. Note, however, that although ΦHB

2 does not couple to fermions, it has nevertheless
electroweak interactions.

Tree-level FCNC interactions can be avoided in a softer and more general way by requir-
ing the alignment in flavour space of the Yukawa couplings of the two scalar doublets. A
convenient way to implement this condition is given by the form

Γ2 = ξde
−iθΓ1 , ∆2 = ξ∗ue

iθ∆1 , Π2 = ξle
−iθΠ1 . (2.43)

The proportionality parameters ξf are arbitrary complex numbers. The explicit phases e∓iθ

can be introduced to cancel the relative global phases between the two scalar doublets. They
will be omitted in the following. Through the Yukawa alignment the Y ′f and M ′

f matrices are
guaranteed to be proportional to each other, so that they can be diagonalized simultaneously,
leading to

Yd,l = ζd,lMd,l , Yu = ζ∗uMu , ζf ≡
ξf − tanβ

1 + ξf tanβ
. (2.44)
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The Yukawa interactions in terms of the mass eigenstate fields then take the form

LY = −
√

2

v
H+Ū [ζdV MdPR − ζuMuV PL]D −

√
2

v
H+ζlν̄MlPRE

−1

v

∑

ϕ0
i ,f

ϕ0
i y

ϕ0
i

f f̄MfPRf + h.c. , (2.45)

where V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The flavour alignment of the
Yukawa couplings leads to a very specific structure of the scalar couplings to the fermions:

i) All fermion couplings of the physical scalar fields are proportional to the corresponding
fermion mass matrices.

ii) The neutral Yukawa couplings are diagonal in flavour space. The couplings of the
physical scalar fields h, H and A are proportional to the corresponding elements of the
orthogonal matrix R, namely

y
ϕ0

i

d,l = Ri1 + (Ri2 + iRi3)ζd,l (2.46)

y
ϕ0

i
u = Ri1 + (Ri2 − iRi3)ζ

∗
u . (2.47)

iii) The only source of flavour-changing couplings is given by the CKM matrix V . It
regulates the quark couplings of the W± bosons and the charged scalars H±.

iv) All leptonic couplings are diagonal in flavour space. This is because we assume the
neutrinos to be massless in our low-energy Lagrangian. (Although we know in the
meantime that the neutrinos have mass.) Since we assume the neutrinos to be massless
the leptonic mixing matrix can be reabsorbed through a redefinition of the neutrino
fields.

v) The only new couplings introduced by the Yukawa Lagrangian are the three parame-
ters ζf , which encode all possible freedom allowed by the alignment conditions. The
couplings satisfy universality among the different generations, as all fermions of a
given electric charge have the same universal coupling ζf . Furthermore, the param-
eters ζf are invariant under global SU(2) transformations of the scalar fields [9],
i.e. Φa → Φ′a = UabΦb. This means that they are independent of the basis choice
adopted in the scalar space.

vi) The models where a single scalar doublet couples to each type of right-handed fermions
are recovered by taking the appropriate limits ξf → 0 or ξf → ∞, i.e. ζf → − tan β
of ζf → cot β. Thus the type-I model corresponds to (ξd, ξu, ξl) = (∞,∞,∞), type
II to (0,∞, 0), the lepton-specific to (∞,∞, 0) and the flipped model to (0,∞,∞).
(Compare with Table 2.1.) The inert model corresponds to ζf = 0 (ξf = tan β).

vii) The ζf can be arbitrary complex numbers, so that one can have new sources of CP
violation without tree-level FCNCs.
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We will now determine the Yukawa couplings. In the type II model, e.g. the Yukawa
Lagrangian is given by4

LY = −






ĒR





he 0 0
0 hµ 0
0 0 hτ



Φ†1EL + D̄′RV





hd 0 0
0 hs 0
0 0 hb



V †Φ†1

(
U
D′

)

L

−ŪR





hu 0 0
0 hc 0
0 0 ht



ΦT
2 ε

(
U
D′

)

L

+ h.c.






. (2.48)

Here U ≡ (u, c, t)T , D ≡ (d, s, b)T and E ≡ (e, µ, τ)T . The hf denote the various Yukawa
couplings. Coupling the Higgs doublets for the various models as described above and
rotating to the mass eigenstates, one gets, in the notation of Ref. [8], the Yukawa Lagrangian

L2HDM
Yukawa = −

∑

f=u,d,l

mf

v

(

ξfh f̄ fh + ξfH f̄ fH − iξAf̄γ5fA
)

−
{√

2Vud
v

ū(muξ
u
APL + mdξ

d
APR)dH+ +

√
2mlξ

l
A

v
ν̄LlRH+ + h.c.

}

(2.49)

Here we have replaced the Yukawa coupling hf of the fermions f to the Higgs boson by√
2mf/vi. In the Lagrangian the u, d, l, ν stand for all three generations. The Lagrangian

defines the parameters ξfh , ξ
f
H, ξfA. They are defined in Table 2.1.

Type I Type II Lepton-specific Flipped
ξuh cos α/ sinβ cos α/ sinβ cos α/ sinβ cos α/ sinβ
ξdh cos α/ sinβ − sin α/ cosβ cos α/ sinβ − sin α/ cosβ
ξlh cos α/ sinβ − sin α/ cosβ − sin α/ cosβ cos α/ sinβ
ξuH sin α/ sin β sin α/ sin β sin α/ sin β sin α/ sinβ
ξdH sin α/ sin β cos α/ cos β sin α/ sin β cos α/ cosβ
ξlH sin α/ sin β cos α/ cos β cos α/ cos β sin α/ sinβ
ξuA cot β cot β cot β cot β
ξdA − cot β tanβ − cot β tanβ
ξlA − cot β tanβ tanβ − cot β

Table 2.1: The u, d, l (they stand for all three generations) Yukawas couplings to the neutral
Higgs bosons h, H, A in the four different models.

2.3 Branching Ratios

For the determination of the Higgs decays widths, we also need the couplings to the gauge
bosons. The couplings of the Higgs bosons to the gauge bosons are derived from

2∑

i=1

(DµΦi)
†(DµΦi) , (2.50)

4Compare with “Theoretische Teilchenphysik” winter semester 2013/14, section 2.7.2.
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with

Dµ = ∂µ + i
g

2
~τ ~Wµ + i

g′

2
Bµ , (2.51)

where ~τ = (τ1, τ2, τ3)
T in terms of the Pauli matrices. Using Φi = (φ+

i , 1/
√

2(vi + ρi + iηi))
T

and

ρ1 = Hcα − hsα , ρ2 = Hsα + hcα , (2.52)

η1 = G0cβ − Asβ , η2 = G0sβ + Acβ , (2.53)

one finds for all four 2HDM models for the Higgs couplings to the gauge bosons normalized
to the corresponding SM coupling gHSMV V (V = W, Z)

ghWW = sin(β − α)gHSMWW , ghZZ = sin(β − α)gHSMZZ , (2.54)

gHWW = cos(β − α)gHSMWW , gHZZ = cos(β − α)gHSMZZ , (2.55)

gAWW = gAZZ = 0 . (2.56)

Note that in the 2HDM the Higgs couplings to the gauge bosons are always suppressed
compared to the SM, and in the case of the pseudoscalar they vanish.

In the 2HDM we can have additional decays of the neutral Higgs bosons, such as Higgs-
to-Higgs decays

h, H → AA , H → hh , h, H → H+H− , (2.57)

and Higgs decays into a Higgs boson and a gauge boson,

h, H → ZA , h, H, A→ W±H∓ , A→ Zh, ZH . (2.58)

The Higgs-to-Higgs decays require the derivation of the trilinear Higgs self-couplings (excer-
cise!). They can be expressed in terms of the Higgs masses, M , α and β and can be found in
Ref. [3] in Eqs. (E1)-(E6), (E11) and (E12). The Eqs. (E9), (E10), (E15) and (E16) contain
the Higgs-Higgs-gauge boson couplings.

With these couplings at hand the decay widths and branching ratios can be calculated.
There are several public programs which have implemented the calculation of the branching
ratios of the 2HDM including the state-of-the-art higher order corrections, such as:

• HDECAY

Ref.: A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108 (1998)
56 [hep-ph/9704448]; A. Djouadi, M. M. Mühlleitner and M. Spira, Acta Phys. Polon.
B 38 (2007) 635 [hep-ph/0609292].
webpage: http://tiger.web.psi.ch/hdecay/

• 2HDMC

Ref.: D. Eriksson, J. Rathsman and O. St̊al, Comput. Phys. Commun. 181 (2010)
189 [arXiv:0902.0851 [hep-ph]]; D. Eriksson, J. Rathsman and O. St̊al, Comput. Phys.
Commun. 181 (2010) 833.
webpage: http://2hdmc.hepforge.org/
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Exercise: Determine the branching ratios. Produce plots for the branching ratios of respec-
tively, H, A, H± as a function of their mass. Choose mh = 125 GeV, sin(β − α) = 0.9 (to
be close to the SM) and two values of tanβ, tan β = 2, 10. For the time being, we are not
interested in Higgs-to-Higgs decays, so that m2

12 can be chosen arbitrarily. For simplicity
choose H and H± to be close in mass (e.g. 150 and 600 GeV, respectively). As for the H
mass, choose it such that in one case the H → H+H− and H → ZA decays are possible, in
the other case not.

2.4 Higgs Production

For the neutral Higgs bosons of the 2HDM the same production mechanisms apply as in
the SM. The dominant production process at the LHC is given by gluon fusion. The cross
section can readily be taken over from the SM by making the appropriate replacements of
the Higgs couplings to the top and bottom quarks. So we have for φ = h, H, A

σ(gg → φ) = m2
φδ(ŝ−m2

φ)σ̂ , (2.59)

where ŝ denotes the partonic c.m. energy and

σ̂ =
GFα2

s

512
√

2π

∣
∣
∣
∣
∣

∑

q=t,b

gφqqA
φ
1/2(τq)

∣
∣
∣
∣
∣

2

. (2.60)

Here we have defined τq = 4m2
q/m

2
φ and the Yukawa coupling modification factors for the

four 2HDM models are summarised in Tab. 2.1. Furthermore, we have the form factors

A
h/H
1/2 = 2τ [1 + (1− τ)f(τ)] (2.61)

AA
1/2 = 2τf(τ) , (2.62)

with f(τ) defined in Eq. (1.24). For large quark masses, i.e. τq � 1, they approach

A
h/H
1/2 →

4

3
and AA

1/2 → 2 . (2.63)

Note in particular, that while b-quark loops in the SM do not play a role in the type II and
the flipped 2HDMs they can become crucial for large values of tanβ as the Higgs couplings
to down-type quarks are proportional to tanβ.

The production cross sections for h and H in gauge boson fusion and Higgs radiation can
be obtained from the corresponding SM cross sections by multiplying them with the coupling
modification factors sin2(β − α) for h and cos2(β − α) for H. The pseudocscalar does not
couple to the gauge bosons and cannot be produced through these processes. The tt̄φ pro-
duction cross section is obtained from the SM formula by multiplying it with (cos α/ sin β)2

for h, (sin α/ sinβ)2 for H and cot2 β for A in all four 2HDM models. In the type II and
flipped 2HDMs also bb̄φ production can become important due to the tan β enhanced Higgs
couplings to b-quarks for large values of tan β.

In the 2HDM there are further production mechanisms. Thus a resonantly produced
heavy scalar can decay into a Higgs pair. Higgs bosons can also be produced in di-Higgs
production through non-resonant channels and from gauge bosons produced in the Drell-Yan
process, that subsequently decay into a Higgs pair. As the 2HDM has a large parameter
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space and the trilinear couplings are not given by the gauge couplings (as in supersymmetric
theories) the double Higgs production cross sections can in general be larger than in the
Minimal Supersymmetric extension of the SM (MSSM). Charged Higgs bosons finally can
be produced in H+H− production or, if they are light enough, from top decays.

2.5 Type II 2HDM and the MSSM

As stated earlier the Higgs coupling structure to the fermions of the type II 2HDM is the
same as in the MSSM. However, there are some crucial differences between these models:

• The type II 2HDM does not have a strict upper bound on the mass of the lightest Higgs
boson. This is the case in the MSSM, as the Higgs potential, due to supersymmetry,
is given in terms of the gauge couplings.

• For the same reason in the 2HDM the scalar self-couplings are now arbitrary.

• Also the mixing angle α, which in the MSSM is given in terms of tanβ and the scalar
and pseudocalar masses, is now arbitrary.

• In the MSSM the charged scalar and pseudoscalar masses are so close that the decay of
the charged Higgs boson into a pseudoscalar and a real W is kinematically forbidden,
while it is generally allowed in the type II 2HDM.

2.6 The Scalar Sector of the 2HDM

In its most general form the Higgs potential has 14 independent parameters. The Higgs
doublets Φ1 and Φ2 are not physical observables, only the scalar mass eigenstates are physical
particles. One therefore has the freedom to redefine the doublets, provided the form of
their kinetic terms is preserved. Through such basis changes some of the parameters in
the potential can be absorbed. They are essential to understand the number of physical
parameters really present in the potential.

It is common to impose a variety of global symmetries on the 2HDM, e.g. in order to
avoid tree-level FCNC couplings. Thereby the number of free parameters is reduced. It has
been proven that there are only six such symmetries which have distinct effects on the scalar
potential. The resulting six models have different physical implications:

different spectra of scalars, different interactions with gauge bosons, in some cases
predictions of massless axions or potential dark matter candidates.

The scalar potential determines the vacuum of the 2HDM. Contrary to the SM this
vacuum is not unique. With two Higgs doublets it is possible that the model spontaneously
breaks the CP symmetry. For certain parameter values of the potential is is also possible
to have vacua that violate the electromagnetic symmetry and thus give mass to the photon.
These have to be avoided of course. Even if only vacua are considered that preserve both CP
and the usual gauge symmetries of the SM, the 2HDM has a rich vacuum structure. Thus
some potentials can have two different electromagnetism-preserving minima, with different
predictions for the masses of the gauge bosons for example. The 2HDM, however, has a
feature which distinguishes it from other multi-Higgs models, such as SUSY or the 3HDM:
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Its vacua are stable and no tunneling from a neutral, CP-conserving vacum to a deeper,
CP- or charge-breaking vacuum is possible. Vice-versa, any CP- or charge-breaking
minimum that one finds is guaranteed to be the global minimum of the model.

Not all values of the parameters of the 2HDM potential, however, ensure a stable mini-
mum, unless the potential can be ensured to be bounded from below. This basic requirement
imposes constraints on the quartic scalar couplings and translates in possibly severe bounds
on the masses of the physical scalar particles through renormalization-group improvement.

2.6.1 Notations of the Scalar Potential

Notation 1: The most general renormalizable scalar potential can be written as [10]

VH = m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 −m2

12

(

Φ†1Φ2 + Φ†2Φ1

)

+
λ1

2

(

Φ†1Φ1

)2

+
λ2

2

(

Φ†2Φ2

)2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
λ5

2
(Φ†1Φ2)

2 + λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

]

. (2.64)

The parameters m2
11, m2

22 and λ1,2,3,4 are real, whereas m2
12 and λ5,6,7 are complex. This leads

to 14 parameters for the Higgs potential of Eq. (2.64). However, the freedom to redefine the
basis means that in reality only eleven degrees of freedom are physical.

Notation 2: An alternative notation has been given in [11] and reads

VH =
2∑

a,b=1

µabΦ
†
aΦb +

1

2

2∑

a,b,c,d=1

λab,cd(Φ
†
aΦb)(Φ

†
cΦd) , (2.65)

where by definition

λab,cd = λcd,ab . (2.66)

Hermiticity in Eq. (2.65) implies

µab = µ∗ba and λab,cd = λ∗ba,dc . (2.67)

The notation of Eq. (2.65) is useful for the study of invariants, basis transformations and
symmetries. The correspondance between notation 1 and 2 is given by

µ11 = m2
11 , µ22 = m2

22 ,
µ12 = −m2

12 , µ21 = −m2∗
12 ,

λ11,11 = λ1 , λ22,22 = λ2 ,
λ11,22 = λ22,11 = λ3 , λ12,21 = λ21,12 = λ4 ,
λ12,12 = λ5 , λ21,21 = λ∗5 ,
λ11,12 = λ12,11 = λ6 , λ11,21 = λ21,11 = λ∗6 ,
λ22,12 = λ12,22 = λ7 , λ22,21 = λ21,22 = λ∗7 .

Notation 3: While the previous notations consider the scalar doublets Φa (a = 1, 2) individ-
ually, the third notation presented here emphasises the presence of field bilinears Φ†aΦb in
the scalar potential. It can be written as [12]

VH =
3∑

µ=0

Mµrµ +
3∑

µ,ν=0

Λµνrµrν , (2.68)
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where

Λµν = Λνµ (2.69)

and

r0 =
1

2
(Φ†1Φ1 + Φ†2Φ2) ,

r1 =
1

2
(Φ†1Φ2 + Φ†2Φ1) = <(Φ†1Φ2)

r2 = − i

2
(Φ†1Φ2 − Φ†2Φ1) = =(Φ†1Φ2)

r3 =
1

2
(Φ†1Φ1 − Φ†2Φ2) . (2.70)

This notation is convenient for studies of features such as the existence and number of minima
of the scalar potential. Since the Yukawa couplings involve the Higgs doublets individually
rather than bilinears, notation 3 cannot be applied for studies of the full theory with both
scalars and fermions. The correspondence between notations 1 and 3 is given by

Mµ = (m2
11 + m2

22,−2<(m2
12), 2=(m2

12), m
2
11 −m2

22) , (2.71)

Λµν =







(λ1 + λ2)/2 + λ3 <(λ6 + λ7) −=(λ6 + λ7) (λ1 − λ2)/2
<(λ6 + λ7) λ4 + <(λ5) −=(λ5) <(λ6 − λ7)
−=(λ6 + λ7) −=(λ5) λ4 − <(λ5) −=(λ6 − λ7)
(λ1 − λ2)/2 <(λ6 − λ7) −=(λ6 − λ7) (λ1 + λ2)/2− λ3







. (2.72)

In the following we will discuss constraints on the 2HDM Higgs potential and the impli-
cations on its parameter values.

2.6.2 Stability of the 2HDM Potential

In order to ensure the stability of the 2HDM potential, we have to make sure that it is
bounded from below, i.e. that there is no direction in field space along which the potential
tends to minus infinity. The existence of a stable minimum, around which perturbative
calculations can be performed, is a basic requirement for any physical theory. The scalar
potential of the SM satisfies this requirement through the trivial condition λ > 0, where λ
is the quartic coupling of the SM scalar potential. The 2HDM scalar potential of Eq. (2.64)
is much more complicated than the one of the SM. All possible directions along which the
fields Φ1 and Φ2, respectively their eight component fields, tend to arbitrarily large values,
have to be studied. In order to have a non-trivial minimum, i.e. the fields Φi acquire non-
zero VEVs, two conditions have to be fulfilled: The quartic part of the scalar potential,
V4, is positive for arbitrarily large values of the component fields, but the quadratic part
of the scalar potential, V2, can take negative values for at least some values of the fields.
In this respect, demanding V4 > 0 for all Φi → ∞ may be a too strong requirement, since
several interesting models are excluded by it. Thus in tree-level SUSY potentials there is a
direction, 〈Φ1〉 = 〈Φ2〉 for which V4 = 0. A simple way to obtain necessary conditions on the
quartic parameters of the potential is to study its behaviour along specific field directions.
Considering for example the direction |Φ1| → ∞ and |Φ2| = 0, the expression Eq. (2.64) for
the potential obviously leads to the conclusion that one can have positive values for V4 if and
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only if λ1 ≥ 0. Likewise, the direction |Φ1| = 0 and |Φ2| → ∞ gives the condition λ2 ≥ 0.
By studying several such directions it is possible to reach other conditions on the couplings,
arriving at

λ1 ≥ 0 , λ2 ≥ 0

λ3 ≥ −
√

λ1λ2 , λ3 + λ4 − |λ5| ≥ −
√

λ1λ2 , (2.73)

where λ5 has been taken real. In potentials, where λ6 = λ7 = 0 these are actually necessary
and sufficient conditions to ensure the positivity of the quartic potential along all directions.

The conditions Eq. (2.73) have been obtained through a tree-level analysis. The inclusion
of higher order corrections is done by considering only the tree-level expressions Eq. (2.73),
but taking the values of the couplings which appear in these expressions at different renor-
malization scales. One hence takes the bounds of Eq. (2.73) and runs the couplings therein,
using the β-functions of the model along a range of scales µ, i.e. from the weak scale MZ

to an upper scale Λ. At all scales in the interval chosen the bounds must hold. Note, that
combinations of parameters which at one scale might be acceptable would violate the bounds
at another scale.

Such an analysis has been performed for the SM. The Higgs potential quartic coupling λ
at the scale Q is given in terms of the β-function by

dλ

d ln Q
= β(gi) , (2.74)

where gi generically denotes the couplings of the model. The β-function is derived by con-
sidering the quantum corrections to the Higgs potential, and reads

16π2β = 24λ2 − (3g′2 + 9g2 − 12y2
t )λ +

3

8
g′4 +

3

4
g′2g2 +

9

8
g4 − 6y4

t

+ higher order terms . (2.75)

Here g and g′ denote the SM electroweak gauge couplings and yt the top Yukawa coupling.
The β-function has a sizeable negative contribution from the top quark Yukawa coupling.
As the top is so heavy, this term tends to decrease the value of λ at higher renormalization
scales. If the starting value of λ at the weak scale is too small, the coupling can become
negative at some higher scale and the potential would be unbounded from below. This allows
us to put a lower bound on λ and thus on the Higgs mass. Let us have a closer look at this.
For small masses (hence small λ – g and g′ are anyway small) the renormalization group
equation (RGE) Eq. (2.75) is dominated by yt, hence

16π2 dλ

d lnQ
= −6y4

t . (2.76)

Integration leads to

λ(Q) = λ0 −
3

8π2 y
4
0 ln Q

Q0

1− 9
16π2 y

2
0 ln Q

Q0

. (2.77)

Therefore λ decreases with Q. In order to have vacuum stability we have to require

Λ ≤ ve4π2M2
H/(3y

4
t v

2) . (2.78)
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New Physics must appear before this point to ensure vacuum stability. For a fixed value of
Λ this leads to a lower bound on MH .

If the starting value of λ is too large, the RG evolution of the coupling will increase its
value immensely and eventually the theory becomes non-perturbative. We will come back to
this point later, when we discuss unitarity bounds. The RG analysis thus allows to impose
higher and lower bounds on the masses of the Higgs particles.

In the 2HDM the same type of phenomena can occur. If for example the Φ1 only couples
to the up-type quarks, the β-function for the λ1 quartic coupling will have a large negative
top Yukawa contribution, and a similar analysis to the SM case will hold. However, in
the 2HDM many other quartic couplings are present and more bounds need to be obeyed.
Nevertheless the main conclusions hold: Smaller values for some of the λi at the weak scale
are disfavoured as they lead to unbounded from below potentials at higher scales. Large
values of these couplings lead to Landau poles at high scales and thus the breakdown of
perturbation theory. These translate into bounds on the several Higgs masses.

2.6.3 Vacuum Stability

In the SM, apart from the trivial minimum, there is only one possible type of minimum. In
the 2HDM, however, there exist three types of vacua:5

• “Normal” (N) vacua, with VEVs which do not have any complex relative phase and
can thus trivially be rendered real:

〈Φ1〉N =

(
0
v1√
2

)

, 〈Φ2〉N =

(
0
v2√
2

)

, (2.79)

where v =
√

v2
1 + v2

2 = 246 GeV and tanβ = v2/v1.

• CP breaking vacua, where the VEVs have a relative complex phase,

〈Φ1〉CP =

(
0

v̄1√
2
eiθ

)

, 〈Φ2〉CP =

(
0
v̄2√
2

)

, (2.80)

where v̄1 and v̄2 are real.

• Charge breaking (CB) vacua, in which one of the VEVs carries electric charge,

〈Φ1〉CB =

(
α√
2

v′1√
2

)

, 〈Φ2〉CB =

(

0
v′2√
2

)

, (2.81)

with real numbers v′1, v′2, α. Because of the presence of a non-zero VEV in an upper
component (charged) of the fields, this vacuum breaks electrical charge conservation,
so that the photon acquires a mass. Such a vacuum therefore has to be avoided.

5Any stationary point of the potential, regardless of whether it is a minimum or not, is considered a
vacuum.
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The minima of the potential are defined by solving the minimization conditions. With
the potential written in terms of ṽi for any of the three sets Eqs. (2.79)-(2.81) a stationary
point of the potential is found if the set of equations ∂V/∂ṽi = 0 has solutions. The different
CP and CB stationary points are determined by a set of three equations and a normal one
by only two. Since the 2HDM potential depends on eight real component fields, in fact, any
stationary point should be the solution of a set of eight equations on eight unknowns. As
one can always choose the simplified forms of the VEVs given in Eqs. (2.79)-(2.81), most
of those equations are trivially satisfied. It has been shown in [13] that the charge breaking
VEVs can always be obtained analytically and are given by





v′21 + α2

v′22
v′1v
′
2



 = 2





λ1 λ3 2<(λ6)
λ3 λ2 2<(λ7)

2<(λ6) 2<(λ7) 2(λ4 + <(λ5))





−1



m2
11

m2
22

−2<(m2
12)



 . (2.82)

This implies, that if Eq. (2.82) has a solution, then this is unique up to trivial sign changes
(α → −α, v′1 → −v′1, v′2 → −v′2) with no physical impact. Charge breaking is hence
impossible in several symmetry-constrained 2HDM.

The CP breaking VEVs can be obtained analytically in terms of the parameters of the
potential. Assuming potentials where the CP symmetry is defined one obtains





v̄2
1

v̄2
2

v̄1v̄2 cos θ



 = 2





λ1 λ3 + λ4 − <(λ5) 2<(λ6)
λ3 + λ4 − <(λ5) λ2 2<(λ7)

2<(λ6) 2<(λ7) 4<(λ5)





−1



m2
11

m2
22

−2<(m2
12)



 .(2.83)

Up to physically irrelevant sign changes the CP vacuum is unique.

The most difficult vacuum to be solved is the normal one. For many potentials the
minimization conditions cannot be solved analytically. The equations ∂V/∂v1 = 0 and
∂V/∂v2 = 0 result for the most general 2HDM potential in

m2
11v1 − <(m2

12)v2 +
λ1

2
v3
1 +

λ345

2
v1v

2
2 +

1

2
[3<(λ6)v

2
1v2 + <(λ7)v

3
2] = 0 (2.84)

m2
22v2 − <(m2

12)v1 +
λ2

2
v3
2 +

λ345

2
v2v

2
1 +

1

2
[<(λ6)v

3
1 + 3<(λ7)v2v

2
1] = 0 , (2.85)

with λ345 = λ3 + λ4 + <(λ5).

With the possibility of minima of different natures in theories with more than one scalar,
the theory may allow for tunneling from one minimum to another. In the 2HDM therefore
the question arises: Can the vacua of different natures coexist with one another? Could one
tunnel from a normal minimum to a deeper charge-breaking one? In other words, given a
minimum in the 2HDM, is it stable? In Refs. [13, 14, 15] it has been shown:

• Suppose we have a potential where a normal stationary point and a charge breaking one
exist, and with the VEVs given by Eqs. (2.82) and (2.84), (2.85), then the difference
in the values of the scalar potential at both those vacua is given by

VCB − VN =

(
M2

H±

4v2

)

N

[(v′1v2 − v′2v1)
2 + α2v2

2]
︸ ︷︷ ︸

>0

. (2.86)
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Note that (M 2
H±/v2)N is the ratio of the squared mass of the charged scalar to the sum

of the square of the VEVs, v2 = v2
1 + v2

2, as computed in the normal stationary point.
This implies: If the normal stationary point is a minimum, which implies M 2

H± > 0,
then one will necessarily have VCB−VN > 0. Hence, if there is a normal minimum, any
CB stationary point will lie above it. The normal minimum is stable against charge
breaking. It was also proven in [13] that in such a case the CB stationary point is
necessarily a saddle point. Therefore normal and CB minima cannot co-exist in the
2HDM. In case the set of parameters is chosen such that the global minimum of the
potential breaks charge, there are no normal minima.

• In case we have a potential where a normal stationary point and a CP breaking one
exist with the VEVs given by Eqs. (2.83) and (2.84), (2.85), the difference in the values
of the scalar potential at both those vacua is given by

VCP − VN =

(
M2

A

4v2

)

N

[(v̄1v2 cos θ − v̄2v1)
2 + v̄2

1v
2
2 sin2 θ]

︸ ︷︷ ︸

>0

. (2.87)

Note that (M 2
A/4v2)N is the ratio of the squared mass of the pseudoscalar to the sum

of the square of the VEVs, v2 = v2
1 + v2

2, as computed in the normal stationary point.
Therefore, if the normal stationary point is a minimum, which implies that M 2

A > 0
then we necessarily have VCP − VN > 0. If there is a normal minimum, any CP
stationary point will hence be above it. The normal minmum ist stable against CP
breaking. In [16] it was proven that in that case the CP stationary point is necessarily
a saddle point, and therefore normal and CP minima cannot co-exist in the 2HDM. If
the set of parameters of the potential is chosen such that the global minimum of the
potential breaks CP, then there are no normal minima.

• Also no CB and CP minima can co-exist. This is because for the CP vacuum the
square of the charged Higgs mass is given by

(M2
H±)CP = −1

2
[λ4 − <(λ5)](v̄

2
1 + v̄2

2) , (2.88)

whereas in a CB vacuum one of the squared mass matrix eigenvalues is

M2
CB =

1

2
[λ4 − <(λ5)](v

′2
1 + v′22 + α2) . (2.89)

The sign of λ4 − <(λ5) determines that both these vacua cannot be simultaneously
minima. Therefore if a CP minimum exists the (unique) CB stationary point, if it
exists, cannot be a minimum as well, and vice-versa.

• The normal minimization conditions, however, allow for multiple solutions, so that one
can have an N1 vacuum with VEVs {v1,1, v2,1} and an N2 vacuum with different VEVs
{v1,2, v2,2}. The difference in the values of the potential in these two vacua is given by

VN2 − VN1 =
1

4

[(
M2

H±

v2

)

N1

−
(

M2
H±

v2

)

N2

]

(v1,1v2,2 − v2,1v2,2)
2 , (2.90)
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where (M2
H±/v2)N1 is the ratio of the charged mass squared to the sum of the square

VEVs, (v2)N1 = v2
1,1 + v2

2,1, as computed in the N1 stationary point, and analogously
for (M2

H±/v2)N2 . This equation shows that nothing favours N1 over N2. The deepest
stationary point is simply determined by the values of the parameters. This is to be
expected as the two vacua have the same symmetries. It was proven in [16] that it is
possible to have two co-existing normal minima. On the other hand it is very easy to
find a set of parameters where N1 would be the global minimum, with N2 above it or
not even existing.

In summary, for the 2HDM vacua the following holds:

• Minima of different natures cannot coexist in the 2HDM.

• Whenever a normal minimum exists in the 2HDM, the global minimum of the potential
is normal. No tunneling to a deeper CB or CP minimum is possible.

• If a CP (CB) violating minimum exists, it is the global minimum of the theory and
thouroughly stable. No tunnelling to a deeper normal or CB (CP) minimum can occur.

2.6.4 Unitarity Constraints

We have already seen that the condition that the potential must have a minimum and is not
unbounded from below leads to constraints on the parameter values of the Higgs potential.
Another theoretical constraint arises from the requirement, that all the (tree-level) scalar-
scalar scattering amplitudes must respect unitarity. In the SM this requirement is equivalent
to ensuring that the quartic coupling in the scalar potential is not too large. This leads then
to an upper bound on the Higgs boson mass. We can see this by looking again at the RGE
in Eq. (2.75). For large masses (and hence large λ), the RGE is dominated by the λ term,
hence

16π2 dλ

d lnQ
= 24λ2 . (2.91)

This is solved by

λ(Q) =
M2

H

2v2 − 3
2π2 M

2
H ln Q

v

. (2.92)

The coupling λ hence increases with Q. It diverges at the Landau pole. We therefore have
to require that new physics appears before this point, in order to restore stability, hence

Λ ≤ ve4π2v2/(3M2
H) . (2.93)

For fixed Λ this translates into an upper bound on MH . Extending this bound to the 2HDM
is complicated. Due to the richer scalar spectrum many scattering amplitudes need to be
taken into account. Furthermore the existence of many quartic couplings makes things more
complicated. This leads to an analysis of the eigenvalues of the S matrix for scalar-scalar



The 2-Higgs Doublet Model 43

scattering amplitudes. The relevant ones are given by

a± =
3

2
(λ1 + λ2)±

√

9

4
(λ1 − λ2)2 + (2λ3 + λ4)2 , (2.94)

b± =
1

2
(λ1 + λ2)±

1

2

√

(λ1 − λ2)2 + 4λ2
4 , (2.95)

c± =
1

2
(λ1 + λ2)±

1

2

√

(λ1 − λ2)2 + 4λ2
5 , (2.96)

e1 = λ3 + 2λ4 − 3λ5 , (2.97)

e2 = λ3 − λ5 , (2.98)

f+ = λ3 + 2λ4 + 3λ5 , (2.99)

f− = λ3 + λ5 , (2.100)

f1 = λ3 + λ4 , (2.101)

p1 = λ3 − λ4 . (2.102)

The requirement of tree-level perturbative unitarity leads to

|a±|, |b±|, |c±|, |f±|, |e1,2|, |f1|, |p1| < 8π . (2.103)

2.6.5 Further Constraints

The Higgs bosons of the 2HDM also contribute to the electroweak precision observables.
New physics contributions to these observables can conveniently be parametrized in terms
of the oblique parameters. With the vacuum polarization tensors written as

Πµν
V V ′(q) = gµνAV V ′(q

2) + qµqνBV V ′(q
2) , (2.104)

where V V ′ is either γγ, γZ, ZZ or W +W− and q = (qα) is the four-momentum of the gauge
bosons, and defining

ĀV V ′(q
2) = AV V ′(q

2)|2HDM − AV V ′(q
2)|SM , (2.105)

the oblique parameters S, T, U, V, W, X of the 2HDM can be expressed in terms of the ĀV V ′.
Electroweak precision constraints lead to

mA = mH± (2.106)

sin(β − α) = 1 ⇒ mH± = mH (2.107)

sin(β − α) = 0 ⇒ mH± = mh . (2.108)

Other constraints arise from the measurement of muon anomalous magnetic moment and
from B-physics. In particular the charged Higgs boson can have a significant effect on B-
physics observables. For all four models without FCNC the Yukawa couplings of the charged
Higgs boson can be written as

LH± = −H+

(√
2Vud
v

ū(muXPL + mdY PR)d +

√
2ml

ν
Zν̄LlR

)

+ h.c. . (2.109)

The values of X, Y and Z are given in Table 2.2 for the various models. In Type I the
couplings to all fermions are suppressed if tanβ � 1, implying a fermiophobic charged
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Type I Type II Lepton-specific Flipped
X cot β cot β cot β cotβ
Y cot β − tan β cot β − tan β
Z cot β − tan β − tanβ cotβ

Table 2.2: The parameters X, Y and Z for the four models without FCNC.

Higgs. In the same limit one has in the lepton-specific model a quark-phobic but lepto-philic
charged Higgs, which could lead to a huge branching ratio for H± → τ±ντ . In both models
the quark-phobic nature of the charged Higgs eliminates constraints from rare B decays. In
the type II and flipped model large contributions to rare B decays are possible. The data
on B → Xsγ lead for these models then to a constraint on the charged Higgs mass given by

mH± >∼ 360 GeV . (2.110)

All models are constraint by the data on B0
d − B̄0

d and B0
s − B̄0

s mixing. The measured

Rb =
Γ(Z → bb̄)

Γ(Z → qq̄)
(2.111)

constrains

tan β >∼ 1 . (2.112)

Last but not least there are constraints from the Higgs data from LEP, Tevatron and
LHC. It has to be made sure that the 2HDM Higgs sector is not in conflict with the reported
exclusion limits and the Higgs data of the discovered 126 GeV scalar. Thus at LEP it was
looked for the production of charged Higgs bosons in

e+e− → H+H− , (2.113)

with the charged Higgs decaying into τ+ντ . For any model the non-observaton of the charged
Higgs leads then to a constraint of mH± >∼ 80 GeV. And for the lepton-specific one, the limit
is mH± >∼ 94 GeV. At ATLAS and CMS a charged Higgs boson is looked for in

pp→ t̄t→ b̄bW+H− . (2.114)

The non-observation translates into exclusion limits in the tanβ-mH± plane.

There are dedicated public programs available that allow to check for the Higgs data con-
straints, namely HiggsBounds [17, 18, 19] and HiggsSignals [20]. The program HiggsBounds

requires as inputs the effective couplings of the Higgs bosons of the investigated model, nor-
malized to the corresponding SM values, as well as the masses, the widths and the branching
ratios of the Higgs bosons. This allows then to check for the compatibility with the non-
observation of the 2HDM Higgs bosons, in particular whether or not the Higgs spectrum is
excluded at the 95% confidence level (CL) in view of the LEP, Tevatron and LHC measure-
ments. The package HiggsSignals uses the same input and validates the compatibility of
the SM-like Higgs boson with the Higgs observation data. A p-value is given, which when
demanded to be at least 0.05 corresponds to a non-exclusion at 95% CL.

A tool for performing scans of the parameter space of scalar sectors is given by ScannerS

[24]. It automatises scans for tree-level renormalizable scalar potentials. It is interfaced with
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• SuShi [21] for the Higgs production at NNLO in gluon fusion and associated production
with bb̄.

• HDECAY [22] for the computation of the Higgs decays.

• Superiso [23] for the check of some flavour physics observables.

• HiggsBounds for the limits from the Higgs searches at LEP, Tevatron and the LHC.

• HiggsSignals for the signal rates at the Tevatron and LHC.

Furthermore ScannerS checks for the global minimum and has implemented checks of the
constraints from vacuum stability (potential bounded from below), unitarity, electroweak
precision observables and some alternative sources for B-physics constraints. The webpage
of the program is given by:
http://www.hepforge.org/archive/scanners/

In order to check for the 2HDM allowed parameter space with the available LHC data as
given in September 2014, a random scan has been performed, setting mh = 125.9 GeV, over
the parameter values

50 GeV ≤ mH± ≤ 1 TeV

mh + 5 GeV ≤ mA, mH ≤ 1 TeV

−9002 GeV2 ≤ m2
12 ≤ 9002 GeV2

0.5 ≤ tan β ≤ 50

−π

2
≤ α ≤ π

2
. (2.115)

The theoretical and pre-LHC experimental constraints have been imposed. The branching
ratios and production rates at the LHC have been calculated and the collider constraints
have been checked with HiggsBounds and HiggsSignals. The result for the type II model is
shown in Fig. 2.1. As can be inferred from the plot there are two regions that are favoured.
One is given by the SM-like limit. Here sin(β − α) = 1, leading to κF = 1 and κV = 1,
where κx denotes the 2HDM coupling of the SM-like h with mass around 126 GeV to the
SM particles x normalized to the corresponding coupling of the SM Higgs boson with same
mass. Hence all tree-level coupling to fermions and massive gauge bosons are as in the SM.
The other favoured region is the so-called ’wrong-sign’ limit [25], as here

κDκV < 0 or κUκV < 0 . (2.116)

This means that the Yukawa couplings and couplings to massive gauge bosons have a relative
minus sign. This can be easily checked by re-writing the coupling factor κD to down-type
fermions, which in the type II model is given by

κD = − sin α

cos β
= − sin(β + α) + cos(β + α) tanβ (2.117)

and analogously

κU =
cos α

sin β
= sin(β + α) + cos(β + α) cotβ . (2.118)

For sin(β + α) = 1 this leads to κD = −1 (κU = 1) and with

κV = sin(β − α) =
tan2 β − 1

tan2 β + 1
(2.119)

we have κV ≥ 0 if tanβ ≥ 1.
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Figure 2.1: Allowed parameters space of the type II 2HDM model as in September 2014.
Taken from the talk given by R. Santos at HiggsDays 2014 in Santander.
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3.2 The Standard Model and its Flaws

The SM of particle physics describes the today known fundamental structures of matter
and forces, with the exception of gravity. It is a consistent renormalizable quantum field
theory and describes a large amount of experimental data over a large range of energies. It
has been tested at the quantum level in electroweak precision experiments. Still, the SM is
incomplete. A few of the flaws and open questions are listened here (and have also partly
been discussed in Section 1.10):
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• Experimental arguments:

– Neutrinos are not massless.

– Astrophysical and cosmological data point towards the existence of Dark Matter
(DM).

– Gravity cannot be described in the framework of the SM.

• Theory arguments:

– Is there a scale where the strong, weak and electromagnetic forces unify? – Not
in the SM.

– Is there a dynamical explanation for the mass and mixing patterns?

– Is there a dynamical explanation for the Higgs mechanism and EW symmetry
breaking? In the SM the Higgs potential is added by hand.

– How can the value of the Higgs mass be explained in a natural way, without
fine-tuning, if the SM is valid up to high energies? (Hierarchy problem)

A few of these open questions and their solution within supersymmetry (SUSY) are dis-
cussed in the following.

3.3 The Hierarchy Problem

Let us first have a look at the radiative corrections in quantum electrodynamics (QED),
which is described by the Lagrangian

L = iψ̄γµD
µψ −mψ̄ψ − 1

4
F µνFµν . (3.1)

Here ψ denotes the 4-component spinor of a Dirac fermion, γµ the Dirac matrices andDµ

the covariant derivative, given by

Dµ = ∂µ + iqψAµ(x) , (3.2)

with the vector potential Aµ(x) and the coupling constant qψ, which is identified with the
charge of the Dirac field. The field strength tensor Fµν , expressed through the vector poten-
tial Aµ, reads

Fµν = ∂µAν − ∂νAµ . (3.3)

The theory decsribes the interaction between fermions and a photon. These interactions
conserve chirality. This means, that a left-handed fermion remains left-handed, when it
emits (or absorbs) a photon, and a right-handed one remains right-handed. The kinetic
term also conserves chirality. Since the emission or the absorption of a photon cannot
change the chirality of a fermion, this immediately entails that any radiative correction to
the fermion mass (which is an operator that connects ψL and ψR) has to vanish in all orders
of perturbation theory, if the fermion mass is equal to zero. This means that

δm ∼ m . (3.4)
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The loop integrals which appear in the computation of the radiative corrections are divergent.
If we regularize the divergence through a cut-off Λ, then we find by applying dimensional
analysis, that the dependence on the cut-off parameter must be given by

δm ∼ m ln
Λ

m
. (3.5)

Naive dimensional analysis would have lead to δm ∼ Λ. Bechause of the chiral symmetry
the actual divergence is milder. The chiral symmetry protects the fermion masses against
large radiative corrections. Analogously the gauge invariance of the photon protects against
acquiring a mass. In fact, in QED the leading divergence in all quantities is logarithmic.

The structure of the divergence in field theories with elementary scalars, however, is very
different. Let us look at the radiative corrections to the scalar mass in a toy model, which
is described by the following Lagrangian

L1 = ψ̄(i∂/−mF )ψ +
1

2
(∂µS)2 − 1

2
m2
SS

2 − λF
2

ψ̄ψS , (3.6)

where the Dirac spinor ψ describes a fermion of mass mF , S a real scalar field of mass
mS, and the coupling between the scalar field S and two fermions is given by the coupling
constant λF . The radiative corrections to the fermion and scalar masses are given by the
diagrams displayed in Fig. 3.1. Depending on the cut-off parameter Λ we obtain for the
correction δmF to the fermion mass and δm2

S to the scalar mass

δmF = −3λ2
FmF

64π2
ln

Λ2

m2
F

+ ... (3.7)

δm2
S = − λ2

F

8π2

[

Λ2 −m2
F ln

Λ2

m2
F

]

+ ... . (3.8)

While the radiative correction to the fermion mass has the above discussed logarithmic
divergence, the correction to the scalar mass is quadratically divergent. In the framework of

�

�

�

�

�

Figure 3.1: Radiative corrections to the fermion mass (left) and to the boson mass (right).

the SM there are further quadratically divergent contributions to the scalar mass from the
gauge boson loops and other fermion loops.

The quadratic divergences to the scalar mass, within the SM the ones to the Higgs boson
mass, are in principle no problem. Since the SM is renormalizable radiative corrections can
be treated to any accuracy. What is hence the problem? Let us have a look at the radiatively
corrected Higgs boson mass at 1-loop level,

m2
HSM

(phys) ≈ m2
HSM

+
c

16π2
Λ2 , (3.9)
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where m2
HSM

is the quadratic Higgs mass of the Lagrangian and the second term is the
quadratically divergent correction to the Higgs boson mass. The terms logarithmic in Λ have
been neglected for simplicity. The coefficient c depends on the various couplings constants
of the SM. In Eq. (3.9) we have only integrated over the energy-momentum range, in which
the SM is expected to be valid. The scale Λ can be of the order of only a few TeV, but for
sure not higher than the Planck scale MP ≈ 1.2 × 1019 GeV, where quantum gravitational
effects are expected to become important.

How can we know which values of Λ are reasonable? We know now that the Higgs mass
is about 126 GeV. If we now demand that Eq. (3.9) is fulfilled without excessive fine-tuning
between the terms on the right-hand side, we would deduce Λ ≤ O(TeV). If we assume,
however, that the SM is valid up to the scale of grand unification (GUT) and hence choose
Λ = MGUT ∼ 1016 GeV, then the mass parameter m2

HSM
in the Lagrangian has to be adjusted

up to 1 part in 1026, in order to ensure the cancellation necessary to achieve a Higgs mass
of 126 GeV. The logarithmic term on the other hand, contributes a correction which is
∼ m2

HSM
, even for Λ ∼ MP . The ln Λ correction, which also appear in the fermion masses,

are hence not large. In other words, the large Λ2 corrections imply: If we use the high-energy
theory, from which the SM results as effective low-energy theory, to make predictions at TeV
energies, then these predictions are extremely sensitive to the parameters of the high-energy
theory, if Λ� 1 TeV. This is the so-called fine-tuning problem of the SM.

�

�

�

Figure 3.2: Radiative corrections to the mass of the boson S due to the fields φ1 and φ2.

How can supersymmetry solve this problem? In order to understand this we add to our
toy Lagrangian Eq. (3.6) the Lagrangian L2,

L2 = |∂µφ1|2 + |∂µφ2|2 +
λS
2

S2(|φ1|2 + |φ2|2)−m2
φ(|φ1|2 + |φ2|2) . (3.10)

The fields φ1, φ2 describe complex scalar particles of mass mφ, which interact with the scalar
field with the coupling strength λS. These new particles also contribute to the radiative
corrections of the scalar mass of S. The corresponding diagram is displayed in Fig. 3.2. The
calculation of the radiative correction δm

′2
S to the mass of S, which stems from the loops

with φ1, φ2, leads to

δm
′2
S = +

λ2
S

8π2
[Λ2 −m2

φ ln
Λ2

m2
φ

] + ... . (3.11)

If λS = λF , then this contribution in the term which is quadratically divergend in Λ is
exactly equal to the contribution that is stemming from the fermionic mass correction, but
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with different sign. This contribution hence cancels exactly the quadratically divergent term
in Λ so that the hierarchy problem or the problem of finetunig of the parameter does not
exist any more. The opposite sign in the contributions of the fermion and boson loops is a
consequence of the Pauli principle (→ “closed fermion loops obtain a factor −1.”) In order
for this cancellation to take place, the following is necessary:

• The number of degrees of freedom must be the same. Since there are four fermionic
degrees of freedom, we need to introduce two complex scalar fields.

• The couplings of the new particles φ1, φ2 to the scalar field must be equal to the
coupling of the fermion to the scalar field,

λF = λS ≡ λ . (3.12)

The remaining logarithmic divergence

δm2
S ∼

λ2

8π2
(m2

F −m2
φ) lnΛ2 (3.13)

is no problem for fine-tuning if mφ is not too large.

Supersymmetry ensure this by relating fermions and bosons. The fermionic particles
of the SM acquire in SUSY bosonic partners and the bosonic particles acquire fermionic
partners. In this way the bosonic masses can be kept small.

Supersymmetry: Bosonic masses can be kept small in a natural way if bosons and
fermions are related to each other.

In order to avoid another fine-tuning through the introduction of new fields and their
masses, we demand additionally that the masses of these new SUSY partners of the fermion
are maximally of the order of TeV, mφ <∼ O(1 TeV) (see Eq. 3.13). In summary, the prop-
erties of low-scale SUSY are:

• Doubling of the particle spectrum (in the minimal version of the SUSY ex-
tension of the SM).

• Equality of the fermionic and bosonic coupling constants.

• mSM ∼ O(100 GeV) ⇒ mφ ≡ m̃ <∼ O(few TeV).

3.4 Some Basics about Supersymmetry

3.4.1 The Coleman-Mandula Theorem

The Coleman-Mandula theorem is a so-called no-go theorem. It says, that the maximal set
for symmetry transformations, that concern the space-time coordinates, is given by shifts,
rotations and the Lorentz transformation. In other words, the most general Lie algebra of
the symmetries of the S matrix contains the energy-momentum vector P µ, the generators of
the Lorentz rotation Mµν and a finite number of opertors Bρ that are Lorentz scalars. The
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latter must be part of the Lie algebra of a compact Lie group.

The theorem is based on the following assumptions

(1) The S matrix is based on a local relativistic quantum field theory in four space-time
dimensions.

(2) There is only a finite number of different particles that are associated with a one-
particle state of given mass.

(3) There is an energy gap between the vacuum and 1-particle states.

Supersymmetric theories evade the constraints of the Coleman-Mandula theorem by re-
laxing one condition. They generalize the Lie algebra in such a way, that algebraic systems
are included, which contain as defining relations both commutators and anti-commutators.
These new algebras are called superalgebras or graded Lie algebras.

The theorem by Haag, Sohnius and Lopuszanski then says the following: The Supersym-
metry algebra is the only graded Lie algebra of symmetries of the S matrix, that is consistent
with relativistic quantum field theory.

3.4.2 Graded algebras

The simplest form of a graded algebra, the so-called Z2 graded algebra, consists of a vector
space L, which is the direct sum of two subspaces,

L = L0 ⊕ L1 , (3.14)

and of a product ◦ with the following properties,

u1 ◦ u2 ∈ L0 ∀u1, u2 ∈ L0 ,
u ◦ v ∈ L1 ∀u ∈ L0, v ∈ L1 ,
v1 ◦ v2 ∈ L0 ∀v1, v2 ∈ L1 .

(3.15)

A Zn graded algebra is the direct sum of n subspaces Li,

L = L0 ⊕ L1 ⊕ ...⊕ Ln−1 (3.16)

and has a product with the properties

uj ◦ uk ∈ L
j+k mod n

, (3.17)

where ui ∈ Li. A product ◦ with this property is called graded.

3.4.3 Graded Lie algebras

A graded Lie algebra is constructed from a Z2 graded algebra, by imposing on the product
◦ the following properties:

Graduation: xi ◦ xj ∈ L
i+j mod 2

Supersymmetry: xi ◦ xj = −(−1)i·jxj ◦ xi
Jacobi identity: xk ◦ (xl ◦ xm)(−1)k·m + xl ◦ (xm ◦ xk)(−1)l·k+

xm ◦ (xk ◦ xl)(−1)m·l = 0 ,

(3.18)

where xi ∈ Li and i = 0, 1. According to supersymmetry the product can be both symmetric
and anti-symmetric. Only the subspace L0 defines a Lie algebra, as the product is anti-
symmetric. The product in the subspace L1 is symmetric. This one even is not an algebra,
as because of x1 ◦ y1 ∈ L0 the product is outside L1.
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3.4.4 The Poincaré Superalgebra

The Z2 graduation of the Poincaré algebra leads to the Poincaré superalgebra.

The subspace L0 is built from the 10 generators P µ and Mµν of the Poincaré algebra. It
is enlarged by N SUSY generators Qa, where here we choose N = 4. Now the products in
and between the two subspaces are to be defined. In the subspace L0 we have

L0 × L0 → L0 : Poincaré algebra . (3.19)

For the product L0 × L1 commutations of Qa both with P µ and with Mµν have to be
defined. The matrix of the structure constants must be an N ×N representation matrix of
the generators of L0. In case of the generators of the Lorentz transformation Mµν it is the
4× 4 matrix

Σµν =
i

4
[γµ, γν] . (3.20)

where γµ, γν are the 4 × 4 Dirac γ matrices. For translations the trivial transformation is
chosen. We hence have

L0 × L1 → L1 : [P µ, Qa] = 0 (3.21)

[Mµν , Qa] = −Σµν
ab Qb . (3.22)

And therefore the Qa behaves like a spinor under rotations. With the third product

L1 × L1 → L0 (3.23)

we then find the SUSY algebra, that is given below. It consists of 14 generators given by
P µ, Mµν , and Qa These fullfil the following relations:

Poincaré-Algebra

[P µ, P ν] = 0

[P µ, Mρσ] = i(gµρP σ − gµσP ρ) (3.24)

[Mµν , Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ) .

und

[P µ, Qa] = 0 , (3.25)

[Mµν , Qa] = −Σµν
abQb , (3.26)

{Qa, Q̄b} = 2γµabPµ . (3.27)

From the last relation one can see that two SUSY transformations performed one after the
other lead to a translation. As local translation invariance (Poincaré invariance) is the sym-
metry that leads to general relativity, one can expect a connection between supersymmetry
and gravitation.
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3.4.5 Varia

It can be shown that the Hamilton operator of the SUSY generators has non-negative mass
eigenvalues.

The energy spectrum is non-negative: E ≥ 0.

States with zero energy are supersymmetric ground states. Ground states as the expec-
tation value of H has its minimum at zero. Supersymmetric as it can be shown that

< 0|H|0 >= 0⇒ Q|0 >= Q̄|0 >= 0 . (3.28)

This means that ground states with positive energy spontaneously break superymmetry.
Small reminder:

Spontaneous symmetry breaking: Be the Hamiltonian H invariant under a transformation
[H, G] = 0, where G denotes the generator of this transformation. In case of spontaneous
symmetry breaking the ground state does not respect this symmetry, G|0 >6= 0. This means

[H, G] = 0 and

{
G|0 >= 0 (symmetry exact)

G|0 >6= 0 (spontaneously broken)
(3.29)

In supersymmetric theories, where Q relates fermions to bosons and vice versa, we have

number of bosonic degrees of freedom = number of fermionic degrees of freedom

Furthermore it follows from [Q, P µ] = 0 and from the fact, that the operator Q transforms
fermions into bosons and vice versa, (H = P 0), that

H|B > = mB|B >

QH|B > = HQ|B >= H|F >= mF |F > (3.30)

= mB|F >

⇒ mB|F >= mF |F >⇒ mB = mF . (3.31)

This means

The masses of the fermionic and bosonic states that are connected through SUSY transfor-
mations, are equal: mB = mF .

3.4.6 The breaking of supersymmetry

Supersymmetry says that the particles and their SUSY partners have the same masses. As
we have not found SUSY particles yet, SUSY must be broken. Supersymmetry breaking
cannot take place in our world though. The reason is the Ferrara-Girardello-Palumbo mass
sum rule. It says:

Ferrara-Girardello-Palumbo sum rule:
∑

(−1)2J(2J + 1)m2
J = 0 (3.32)
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This would mean for the electron and its two complex valued superpartners, ẽL and ẽR,
that

m2
ẽL

+ m2
ẽR
− 2m2

e = 0 . (3.33)

This is not compatible with the observation, as either both selectrons would have to have
the same mass as the electron or one of the selectrons would have to be lighter than the
electron. A possible solution would be that the right-hand side of the equation is non-zero
because of e.g. a supergravity sector ∼ m2

3/2. One would hence have to add matter terms.
These matter terms should not directly interact with our world, however, in order not to
destroy the Standard Model. This means they would exist in a hidden sector. The breaking
in the hidden sector is then communicated to our world via messenger particles. Depending
on the realisation it is called gravity mediated, gauge mediated, anomaly mediated SUSY
breaking etc. Phenomenologically this is realized by adding to the SUSY Lagrangian a soft
SUSY breaking Lagrangian. It contains SUSY breaking operators which are such that they
do not introduce new quadratic divergences. This is why it is called soft SUSY breaking.
For the soft SUSY breaking Lagrangian which we require to be renormalizable, we make the
following ansatz

Lsoft = −1
2
Miλ̄iλi for the gauginos

− m2
f̃
|f̃ |2 + ... for sfermions, Higgs

− U2(ϕ)− U3(ϕ) + h.c. super potential

This Lagrangian parametrizes our ignorance about the mechanism that leads to SUSY
breaking. The Lagrangian contains scalar mass terms, gaugino mass terms for each gauge
group and bilinear terms as well as cubic scalar couplings.

3.5 The MSSM

In the Minimal Supersymmetric extension of the SM (MSSM) each degree of freedom of the
SM acquires a supersymmetric partner degree of freedom. The MSSM is the phenomenolog-
ically most intensely studied SUSY extension of the SM. Also the Next-to-Minimal SUSY
exension of the SM (NMSSM) has been studied in quite detail. Compared to the MSSM the
Higgs potential is enlarged by a singlet. Here we start by studying the MSSM.

The superpotential, part of the SUSY Lagrangian, contains a left-chiral superfield

Ĥ2 =

(
ĥ+

2

ĥ0
2

)

, (3.34)

which has hypercharge Y = +1. The vacuum expectation value of the scalar component
of the superfield ĥ0

2 gives masses to the up-type quarks. In order to give masses to the
down-type quarks we need a superfield with hypercharge Y = −1. However, the right-chiral
superfield Ĥ†2, which has Y = −1 is not allowed in the holomorphic superpotential. We
therefore have to add a second left-chiral superfield with Y = −1,

Ĥ1 =

(
ĥ0∗

1

−ĥ−1

)

. (3.35)
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This also solves another problem. The extension of the scalar Higgs doublet to the super-
field Higgs doublet Ĥ2 introduces further fermions (called higgsinos). Their presence would
destroy the cancellation of the triangle anomalies, which works in the SM. The higgsinos of
the Y = −1 doublet, however, have the correct quantum numbers to restore the cancellation
of the anomaly. The matter- and Higgs-superfield-content of the MSSM for one generation
is summarised in Table 3.5 together with their behaviour under gauge transformations and
with the weak hypercharges. The vector fields are summarized in Table 3.5.

Superfeld SU(3)C SU(2)L U(1)Y Teilcheninhalt

L̂ =

(
ν̂eL
êL

)

1 2 −1

(
νL
eL

)

,

(
ν̃L
ẽL

)

Êc 1 1 2 ēR, ẽ∗R

Q̂ =

(
ûL
d̂L

)

3 2 1
3

(
uL
dL

)

,

(
ũL
d̃L

)

Û c 3̄ 1 −4
3

ūR, ũ∗R
D̂c 3̄ 1 2

3
d̄R, d̃∗R

Ĥ2 =

(
ĥ+

2

ĥ0
2

)

1 2 1

(
H2

h̃2

)

Ĥ1 =

(
ĥ0∗

1

−ĥ−1

)

1 2∗ −1

(
H1

h̃1

)

Table 3.1: The matter and Higgs-superfield and particle content of the MSSM for one gen-
eration together with gauge quantum numbers and weak hypercharge.

Superfeld SU(3)C SU(2)L U(1)Y Teilcheninhalt

Ĝa 8 1 0 Gµ, g̃

Ŵ i 1 3 0 W µ
i , w̃i

B̂ 1 1 0 Bµ, b̃

Table 3.2: Gauge-superfield and particle content of the MSSM with gauge quantum numbers
and weak hypercharge.

We introduce an additional discrete symmetry in order avoid rapid proton decay. We
require the conservation of R-parity. It involves a multiplicative quantum number, and we
have

R-Parität: = +1 for SM particles
= −1 for SUSY particles

Phenomenologically the consequences are

� SUSY particles are produced in pairs.

� There is a lightest SUSY particle, the LSP. This particle is stable.
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3.5.1 The scalar potential of the MSSM and EWSB

In the following we assume CP conservation and the absence of flavour-changing neutral
currents. In order to investigate EWSB we have to investigate the minima of the scalar
potential of the MSSM. The Higgs potential of the MSSM is given by

VHiggs = (m2
H1

+ |µ|2)|H1|2 + (m2
H2

+ |µ|2)|H2|2 −Bµεij(H
i
1H

j
2 + h.c.)

= +
g2 + g

′2

8
[|H1|2 − |H2|2]2 +

g2

2
|H†1H2|2 (3.36)

Here H1 and H2 are the two complex Higgs doublets, which we have to introduce to give
masses to the up- and down-type quarks and to ensure an anomaly-free theory,

H1 =

(
H1

1

H2
1

)

=

(
h0∗

1

−h−1

)

H2 =

(
H1

2

H2
2

)

=

(
h+

2

h0
2

)

. (3.37)

The g and g′ are the SU(2) and U(1) gauge couplings and µ is the so-called higgsino mass
parameter. The term proportional to Bµ arises from the soft SUSY breaking Lagrangian.
We want that the minimum of the potential breaks the electroweak symmetry down to the
electromagnetic symmetry, i.e. SU(2)L×U(1)Y → U(1)em. The SU(2)L invariance allows to
rotate away a possible VEV for one of the weak isospin components of one of the scalar fields.
Without restriction of generality we assume h−1 = 0 in the minimum of the potential. It can
then be shown, that a minimum of the potential which fulfills ∂V/∂h−1 = 0 also has to have
h+

2 = 0 in the minimum. This means that in the minimum of the potential electromagnetism
is unbroken, as the charged components of the Higgs scalars do not acquire VEVs. After
setting h−1 = h+

2 = 0 only the potential for the neutral fields has to be minimised. It reads

Vscalar = (m2
H1

+ µ2)|h0
1|2 + (m2

H2
+ µ2)|h0

2|2 − Bµ(h0∗
1 h0

2 + h.c.)

+
1

8
(g2 + g

′2)(|h0
2|2 − |h0

1|2)2 . (3.38)

Without restriction of the generality we can set < h0
1 > and < h0

2 > real and positive. In
order to ensure that the minimum of the potential is not acquired for < h0

1 >=< h0
2 >= 0,

so that we have EWSB, we require that there is a local maximum at the origin. This leads
to the condition

(Bµ)2 > (m2
H1

+ µ2)(m2
H2

+ µ2) . (3.39)

Furthermore, the potential shall have a stable mimimum and shall not be unbounded from
below. For most of the field values this is no problem, as the positive definite quartic term
of the scalar potential dominates at large field values. However, the quartic term vanishes
in the direction of the field space where < h0

1 >=< h0
2 >. We have to require that the scalar

potential is positive along this direction. This leads to the condition

m2
H1

+ m2
H2

+ 2µ2 > 2Bµ . (3.40)

If these conditions are fulfilled, the potential has a well-defined local minimum in which
the electroweak symmetry is spontaneously broken. We now require that the breaking is
compatible with the phenomenology of the EWSB SU(2)L × U(1)Y → U(1)em. We set

< H0
1 >≡ v1√

2
and < H0

2 >≡ v2√
2

. (3.41)
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These VEVs are connected with the known mass of the Z boson and the electroweak cou-
plings,

v2
1 + v2

2 = v2 = 4
m2
Z

g2 + g′2
≈ 246 GeV . (3.42)

The ratio of the VEVs is written as

tan β =
v2

v1
. (3.43)

The mixing angle β plays an important role in phenomenological studies of the MSSM. Since
we have chosen v1 = v cos β and v2 = v sin β positive and real, we have 0 < β < π/2. We
can now write up the conditions ∂V/∂h0

1 = ∂V/∂h0
2 = 0, for which the potential (3.38) takes

a minimum and which fulfills the conditions (3.41) and (3.42):

(m2
H1

+ µ2)h0
1 − Bµh0

2 −
1

4
(g2 + g

′2)h0
1(|h0

2|2 − |h0
1|2) =

⇒ (m2
H1

+ |µ|2)− Bµ tanβ +
m2
Z

2
cos(2β) = 0 (3.44)

(m2
H2

+ µ2)h0
2 − Bµh0

1 +
1

4
(g2 + g

′2)h0
2(|h0

2|2 − |h0
1|2) =

⇒ (m2
H2

+ |µ|2)− Bµ cotβ − m2
Z

2
cos 2β = 0 . (3.45)

These conditions allow us to eliminate Bµ and |µ| and to replace them by tan β and mZ .
However, we cannot determine the phase of µ.

Remarks:

The “µ problem”: If we choose |µ|2, Bµ, m2
H1

, m2
H2

as input parameters we get

sin(2β) =
2Bµ

m2
H1

+ m2
H2

+ 2|µ|2 (3.46)

m2
Z =

|m2
H1
−m2

H2
|

√

1− sin2(2β)
− (m2

H1
+ m2

H2
)− 2|µ|2 . (3.47)

We can read off Eq. (3.47), that all input parameters should be within one or two orders of
magnitude of mZ . However, in the MSSM µ is a SUSY conserving parameter, that appears
in the superpotential, while Bµ, m2

H1
, m2

H2
are SUSY breaking parameters. There it is

assumed that the MSSM has to be enlarged at high energies, to include a mechanism that
somehow relates the effective value of µ with the SUSY breaking mechanism.

The Higgs boson mass: So far we have looked at the tree-level potential of the EWSB sector
of the MSSM. A characteristic property of this potential is that the quartic self-interactions
of the Higgs fields are only given by the SU(2)L×U(1)Y gauge couplings. This implies that
the Higgs sector of the MSSM automatically fulfills the unitarity constraints, in contrast to
the SM where the Higgs self coupling value is an independent parameter. We will see, that
the structure of the self-couplings in the Higgs sector of the MSSM implies an upper bound
of mZ for the mass of the lightest Higs boson! This, however, is a tree-level result, and
higher order corrections significantly change this value.
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3.5.2 The Higgs bosons

In the SM we are left after the EWSB out of the four degrees of the complex Higgs doublet
with one physical Higgs boson. The other three degrees of freedom, the would-be Goldstone
bosons, are “eaten” in order to provide the longitudinal components of the massive gauge
bosons W± and Z. The symmetry breaking pattern in the MSSM is the same as in the SM.
We therefore expect the same set of would-be Goldstone bosons. Since we have, however,
two complex Higgs doublets, there will remain 2 charged and 3 neutral spin-0 bosons in
the physical spectrum of the MSSM. In order to identify these states and to calculate their
masses, we have to investigate the following Higgs potential,

VHiggs = (m2
H1

+ |µ|2)(|h0
1|2 + |h+

1 |2) + (m2
H2

+ |µ|2)(|h0
2|2 + |h+

2 |2)−Bµ(h+
2 h−1 + h0

2h
0∗
1 + h.c.)

+
g2

8
{(|h+

2 |2 − |h0
2|2 + |h0

1|2 − |h−1 |2)2 + 4|h+
2 |2|h0

2|2 + 4|h0
1|2|h−1 |2

−4(h+∗
2 h−∗1 h0∗

2 h0
1 + h0

2h
0∗
1 h+

2 h−1 )}

+
g
′2

8
[|h+

2 |2 + |h0
2|2 − |h0

1|2 − |h−1 |2]2 . (3.48)

The neutral fields can be split into real and imaginary components, i.e.

h0
2 = h0

2R + ih0
2I (3.49)

h0
1 = h0

1R + ih0
1I . (3.50)

The scalar potential can be viewed as a function of 8 independent fields,
V (h0

2R, h0
2I , h

0
1R, h0

1I , h
+
2 , h+∗

2 , h−1 , h−∗1 ). Since we are interested in excitations of the vacuum,
we expand the Higgs potential about its minimum as

V Higgs = Vmin +
∑

hi

∂V

∂hi

∣
∣
∣
hi=<hi>

(hi− < hi >)

+
1

2

∑

hi,hj

∂2V

∂hi∂hj

∣
∣
∣
hi,j=<hi,j>

(hi− < hi >)(hj− < hj >) + ... . (3.51)

Here the hi denote the eight fields of the potential.

• The only non-vanishing VEVs are < h2R >= v2 and < h1R >= v1.

• The coefficients of the linear terms all have to vanish, as the derivatives are evaluated
at the minimum of the potential.

• The quadratic terms wil then lead to the Higgs boson mass terms. Since in general
there is mixing, this will be mass matrices.

• The conservation of the electric charge means that there is no mixing between charged
an neutral Higgs fields, so that there is a mass matrix for the charged sector and one
for the neutral sector.

• Since we have assumed CP conservation, the real and imaginary components of the
neutral Higgs bosons do not mix either, so that the 4× 4 mass matrix in the neutral
sector decomposes into two 2× 2 blocks.
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Let us first look at the mass matrices that contain the would-be Goldstone bosons. These
are in the charged and in the CP-odd sector (i.e. the imaginary components) of the neutral
fields. The states orthogonal to the Goldstone bosons are then automatically the physical
states of this sector. Let us start with the charged fields. The corresponding Lagrangian has
the form

(h+∗
2 h−1 )M2

H±

(
h+

2

h−∗1

)

, (3.52)

where

M2
h± =





∂2V
∂h+

2 ∂h
+∗
2

∣
∣
∣
hi→vi

∂2V
∂h+∗

2 ∂h−∗1

∣
∣
∣
hi→vi

∂2V
∂h+

2 ∂h
−

1

∣
∣
∣
hi→vi

∂2V
∂h−1 ∂h

−∗

1

∣
∣
∣
hi→vi



 . (3.53)

The derivatives are easily obtained as they are evaluated for the VEVs of the Higgs fields.
This means, that after performing the dervatives we can let drop the terms which are pro-
portional to h+

2 , h−1 , h0
2I , h

0
1I , as these fields vanish in the vacuum. For example, we find

∂2V

∂h+
2 ∂h+∗

2

∣
∣
∣
hi→vi

= (m2
H2

+ µ2) +
g2

8
(v2

1 + v2
2) +

g
′2

8
(v2

2 − v2
1)

= Bµ cotβ +
g2

4
v2
1 , (3.54)

where in the last step the minimisation condition (3.45) has been used to replace m2
H2

+ µ2

by Bµ. The quadratic mass matrix in the charged sector finally reads

M2
H± =

(

Bµ cotβ + g2

4
v2
1 −Bµ− g2

4
v1v2

−Bµ− g2

4
v1v2 Bµ tanβ + g2

4
v2
2

)

. (3.55)

Here Eq. (3.44) was used, in order to eliminate in the right lower entry m2
H1

+ µ2. The
eigenvalues of this matrix are given by

mG± = 0 and mH± = Bµ(cot β + tan β) + m2
W . (3.56)

In the unitary gauge the Goldstone bosons G± do not appear. They are absorbed to give
masses to the W± bosons. The other states H± remain in the spectrum. The mixing matrix
has the following form
(

G+

H+

)

=

(
cos β sin β
− sin β cos β

)(
h−∗1

h+
2

)

. (3.57)

In the neutral sector we get for the mass terms of the imaginary components of the neutral
fields

1

2
(h0

2Ih
0
1I)Mh0

iI

(
h0

2I

h0
1I

)

, (3.58)

with

Mh0
iI

=





∂2V
∂h02

2I

∣
∣
∣
hi→vi

∂2V
∂h0

2I
∂h0

1I

∣
∣
∣
hi→vi

∂2V
∂h0

2I
∂h0

1I

∣
∣
∣
hi→vi

∂2V
∂h02

1I

∣
∣
∣
hi→vi



 . (3.59)
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The calculation results in

M2
h0

iI
=

(
Bµ cotβ Bµ

Bµ Bµ tanβ

)

. (3.60)

The eigenvalues are

mG0 = 0 and m2
A = Bµ(cotβ + tan β) . (3.61)

Comparison of the eigenvalues for H± and A leads to

m2
H± = m2

A + m2
W , (3.62)

so that at tree level mH± ≥ mW and mH± ≥ mA. Again the Goldstone boson G0 disappears
from the Lagrangian to provide the longitudinal degree of freedom of the Z boson. The
massive A boson remains as pseudoscalar1 Higgs boson. The mixing matrix for G0 and A
reads
(

G0

A

)

=

(
sin β − cos β
cos β sin β

)(
h0

2I

h0
1I

)

. (3.63)

Finally we look at the mass matrix for the remaining neutral scalars, h0
2R and h0

1R. We have
for the mass matrix of the real components of the neutral Higgs scalars

1

2
(h0

2Rh0
1R)M2

h0
iR

(
h0

2R

h0
1R

)

, (3.64)

with

Mh0
iR

=





∂2V
∂h02

2R

∣
∣
∣
hi→vi

∂2V
∂h0

2R
∂h0

1R

∣
∣
∣
hi→vi

∂2V
∂h0

2R
∂h0

1R

∣
∣
∣
hi→vi

∂2V
∂h02

1R

∣
∣
∣
hi→vi





=

(
m2
A cos2 β + m2

Z sin2 β −(m2
A + m2

Z) sin β cos β
−(m2

A + m2
Z) sin β cos β m2

A sin2 β + m2
Z cos β

)

. (3.65)

The eigenvalues of the mass matrix read

m2
h,H =

1

2
[(m2

A + m2
Z)∓

√

(m2
A + m2

Z)2 − 4m2
Am2

Z cos2 2β] , (3.66)

where h and H denote, respectively, the lighter and the heavier one of the neutral scalar
mass eigenstates. The physical Higgs scalars as function of h0

2R and h0
1R read

(
h
H

)

=

(
cos α sin α
− sin α cos α

)(
h0

2R

h0
1R

)

. (3.67)

The mixing angle α is given by

tanα =
(m2

A −m2
Z) cos 2β +

√

(m2
A + m2

Z)2 − 4m2
Am2

Z cos2 2β

(m2
A + m2

Z) sin 2β
(3.68)

1That it is a pseudoscalar boson can be seen from the couplings to massive fermions. The A is also at
loop-level a pseudoscalar eigenstate as CP is conserved and as the CP-odd A cannot mix with the CP-even
scalar Higgs bosons.
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From Eq. (3.66) follows

mh ≤ mA| cos 2β| ≤ mH (3.69)

mh ≤ mZ | cos 2β| ≤ mH . (3.70)

We have the following inequalities

Mh < mZ , MA

MH > mZ , MA (3.71)

MH± > MA, mW .

In particular the lightest Higgs mass is smaller than the Z boson mass. We will see, however,
that the radiative corrections will make mh considerably larger than mZ .



Chapter 4

Composite Higgs

A very good introduction in Higgs models is given in

Roberto Contino
The Higgs as a Composite Nambu-Golstone Boson
arXiv:1005.4269 [hep-ph].

4.1 Electroweak Symmetry Breaking

The data that have been collected so far in high-energy experiments can be explained by the
Lagrangian

L = L0 + Lmass

L0 = −1

4
W a

µνW
a µν − 1

4
BµνB

µν − 1

4
GµνG

µν +

3∑

j=1

Ψ̄(j)iD/Ψ(j)

Lmass = M2
WW+

µ W−µ +
1

2
M2

ZZµZ
µ

−
∑

ij

(

ū
(i)
L Mu

iju
(j)
R + d̄

(i)
L Md

ijd
(j)
R + ē

(i)
L M e

ije
(j)
R + ν̄

(i)
L Mν

ijν̄
(j)
R

)

+ h.c. , (4.1)

where Ψ = {qiL, uiR, diR, liL, e
i
R, νiR} stands for the SM fermions and i, j denote generation

indices. All fundamental interactions described by the Lagrangian are invariant under local
SU(2)L × U(1)Y transformations, but the mass spectrum is not. This means that the elec-
troweak symmetry is broken by the vacuum. The Lagrangian describes the data very well
and can be applied at sufficiently low energies, but it leads to inconsistencies if extrapolated
to arbitrarily high energies. It predicts scatterig amplitudes that grow with the energy and
violate the unitarity bound. The latter requires that the elastic scattering amplitude al of
each l-th partial wave muss satisfy

=(al) = |al|2 + |ainl |2 , (4.2)

where ainl denotes the inelastic scattering amplitude. At energies below the inelastic threshold
al is constrained to lie on the unitarity circle <2(al) + (=(al) − 1/2)2 = 1/4 and at higher
energies is is bounded to lie inside it. At tree level the amplitude is real and an imaginary
part only arises at the 1-loop level. Perturbativity is therefore lost when the imaginary and
the real part are of the same order, i.e. when the scattering phase is large δ ≈ π. As we
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have seen before perturbativity is violated in processes that involve longitudinally polarized
vector bosons as external states. At tree level, the amplitude for the elastic scattering of two
longitudinally polarized W ’s grows as E2 at energies E � mW ,

A(W+
L W−

L →W+
L W−

L ) ∼ g2

4m2
W

(s + t) , (4.3)

where s and t are the kinematic Mandelstam variables. Term subleading in mW/E have
been dropped. By projecting on the partial wave amplitudes,

al =
1

32π

∫ +1

−1

d cos θA(s, θ)Pl(cos θ) , (4.4)

with the Legendre polynomials Pl(x) (P0(x) = 1, P1(x) = x, P2(x) = 3x2 − 1/2, etc.), one
has for the s-wave amplitude (l = 0)

a0(W
+
L W−

L →W+
L W−

L ) ∼ 1

32π

s

v2
. (4.5)

Perturbative unitarity in the s-wave scattering is lost for

π ≈ δ ≈ 2<(a0) (4.6)

and hence for

√
s ≈ Λ = 4πv ≈ 3 TeV . (4.7)

The role of the longitudinally polarized vector bosons suggests that the inconsistency of the
Lagrangian (4.1) is in the sector that breaks spontaneously the electroweak symmetry and
gives mass to the vector bosons. The Nambu-Goldstone bosons, as we know, correspond
to the longitudinal polarizations of the W and Z bosons. At high energies the Goldstone
boson equivalence theorem says that the longitudinal gauge bosons can be described by
the Nambu-Goldstone bosons, which are denoted by χa in the following. This means at
high energies the longitudinal gauge boson scattering is described by the scattering of four
Goldstone bosons

A(χ+χ− → χ+χ−) =
1

v2
(s + t) . (4.8)

There are two possibilities to solve this problem. i) Either new particles associated to new
dynamics come in to restore unitarity before perturbativity is lost. ii) Or the χχ scattering
grows strong until the interaction among four χ’s becomes non-perturbative. These are two
paradigms for electroweak symmetry breaking (EWSB) are well expemplified by two theories:
the Higgs model and models based on strong dynamics, like composite Higgs models. We
have already discussed the Higgs model. In this chapter the composite Higgs model will be
discussed as a model where EWSB is strongly realized.
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4.2 The Higgs Boson as a composite Nambu-Goldstone

boson

In composite Higgs models a light Higgs boson emerges as the bound state of a strongly
interacting sector and is not an elementary field. These models interpolate between the Higgs
model and technicolor theories.1 A composite Higgs boson solves the hierarchy problem of
the SM in the sense, that its mass is not sensitive to virtual effects above the compositeness
scale. In contrast the simple technicolor constructions, the Higgs is light and allows to satisfy
the electroweak precision tests and to comply with the Higgs boson mass determined by the
LHC experiments. In the eighties, Georgi and Kaplan pointed out that the composite Higgs
boson can be naturally lighter than the other resonances if it emerges as the pseudo Nambu-
Goldstone boson of an enlarge global symmetry of the strong dynamics. Let us consider
the general case in which the strongly interacting sector has a global symmetry G that is
dynamically broken to H1 at the scale f , and the subgroup H0 ⊂ G is gauged by external
vector bosons. The global symmetry breaking G → H1 implies n = dim(G) − dim(H1)
Goldstone bosons. Out of these n0 = dim(H0)− dim(H) are eaten to give mass to as many
vector bosons, so that H = H1 ∩H0 is the unbroken gauge group. The remaining n−n0 are
pseudo Nambu-Goldstone bosons. In this picture the SM fields are assumed to be external to
the strong sector. They are therefore referred to as ’elementary’, in contrast to the composite
nature of the resonances of the strong dynamics. The SM gauge fields, in particular, belong
to the vector bosons associated with the gauge group H0. In the following, for simplicity, H0

wil be identified with the SM electroweak group, H0 = GSM ≡ SU(2)L×U(1)Y , so that the
SM vector bosons are the only elementary gauge fields coupled to the strong sector. Two
conditions have to be fulfilled in order to have a composite pseudo Nambu-Goldstone boson
(pNG):

1. The SM electroweak group GSM must be embeddable in the unbroken group H1,

G → H1 ⊃ GSM . (4.9)

2. The coset G/H1 contains at least one SU(2)L doublet, which is to be identified with
the Higgs doublet.

If these two conditions are satisfied, at tree level GSM is unbroken and the Higgs doublet
is one of the pNG bosons living on the coset G/H1. As a consequence of the non-linear
Goldstone symmetry acting on it, its potential vanishes at tree level. The global symmetry
G on the other hand is explicitly broken by the couplings of the SM fields to the strong
sector, as they will be invariant under GSM but not in general under G. The Higgs potential
is generated by loops of SM fermions and gauge bosons. The Higgs potential can break the
electroweak symmetry.2 In this context the electroweak scale v is dynamically determined
and can be smaller than the scale f . This is in contrast to technicolor theories, wher no
separation of scales exists. The ratio

ξ =
v2

f 2
(4.10)

1In technicolor theories, the Higgs boson is no fundamental particle but a bound state of newly introduced
fermions. In technicolor models the the electroweak symmetry is directly broken by the strong dynamics. In
composite Higgs models the composite Higgs gets a VEV which in turn breaks the symmetry.

2The EWSB is triggered by the fermion loops.
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is determined by the orientation of GSM with respect to H in the true vacuum (degree of
misalignment). It sets the size of the parametric suppression in all corrections to the precision
observables. Naive dimensional analysis shows, that the mass scale of the resonances of the
strong sector is mρ ∼ gρf , with 1 <∼ gρ <∼ 4π. The Higgs boson gets a much ligher mass at
one-loop, mh ∼ gSMv, where gSM <∼ 1 is a generic SM coupling. The limit f →∞ (f → 0)
with fixed v is a decoupling limit where the Higgs stays light and all the other resonances
become infinitely heavy.

4.3 Minimal Composite Higgs Models

The physics of a Strongly Interacting Light Higgs boson (SILH) can be described by an
effective Lagrangian involving higher dimensional operators for the low-energy degrees of
freedom. There are two classes of higher dimensional operators: (i) those that are genuinely
sensitive to the new strong force and will affect qualitatively the physics of the Higgs boson
and (ii) those that are sensitive to the spectrum of the resonances only and will simply act
as form factors. The effective Lagrangian generically takes the form

LSILH =
cH
2f 2

(
∂µ|H|2

)2
+

cT
2f 2

(

H†
←→
D µH

)2

− c6λ

f 2
|H|6 +

(
cyyf
f 2
|H|2f̄LHfR + h.c.

)

+
icWg

2m2
ρ

(

H†σi
←→
DµH

)

(DνWµν)
i +

icBg′

2m2
ρ

(

H†
←→
DµH

)

(∂νBµν) + . . . (4.11)

where g, g′ are the SM EW gauge couplings, λ is the SM Higgs quartic coupling and yf is
the SM Yukawa coupling to the fermions fL,R. All the coefficients, cH , cT . . ., appearing in
Eq. (4.11) are expected to be of order one unless protected by some symmetry. For instance,
in every model in which the strong sector preserves custodial symmetry, the coefficient cT
vanishes and only three coefficients, cH , cy and c6, give sizable contributions to the Higgs
(self-)couplings. The operator cH gives a correction to the Higgs kinetic term which can
be brought back to its canonical form at the price of a proper rescaling of the Higgs field,
inducing a universal shift of the Higgs couplings by a factor 1 − cH ξ/2. For the fermions,
this universal shift adds up to the modification of the Yukawa interactions

gξ
Hff̄

= gSM

Hff̄
× [1− (cy + cH/2)ξ], (4.12)

gξHV V = gSM
HV V × (1− cH ξ/2), gξHHV V = gSM

HHV V × (1− 2cH ξ) (4.13)

where V = W, Z, gSM

Hff̄
= mf/v (mf denotes the fermion mass), gSM

HW+W− = gMW , gSM
HZZ =

√

g2 + g′2MZ , gSM

HHW+W− = g2/2 and gSM
HHZZ = (g2 + g′2)/2.

The effective SILH Lagrangian should be seen as an expansion in ξ = (v/f)2 where

v = 1/
√√

2GF ≈ 246 GeV and f is the typical scale of the Goldstone bosons of the strong
sector. Therefore, it can be used to describe composite Higgs models in the vicinity of the
SM limit, ξ → 0. To reach the technicolor limit, ξ → 1, a resummation of the full series in
ξ is needed. Explicit models, built in five-dimensional (5D) warped space, provide concrete
examples of such a resummation. In the following we will discuss two 5D models that
exhibit different behaviors of the Higgs couplings. In these explicit models, the two extra
parameters that generically control the couplings3 of a composite Higgs boson are related

3These couplings will be called anomalous couplings since they differ from the SM ones.
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to each other and the deviations from the SM Higgs couplings are only controlled by the
parameter ξ = (v/f)2 which varies from 0 to 1.

The Holographic Higgs models of Refs. [26, 27, 28] are based on a five-dimensional theory
in Anti de-Sitter (AdS) space-time. The bulk gauge symmetry SO(5)× U(1)X × SU(3) is
broken down to the SM gauge group on the UV boundary and to SO(4)× U(1)X × SU(3)
on the IR. Since the symmetry-breaking pattern of the bulk and IR boundary is given
by SO(5) → SO(4), we expect four Goldstone bosons parametrized by the SO(5)/SO(4)
coset [27]:

Σ = 〈Σ〉eΠ/f , 〈Σ〉 = (0, 0, 0, 0, 1) , Π =

(
04 H
−HT 0

)

, (4.14)

where H is a real 4-component vector, which transforms as a doublet under the weak SU(2)
group and can be associated with the Higgs. The couplings between the Higgs boson and
the gauge fields are obtained from the pion kinetic term

Lkin =
f 2

2
(DµΣ)(DµΣ)T . (4.15)

In the unitary gauge where Σ = (sin H/f, 0, 0, 0, cosH/f), Eq. (4.15) gives

LKin =
1

2
∂µH∂µH + m2

W (H)

[

WµW
µ +

1

2 cos2 θW
ZµZ

µ

]

with mW (H) =
gf

2
sin

H

f
.

(4.16)

Expanding Eq. (4.16) in powers of the Higgs field, we obtain the Higgs couplings to the
gauge fields

gHV V = gSM

HV V

√

1− ξ , gHHV V = gSM

HHV V (1− 2ξ) , (4.17)

with the compositeness parameter ξ defined as

ξ =

(
v

f

)2

= sin2 〈H〉
f

. (4.18)

The couplings of the Higgs boson to the fermions can be obtained in the same way, but
they will depend on the way the SM fermions are embedded into representations of the
bulk symmetry. In the MCHM4 model [27] with SM fermions transforming as spinorial
representations of SO(5), the interactions of the Higgs to the fermions take the form

LYuk = −mf (H)f̄f with mf(H) = M sin
H

f
. (4.19)

We then obtain

MCHM4: gHff = gSM

Hff

√

1− ξ . (4.20)

In the MCHM5 model [28] with SM fermions transforming as fundamental representations
of SO(5), the interactions of the Higgs to the fermions take the following form (M is a
constant of mass-dimension one)

LYuk = −mf (H)f̄f with mf(H) = M sin
2H

f
. (4.21)
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We then obtain

MCHM5: gHff = gSM

Hff

1− 2ξ√
1− ξ

. (4.22)

In both models, the Higgs couplings to gauge boson are always reduced compared to
the SM ones. On the contrary, the two models exhibit different characteristic behaviors
in the Higgs couplings to fermions: in the vicinity of the SM, i.e., for low values of ξ, the
couplings are reduced, and the reduction is more important for MCHM5 than for MCHM4,
but, for larger values of ξ, the couplings in MCHM5 are raising back and can even get much
larger than the SM ones. This latter effect is at the origin of an enhancement of the Higgs
production cross-section by gluon fusion, enhancement that will significantly affect the Higgs
searches.

4.3.1 Branching ratios and total widths

The partial widths in the composite Higgs models can be easily obtained from the SM partial
widths by rescaling the couplings involved in the Higgs decays. Since in MCHM4 all Higgs
couplings are modified by the same universal factor

√
1− ξ, the branching ratios are the

same as in the SM model. The total width will be different though by an overall factor 1−ξ.

In MCHM5, all partial widths for decays into fermions are obtained from the SM widths
by multiplication with the modification factor of the Higgs Yukawa coupling squared,

Γ(H → f f̄) =
(1− 2ξ)2

(1− ξ)
ΓSM(H → f f̄) . (4.23)

The Higgs decay into gluons is mediated by heavy quark loops, so that the multiplication
factor is the same as for the fermion decays:

Γ(H → gg) =
(1− 2ξ)2

(1− ξ)
ΓSM(H → gg) . (4.24)

For the Higgs decays to massive gauge bosons V we obtain

Γ(H → V V ) = (1− ξ) ΓSM(H → V V ) . (4.25)

The Higgs decay into photons proceeds dominantly via W -boson and top and bottom loops.
Since the couplings to gauge bosons and fermions scale differently in MCHM5, the various
loop contributions have to be multiplied with the corresponding Higgs coupling modification
factor. The leading order width is given by

Γ(H → γγ) =
ΓSM(H → γγ)

[Iγ(MH) + Jγ(MH)]2

[
1− 2ξ√

1− ξ
Iγ(MH) +

√

1− ξJγ(MH)

]2

, (4.26)

where

Iγ(MH) = 4
3
F1/2(4M

2
t /M

2
H), Jγ(MH) = F1(4M

2
W/M2

H),
F1/2(x) ≡ −2x [1 + (1− x)f(x)] , F1(x) ≡ 2 + 3x [1 + (2− x)f(x)] ,

f(x) ≡ arcsin[1/
√

x]2 for x ≥ 1 and f(x) ≡ − 1
4

[

log 1+
√

1−x
1−
√

1−x − iπ
]2

for x < 1.

(4.27)

Both decays into gluons and photons are loop-induced and might in principle be affected
by possible new particles running in the loops. The set-ups we are considering, however,
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assume that the only chiral degrees of freedom the Higgs couples to are the SM ones. This
will certainly be modified if the top quark, for instance, is a composite particle since addi-
tional top-partners would then also be expected to have a significant coupling to the Higgs.
Under our original assumption, the corrections to the Hγγ and Hgg vertices originate from
the modified Yukawa interactions only and the loop-decays can be safely computed in the
framework of our effective theory. The higher order corrections to the decays are unaffected
as long as QCD corrections are concerned, since they do not involve the Higgs couplings.

Figure 4.1 shows the branching ratios (BRs) as a function of ξ for MH = 125. The
Higgs branching have been calculated with the programeHDECAY4 The BRs into fermions are
governed by the (1−2ξ)2/(1−ξ) prefactor of the corresponding partial widths: as ξ increases
from 0, there is first a decrease of the fermionic BRs, until they vanish at ξ = 0.5 and then
grow again with larger ξ. The same behaviour is observed in the decay into gluons, which is
loop-mediated by quarks. The decays into gauge bosons show a complementary behaviour:
for small ξ, due to the decreasing decay widths into fermions, the importance of the vector
boson decays becomes more and more pronounced until a maximum value at ξ = 0.5 is
reached. Above this value the branching ratios into gauge boson decrease with increasing
Higgs decay widths into fermion final states: the Higgs boson becomes gaugephobic in the
technicolor limit (ξ → 1).

10
-3

10
-2

10
-1

1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
ξ

10-1

10-2

10-3

1

bb
-

τ+τ-gg

cc
-ZZ

WW

γγ

Zγ

BR(h)
Mh=125 GeV

Figure 4.1: The branching ratios of MCHM5 as a function of ξ for MH = 125 GeV.

4.4 Partial Compositeness

The question of the generation of fermion masses in composite Higgs models is solved by the
hypothesis of partial compositeness. It assumes that the SM fermions, which are elementary,
couple linearly to heavy states of the strong sector with the same quantum numbers, implying
in particular the top quark to be largely composite. These couplings explicitly break the
global symmetry of the strong sector. The Higgs potential is generated from loops of SM

4The program implements among others the MCHCM4/5 parametrisations and can be downloaded at
the url: http://www.itp.kit.edu/∼maggie/eHDECAY/.
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particles with EWSB triggered by the top loops which provide the dominant contribution.
The Higgs self-couplings therefore also depend on the representation of the fermions, and
the Higgs boson mass is related to the fermion sector. It has been shown that a low-mass
Higgs boson of ∼ 125 GeV can naturally be accommodated only if the heavy quark partners
are rather light, i.e. for masses below about 1 TeV. A Lagrangian with elementary fermions
ψ that couple linearly to the heavy states χ of the strong sector, and which have the same
quantum numbers, would look like

Lpc = ψ̄i∂/ψ + χ̄(i∂/−m?)χ−∆Lψ̄LχR −∆Rχ̄LψR . (4.28)

The fermions acquire their masses through mixing with the new vector-loke strong sector
fermions. Due to the large Yukawa couplings the top quarks are largely composite. The
linear couplings violate G explicitly and a Higgs potential is induced through the fermion
loops.

4.5 Phenomenological Implications

Because of the modified couplings of the composite Higgs boson to the SM gauge bosons
and fermions unitarity cannot be restored any more in longitudinal gauge boson scattering.
Processes like VLVL → VLVL or Higgs pair production from gauge boson fusion will grow
with the energy squared and hence be a smoking gun signature for composite Higgs models.
The anomalous couplings also influence the compatibility with EW precision data. And of
course also the Higgs production and decay rates are changed.

Constraints from electroweak precision tests (EPWT): The PeskinTakeuchi S, T, and U
parameters parameterize potential new physics contributions to electroweak radiative cor-
rections. The oblique corrections, to which the Peskin-Takeuchi parameters are sensitive,
can be parameterized in terms of four vacuum polarization functions: the self-energies of
the photon, Z boson, and W boson, and the mixing between the photon and the Z boson
induced by loop diagrams. Due to the modified Higgs couplings to gauge bosons there is
no cancellation of the UV divergencies and the S, equivalently ε3, and T , equivalently ε1

diverge logarithmically. The divergence is cut-off, hence regularized, by the mass mρ of the
first resonance,

∆εIR3 =
α(m2

Z)

48π sin2 θW
ξ log

(
m2
ρ

m2
Z

)

(4.29)

∆εIR1 = − 3α(m2
Z)

16π sin2 θW
ξ log

(
m2
ρ

m2
Z

)

. (4.30)

In addition there are contributions from new fermions in loop. They can relax the EWPT
constraints, cf. Fig. 4.2.

Further contributios to the S parameter or equivalently ε3 arise from the mixing of the
elementary gauge fields with new vector (ρ) and axialvector (a) resonances,

∆εUV
3 =

m2
W

m2
ρ

(

1 +
m2
ρ

m2
a

)

. (4.31)

By choosing mρ large enough, these contributions can be suppressed to a level that is com-
patible with the EW precision data. There are new contributions to the precisely measured
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Figure 4.2: Constraints on the oblique EW parameters Ŝ and T̂ . The gray ellipses correspond
to the 68%, 95% and 99% confidence level contours for mh = 126 GeV and mt = 173 GeV.
The red lines show the contributions that arise in composite Higgs models as explained in
the main text. From C. Grojean, O. Matsedonskyi and G. Panico, JHEP 1310 (2013) 160.

ZbLbL coupling due to new fermions in the loop corrected coupling.

The new heavy fermions from the hypothesis of partial compositeness could be produced
at the LHC. Their non-observation places constraints on the lower bound of their masses.
Figure 4.3 shows the mass of the lightest composite fermion as a function of ξ. The points
in the plot are the ones which pass the EWPT at 99% C.L. and fulfill |Vtb| > 0.92. The
light blue points are excluded by direct searches at 95% C.L., the dark blue points are not
excluded. The line in the plot marks the exclusion limit from CMS of 770 GeV on charge-
5/3 fermions. As can be inferred from the plot this exclusion limit eliminates quite some
parameter space for mlightest > 770 GeV. No points are excluded above masses of the lightest
partner of 770 GeV.

As already mentioned before, the modified Higgs couplings change the production and
decay rates and hence the Higgs boson signal rates. The requirement of compatibility with
the Higgs data therefore put further constaints on composite Higgs models.

Flavour physics can lead to further constraints on composite Higgs models. They depend,
however, on the exact flavour structure of the model and shall not be discussed here further.
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Figure 4.3: Spectrum of the lightest composite fermion as function of ξ. The points in the
plot are obtained from a scan over the parameters of a model with composite b quarks. The
light blue points are excluded by direct searches for vector-like fermions at 95% C.L., the dark
blue points are not excluded. From M. Gillioz, R. Gröber, A. Kapuvari and M. Mühlleitner,
JHEP 1403 (2014) 037; for more details, see there.



Chapter 5

Appendix

5.1 Beispiel: Feldtheorie für ein komplexes Feld

Wir betrachten die Lagrangedichte für ein komplexes Skalarfeld

L = (∂µφ)∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2 mit dem Potential V = µ2φ∗φ + λ(φ∗φ)2 . (5.1)

(Hinzufügen höherer Potenzen in φ führt zu einer nicht-renormierbaren Theorie.) Die La-
grangedichte ist invariant unter einer U(1)-Symmetrie,

φ→ exp(iα)φ . (5.2)

Wir betrachten den Grundzustand. Dieser ist gegeben durch das Minimum von V ,

0 =
∂V

∂φ∗
= µ2φ + 2λ(φ∗φ)φ ⇒ φ =

{
0 für µ2 > 0

φ∗φ = −µ2

2λ
für µ2 < 0

(5.3)

Der Parameter λ muß positiv sein, damit das System nicht instabil wird. Für µ2 < 0 nimmt
das Potential die Form eines Mexikanerhutes an, siehe Fig. 5.1. Bei φ = 0 liegt ein lokales
Maximum, bei

|φ| = v =

√

−µ2

2λ
(5.4)
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Figure 5.1: Das Higgspotential.
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ein globales Minimum. Teilchen entsprechen harmonischen Oszillatoren für die Entwicklung
um das Minimum des Potentials. Fluktuationen in Richtung der (unendlich vielen degener-
ierten) Minima besitzen Steigung null und entsprechen masselosen Teilchen, den Goldstone
Bosonen. Fluktuationen senkrecht zu dieser Richtung entsprechen Teilchen mit Masse m > 0.
Die Entwicklung um das Maximum bei φ = 0 würde zu Teilchen negativer Masse (Tachy-
onen) führen, da die Krümmung des Potentials hier negativ ist.

Entwicklung um das Minimum bei φ = v führt zu (wir haben für das komplexe skalare
Feld zwei Fluktuationen ϕ1 und ϕ2)

φ = v +
1√
2
(ϕ1 + iϕ2) =

(

v +
1√
2
ϕ1

)

+ i
ϕ2√

2
⇒ (5.5)

φ∗φ = v2 +
√

2vϕ1 +
1

2
(ϕ2

1 + ϕ2
2) . (5.6)

Damit erhalten wir für das Potential

V = λ(φ∗φ− v2)2 − µ4

4λ2
mit v2 = −µ2

2λ
⇒ (5.7)

V = λ

(√
2vϕ1 +

1

2
(ϕ2

1 + ϕ2
2)

)2

− µ4

4λ2
. (5.8)

Vernachlässige den letzten Term in V , da es sich nur um eine konstante Nullpunktsver-
schiebung handelt. Damit ergibt sich für die Lagrangedichte

L =
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 − 2λv2ϕ2
1 −
√

2vλϕ1(ϕ
2
1 + ϕ2

2)−
λ

4
(ϕ2

1 + ϕ2
2)

2 . (5.9)

Die in den Feldern quadratischen Terme liefern die Massen, die in den Feldern kubischen und
quartischen Terme sind die Wechselwirkungsterme. Es gibt ein massives und ein masseloses
Teilchen,

mϕ1 = 2v
√

λ und mϕ2 = 0 . (5.10)

Bei dem masselosen Teilchen handelt es sich um das Goldstone Boson.
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