Beyond the Standard Model Physics

WS 2014/2015

QUANTUM MECHANICS AND QFT STILL HOLD
 THE ORBITAL COLLIDER STILL SEES NOTHING
THREE CENTURIES OF TRIUMPH FOR SUSY AND STRINGS

SUSY: THE

NEW HOPE

6 ASDS

5

The seasonal trends Extremely-weeny constrained SUSY NSFWMSSM FF3C10ACBA9-MSSM MSSM retrograde Anthropic landscaping and trimming it down The problem of condensed matter: They still don't get it

Strings - The Perpetual Revolution Number of free parameters: P or NP complete?

The perpetual conference

5 Jan - 5 Mar: Chamonix 15 Mar - 30 June: Hainan Island 1 July - 15 Sep: Wailea, Maul

> 15 Sep - 20 Nov: Jumeirah 1 21 Nov - 24 Dec: Hainan Island

Forum Is choice moral? "Every time you choose a path of action,

a multiverse is killed"

Special topic If the universe is not supersymmetric is it necessarily existing?

Sponsored by: The Milner-Zuckerberg Institution

.	Minimal	Supersy	mmetric <i>E</i>	xtension o	of the \mathcal{SM} (\mathcal{MSSM})
MSSM H	liggs sector	– supersyr	nmetry & ano	maly-free the	eory \Rightarrow 2 complex Higgs doublets
$\stackrel{\rm EWSB}{\rightarrow}$	neutral, (CP-even h ,	H neutral	, CP-odd A	charged H^+, H^-
Higgs ma	ISSES			Ellis et	al;Okada et al;Haber,Hempfling;
	M_h $M_{A,H,i}$	5 5∨	140 GeV $\mathcal{O}(v)1$ TeV	Hoang Zhang (Kant, H	et al;Carena et al;Heinemeyer et al; et al;Brignole et al;Harlander et al; arlander,Mihaila,Steinhauser;
Decoupli	ng limit:				
$M_A M_h$.	$\sim M_H \sim M_H$ \rightarrow max. valu	$_{H^{\pm}}\gg v$ ıe, $ aneta$ fi	xed; h SM-like		
Modified	couplings v	v/ respect	t to the SM:	(decouplin	ng limit Gunion,Haber)
	$\Phi \hspace{0.4cm} g_{\Phi u ar u}$		$g_{\phi d ar d}$	$g_{\Phi VV}$	$\tan\beta \uparrow \Rightarrow q_{\Phi_{min}}$
	$h c_{lpha}/s_{eta}$	→ 1	$-s_{lpha}/c_{eta} ightarrow 1$	$s_{eta-lpha} ightarrow 1$	$0 \Phi dd \uparrow$
	$H s_{lpha}/s_{eta}$	$_{ m s} ightarrow 1/{ m tg}eta$	$c_lpha/c_eta ightarrow { m tg}eta$	$c_{eta-lpha} ightarrow 0$	$q_{\Phi VV}^{MSSM} \leq q_{\Phi VV}^{SM}$
	A 1/tg β	~	$ ext{tg}eta$	0	

MSSM Higgs Mass Limits

 $M_{h/H} \gtrsim 92.6 \text{ GeV}$ $M_A \gtrsim 93.4 \text{ GeV}$ $M_{H^{\pm}} > 78.6 \text{ GeV}$ 0.6 < an eta < 2.5 excluded(only in this scenario, $m_t = 174.3 \text{ GeV!}$)

Extremely important decay channel for the LHC

- $H \rightarrow b\bar{b}, \tau^+\tau^-$: dominant for large $\tan\beta$
- $H \rightarrow hh, WW, ZZ, t\bar{t}$

Η

- $A \rightarrow b\bar{b}, \tau^+\tau^-$: dominant for large $\tan\beta$
- $A \rightarrow t\bar{t}$: dominant above the $t\bar{t}$ threshold for small and moderate $tan\beta$

 \bullet total widths: $\Gamma_{\phi} \lesssim 10...30~{\rm GeV}$ narrow

Higgs boson production in SM/MSSM

Gluon Gluon Fusion

Higgs-strahlung $pp
ightarrow W'/Z^*
ightarrow W/Z + H^{SM} / h, H$ \bar{q} $_{\sim} W, Z$

• W/Z Fusion

 $pp \rightarrow qq \rightarrow qq + WW/ZZ \rightarrow qq + H^{SM} \, / \, h, H$

Associated Production

q

h, H

W, Z

M.M. Mühlleitner, BSM Higgs Physics

MSSM Higgs Boson Production at the LHC

M.M. Mühlleitner, BSM Higgs Physics

MSSM Higgs Boson Production at the LHC

 \mathcal{SM} \mathcal{H} iggs boson \mathcal{S} earch at the \mathcal{LHC}

LHC Higgs cxn WG

Charged Higgs Production

genuine SUSY QCD corrs.: small Djouadi, Spira scale dependence reduced: $\Delta\,\lesssim\,15$ % NLO QCD corrs.: $\sim 30 \% (\leftarrow \text{Drell-Yan})$ NLO SUSY QCD & EW corrs. NLO QCD & SUSY QCD corrs.: 50...100 % • H^{\pm} pair production $pp \rightarrow q\bar{q} \rightarrow H^+H^$ $pp
ightarrow gg
ightarrow H^+W^-$ + c.c. (LO) $pp
ightarrow gg
ightarrow H^+ H^-$ (LO) Dominant: t decay or $pp \rightarrow q\bar{q}, gg \rightarrow H^- + t\bar{b} + c.c.$ LO cxn: $gb \rightarrow H^-t + c.c.$ Zhu; Plehn; Berger eal; Gao et al.;Kidonakis;Beccaria eal Barrientos et al.; Brein et al. Willenbrock;Krause eal; Barrientos eal Jiang eal; Brein, Hollik; Peng et al Dittmaier et al. $pp \rightarrow b\bar{b} \rightarrow H^+W^-+\text{c.c.}$ QCD corrs. moderate \overline{q} SUSY-QCD significant $pp \rightarrow b\bar{b} \rightarrow H^+H^ \gamma, Z$ 9 0000 0000 H^+ 6 H^{-} Barrientos eal; Brein eal; Hong-Sheng eal Barrientos eal; Dicus eal; Hollik eal Zhao eal Borzumati eal; Belyaev eal Bawa eal;

Vast literature on MSSM Higgs of $\sim 125\text{-}126$ GeV

Beskidt eal; Baer eal; Giudice eal; Carena eal; Benbrik eal; Akula eal; Cahill-Rowley eal; Hirsch eal; ... Arvanitaki eal; Ellis eal; Curtin eal; Brummer eal; Barger eal; Hagiwara eal; Arbey eal; Blum eal; Arbey eal; Li eal; Feng eal; Baer eal; Akula eal; Hall eal; Albornoz Vasquez eal; Heinemeyer eal; Desai et al.; Draper eal; Carena eal; Cao eal; Christensen eal; Kadastik eal; Buchmuller eal;

Compatibility of MSSM Higgs mass with LHC Search

 \star Upper mass bound on SM-like Higgs with higher-order correction Δm_h

$$n_h^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_h^2$$

 $\star \Rightarrow M_H \approx 126 \text{ GeV requires}$

 $\Delta m_h \approx 85 \text{ GeV} (\tan \beta \text{ large}) \Rightarrow \text{large corrections}$

 \star Corrections require large stop masses $m_{\tilde{t}_1}, m_{\tilde{t}_2}$ and/or large mixing $X_t \rightsquigarrow$ 'fine'-tuning

MSSM Higgs Mass in View of the LHC Results

Hall, Pinner, Ruderman 1112.2703

MSSM Higgs Mass

- **Supersymmetric Higgs Sector:** SUSY & anomaly-free theory \Rightarrow 2 complex Higgs doublets
- Most economic version: Minimal Supersymmetric Extension of the SM (MSSM):
- 2 complex Higgs doublets

Next-to-Minimal Supersymmetric Extension of the SM: NMSSM

Drees; Ellwanger eal; Savoy; Elliott eal; Gunion eal; Franke eal; Maniatis; Djouadi eal; Mahmoudi eal; ... Fayet; Kaul eal; Barbieri eal; Dine eal; Nilles eal; Frere eal; Derendinger eal; Ellis eal

- 2 complex Higgs doublets plus one complex singlet field \rightsquigarrow
- Solution of the μ -problem: μ must be of $\mathcal{O}(\text{EWSB scale})$

Kim, Nilles

additional chiral superfield field \hat{S} : $\mu = \lambda \langle S \rangle$ from: $\lambda \hat{S} \hat{H}_u \hat{H}_d$ μ generated dynamically through the VEV of scalar component of an

The NMSSM Higgs Sector

Enlarged Higgs and neutralino sector: 2 complex Higgs doublets H_u, H_d , 1 complex singlet \hat{S}

7 Higgs bosons:
$$H_1, H_2, H_3, A_1, A_2, H^+, H^-$$

5 neutralinos: $\tilde{\chi}^0_i \ (i = 1, ..., 5)$

Higgs mass eigenstates:

the more singlet-like superpositions of doublet and singlet components \rightsquigarrow

the smaller couplings to SM particles

Significant changes of Higgs boson phenomenology

- * light Higgses not excluded, Higgs-to-Higgs decays
- * degenerate Higgs bosons around 125 GeV possible
- *

- \rightsquigarrow invisible Higgs decays

*

tree-level CP violation

:

⇒ NMSSM requires less fine-tuning King,MMM,Nevzorov; Kang,Li,Li; Cao,Heng,Yang,Zhang,Zh	$\Rightarrow M_H \approx 126 \text{ requires:}$ MSSM: $\Delta m_h \approx 85 \text{ GeV} (\tan \beta \text{ large}) \Rightarrow \text{large corrections} \rightarrow \text{fine-tuning}$ MMSSM: $\Delta m_h \approx 55 \text{ GeV} (\lambda = 0.7, \tan \beta = 2)$	* Upper mass bounds + corrections to the MSSM, NMSSM Higgs boson mass: $\begin{array}{llllllllllllllllllllllllllllllllllll$	 Hall eal; Ellwanger; Gunion eal; King,MMM,Nevzorov; Albornoz Vasquez eal; Cao eal; Gabrielli eal; Ellwanger, Hugonie; Kang eal; Cheung eal; Jeong eal; Hardy eal; Kim eal; Arvanitaki eal; Cheng eal; Bélanger eal; Kowalska eal; Badziak eal; Moretti eal: Choi ea Munir eal; Barbieri eal; Beskidt eal; Berg eal; Gherghetta eal; Cerdeno eal; Das eal; Christensen eal; Bhattacherjee eal; Guo eal; Compatibility of NMSSM Higgs mass with LHC Searches: 	• Vast literature on NMSSM Higgs of \sim 125-126 GeV
--	---	--	--	--

M.M. Mühlleitner, BSM Higgs Physics

 $m_h \approx 124 - 126$ GeV can be achieved also for zero mixing $X_t = 0$ and $m_{\tilde{t}_1} \ge 500$ GeV

NMSSM Scalar Boson Mass in View of the LHC Results

Hall, Pinner, Ruderman 1112.2703

\bullet SM-like scalar boson of \sim 125 GeV

Can be either H_1 or H_2 (H_1 singlet like, suppressed SM couplings)

Could it be that we already discovered NMSSM Higgs bosons?

Higgs signal at ~ 125 GeV is built up by two degenerate Higgs bosons.

• What about the MSSM?

Two light MSSM CP-even Higgs bosons \iff light CP-odd A, relatively light H^{\pm}

light $M_{H^{\pm}}$ excluded

ATLAS-CONF-2012-011 and 2013-090, CMS-HIG-12-052

Compatibility with SM-Like Higgs Signal

SM-like NMSSM Higgs rate: $h = H_1$ or H_2 , $M_h = M_{H^{SM}} \approx 125$ GeV

$$\mu_{XX}(h) = \frac{\sigma_{\text{prod}}(h) BR(h \to XX)}{\sigma_{\text{prod}}(H^{\text{SM}}) BR(H^{\text{SM}} \to XX)}$$

- **NMSSM** h **Production:** small $tan\beta$ favoured \rightsquigarrow gluon fusion dominant σ_{prod} for SM-like production cxn: h must be up-type doublet-like $\rightsquigarrow g_{htt} \approx g_{H^{SM}tt}$
- Enhancement/supression on the production side

• Enhanced/suppressed gluon fusion production

See e.g. King, MMM, Nevzorov, Walz

* Stop, sbottom loop contributions in $gg \rightarrow H_i$ can enhance/suppress the production cxn for small/large mixing

• Branching ratios - e.g. into $XX = \gamma\gamma$

$$3R(h \to \gamma \gamma) = \frac{\Gamma(h \to \gamma \gamma)}{(\Gamma_{b\bar{b}} + \Gamma_{WW} + \Gamma_{ZZ} + ... + \Gamma_{\phi_i \phi_j} + \Gamma_{\chi_1^0 \chi_1^0} + ...)[h]}$$

- * $\Gamma_{b\bar{b}}$ dominant decay rate for 125 GeV SM-Higgs boson $\rightsquigarrow BR(h \to XX)$ very sensitive to $\Gamma_{b\bar{b}}$
- Suppression of $\Gamma(h^{125\,{\rm GeV}} \to b\bar{b})$ due to Cao, Heng, Yang, Zhang, Zhu; Albornoz-Vasquez, Belanger, Boehm, DaSilva, Richardson, Wymant Hall,Pinner,Ruderman; Ellwanger; King,MMM,Nevzorov;
- \diamond strong singlet-doublet mixing \leadsto reduced coupling to bb
- $\diamond \Delta_b$ corrections to hbb coupling

Carena eal; Guasch eal; Noth, Spira; Mihaila, Reisser

h, H, A m www γ γ $f, ilde{\chi}^{\pm}$ h, H - mm m L ww $W, H^{\pm}, \widetilde{f} \quad h, H - - W, H^{\pm}, \tilde{f}$ h h

* Enhanced $\Gamma(h^{125\,\text{GeV}} \to \gamma\gamma)$ due to charged boson, chargino, stop loop contributions

- NMSSM Higgs boson masses given in terms of Higgs potential parameters
- Higher order corrections:
- * important to shift SM-like NMSSM Higgs boson mass to \sim 125 GeV;
- * Higgs masses enter production cxn's and BR's \rightsquigarrow
- * need to be known at highest possible accuracy for proper interpretation of exp results, for distinction of Higgs sectors of different BSM models

• Status of higher order corrections:

* Real NMSSM:

- ◇ leading one-loop [Ellwanger;Elliott eal; Pandita;Ellwanger,Huggonie]
- ♦ full one-loop in DR scheme [Degrassi,Slavich;Staub eal]
- ♦ full one-loop in mixed DR-OS scheme [Ender(\rightarrow Walz),Graf,MMM,Rzehak]
- ♦ $\mathcal{O}(\alpha_t \alpha_s + \alpha_b \alpha_s)$ DR w/ zero external momentum [Degrassi,Slavich]
- ♦ first results beyond this [Goodsell eal]
- * Complex NMSSM:
- \diamond various one-loop contributions in effective potential approach [Ham,Kim,Oh,Son;Ham,Oh,Son;Ham,Jeong,Oh;Funakubo,Tao;Ham,Kim,Oh,Son]
- ◊ full one-loop & leading two-loop in effective potential approach [Cheung, Hou, Lee, Senaha]
- ♦ full one-loop in diagrammatic approach [Graf, Grober, MMM, Rzehak, Walz]
- ♦ $O(\alpha_t \alpha_s)$ mixed DR-OS scheme w/ zero external momentum [MMM,Nhung,Rzehak,Walz]

M.M. Mühlleitner, BSM Higgs Physics