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A001132: Primes + 1 (mod8) or −1 (mod8) and Sum of Legs of
Primitive Pythagorean Triangles

Wolfdieter L a n g 1

Abstract

We prove that each prime p ≡ +1 (mod 8) or −1 (mod 8) is the sum of legs of exactly one primitive
Pythagorean triangle (modulo leg exchange).

Theorem, Background and Proof

Based on various theorems, found e.g., in Nagell [3], one can prove the fol-
lowing Theorem.

Theorem

a) Each prime p ≡ +1 (mod 8) or −1 (mod 8) is the sum of legs (catheti) of
exactly one primitive Pythagorean triangle, considering mirrored triangles not as

different.

b) The unique primitive Pythagorean triangle (pPT ) (a, b, c) with even b (in some
length unit) is a = (x̃− ỹ)2 − ỹ2, b = 2 (x̃− ỹ) ỹ and c = (x̃− ỹ)2 + ỹ2 satisfying

the (generalized) Pell equation x̃2 − 2 ỹ2 = p and the two inequalities 1 ≤ ỹ ≤
⌊
√

p

2

⌋

and
⌈

√

p + 2
⌉

≤ x̃ ≤
⌊

√

2 p
⌋

. Especially, x̃ is odd, gcd(x̃, ỹ) = 1,

and x̃ > 2 ỹ > 0. This unique (x̃, ỹ) is the least positive solution of this Pell

equation.

c) Not every primitive Pythagorean triangle has a prime as sum of legs.

Before proceeding with the proof we consider two examples: p = 7 ≡ −1 (mod 8)
and p = 17 ≡ +1 (mod 8). For p = 7 the only solution of the two inequalities is

x̃ = 3 and ỹ = 1. This satisfies the Pell equation and the other above mentioned
constraints. The unique pPT is (22 − 12, 2 ·2 ·1, 22 + 12) = (3, 4, 5). For p = 17

the inequalities are solved by x̃ = 5 and ỹ = 1, 2. But only ỹ = 2 qualifies as
solution of the Pell equation. The unique pPT is thus (9 − 4, 2 · 3 · 2, 7 + 4) =

(5, 12, 13).

The following proof needs some Lemmata.
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Lemma 1: Sum of legs of primitive Pythagorean triangles

As sum of the (dimensionless) legs s = a + b of a pPT (a, b, c) qualify only
positive integers s ≡ +1 (mod 8) or s ≡ −1 (mod 8).

Proof: For each pPT (a, b, c) with even b one has a well known (see e.g., Niven
et al. [4]) parameterization a = u2 − v2, b = 2 u v and c = u2 + v2 with

gcd(u, v) = 1, u > v > 0 and u + v odd. For the leg sum s = a + b =
(u + v)2 − 2 v2 we distinguish the two cases: i) u is even and v is odd and ii) u is

odd and v is even. In both cases (u + v)2 = (2 (U +V ) + 1)2. In case i) one adds
(2 V +1)2, and in case ii) only (2 V )2, This results in case i) is s = −1+8 T (U)+

8 S1(U, V ) with the triangular number T (U) =
U (U + 1)

2
(A000217) and the

number S1(U, V ) =
V (2 U − V − 1)

2
. Note that the numerator of S1 is even for

all possible parities of U and V . Similarly, in case ii) one has s = +1 + 8 T (U) +

8 S2(U, V ) with the number S2(U, V ) =
V (2 U − V + 1)

2
= S1(U, V ) + V .

Besides A001132 see also A120681 for the possible sums of legs of primitive
Pythagorean triangles.

Lemma 2 [Nagell, Theorem 111, p. 210]: Existence of solution of x2 −
2y2 = p for p ≡ ±1 (mod8)

The Pell equation x2 − 2 y2 = p with a prime p = ±1 (mod 8) has a positive

integer solution with 1 ≤ x ≤
⌊√

2 p
⌋

and 1 ≤ y ≤
⌊
√

p

2

⌋

.

Proof: see Nagell [3]. We will meet this later in the proof of the
Theorem when looking at the fundamental solution of this Pell equation.

Lemma 3, application of [Nagell, Theorem 104, pp. 197-198]: General

solution of the Pell equation x2 − 2y2 = +1

The fundamental positive solution of the Pell equation x2 − 2 y2 = +1 is
(x0, y0) = (3, 2) and the general positive solution is xn = rational part of zn

and yn = irrational part of zn, where zn = (3 + 2
√

2 )n, for n ∈ N.

Proof: See the Nagell reference with D = 2. Note that the matrix M =

[[3, 4], [2, 3]] of determinant +1 can be used to find the rational and irrational
parts of the product of the Q(

√
2 ) integers z = x + y

√
2 and z0 = 3 + 2

√
2.

Just compute the components of M ~z with the column vector ~z = (x, y)⊤. Using

the Cayley-Hamilton theorem one has for the powers of this 2 × 2 matrix Mn =
Sn−1(6)M− Sn−2(6) 12 with the 2× 2 unit matrix 12, and Chebyshev polynomials
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S evaluated at x = 6. See A001109 for Sn(6), with S1(x) = 0 and S−2(x) = −1.

For the positive solutions (xn, yn) of the Pell equation x2 − 2 y2 = +1 see

A001541(n + 1) and A001109(n + 1) for n ∈ N.

Lemma 4, application of [Nagell, Theorem 108, pp. 207-208 with The-

orem 108, pp. 205-206 and Theorem 110, p. 208]: General solution of
the Pell equation x2 − 2y2 = p

The general solution of the Pell equation x2 − 2 y2 = p with prime p ≡
±1 (mod 8) derives from two classes of proper (sometimes called primitive) so-
lutions based on the fundamental solution (x̃, ỹ) satisfying the inequalities 1 ≤
ỹ ≤

⌊
√

p

2

⌋

and
⌈

√

p + 2
⌉

≤ x̃ ≤
⌊

√

2 p
⌋

. These inequalities hold for the

fundamental positive solution of the first class.

A fundamental solution of the second class is then (−x̃, ỹ) or (x̃, −ỹ).

The general positive solutions of the first and second class are then given by the

following integers in the real quadratic number field Q(
√

2 ).

x(i)
n = rational part of (z(i)(n)) y(1)

n = irrational part of (z(i)(n)) for i = 1, 2,

with

z(1)
n = (x̃ + ỹ

√
2) (3 + 2

√
2 )n, for n ≥ 0

z(2)
n = (x̃ − ỹ

√
2 ) (3 + 2

√
2)n, for n ≥ 1.

Proof: The existence of a solution is guaranteed by Lemma 2. Because the
discriminant of the Pell equation is ∆ = 0 − 4 · 1 · (−2) = +8 > 0 this is a
special case of an indefinite binary quadratic form (see e.g., Buell [2], Buchmann

and Vollmer [1]). Therefore there is an infinitude of solutions for each prime p of
the considered form. The inequalities to find all fundamental solutions are given

in eqs. (4) and (5) of Nagell, pp. 206, with y1 and x1 our y0 = 2 and x0 = 3, u

and v our x̃ and ỹ, respectively, and N = p. Because x̃2 = p + 2 ỹ2 > p + 2

the lower bound for | x̃ | is indeed
⌈√

p + 2
⌉

and the upper bound is
⌊√

2 p
⌋

. The

ỹ interval is

[

1,

⌊√
p

2

⌋]

.

There can only be two fundamental solutions due to Nagell’s Theorem 110, be-
cause the primes p do not divide 2 · 2 = 4. The first class uses the positive x̃

solution and the second class uses −x̃. For positive x̃ we also have x̃ > 2 ỹ from
the Pell equation, the upper bound for ỹ, and the monotony of the square root

function: x̃2 = p + 2 ỹ2 > 2 ỹ2 + ỹ2 = 4 ỹ2 .
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Because we are interested only in positive solutions we use for the second class
instead of the fundamental solution (−x̃, ỹ), first (x̃,−ỹ), and then z

(2)
1 = (x̃ −

ỹ
√

2 ) (3 + 2
√

2 ). Now x
(2)
1 = 3 x̃ − 4 ỹ > 0 because 4 ỹ <

√
8 p < 3

√
p <

3
√

p + 2 < 3 x̃. The proof of y
(2)
1 = 2 x̃ − 3 ỹ > 0 uses also x̃ > 2 ỹ, thus

2 x̃ > 4 ỹ > 3 ỹ.

With the general positive solutions of the Pell equation x2 − 2 y2 = 1
given in Lemma 3 one finds then the given general positive solutions.

The positive solutions of the first class, (x
(1)
n , y

(1)
n ) are given in A002334(n + 1)

and A002335(n+1) for n ∈ N. They are also found for primes p ≡ 1 (mod 8) from

A007519 in A254760 and 2∗A254761. For primes p ≡ 7 (mod 8) from A007522
they are found in A254764 and A254765.

The positive solutions of the second class, (x
(2)
n , y

(2)
n ) are given in A254930 and

A254931. The are also found for primes p ≡ 1 (mod 8) from A007519 in A254762

and 2∗A254763. For primes p ≡ 7 (mod 8) from A007522 they are found in
A254766 and A254929.

We now show that the requirement x > 2 y, derived from u > v needed for
Pythagorean triangles eliminates all solutions of the Pell equation except the

positive fundamental one of the first class.

Proposition: Uniqueness of the solution for primitive Pythagorean tri-

angles.

From all solutions of the Pell equation x2 − 2 y2 = p, with prime p ≡ +1 (mod 8)

or 7 (mod 8) given in Lemma 4, only the positive fundamental solution z
(1)
0 =

x̃ + ỹ
√

2 qualifies as sum of legs of a primitive Pythagorean triangle according

to s = a + b with a = (x̃ − ỹ)2 − ỹ2, b = 2 (x̃ − ỹ) ỹ and c = (x̃ − ỹ)2 + ỹ2.

Proof: For primitive Pythagorean triangles we need first gcd(u, v) = 1, which
is satisfied because u = x − y and v = y, and necessarily gcd(x, y) = 1 for
any solution of the considered Pell equation. The crucial requirement is u >

v > 0, i.e., x > 2 y > 0. This will eliminate all solutions except the positive
fundamental one z

(1)
0 . The proof has to be given for the two possible classes of

proper solutions (see Lemma 4) of the considered Pell equation.

The first class of solutions originates from the positive fundamental solution ~z
(1)
0 =

(x̃, ỹ)⊤ which satisfies this requirement x̃ > 2 ỹ > 0, as shown in the proof of

Lemma 4. For the first descendant ~z
(1)
1 = M ~̃z (where we used ~̃z = ~z

(1)
0 ), with

the positive matrix M given in the proof of Lemma 3, one finds that x
(1)
1 < 2 y

(1)
1

is trivially true because −2 ỹ < x̃, due to the positivity of x̃ and ỹ. Then the
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higher descendants will also trivially satisfy this requirement because (we omit
the superscript for simplicity) xn+1 = 3 xn + 4 yn < 2 yn+1 = 2 (2 xn + 3 yn)

just means −2 yn < xn. This is trivially true for all n ≥ 1 due to the induction
hypothesis 0 < xn < 2 yn (positivity is clear from the positive matrix M).

For the second class the positive fundamental solution was z
(2)
1 which in vector

notation (again omitting the superscript) is ~z1 = (x1, y1)
⊤ = (3 x̃ − 4x̃, 2 x̃ −

3 ỹ)⊤. Obviously x1 < 2 y1 precisely because x̃ > 2 ỹ. The descendants, which
are all positive, satisfy also trivially xn+1 < 2 yn+1 provided −2 yn < xn holds

which is true because yn and xn are positive.

The other requirement for primitive Pythagorean triangles is that u + v has to
be odd which is also satisfied because x is odd.

Proof of the Theorem: Parts a) and b) are clear from the Proposition.
c) is proved by the first example with non-prime leg sum s = 72 = 49
belonging to the primitive Pythagorean triangle (9, 40, 49). See A120681.

Therefore the map between the set of primes congruent to 1 or 7 (mod 8) to the
set of primitive Pythagorean triangles is injective but not surjective. For the first

30 primes from A001132 the primitive Pythagorean triples are given in the Table.
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Table: Primes congruent to +1 or −1 modulo 8 and primitive Pythagorean triples

n p(n) (x̃n, ỹn) (an, bn, cn)

A0011132(n)

1 7 (3, 1) (3, 4, 5)

2 17 (5, 2) (5, 12, 13)

3 23 (5, 1) (15, 8, 17)

4 31 (7, 3) (7, 24, 25)

5 41 (7, 2) (21, 20, 29)

6 47 (7, 1) (35, 12, 37)

7 71 (11, 5) (11, 60, 61)

8 73 (9, 2) (45, 28, 53)

9 79 (9, 1) (63, 16, 65)

10 89 (11, 4) (33, 56, 65)

11 97 (13, 6) (13, 84, 85)

12 103 (11, 3) (55, 48, 73)

13 113 (11, 2) (77, 36, 85)

14 127 (15, 7) (15, 112, 113)

15 137 (13, 4) (65, 72, 97)

16 151 (13, 3) (91, 60, 109)

17 167 (13, 1) (143, 24, 145)

18 191 (17, 7) (51, 140, 149)

19 193 (15, 4) (105, 88, 137)

20 199 (19, 9) (19, 180, 181)

21 223 (15, 1) (195, 28, 197)

22 233 (19, 8) (57, 176, 185)

23 239 (17, 5) (119, 120, 169)

24 241 (21, 10) (21, 220, 221)

25 257 (17, 4) (153, 104, 185)

26 263 (19, 7) (95, 168, 193)

27 271 (17, 3) (187, 84, 205)

28 281 (17, 2) (221, 60, 229)

29 311 (19, 5) (171, 140, 221)

30 313 (21, 8) (105, 208, 233)

... ... ... ...

Boldface prime numbers are congruent to 1 (mod8).

6


