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Notes on Some Geometric and Algebraic Problems Solved by Origami
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Abstract

Details for known solutions of some geometric and algebraic problems with the help of origami are
presented: two theorems of Haga, the general cubic equation, especially the heptagon equation, doubling
the cube as well as the trisection of angles α, π − α and π + α.

Introductory remarks

These notes give details on some geometric and algebraic problems related to cubic equations which are
solved using origami (Japanese for folding paper). Seven axioms for origami can be found in [16].
These notes mostly start with a square of some given length, called R in some length unit. Given any
(transparent) sheet larger than this square one can fold an R×R square, provided one can determine the
distance R between two points P and Q on some line (crease). This assumes that one has some way to
measure R, e.g., a marked ruler. Then one starts with some crease, call it c1, and folds perpendicular to
this crease through some point, defined as the first corner A, another crease called c2. A perpendicular
folding with respect to some line c (crease) and a point P (not necessarily on c) can be accomplished
(sometimes called axiom 4 or IV), but here it is useful to have a transparent sheet in order to see when
the two parts of c fit together for this folding through P . Then one finds the next corner of the square,
called D, at a given distance R from A on the crease c1. Next, through D a crease c3 perpendicular to
c1 is formed. The next crease c4 is obtained by folding crease c1 onto crease c2 (point A will lie on both
creases; guaranteed by axiom 3 or III). This will define the next corner C as the intersection point of c4

with c3. Finally a crease c5 perpendicular to c3 through point C is formed to find the last corner B as
the intersection of c5 with c2. Alternatively one can fold crease c1 onto crease c3, with D on both creases,
to find B as the intersection with crease c2. This completes then the square A, B, C, D oriented in the
positive sense (on one of the transparent paper’s sides). In the following we will use the notation B,C
to denote the straight line connecting points B and C, as well as the length of this line segment. The
latter should be denoted by |B,C |, but it should be clear what is meant in each case.

Problem 1: Haga’s second Theorem

In the book of Bellos [2] one finds on p. 115 an origami leading to the “second theorem” of Kazuo Haga.
For this one folds two neighboring corners of a square sheet of paper (length of the side R in some unit),
say B and C, in turn on some point B′ = C ′ of the opposite side (bordered by the corners A and D).
This is done by two intersecting creases (called f and g in Figure 3). The intersection point, called S in
Figure 3, will always lie on the crease which arises if one folds C onto B (which gives one of the medians
of the square). This happens independently of the position of the point on which the two corners have
been folded. In addition, the three distances between the intersection point S and the chosen point C ′

and the two corners B and C coincide.
In order to analyse this consider first Figure 1 where C is folded onto C ′ having distance xR from the
left upper corner A.
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Figure 1: Folding C onto C ′ Figure 2: Folding B onto B′

Figure 1:

A,B = R = A,D, A,C ′ = xR, D,F = y R, V,B = V,W = v R, W,C ′ = B,C = R, B,E =
W,E = z R, P,C = P,C ′ = cR, P, P ′ = p R, ∠(F, V,C) = ∠(C ′, V, F ) = ∠(C ′, C,D) =
∠(P,C ′, F ) = α, ∠(V, P,C ′) = π

2
= ∠(V,C ′, F ) (indicated by the two bullets), ∠(V,C ′, A) =

γ = 2α.
P is the intersection point of two perpendicular straight lines, viz g′′ connecting C ′ and C and g (the
crease bringing C to C ′) connecting V and F .
The analytic data, depending on R (usually taken as 1 length unit) and x, is :

y =
x (x − 2)

2
, 2 c =

√
1 + (1 − x)2, P, F = R

√
(1 − y)2 − c2, tan α =

F,C

V,C
=

z

v
=

P,F

cR
=

C ′,D

R
= 1 − x, tan(2α) =

2 (1 − x)

x (1 − x)
, sin α =

1 − x√
1 + (1 − x)2

=
c

1 + v
, cos α =

1√
1 + (1 − x)2

=

p

c
, p =

1

2
, v =

x2

2 (1 − x)
, F,C = F,C ′ = R (1 − y) = R

2 − 2x − x2

2
, z = v tan α =

x2

2
, V,E =

R
√

z2 + v2 = R
x2
√

1 + (1 − x)2

2 (1 − x)
, W,L = R z tan(2α) = R

x2 (1 − x)√
x (2 − x)

, L,A = R x tan(2α) =

R
2 (1 − x)

2 − x
, E,L =

z R

cos(2α)
= R

x (1 + (1 − x)2)

2 − x
, L,C ′ = R

x

sin(π
2
− 2α)

= R
1 + (1 − x)2

2 − x
, L,B =

R v tan(2α) = R
x

2 − x
, E, P =

p R

sin α
− V,E = R

(1 + x)
√

1 + (1 − x)2

2
,

B,P ′ = R (1 − c sin α) = R
1 + x

2
, P,C ′ = R

1 − x

2
.

With the origin O = B in the (x̂, ŷ)-plane (no confusion with the above x and y should arise) the straight
lines g, g′ and g′′ are given by:

g : ŷ = (1 − x) (x̂ + v R), g′ : ŷ =
2 (1 − x)

x (2 − x)
(x̂ + v R), g′′ : ŷ = − 1

1 − x
(x̂ − R) .

Observation 1: If x varies from 0 to R then P moves on the middle line ŷ =
R

2
from x̂ =

R

2
to R.

Next, the analysis is done for the case when the left lower corner B is folded onto B′ on the side connecting
the corners A and D, with distance xR from A (not necessarily the same x as in Figure 1).
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Figure 2:

A,B = R = A,D, A,B′ = xR, A,E = y R, V,C = V,W = v R, E,B = E,B′ = (1 −
y)R, W,B′ = C,B = R, C,F = F,W = z R, P,B = P,B′ = bR, P, P ′ = p R, ∠(P,B, V ) =
∠(P,B′, V ) = ∠(A,B′, B) = ∠(B′, E, F ) = ∠(P,E,B) = ∠(P ′, P, V ) = β, ∠(L,B′,D) = δ =
π − 2β, ∠(C,L, V ) = ∠(B′, L,D) = ∠(E,B′, A) = 2β − π

2
.

P is the intersection point of the perpendicular straight lines g′, with points B′ and B, and g (the crease
bringing B to B′) with points V and E.
The analytic data which depends on R (usually taken as 1 length unit) and x is:

y =
1 − x2

2
, 2 b =

√
1 + x2, P,E = R

√
(1 − y)2 − b2, tan(

π

2
− β) =

1

tan β
=

E,B

B, V
=

E,B′

B′, V
=

z

v
=

bR

P, V
=

E,P

bR
=

A,B′

A,B
= x, tan(2β − π

2
) = − 1

tan(2β)
=

y

x
=

1 − x2

2x
, cos β =

x√
1 + x2

=

B,P ′

bR
=

b

1 + v
, B, P ′ = R

x

2
, v =

(1 − x)2

2x
, sin β =

1√
1 + x2

=
p

b
, p =

1

2
, E,B = E,B′ =

R (1 − y) = R
1 + x2

2
, z = v/ tan β =

(1 − x)2

2
, V, F = R

√
z2 + v2 = R

(1 − x)2

2x

√
1 + x2, W,L =

R
z

tan(2β − π
2
)

= R
x (1 − x)

1 + x
, L,D = R

1 − x

tan(2β − π
2
)

= R
2x

1 + x
, F,L =

z R

sin(2β − π
2
)

= z R
1 − y

y
=

R
(1 + x2) (1 − x)

2 (1 + x)
, L,B′ = R

1 − x

sin(2β − π
2
)

= R
1 + x2

1 + x
, L,C = R

v

tan(2β − π
2
)

= R
1 − x

1 + x
, F, P =

p R

cos β
− V, F = R

√
1 + x2 (2 − x)

2
, C, P ′ = R (1 − b cos β) = R

2 − x

2
.

With the origin O = B in the (x̂, ŷ)-plane the straight lines g and g′ are given by:

g : ŷ = −x (x̂ + R (1 + v)) = −x x̂ − R
1 + x2

2
, g′ : ŷ =

x̂

x
.

Observation 1′: If x varies from 0 to R then P moves on the middle line ŷ =
R

2
from x̂ = 0 to

R

2
.

Like depicted in Figure 3, one now folds the corners B and C onto the same point C ′ = B′ on the
opposite side. The distance of C ′ from corner A is xR.

Figure 3: Folding C and B onto C ′ = B′ Figure 4: Haga’s triple of Egyptian triangles
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Figure 3:

A,B = R = A,D, A,C ′ = R x, D,F = R yC , A,G = R yB, PC,C ′ = PC,C =: R c, PB,C ′ =
PB,B =: Rb, ∠(E,PC,C) = π

2
= ∠(B,PB,H), ∠(D,C,C ′) = α = ∠(PC,C ′, F ), ∠(PB,G,C ′) =

β = ∠(B,G,PB), ∠(D,F,C ′) = 2α, ∠(A,C ′, G) = 2β − π

2
, ∠(B,C ′, C) = α − β +

π

2
.

The two creases (in red) are E,F , on the straight line g, and G,H, on the straight line f .

PC is the intersection point of the perpendicular straight lines g and g′ connecting the points C ′ and C.
PB is the intersection point of the perpendicular straight lines f and f ′ connecting the points C ′ and B.
S is the intersection point of the two creases g and f .

The analytic data depending on R (usually taken as 1 length unit) and x, is (see the above data for
Figures 1 and 2) :

2 c =
√

1 + (1 − x)2, 2 b =
√

1 + x2, F,C ′ = F,C = R (1 − yC) = R
2 − 2x + x2

2
, G,C ′ =

G,B = R (1 − yB) = R
1 + x2

2
..

In the (x̂, ŷ)-plane with origin O = B the coordinates of PC and PB are

[
R

1 + x

2
, R

1

2

]
and

[
R

x

2
, R

1

2

]
,

respectively.

The straight lines of the two creases g and f are ŷ = (1 − x)

(
x̂ + R

x2

2 (1 − x)

)
and

ŷ = −x

(
x̂ + R

1 + x2

2x

)
, respectively. This leads to the intersection point S with coordinates

[
R

2
,
R

2
(1 − x + x2)

]
.

Because S lies on the vertical median of the square one obtains B,S = C,S =
R

2

√
1 + (1 − x + x2)2 =

R

2

√
2 − x (1 − x) (2 − x (1 − x)) =

R

2

√
(1 + (1 − x)2) (1 + x2). From crease g it is clear that C,S =

C ′, S. This proves analytically the following second theorem of Kazuo Haga (named like this in [2], p.
115-116).

Theorem 1 (K. Haga see Figure 3)

1) The intersection point S of the two creases E,F and G,H lies on the vertical median of the square of
length R, for each x ∈ [0, R].

2) The length of the three lines C ′, S, B,S and C,S are identical, namely R
√

2 − x (1 − x) (2 − x (1 − x)).
Moreover,
3) The intersection points PC and PB lie on the horizontal median of the square of length R, and their

distance is
R

2
, independently of x ∈ [0, R].

The first part of 2) follows immediately from the x-coordinate of S, i.e., from 1). For the second part
also the y−coordinate of S is needed.

Problem 2: Haga’s Theorem on Egyptian Triangles

This is found in the book of Bellos [2] on p. 114, and has also been attributed to Kazuo Haga. Three
Egyptian triangles (or scaled Pythagorean triangles) appear when folding a corner (vertex) of a square
sheet of paper (here C) onto the midpoint of one of the non-adjacent sides (see Figure 4 point C ′).
The crease is the straight line g. The right triangles are T1 = △(F,D,C ′), T2 = △(C ′, A, L) and
T3 = △(L,W,E). T ′

3
= △(G,B,E) folds onto T3. Each of these right triangles has rational side

lengths, and they are scaled (3, 4, 5)−Pythagorean triangles.
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Theorem 2 (K. Haga)

If the length of the square R is taken as 1 length unit then the sides of the three right triangles of Figure

4 have side lengths:

T1 :

(
3

8
,

1

2
,

5

8

)
, T2 :

(
1

2
,

2

3
,

5

6

)
, T3 :

(
1

8
,

1

6
,

5

24

)
.

Therefore, if the length of the square R is chosen as 24 length units, these triangles become Pythagorean

triangles T̂1 : (9, 12, 15) = 3 ∗ (3, 4, 5), T̂2 : (12, 16, 20) = 4 ∗ (3, 4, 5) and T̂3 : (3, 4, 5).

Proof: The notation, with the length of the side of the square being R length units, is: C maps to C ′,
B maps to W . L is the intersection point of V,C ′ (the straight line g′ with segment W,L) and A,B. L
maps to G. P is the midpoint of C ′, C, Q is the midpoint of L,G and S is the midpoint of W,B. The
angle γ = ∠(L,C ′, A) equals 2α because ∠(E,L,W ) = π

2
− 2α = ∠(C ′, A, L)

Similar right triangles with angle α are △(V,B,E), △(V,C, F ), △(F,P,C), △(B,S, V ), △(B,E, S),
△(L,E,Q), and their mirrors obtained by folding along g. The four shaded right triangles with angle

γ = 2α are also similar. tan α =
1

2
, sin α =

tan α√
1 + (tan α)2

=
1

5

√
5, cos α =

1√
1 + (tan α)2

=

2

5

√
5, tan(2α) =

2 tan α

1 − (tan α)2
=

4

3
, sin(2α) =

4

5
, cos(2α) =

3

5
.

The analytic data is: A,C ′ =
1

2
R = C ′,D, C ′, P = a = P,C = R

√
5

4
, L,Q = b = Q,G =

R

√
5

12
, W,E = E,B = R

1

8
, W,L = B,G = R

1

6
, L,E = E,G = R

5

24
, V,B = V,W =

R
1

4
, V, F = R

5

8

√
5, V,E = R

1

8

√
5, E,Q = R

1

24

√
5, Q, P = R

1

3

√
5, V, S = R

1

10

√
5, S,B =

R
1

20

√
5, S,E = R

1

40

√
5. �

Problem 3: Solving Third 0rder Equations using Origami

It is well known that cubic (and higher) order equations cannot be solved geometrically using only an
(unmarked) ruler and a compass (see e.g., Wantzel[15], Adler [1]. §36, pp. 188-195). It is also known that
the general cubic equation can be solved geometrically with two right angles (at least one of them should
have a scale in order to mark the absolute value of the coefficients) [6], p. 267, Abb. 150, adapted from [1],
pp. 259-261, Fig. 156 (where we use the solving chain of straight lines A, X, Y, E with ∠(B,A,X) = ω̂

(not the ω of the figure), x = tan ω̂ =
B,X

a0

=
Y,C

X,C
=

D,E

Y,D
and X,C = |a1| − B,X = |a1| − a0 x,

D,Y = |a2| + Y,C = |a2| + xX,C . With D,E = a3 = xD, Y this leads to the cubic equation
x3 − |a1|x2 − |a2|x + a3 = 0 if one takes a0 = 1. Note that a0 and a1 are supposed to have opposite
signs because, coming from A,B, one takes a 90o left turn at B to get to C. Similarly, a1 and a2 have
like signs because, coming from B,C, one takes a left turn at C to get to D. Then a2 and a3 have again
opposite signs because of the left turn at D. The length of the lines are always positive. These sign rules
are taken from [6], and in [1] a different solving path, namely A, F, G, H, has been chosen. This type
of figure is also found in [5], p. 198, referring to Fig. 3 on p. 207 (where the top vertex is A′ which is
connected to B′ on line B. The distance between A′ and I is x, and the distance between A and B′ is y).
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Figure 5: Folding A onto A′ Figure 6: Folding B onto B′

In order to solve the general cubic equation X3 + aX2 + bX − c = 0 with origami, following Huzita
[5], p. 197 and Fig. 2, one first folds , like in Figure 5, a point A onto A′ on the x-axis. The coordinates
in the [x, y]-plane with length unit R are A : [ax R, ay R] and A′ : [x̃ R, 0]. The y′ axis with angle α
has been added for later purposes, and is not relevant for this folding. gA is the crease perpendicular to
A′, A with intersection point PA : [PA,x, PA,y]. The crease hits the x-axis at point RA. The inputs are

ax, ay and x̃ = O,A′

R . Instead of x̃ we shall use X := ax − x̃. The right triangles △(A′, Ax, A) and
△ (PA, PA,x, RA) are similar. The following analytic expressions are found immediately.

A,PA/R =: a = PA, A′/R =
1

2

ay

sin β
=

1

2

X

cos β
. tan β =

ay

X
. A′, PA,x = PA,x, Ax, PA, PA,x =

ay R

2
,

PA,x, RA =
R

2
ay tan β, O,RA =

(
ax − X +

ay

2 tan β
+

1

2
ay tan β

)
R =

1

2

(
a2

y

X
+ 2 ax − X

)
R.

The straight line gA (the crease) satisfies y
R = −X

ay

(
x
R + 1

2
(X − a2

y

X − 2 ax)
)
.

Then a similar folding, shown in Figure 6, is done, in order to map a point B (different from A) onto a

point B′ on the y′-axis, forming some angle α from
(
0,

π

2

)
with the x−axis. The crease gB is perpendicular

to the line B′, B with intersection at the midpoint PB . It hits the x−axis at the point RB . The (x, y)
coordinates of B′ are [b′x R, b′y R]. ∠(B,B′, T ) = σ. The inputs are B : [bx R, by R] and ỹ = 0, B′/R.
The right triangles △ (B′, T,B) and △ (PB , PB,x, RB) are similar. One finds:

b′y = ỹ sin α, b′x = ỹ cos α. tan σ =
by − b′y
bx − b′x

. O,RB = R
1

2

(
bx + b′x +

(by − b′y)
2

bx − b′x
+ 2 b′y tan σ

)
=

R
1

2

b2
x + b2

y − ỹ2

bx − b′x
.

The straight line gB (the crease) satisfies y = − 1

tan σ
(x− O,RB) = −bx − ỹ cos α

by − ỹ sin α
x+ R

1

2

(
b2
x + b2

y − ỹ2

by − ỹ sin α

)
.

In [5] the coordinate axes y′ and x′ are used. The transformation between coordinates of a point P :

[px R, py R] and [px′ R, py′ R] is px′ = px − py

tan α
and py′ =

py

sin α
=
√

1 + 1/(tan α)2 py.
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Figure 7: Third order eq. Folding A onto A′, and B onto B′, α = 45o

The typical origami which brings at the same time one point A onto A′ on, say the x-axis, and another
point B onto B′ on some other axis (here y′) is then shown to correspond to a cubic equation for a certain
line segment (here X = ax − a′x). See Figure 7 where α = 45o.

Theorem 3 (Huzita [5]): There exists a folding which brings A : [ax R, ay R] onto A′ : [a′x R, 0] and

B : [bx R, by R],onto B′ : [b′x R, b′x tan α R] on the y′ axis, which forms an angle α ∈
(
0,

π

2

)
with

the x−axis. The solution for crease g is y = −X

ay
(x − r R), with r =

1

2

(
a2

y

X
+ 2 ax − X

)
, and

X := ax − a′x is the real solution of the cubic equation

X3 +

(
bx − 2 ax +

by − ay

tan α

)
X2 + ay

(
2 by − ay + 2

ax − bx

tan α

)
X − a2

y

(
bx − ay − by

tan α

)
= 0 .

Before giving the proof a remark and an example are in order.

Remark: In [5] the components of A and B with respect to the axis X and Y (with k = cos ∠(X,Y ))
correspond to the above given (ax′ , ay′) and (bx′ , by′), and k = cos α. Therefore z of eq. (1) on p. 197

is given by z = ax′ − a′x′ = ax − ay

tan α
− a′x = X − ay

tan α
(with our X = ax − a′x and a′y = 0).

Example 1: In Figure 7 we have chosen α =
π

4
and R = 1 length unit. With A : [.8, .2] and B : [.5, .3]

one has the real solution of X3 − X2 + 0.2X − 0.024 = 0, which is X ≈ 0.7839279132 (Maple 10
digits). This leads to r = 0.4335485933. X has been indicated by the fat (magenta) line in Figure 7.
a′x = x̃ = 0.8 − X ≈ 0.0160720868.

Proof: One combines the foldings of Figure 5 and Figure 6 with the constraint that the two creases, the
straight lines gA and gB , coincide. This leads to two equations: (I) O,RA = O,RB and (II) β = σ.

(O,RA − O,RB)/R =

1

2X (bx − b′x)

(
X2 ỹ2 +

X2 − 2 ax X − a2
y√

1 + (tan α)2
ỹ − bx X2 + (2 ax bx − b2

x − b2

y)X + a2

y bx

)
= 0 .
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The pre-factor does not vanish and it is not divergent (bx 6= b′x), therefore the bracket term has to vanish.
The other restriction is

tan σ − tan β =
by − ỹ sin α

bx − ỹ cos α
− ay

X
= 0 .

Solving for ỹ as a function of X yields

ỹ =
√

1 + (tan α)2
ay bx − by X

ay − X tan α
.

Inserting this ỹ into the bracket term of (O,RA − O,RB)/R results in a factorized form given by

(by − bx tan α)X

(−ay + tan αX)2
[
(tan α)X3 + ((bx − 2 ax) tan α + (by − ay))X2 +

+ (ay (2 by − ay) tan α + 2 (ax − bx))X + a2

y (ay − by − bx tan α)
]

= 0 .

Because B does not lie on the y′ axis by 6= bx tan α, and β 6= α, hence ay 6= X tan α. Therefore, the
new pre-factor does neither vanish nor diverge, and the bracket term has to vanish.

Now two cases have to be considered:

i) tan α 6= 0 and 6= ∞, i.e., α ∈
(
0,

π

2

)
and

ii) tan α = ∞, or α = 90o.

The case α = 0o will later be treated separately.

i): This case leeds to the cubic equation for X given in Theorem 3 after dividing tan α out. The equation
for the crease g is just given by gA from above (see Figure 5), with r = O,RA and β = σ from condition
(II). �

Special case ii) α = π
2

(see Figures 8 and 9)

Theorem 4

With the notation of Theorem 3 and α =
π

2
the equation for X = ax − a′x is

X3 + (bx − 2 ax)X2 + ay (2 by − ay)X − a2

y bx = 0 .

Proof: Extract tan α from the bracket term of(O,RA − O,RB)/R = 0, factorized above, and observe

that the original pre-factor
1

2X (bx − b′x)
when multiplied with the factor

(by − bx tan α)X

(−ay + tan α X)2
and after

extraction of the tan α from the bracket term becomes, in the limit tan α → ∞,
1

2X2
, provided bx 6= 0.

This new factor does neither vanish nor diverge, and from the bracket term the claimed cubic equation
for X is obtained.
This result can also be reached in the limit tan α → ∞ from the above equation for X in Theorem 3,
which, however, has been derived assuming tan α 6= 0. �

For the case α =
π

2
see Figures 8 and 9. The other quantities are found by first folding B onto

B′ on the y−axis. See Figure 8. The free parameter is ỹ = O,B′. δ =
π

2
− γ, b = B,PB =

PB,B′ =
1

2

√
(ỹ − by)2 + b2

x, tan γ =
O,PBx − O,RB

by + b sin γ
, PBx : [R (bx − cos γ b), 0], PBy :

[0, R (by + sin γ b)], RB : [PBx[1] − tan γ PBy[2], 0]. The crease is g : y = 1

tan γ (x − RB[1]).

Then also A is folded onto A′ on the x−axis. This has been treated in connection with Figure 5 (were
the y′−axis was not important). The two constraints are RA = RB and tan δ = tan (π

2
+ β), i.e.,
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tan γ = − tan β. One obtains a real solution of the cubic equation for X = ax − a′x indicated by the thick

(magenta) line segment in Figure 9, and ỹ = −bx
ay

X
+ by. �

Case α = π
2

Figure 8: Folding B onto B′ Figure 9: Folding A onto A′ and B onto B′

Example 2: R = 1 length unit, A : [.2, .7], B : [.8, .3]. X = ax − a′x ≈ .646416, β ≈ 47, 279o,
δ = (90 + β)o ≈ 137.279, O,RB ≈ .2558, PA : [≈ −.123, .35], PB : [.4,≈ −.133] .

Special case α = 0

The special case α = 0 is obtained from folding A onto A′, discussed above (see Figure 5), and folding
B onto B′ (also on the x−axis). One uses the formulae given above in connection with Figure 5 (with β
changed into βA) and replaces there A by B and A′ by B′ (with β = βB). Then Figure 10 is obtained
by setting RA = RB and βA = βB .

Figure 10: Folding A on A′ and B on B′ when α = 0

9



The result of identifying both creases gA and gB , calling them g, leads to the following data:
X := ax − a′x, Y := bx − b′x. Setting O,RA − O,RB = 0 leads to the equation involving X and Y .

− X + Y + a2

y

1

X
− b2

y

1

Y
+ 2 (ax − bx) = 0 .

The slope of g is given by tan βA = tan βB , which expresses Y in terms of X:

Y =
by

ay
X .

The mid points of AA′ and B B′ are PA :

[
R

2 ax − X

2
, R

ay

2

]
and PB :

[
R

2 bx − Y

2
, R

by

2

]
, respec-

tively. The intercept is r = O,RA = O,RB =
R

2

(
a2

y

X
+ 2 ax − X

)
.

For the following one assumes that 0 6= ay 6= by. Plugging Y into the previous equation results in a
quadratic equation for X:

X2 − 2 ay
1

tan σ
X − a2

y = 0 ,

with tan σ =
ay − by

ax − bx
.

This equation can be obtained directly from the above given analysis for non-vanishing α before tan α
has been divided out. Just let there tan α → 0, which eliminates the X3 term, and divide by by − ay.
The relevant solution for X is then

X = ax − ax′ = −ay
1 − cos σ

sin σ
.

Example 3: R = 1 length unit, A : [.7, .8], B : [.1, .1]. σ ≈ 49.399o, −X ≈ 0.368, and r ≈ 0.014.

If ay = by, the equation for X becomes linear, in fact X = 0.

Degenerate case: Parallel lines with A′ and B′

As mentioned in [5], p. 197, the case of parallel lines, is also of interest. See Figure 12.

Figure 11: Folding B onto B′ Figure 12: Folding A onto A′ and B onto B′

First one folds B onto B′ which lies on the horizontal y′-axis with y = dR, hence B′

y = dR, with some
length scale R. This is shown in Figure 11.
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Figure 11:

Given d = b′y, A and B, the free parameter is b′x =
B′

x

R
, the position of B′ on the y′-axis. The straight

line g is perpendicular to the line segment B,B′ and passes through its midpoint PB . This line g intersects

the parallel x- and y′-axes at RB and SB, respectively. The angle δ equals
π

2
− γ. Half the distance

between B and B′ is R b.

The formulae are: b =
b′x − bx

2 cos γ
, tan γ =

b′y − by

b′x − bx
, cos γ =

1√
1 + (tan γ)2

, sin γ =
tan γ√

1 + (tan γ)2
,

PB : [R (bx + b cos γ), R (by + b sin γ)], RB :

[
R

b′ 2
x − b2

x + b′ 2
y − b2

y

2 (b′x − bx)
, 0

]
,

g : y = − 1

tan γ
(x − RB,x), SB : [RB,x − d tan(γ)R, dR] . If B lies on the y′-axis then γ = 0 and

δ =
π

2
, a simple special case.

Now A is folded onto A′ on the x-axis at the same time as B is folded onto B′. See Figure 12. From
the above results in connection with Figure 5 one takes RA and tan β in terms of X := ax − x̃, where
O,A′ = R x̃. The solution is obtained from RA = RB and tan β = tan γ. The latter equation can be
used to eliminate b′x by (remember that d = b′y)

b′x =
1

ay
((d − by)X + bx ay) ,

provided ay 6= 0, which we assume. If ay = 0 then by = b′y = d, β = γ = 0 and δ =
π

2
, a simple

special case. From 2O,RA = 2O,RB one obtains

X +
a2

y

X
+ 2 ax −

b′ 2
x − b2

x + d2 − b2
y

b′x − bx
= 0 .

If b′x is inserted one finds a quadratic equation for X, assuming that ay X does neither vanish nor diverge.

Because ay 6= 0 has been assumed, if X = 0 then ax = a′x, b′x = bx γ = β =
π

2
, δ = 0, another

simple special case. With ay also X will be finite.

(ay − by + d)X2 − 2 ay (ax − bx)X − a2

y (ay − by − d) = 0.

Therefore, assuming (by 6= d + ay) one finds the positive solution for X

X =
ay

d + ay − by

(
ax − bx +

√
(ax − bx)2 + (ay − by)2 − d2

)
.

This shows, that a solution is only possible if dR does not exceed the distance between A and B, which
has been observed in [5]. It is clear that PA and PB have coordinates which are the arithmetic mean

between the corresponding coordinates of A and A′ and B and B′, e.g., PB,x = R
bx + b′x

2
. Note

that B,B′ =
d − by

ay
A,A′. Therefore the trapezoid A′, A,B′ and B becomes a rectangle precisely if

d = ay + by.

Example 4: Put R = 1 length unit and take d = .4, ax = .8, ay = .3, bx = .1, by = .2, then
X = ax − a′x ≈ 0.77, b′x ≈ 0.61.
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Application 1: The case of the heptagon equation

The minimal polynomial of the algebraic number ρ(7) := 2 cos
(π

7

)
≈ 1.801937736 (the length ratio of

the larger diagonal and the side of a regular 7-gon) is C(7, x) = x3 − x2 − 2x + 1 (see e.g., [7]), Table

2 and section 3). The three real zeros are known to be x(7; k) = 2 cos
(
k

π

7

)
, for k = 1, 3, and 5. They

are x(7; 1) = ρ(7), x(7; 3) ≈ .4450418670 and x(7; 5) = −2 cos
(
2

π

7

)
≈ −1.246979604.

Here we show how these zeros are obtained by three different origamis. We also treat the standard
geometric solution of this cubic equation using two right angular rulers, as explained in [6] based on [1]
(see also von Sanden [14], ch. III, sect. 2, pp. 55-61, with Fig. 17 on p. 55). The corresponding Figures

are 13, 14, and 15. The slope of the y′ axis is chosen as α = 90o, thus y′ = y. The monic cubic equation
C(7, x) = 0 has sign pattern +,−,−,+. This leads, in the standard geometrical construction, to the
right angle pattern l, r, l, with l and r for a 90o left and right turn, respectively. One starts with some
(oriented) horizontal line segment B,C of length a0 = 1 (for the monic case in some length unit R). A
90o left turn gives C,D of length a1 = 1, then a 90o right turn leads to D,E of length a2 = 2, and
finally the 90o left turn leads to E,A of length a3 = 1. (The starting point has been chosen as B in
order to comply with the later origami solution). This pattern (‘Streckenzug’ or line segment zig-zag) is
dictated by the cubic equation and will be the same for each of the three solutions.
In the origami version one needs the two perpendicular axes y′ = y and x. As explained in [5], p.
198-199 and Fig. 4 on p. 208, the y-axis is chosen parallel to CD, at a perpendicular distance 2a0 = 2
from point B. The x-axis is parallel to DE at a perpendicular distance 2a3 = 2 from point A. See the
present Figure 13. In our case point B has coordinates [−2, 0] and A : [1, 2] (if R = 1) . In the standard
geometrical construction of a solution to the cubic equation one has to find a point F on the axis with
line segment C,D, here F : [−1, x], such that a line perpendicular to B,F through F hits point G on
the straight line with segment D,E, and a perpendicular line to F,G through G hits point A. In Figure

13 the solution has F = PB ≡ PB and G = PA ≡ PA. For a general cubic equation there will always
be at least one real solution, and depending on its discriminant one will find either one, two or three

real solutions. In general the discriminant is Disc = p3 + q2, with q :=
1

2

(
2

a3
1

27
− a1 a2

3
+ a3

)
and

p :=
1

9
(3 a2 − a2

1). In our case Disc = − 72

22 33
< 0, telling that there are three (different) real solutions,

in accordance with the explicitly known ones. Therefore, one expects three different constructions for the
given right angle zig-zag B,C,D,E,A. In the origami version we expect to find three (different) creases
g1, g2 and g3 each for folding simultaneously A onto some A′ on the x-axis and B onto some B′ on the
y-axis. The three Figures 13, 14 and 15 show these solutions.

For all three figures the zeroes of C(7, x) are x =
C, D

R
=

PBy

R
> 0. F = PB and G = PA.

The folding A → A′ works like earlier described in connection with Figure 5. For B → B′ with

B : [−2R, 0] (we use the length unit R here) and B′ : [0, ỹ] one has for the mid-point PB :

[
−R,

ỹ

2

]
.

With γ = ∠(D, PB , PA), tan γ =
R + O, RB

PBy

=
PBy

R
. Hence O, RB =

P 2

By

R
− R =

ỹ2

4R
− R.

tan δ = tan
(π

2
+ γ

)
= − 1

tan γ
. The equation for the crease is gB : y = − 1

tan γ
(x − O, RB).

(Here x is a cartesian varable.) Putting then tan β = tan γ (with β = ∠(A,A′, O)) yields ỹ = 2
ay

X̂
=

4R

X̂
with X̂ :=

X

R
, where X = R − a′x. Together with 0, RA = 0, RB =: r R one finds the cubic

equation for X̂ :

X̂3 − 4 X̂2 − 4 X̂ + 8 = 0

for each of the three figures.
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Figure 13:

Here x̃ = a′x/R < 0, i.e., X = R + |a′x| > 0. x =
C, PB

R
=

ỹ

2R
=

2

X̂
. The cubic heptagon

equation for x, given above, is compatible with the cubic equation for X̂. Because the three solutions

for x are known from the heptagon (see above), and since here x > 1 one has x = ρ(7) = 2 cos
(π

7

)
≈

1.801937736, corresponding to X̂ =
2

x
=

1

cos
(

π
7

) =

√
1 + tan

(π

7

)2

≈ 1.109916264.

Figure 14:

x̃ = a′x/R < 0, i.e., X = R + |a′x| > 0. x =
C, PB

R
=

ỹ

2R
=

2

X̂
. Because 0 < x < 1, one has x =

x(7; 3) = 2 cos

(
3π

7

)
≈ .4450418670, corresponding to X̂ =

2

x
=

1

cos
(

3 π
7

) =

√

1 + tan

(
3π

7

)2

≈
4.493959217.

Figure 15:

x̃ = a′x/R > 0, i.e., X = R − a′x < 0. ỹ = b′y < 0. 0 > x = −C, PB

R
=

ỹ

2R
=

2

X̂
.

Hence x = x(7; 5) = −2 cos
(

π 2

7

)
≈ −1.246979604, corresponding to 0 > X̂ =

2

x
= − 1

cos
(

2 π
7

) = -

√

1 + tan

(
2π

7

)2

≈ −1.603875472.

Case α =
π

2
Figure 13: Heptagon, first origami Figure 14: Heptagon, second origami
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Figure 15: α =
π

2
, heptagon, third origami

Application 2: Doubling the cube

This classical problem cannot be solved by ruler and compass, but with Origami this can be accomplished
because one has to solve the third order equation x3 − 2 = 0. See [8] and Figure 16. (i) First one has to
find a third of A,B. This is a standard origami problem solved by finding the intersection point X of the
two creases A,C and A,E where E is found by halving the square, bringing B → A and C → D. If the

length of the side of the square A, B, C, D is taken as 1 (in some length unit) then B,H =
1

3
= C, J .

Figure 16: Doubling the cube; finding C ′, B Figure 17: Doubling the cube; standard version

To see this one just has to find the intersection of the two straight lines y =
1

2
x and y = −x+1 finding

X :

[
2

3
,
1

3

]
. (ii) Folding A,D onto H,J will then generate the crease F,G which completes the task to
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divide the square into three equal parts. F :

[
0,

2

3

]
, G :

[
1,

2

3

]
. (iii) The crucial origami is then to fold

at the same time C → C ′ with C ′ on the line A,B and J → J ′ with J ′ on the line F,G. The claim is that

x :=
A,C ′

C ′, B
= 21/3, or with s := C ′, B, i.e., x =

1 − s

s
, s3 − s2 + s − 1

3
= 0. The discriminant

is Disc = +
1

34
, showing that there is only one real solution, which is s =

1

3
(22/3 − 21/3 + 1) ≈

0.4424933339. See [9] A246644 for the decimal expansion of s.

The analytic proof is obtained from looking at the right triangle △(C ′, F, J ′) with angle τ := ∠(F J ′, C ′).
This angle can be computed by identifying the trapezoid angle ∠(C ′, J ′, J) with the one ∠(J ′, J C) =

β +
π

2
. Then β + τ + (β +

π

2
) = π, i.e., τ =

π

2
− 2β. Now sin τ = ((1 − s) − 1

3
)/(

1

3
) = 2 − 3 s,

which is also sin
(π

2
− 2β

)
= 2 cos2 β − 1. But cos β =

1√
1 + s2

from tan β = s, and thus

sin τ =
1 − s2

1 + s2
. Equating this with 2 − 3 s leads to the claimed equation for s, hence the one for the ra-

tio x. �

We list more analytic data for Figure 16 with s := C ′, B, b := C ′,M = M,C and a := J ′, N = N,J :

tan α =
1

2
, tan β = s/1 = s, sin β =

s

2 b
=

1

3
/(2 a) =

1

6 a
. tan τ =

1 − s2

2 s
(from the second

formula for sin τ given above). J ′ :

[
3 s − 1

3 s
,
2

3

]
from F, J ′ = 1 − J ′, G = 1 − 1

3 tan β
= 1 −

1

3 s
≈ 0.2466929834. M :

[
1

2
,

s

2

]
, N :

[
6 s − 1

6 s
,

1

2

]
=

[
1 + s − s2

2
,

1

2

]
. P :

[
s2 − 1

s − 2
,
1

2

s2 − 1

s − 2

]
,

Q :

[
1 + 2 s − s2

2 (1 + s)
,

1 + s2

2 (1 + s

]
. S :

[
2

3

1 + 3 s

1 + 2 s
,

1

3

1 + 3 s

1 + 2 s

]
, T :

[
1

3

2 − 3 s

1 − s
,

1

3 (1 − s)

]
,

U :

[
2 s

1 + 2 s
,

s

1 + 2 s

]
, Y :

[
1 − s2

2
, 0

]
, Z :

[
1 − s2

2
+ s, 1

]
. The equation for the crease Y,Z is

y =
1

s

(
x − 1 − s2

2

)
.

Standard version to find s with s3 − s2 + s − 1

3
= 0

The cubic equation for s = C ′, B can also be solved geometrically in the standard fashion, similar to
finding x in the heptagon case treated above. Here the sign pattern is +,−,+,−, which means that
the 90o chain pattern is l, l, l. This leads to the line chain B, C, D, E, A shown in Figure 17 which
is identical with B, C, D, A, F in Figure 16 (the scale of both figures is different). In this case the
y-axis is parallel to D,C such that the x-coordinates of B becomes −2 (for R = 1 length unit), and
the x-axis is parallel to E,D (in Figure 16 this is A,D) such that the y-coordinate of B becomes

−1

3
− 1 = −4

3
, using E,A =

1

3
= E,A′′. Here the F in the standard geometrical construction

(not to be confused with F in Figure 16) with C,F = s is shown in Figure 17 . That is the [x, y]

coordinates of this F = PB from the origami construction are

[
−1,−

(
4

3
− s

)]
. B → B′ on the

y-axis with coordinates B′ : [0, −4

3
+ 2 s] (from the continuation of the line element B,PB to the

y−axis). A → A′ with coordinates A′:

[
−2

(
1 − 1

3 s

)
, 0

]
because A,A′ is parallel to B,B′ with slope

tan β = s. The two midpoints defining the crease are F = PB and PA :
[
−2 (1 − 1

6 s), −1

3

]
. The

slope of the crease X,Y , shown in Figure 17, is tan α = − 1

tan β
= −1

s
. The equation for the crease is
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y = −1

s

(
x +

s2 + 6 s − 1

3 s

)
. The data for the trapezoid A, B, B′, A′ is: a := A,PA = PA,A′ =

√
1 + s2

3 s
≈ 0.8237612353, and b := B,PB = PB,B′ =

√
1 + s2 ≈ 1.093526566. A,B = A,A′′ =

2

3
.

Completing the task of doubling a given cube

Up to now we have only found the doubling of the cube with side length s. In Figure 16 we had
21/3 C ′, B = C ′, A, i.e., 2 s3 = (1 − s)3. In Figure 17 we had 21/3 PB,C = D,PB. For the decimal
expansion of 21/3 see [9] A002580. But the task is to double a cube with given side length L. If one takes

as length of the side of the square R =
L

s
, then L = B,C ′ and M = C ′, A = 21/3 L is the side length

for the doubled cube. However, we first have to find via origami 1/s ≈ 2.259921051. But this can be
achieved by considering the parallel to C,C ′ through A. This parallel will hit the continuation of B,C

on some point C ′′ with coordinates

[
1

s
, 0

]
(origin at B, x-axis along B,C and y-axis along B,A). See

Figure 18. This means that if we take the length scale R = L the searched length M = 21/3 L for the

doubled cube is given by C,C ′′ which is

(
1 − 1

s

)
L. It is easy to find the parallel g2 in Figure 18 by

origami. First find g1, the crease perpendicular to crease g through the point A (this can be done, as
explained in the introductory remarks; axiom 4 or IV). Then find g2 as the crease perpendicular to g1
through point A. Finally the square C,C ′′,D′′, A′′ can be completed.

The coordinates of some points are: C : [L, 0], C ′ : [0, s L], C ′′ :

[
L

s
= (1 + 21/3)L), 0

]
, V : [−s L, 0],

W :

[
−s (1 − s)

1 + s2
, L

s (1 + s)

1 + s2
L

]
, D′′ :

[
L

s
, 21/3 L

]
.

Figure 18: Doubling the cube: finding M = 21/3 L

Application 3: Trisection of an angle

This is another classical problem not solvable with ruler and compass but with origami. See [3], [5], [8].
We first discuss the origami shown in [5] Fig. 1, pp. 204-5, and also in [8]. See the present Figure 19,
where the angle is α = ∠(P,B,C). Because the origami solution will be based on a cubic equation with
three real roots, the question of the meaning of the other two roots arises. The answer can be found
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in [5]: the origami prescription for trisecting a given angle is not unique and the other two solutions
correspond to trisecting the angle π − α and π + α. This will be treated at the end. of this section.

In the square (A, B, C, D) the point P on A,D defines the angle α = ∠PBC to be trisected and the
crease g1. Then an arbitrary horizontal crease g2 defining points E and F with distance 2h < 1 from
the base line B,C is folded. The dashed crease g3 bringing B onto E and C onto F has then a distance h
from the base line. The crucial folding g is then to bring point E onto E′ on crease g1 and simultaneously
point B onto B′ on crease g3. This will also bring point G to G′. The continuation of B,B′ will intersect
the line D,C at a point V , defining crease g4 .The intersection point of crease g with crease g3 is called
Y . This defines the blue crease g5 with line segment B,Y crossing the continuation of the top line A,D
at a point Q (depending on the choice of P and h this point Q could also lie on A,D, e.g., for α = 70o

and h = 0.2). The claim is now that the blue crease g5 and the crease g4 trisect the angle α with σ = α
3
.

One also shows that G′ lies on the blue crease g5.

The following analytic data is given for a coordinate system with origin at B, the x−axis along B,C
and the y-axis along B,A. The input quantities are R, the length of the square in some length unit,

A,P = x =
1

tan α
, with input α in radians, and B, G = hR :

β = π
2
− σ, B, C = R, E : [0, 2h R], G : [0, h R], F : [R, 2hR], H : [R,h R], B′ :

[
h

tan σ
R, hR

]
,

E′ :

[
h

cos α

sin σ
R, h

sin α

sin σ
R

]
, G′ :

[
1 + cos (2σ)

tan (2σ)
hR, (1 + cos(2σ))hR

]
, Y :

[
h

tan(2σ)
R, hR

]
,

X :

[
h

2 tan σ
R,

h

2
R

]
, L :

[
0,

h

sin(2σ) tan σ
R

]
, J :

[
h

sin(2σ)
R, 0

]
,

K :

[
sin(2σ)

(Ly/R − h)

2
R, (h + sin2 σ (Ly/R − h)R

]
,

Z :

[
sin(2σ)

(Ly/R − 2h)

2
R, (2h + sin2 σ (Ly/R − 2h)R

]
, Q :

[
1

tan(2σ)
R, R

]
, V : [R, R tan σ].

The equations for the creases are (x is here the abscissa): g1 : y = tan(α)x, g2 : y = 2h, g3 : y = h,

g : y = tan
(π

2
+ σ

) (
x − h

sin(2σ)

)
, g4 : y = tan(σ)x, g5 : y = tan(2σ)x.

Some lengths in the trapezoid (B, B′, E′, E) are: E′, G′ = E,G = hR = G′, B′ = G,B, b := B,X =

X,B′ =
h

2 sin σ
R, e := E,Z = Z,E′ =

sin α − 2 sin σ

2 sin2 σ
hR, B,Y =

h

sin (2σ)
R.

Now to the proof of the trisection of α = ∠(P,B,C). Name the three angles, called σ in Figures 19 and
20, as follows. τ := ∠(X,B, J), σ := ∠(Y,B,X, ) and η := ∠(E′, B,G′) = α − (τ + σ). We want to
show that τ = σ and η = σ which implies α = 3σ.
Consider the angle ε := ∠(G′, Y,B′). (Note that at this stage it is not yet clear that ε = ∠(Y,B, J) which
would immediately show that σ = τ . This is because it is not yet clear that the line Y,G′ (obtained from
folding along g where Y is the intersection of g with G,H) really continues to point B. For this one has to
prove σ = τ .) Because ∠(G,Y,L) = ∠(B, J,L) =: β = π

2
− τ , and also ∠(K,Y,G′) = ∠(K,Y,G) = β

from the folding along g, we have π = 2β + ε, or ε = π − 2β = 2 τ . The proof that σ = τ is done

by starting with σ = ∠(X,B′, Y ) from the folding along g. Also ∠(Y,B′, G′) =
π

2
− ε because of the

folding along g the right angle ∠(Y,G,E) appears also as ∠(Y,G′, E′) and E,G′ and B′ are on a straight

line, like E,G and B. Because ∠(X,B′, Y ) =
π

2
− τ we have from the right angle ∠(J,B′, E′) also

∠(J,B′, G′) = π
2

= τ + σ + (π
2
− ε) i.e., 0 = τ + σ − 2 τ or σ = τ . This proves that the point G′

lies on the straight line connecting B and Y , defining the crease g5. Finally, η = σ because the blue line
B,G′ is the height, let its length be k, in △(B,B′, E′) and tan σ = h

k = tan η (because G′, B′ = G,B =
= G′, E′ = h from folding along g). This implies that this triangle is isosceles, i.e., B,E′ = B,B′.
�
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Figure 19: Trisecting an angle Figure 20: Trisecting an angle
α = 60o and h = 0.2 α = 55o and h = 0.25

As mentioned above, in [5] the cubic equation relevant for this origami trisection of an angle α is identified
and the question of the other two roots is answered. The crucial prescription to fold B → B′ and, at the
same time E → E′, has three solutions, corresponding to the three real solutions of the cubic equation
governing this folding. In Figure 21 the origami for the trisection of the angle α is repeated but now
X1 := G,B′

x has been shown as a fat line segment (in blue). If one uses the results from above for

this case one will find that the dimensionless X̂1 :=
X1

R
=

G,B′

R

h

tan α
3

satisfies the following cubic

equation.

X̂3 − 3h

tan α
X̂2 − 3h2 X̂ +

h3

tan α
= 0 .

The discriminant of this cubic is Disc = −h6 (1 + tan(α)2)2

tan(α)4
, hence negative, therefore there are three

different real solutions. The other two solutions X2 and X3 are shown in the Figures 22 and 23,
respectively.
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Figure 21: Solution X1: Trisecting an angle α
α = 60o and h = .2

Figure 22: X2, Trisecting an angle π − α Trisecting an angle π + α
1800 − 60o = 120o, h = .3 1800 + 60o = 240o, h = .2

Finally, we list some analytic data for the three trisection Figures. The data for Figure 21 has been given
already. The origin is taken at B with the x−axis along B,C and the y-axis along B,A. Note that in the
origami for the general cubic equation treated above the y′ axis was along the crease g1 and the origin

was there at O :

[
hR

tan α
, hR

]
. σ =

α

3
, as used also above .

Figure 21: X̂1 =
X1

R
=

G,B′

R
(≈ 0.5495 for R = 1,α = 60o,h = .2)

0 <
h

X̂1
= tan σ =

e′y − 2h

e′x
=

sin α − 2 sin σ

cos α
.
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In the first equation the mapping B → B′ and in the second one E → E′ has been considered. Thus

X̂1 =
h

tan σ
, which is in the Figure 21 shown for R = 1, α = 60o and h = .2 which has the above

given value.

Figure 22: X̂2 =
X2

R
= −G,B′

R
(≈ −.23835 for R = 1,α = 60o,h = .3)

β =
π − α

3
, B,G = hR = G,E, tan β = tan

(
π − α

3

)
=

h

|X̂2|
=

2hR − e′y
e′x

,

B,B′ =: 2 bR =
hR

sin β
, E,E′ =: 2 eR =

e′x
cos β

, B′ :

[
− hR

tan β
, hR

]
,

E′ :

[
2hR

cos α cos β

sin (α + β)
, 2hR

sin α cos β

sin (α + β)

]
, J :

[
− hR

sin(2β)
, 0

]
.

The equations for the creases are: g : y =
1

tan β
, (x +

hR

sin(2β)
), g1 : y = (tan α)x,

g4 : y = (tan β)x, g5 : y = − tan(2β)x.

Figure 23: X̂3 =
X3

R
=

G,B′

R
(≈ +0.0353 for R = 1,α = 60o,h = .2)

β =
π + α

3
, γ =

π

2
+ β, B,G = hR = G,E, tan β = tan

(
π + α

3

)
=

h

X̂3
=

2hR + |e′y|
|e′x|

,

B,B′ =: 2 bR =
hR

sin β
, E,E′ =: 2 eR =

|e′x|
cos β

, B′ :

[
hR

tan β
, hR

]
,

E′ :

[
2hR

cos α cos β

sin (β − α)
, 2hR

sin α cos β

sin (β + α)

]
, J :

[
hR

sin(2β)
, 0

]
.

The equations for the creases are: g : y = − 1

tan β

(
x +

hR

sin(2β)

)
, g1 : y = (tan α)x,

g4 : y = −(tan(β)x, g5 : y = − tan(β − α)x.
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