A007969: Proof of a Conjecture Related to the 1-Happy Numbers

Wolfdieter L ang ${ }^{1}$

Abstract

Conway's 1-happy numbers $\underline{\text { A007969 }}$ are proved to coincide with the discriminants d of the Pell equation $x^{2}-d y^{2}=+1$ for which the positive fundamental solution $\left(x_{0}, y_{0}\right)$ has even y_{0}.

Conway [1] proposed three sequences, obtained from three types of sequences of couples called 0 -happy couples (A,A), 1-happy couples (B, C) and 2-happy couples (D, E). By taking products of each couple one obtains three sequences that are given in OEIS [3] A000290 (the squares), A007969 and $\underline{\text { A } 007970}$, respectively. It is stated as a theorem, with the proof left to the reader, that each positive integer appears in exactly one of these three sequences. Here we consider the numbers $d=B C$ of the 1-happy couples. They are defined if the following indefinite binary quadratic form is soluble with positive integers B and C, where $B \geq 1$ and $C \geq 2$, and (without loss of generality) positive integers S and R (obviously $S=0$ is excluded, and $R \neq 0$ because of $C>1$).

$$
\begin{equation*}
C S^{2}-B R^{2}=+1 \tag{1}
\end{equation*}
$$

The discriminant of this quadratic form is $D=4 C B=4 d$. Obviously $\operatorname{gcd}(C, B)=1=\operatorname{gcd}(S, R)=$ $1=\operatorname{gcd}(C, R)=1=\operatorname{gcd}(S, B)$. The case of d a square is excluded because $B=C \neq 1$ contradicts $\operatorname{gcd}(C, B)=1$, and if $C=c^{2}$ and $B=b^{2}$ with $c \neq b$ and $b>1$ then $c S=1$ and $b R=0$ is the only solution, which is excluded because $c \geq 2$ from $C \geq 2$ and also from $R>0$. Therefore, $D=4 d=4 B C$ is not a square. The B and C numbers are found under A191854, A191855, respectively. We will prove that the sequence $\underline{A 007969}$ consists of those positive integers $D \equiv 0(\bmod 4)$, D not a square, such that the (generalized) Pell equation

$$
\begin{equation*}
v^{2}-D w^{2}=+4 \tag{2}
\end{equation*}
$$

has only improper solutions. (Improper solutions exit for each D not a square from the existing proper solutions of the standard Pell equation $x^{2}-D y^{2}=+1$, see e.g., [2] Theorem 104, p. 197-198.) This indefinite binary quadratic form has discriminant $4 D$.
This claim is equivalent to the statement that the sequence $\underline{\text { A007969 coincides with all positive integers }}$ d, d not a square, such that the Pell equation

$$
\begin{equation*}
x^{2}-d y^{2}=1 \tag{3}
\end{equation*}
$$

has positive fundamental solution $\left(x_{0}, y_{0}\right)$ with even $y_{0}, y_{0}=2 Y_{0}$. The proof uses the fact that v has to be even, $v=2 x$ and that $D=4 d$, d not a square. Then put $w=y$. Of course, there are only proper solutions of this Pell equation: $\operatorname{gcd}(x, y)=1$. But $\operatorname{gcd}(v, w)=\operatorname{gcd}(2 x, y)=g>1$ for all solutions because eq. (2) has to have only improper solutions. Now y can not be odd because then $\operatorname{gcd}(2 x, y)$ would be $\operatorname{gcd}(x, y)$ which is 1 not $g>1$. Therefore $y=2 Y$. Because any solution of eq. (3) can be obtained from the positive fundamental solution $\left(x_{0}, y_{0}\right)$, the one with the smallest positive y value, and

[^0]all solutions will have even y if y_{0} is even, (see, e.g., [2], Theorem 104, eq. (8), p. 198) the equivalence of the statements in connection with eqs. (2) and (3) is proved.
This equation, in turn, can be written as
\[

$$
\begin{equation*}
X_{0}\left(X_{0}+1\right)=d Y_{0}^{2} \tag{4}
\end{equation*}
$$

\]

where $x_{0}=2 X_{0}+1$. Note that the above $g c d$ condition is satisfied because $g \geq 2$.
This follows because in eq. (3) x has to be odd, $x=2 X=1$, because $y=2 Y$. Then $x_{0}^{2}=8 T\left(X_{0}\right)+1$,
 A002378) after division by 4 . Remember for later use that $\operatorname{gcd}(n, n+1)=1$ for integers n.

Proposition:

i) Any solution of eq. (4) leads to a solution of eq.(1) with $B=\operatorname{gcd}\left(d, X_{0}\right), C=\frac{d}{B}, R=R_{0}=$ $\operatorname{gcd}\left(X_{0}, Y_{0}\right)$, and $S=S_{0}=\frac{Y}{R_{0}}$. This will provide the positive fundamental (proper) solution of eq. (1). ii) The positive fundamental solution (R_{0}, S_{0}) of eq. (1) leads to the solution of eq. (4) with $d=C B$, $X_{0}=B R_{0}^{2}$ and $Y_{0}=R_{0} S_{0}$. This leads to the positive proper fundamental solution $\left(2 X_{0}+1,2 Y_{0}\right)$ of eq. (3).
The $x 0, X_{0}$ and Y_{0} numbers for d from A007969 are found under A262024, A262025 and A261250, respectively. The R_{0} and S_{0} numbers are found under A263006 and A263007. See also the Table.

Proof:

i) Given the fundamental solution d, X_{0} and Y_{0} of eq. (4) with d not a square, we note for a later redefinition the scaling freedom in $d=C B$ and $Y_{0}=R_{0} S_{0}$. Instead of C, B and R_{0}, S_{0} one can take $B(n)=\frac{B}{n}, C(n)=n C$ and $R_{0}(m)=\frac{R_{0}}{m}, S_{0}(m)=m S$ with arbitrary positive integers n and m to be determined later.
We define $B:=\operatorname{gcd}\left(d, X_{0}\right) \geq 1$. Then $C:=\frac{d}{B}$ is a positive integer not equal to B. Define $R_{0}:=$ $\operatorname{gcd}\left(X_{0}, Y_{0}\right) \geq 1$. Then $S_{0}:=\frac{Y_{0}}{R_{0}}$ is a positive integer. By definition B and R_{0} divide X_{0}. Because $\operatorname{gcd}\left(X_{0}, X_{0}+1\right)=1$ (see the remark above), B and R_{0} cannot divide $X_{0}+1$. From the r.h.s. (right-hand side) of eq. (4) which is $C B\left(S_{0} R_{0}\right)^{2}$ it follows therefore that $X_{0}=B R_{0}^{2} a$ with some positive integer a, and then $a\left(X_{0}+1\right)=C S_{0}^{2}$. The scaling freedom allows us to replace C, B and R_{0}, S_{0} by their n and m dependent counterparts, leading to $X_{0}=\frac{a}{n m^{2}} B R_{0}^{2}$ and $X_{0}+1=\frac{n m^{2}}{a} C S_{0}^{2}$. Choosing $n m^{2}=a$, i.e., $n=n(a)=\operatorname{sqfp}(a)=\underline{\operatorname{A007913}}(a)$ (the squarefree part of $a)$ and $m=m(a)=\sqrt{\frac{a}{n(a)}}=\underline{\operatorname{A000188}}(a)$, we obtain

$$
\begin{equation*}
X_{0}=B R_{0}^{2}, \quad \text { and } \quad X_{0}+1=C S_{0}^{2} . \tag{5}
\end{equation*}
$$

Elimination of X_{0} leads to eq. (1) as $B R_{0}^{2}+1=C S_{0}^{2}$.
Now assume that there is a solution $\left(R_{*}, S_{*}\right)$ with positive but smaller values than $\left(R_{0}, S_{0}\right)$ then this would imply from the definition of R that there is a smaller positive solution than X_{0} and Y_{0} of eq. (4); but these correspond to the smallest positive solution of (x_{0}, y_{0}) of eq. (3). Therefore, one will automatically find the smallest positive solution of eq. (1),
ii) Let (R_{0}, S_{0}) be the smallest positive solution of eq. (1), and put $d=C B$ with positive B and C, $C \geq 2$. Then d is not a square as shown above after eq. (1). Define $X_{0}:=B R_{0}^{2}$ and $Y_{0}:=R_{0} S_{0}$. Then eq. (3) follows from eq. (1) for R_{0} and S_{0} because B and R_{0} are non-vanishing. The solution ($x_{0}:=2 X_{0}+1, y_{0}:=2 Y_{0}$) of eq. (3) will then be the positive fundamental solution, because otherwise there would be smaller positive R_{0} and S_{0} values but they have been chosen minimal.

Note: If we take Conway's theorem then the above proof of the 1 -happy couple product numbers $\underline{\text { A } 007969}$, together with the square d numbers $\underline{000290}$, lead to the statement that the 2 -happy couple
product numbers $\underline{\text { A007970 }}$ are those d values for which the Pell eq. (3) has positive fundamental solutions $\left(x_{0}, y_{0}\right)$ with odd y_{0}. This should also be proved independently of the theorem.

References

[1] J. H. Conway, On Happy Factorizations, https://cs.uwaterloo.ca/journals/JIS/happy.html, Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.1.
[2] T. Nagell, Introduction to Number Theory, 1964, Chelsea Publishing Company, New York.
[3] The On-Line Encyclopedia of Integer Sequences, https://oeis.org/.

AMS MSC numbers: 11A05, 11D09.
Keywords: Tripartition of the positive integers, Pell equation, pronic numbers.

Concerned with OEIS sequences A000290, A007969, A007970, A000217, A002378, A191854, A191855, $\underline{\mathrm{A} 007913}, \underline{\mathrm{~A} 000188}, \underline{\mathrm{~A} 261250}, \underline{\mathrm{~A} 262024}$ and A262025, A263006 and A263007.

TAB. : d, $\mathbf{X}_{\mathbf{0}}, \mathbf{Y}_{\mathbf{0}}, \mathbf{C}, \mathbf{B}, \mathrm{S}_{\mathbf{0}}, \mathbf{R}_{\mathbf{0}}$

\mathbf{d}	$\mathbf{X}_{\mathbf{0}}$	$\mathbf{Y}_{\mathbf{0}}$	\mathbf{C}	\mathbf{B}	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{R}_{\mathbf{0}}$
2	1	1				
5	4	2	1	1	1	
6	2	1	5	1	2	
10	9	3	2	1	1	
12	3	1	10	1	1	3
13	324	90	4	3	1	1
14	7	2	1	5	18	
17	16	4	2	2	1	
18	8	2	17	1	1	4
20	4	1	9	2	1	2
21	27	6	5	4	1	1
22	98	21	7	3	2	3
26	25	5	11	2	3	7
28	63	12	26	1	1	5
29	4900	910	4	7	4	3
30	5	1	29	1	13	70
33	11	2	6	5	1	1
34	17	3	3	11	2	1
37	36	6	2	17	3	1
38	18	3	37	1	1	6
39	12	2	19	2	1	3
41	1024	160	13	3	1	2
42	6	1	41	1	5	32
44	99	15	7	6	1	1
45	80	12	4	11	5	3
46	12167	1794	9	5	3	4
50	49	7	23	78	23	
52	324	45	50	1	1	7
53	33124	4550	33	4	5	9
54	242	33	1	25	182	
55	44	6	27	2	3	11
56	7	1	5	11	3	2
57	75	10	8	7	1	1
58	9801	1287	19	3	2	5
60	15	2	58	1	13	99
61	883159524	113076990	61	15	2	1
62	31	4	3805	29718		
65	64	8	2	31	4	1
66	32	4	65	1	1	8
68	16	2	33	2	1	4
69	3887	468	17	4	1	2
70	125	15	3	23	36	13
72	8	14	5	3	5	
\vdots				8	1	1

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www-itp.particle.uni-karlsruhe.de/~wl

