<u>A007969</u>: Proof of a Conjecture Related to the 1-Happy Numbers

Wolfdieter L a n g 1

Abstract

Conway's 1-happy numbers <u>A007969</u> are proved to coincide with the discriminants d of the Pell equation $x^2 - dy^2 = +1$ for which the positive fundamental solution (x_0, y_0) has even y_0 .

Conway [1] proposed three sequences, obtained from three types of sequences of couples called 0-happy couples (A,A), 1-happy couples (B, C) and 2-happy couples (D, E). By taking products of each couple one obtains three sequences that are given in OEIS [3] <u>A000290</u> (the squares), <u>A007969</u> and <u>A007970</u>, respectively. It is stated as a theorem, with the proof left to the reader, that each positive integer appears in exactly one of these three sequences. Here we consider the numbers d = B C of the 1-happy couples. They are defined if the following indefinite binary quadratic form is soluble with positive integers B and C, where $B \ge 1$ and $C \ge 2$, and (without loss of generality) positive integers S and R (obviously S = 0 is excluded, and $R \ne 0$ because of C > 1).

$$CS^2 - BR^2 = +1, (1)$$

The discriminant of this quadratic form is D = 4CB = 4d. Obviously gcd(C, B) = 1 = gcd(S, R) = 1 = gcd(S, R) = 1 = gcd(S, B). The case of d a square is excluded because $B = C \neq 1$ contradicts gcd(C, B) = 1, and if $C = c^2$ and $B = b^2$ with $c \neq b$ and b > 1 then cS = 1 and bR = 0 is the only solution, which is excluded because $c \geq 2$ from $C \geq 2$ and also from R > 0. Therefore, D = 4d = 4BC is not a square. The B and C numbers are found under A191854, A191855, respectively. We will prove that the sequence A007969 consists of those positive integers $D \equiv 0 \pmod{4}$, D not a square, such that the (generalized) Pell equation

$$v^2 - Dw^2 = +4 (2)$$

has only improper solutions. (Improper solutions exit for each D not a square from the existing proper solutions of the standard *Pell* equation $x^2 - Dy^2 = +1$, see *e.g.*, [2] Theorem 104, p. 197 - 198.) This indefinite binary quadratic form has discriminant 4D.

This claim is equivalent to the statement that the sequence <u>A007969</u> coincides with all positive integers d, d not a square, such that the *Pell* equation

$$x^2 - dy^2 = 1 (3)$$

has positive fundamental solution (x_0, y_0) with even $y_0, y_0 = 2Y_0$. The proof uses the fact that v has to be even, v = 2x and that D = 4d, d not a square. Then put w = y. Of course, there are only proper solutions of this *Pell* equation: gcd(x, y) = 1. But gcd(v, w) = gcd(2x, y) = g > 1 for all solutions because eq. (2) has to have only improper solutions. Now y can not be odd because then gcd(2x, y)would be gcd(x, y) which is 1 not g > 1. Therefore y = 2Y. Because any solution of eq. (3) can be obtained from the positive fundamental solution (x_0, y_0) , the one with the smallest positive y value, and

¹ wolfdieter.lang@partner.kit.edu, http://www-itp.particle.uni-karlsruhe.de/~wl

all solutions will have even y if y_0 is even, (see, e.g., [2], Theorem 104, eq. (8), p. 198) the equivalence of the statements in connection with eqs. (2) and (3) is proved.

This equation, in turn, can be written as

$$X_0 (X_0 + 1) = dY_0^2 , (4)$$

where $x_0 = 2X_0 + 1$. Note that the above gcd condition is satisfied because $g \ge 2$.

This follows because in eq. (3) x has to be odd, x = 2X = 1, because y = 2Y. Then $x_0^2 = 8T(X_0) + 1$, with the triangular numbers $T = \underline{A000217}$. This produces the (even) pronic number $X_0(X_0 + 1)$ (see $\underline{A002378}$) after division by 4. Remember for later use that gcd(n, n + 1) = 1 for integers n.

Proposition:

i) Any solution of eq. (4) leads to a solution of eq.(1) with $B = \text{gcd}(d, X_0)$, $C = \frac{d}{B}$, $R = R_0 = \text{gcd}(X_0, Y_0)$, and $S = S_0 = \frac{Y}{R_0}$. This will provide the positive fundamental (proper) solution of eq. (1). ii) The positive fundamental solution (R_0, S_0) of eq. (1) leads to the solution of eq. (4) with d = CB, $X_0 = BR_0^2$ and $Y_0 = R_0 S_0$. This leads to the positive proper fundamental solution $(2X_0 + 1, 2Y_0)$ of eq. (3).

The x0, X_0 and Y_0 numbers for d from <u>A007969</u> are found under <u>A262024</u>, <u>A262025</u> and <u>A261250</u>, respectively. The R_0 and S_0 numbers are found under <u>A263006</u> and <u>A263007</u>. See also the Table.

Proof:

i) Given the fundamental solution d, X_0 and Y_0 of eq. (4) with d not a square, we note for a later redefinition the scaling freedom in d = CB and $Y_0 = R_0 S_0$. Instead of C, B and R_0 , S_0 one can take $B(n) = \frac{B}{n}$, C(n) = nC and $R_0(m) = \frac{R_0}{m}$, $S_0(m) = mS$ with arbitrary positive integers n and m to be determined later.

We define $B := \gcd(d, X_0) \ge 1$. Then $C := \frac{d}{B}$ is a positive integer not equal to B. Define $R_0 := \gcd(X_0, Y_0) \ge 1$. Then $S_0 := \frac{Y_0}{R_0}$ is a positive integer. By definition B and R_0 divide X_0 . Because $\gcd(X_0, X_0 + 1) = 1$ (see the remark above), B and R_0 cannot divide $X_0 + 1$. From the *r.h.s.* (right-hand side) of eq. (4) which is $C B (S_0 R_0)^2$ it follows therefore that $X_0 = B R_0^2 a$ with some positive integer a, and then $a (X_0 + 1) = C S_0^2$. The scaling freedom allows us to replace C, B and R_0 , S_0 by their n and m-dependent counterparts, leading to $X_0 = \frac{a}{nm^2} B R_0^2$ and $X_0 + 1 = \frac{nm^2}{a} C S_0^2$. Choosing $nm^2 = a$, *i.e.*, $n = n(a) = sqfp(a) = \underline{A007913}(a)$ (the squarefree part of a) and $m = m(a) = \sqrt{\frac{a}{n(a)}} = \underline{A000188}(a)$, we obtain

$$X_0 = B R_0^2$$
, and $X_0 + 1 = C S_0^2$. (5)

Elimination of X_0 leads to eq. (1) as $BR_0^2 + 1 = CS_0^2$.

Now assume that there is a solution (R_*, S_*) with positive but smaller values than (R_0, S_0) then this would imply from the definition of R that there is a smaller positive solution than X_0 and Y_0 of eq. (4); but these correspond to the smallest positive solution of (x_0, y_0) of eq. (3). Therefore, one will automatically find the smallest positive solution of eq. (1),

ii) Let (R_0, S_0) be the smallest positive solution of eq. (1), and put d = CB with positive B and C, $C \geq 2$. Then d is not a square as shown above after eq. (1). Define $X_0 := BR_0^2$ and $Y_0 := R_0 S_0$. Then eq. (3) follows from eq. (1) for R_0 and S_0 because B and R_0 are non-vanishing. The solution $(x_0 := 2X_0 + 1, y_0 := 2Y_0)$ of eq. (3) will then be the positive fundamental solution, because otherwise there would be smaller positive R_0 and S_0 values but they have been chosen minimal.

Note: If we take *Conway*'s theorem then the above proof of the 1-happy couple product numbers <u>A007969</u>, together with the square d numbers <u>A000290</u>, lead to the statement that the 2-happy couple

product numbers <u>A007970</u> are those d values for which the Pell eq. (3) has positive fundamental solutions (x_0, y_0) with odd y_0 . This should also be proved independently of the theorem.

References

- [1] J. H. Conway, On Happy Factorizations, https://cs.uwaterloo.ca/journals/JIS/happy.html, Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.1.
- [2] T. Nagell, Introduction to Number Theory, 1964, Chelsea Publishing Company, New York.
- [3] The On-Line Encyclopedia of Integer Sequences, https://oeis.org/.

AMS MSC numbers: 11A05, 11D09.

Keywords: Tripartition of the positive integers, Pell equation, pronic numbers.

Concerned with OEIS sequences <u>A000290</u>, <u>A007969</u>, <u>A007970</u>, <u>A000217</u>, <u>A002378</u>, <u>A191854</u>, <u>A191855</u>, <u>A007913</u>, <u>A000188</u>, <u>A261250</u>, <u>A262024</u> and <u>A262025</u>, <u>A263006</u> and <u>A263007</u>.

 $\mathbf{TAB.:}\ \mathbf{d},\ \mathbf{X_0},\ \mathbf{Y_0},\ \mathbf{C},\ \mathbf{B},\ \mathbf{S_0},\ \mathbf{R_0}$

d	X ₀	Y ₀	С	в	\mathbf{S}_{0}	\mathbf{R}_{0}
2	1	1	9	1	1	1
$\frac{2}{5}$	4	$\frac{1}{2}$	$\begin{array}{c} 2\\ 5\end{array}$	1	1	2
6	4 2	2 1	3	2	1	1
10	9	3	10	1	1	3
10 12	3	5 1	4	3	1	1
12 13	3 324	90	13	1	5	18
14	524 7	2	$\frac{10}{2}$	7	$\frac{5}{2}$	10
17	16	4	17^{2}	1	$\frac{2}{1}$	4
18	8	2	9	2	1	2
$\frac{10}{20}$	4	1	$\frac{9}{5}$	4	1	1
$\frac{20}{21}$	4 27	6	$\frac{5}{7}$	3	2	3
$\frac{21}{22}$	21 98	0 21	11	$\frac{3}{2}$	$\frac{2}{3}$	3 7
$\frac{22}{26}$	$\frac{98}{25}$	5^{21}	$\frac{11}{26}$	$\frac{2}{1}$	3 1	5
$\frac{20}{28}$	23 63	$\frac{5}{12}$	4	7	4	3
$\frac{20}{29}$	03 4900	12 910	4 29	1	4 13	3 70
$\frac{29}{30}$	4900 5	910 1	6^{29}	$\frac{1}{5}$	15 1	10
$\frac{30}{33}$	5 11	$\frac{1}{2}$	3	5 11	$\frac{1}{2}$	1
$\frac{33}{34}$	11 17	2 3	$\frac{3}{2}$	$11 \\ 17$	2 3	1
$\frac{54}{37}$		5 6	$\frac{2}{37}$	1	3 1	6
$\frac{37}{38}$	36 18	0 3	57 19	$\frac{1}{2}$	1	0 3
$\frac{30}{39}$	18 12	3 2	$19 \\ 13$	$\frac{2}{3}$	1	$\frac{3}{2}$
			41	3 1	1 5	$\frac{2}{3}2$
41	1024	160 1		$1 \\ 6$	$\frac{5}{1}$	52 1
42 44	6		$\begin{bmatrix} 7\\ 4 \end{bmatrix}$		$\frac{1}{5}$	1 3
$44 \\ 45$	99 80	15 12	4 9	11 5	5 3	3 4
	12167	$12 \\ 1794$	$\frac{9}{2}$	$\frac{5}{23}$		$\frac{4}{23}$
46	12107 49	1794 7	$\frac{2}{50}$	$\frac{25}{1}$	78 1	
50 50	$\frac{49}{324}$	45	13	4	$\frac{1}{5}$	79
52 52						9 182
53 54	33124	4550	53	1	25 2	
54 55	242 44	33 6	27 5	2 11	3 3	11 2
55 56	$\frac{44}{7}$	0 1	$\frac{5}{8}$	$\frac{11}{7}$	3 1	2 1
56 57	7 75	$1 \\ 10$	8 19	7 3	$\frac{1}{2}$	$\frac{1}{5}$
57 58	75 9801		19 58	3 1	2 13	э 99
58 60		1287				
60 61	15	2	4	15	$\frac{2}{3805}$	1 29718
61 62	883159524	113076990	61	1 91		
62 65	31 64	4	2	31	4	1
65 66	64 22	8 4	$\begin{array}{c} 65\\ 33 \end{array}$	1	1 1	8
66 68	32 16	$\frac{4}{2}$	$\frac{33}{17}$	$\begin{array}{c} 2\\ 4 \end{array}$	1 1	$\frac{4}{2}$
68 69	16 3887		$\frac{1}{3}$			2 13
	3887 125	468 15		23 5	36 2	
70 72	125	15 1	14		3	5
72	8	1	9	8	1	1
:						