A007970: Proof of a Theorem Related to the Happy Number Factorization

Wolfdieter L a $\mathrm{ng}{ }^{1}$

Abstract

Conway's product of 2-happy number couples, $\underline{\text { A007970 }}$, are proved to coincide with the values d of the Pell equation $x^{2}-d y^{2}=+1$ for which the positive fundamental solution $\left(x_{0}, y_{0}\right)$ has odd y_{0}. Together with the proof that the products of the 1-happy number couples, A007969, coincide with the d values which have even positive fundamental solution y_{0}, found as a W. Lang link in A007969, this is Conway's theorem on a tripartition of the positive integers including the square numbers A000290.

Conway [1] proposed three sequences, obtained from three types of sequences of couples called 0 -happy couples (A, A), 1-happy couples (B, C) and 2-happy couples (D, E). By taking products of each couple one obtains three sequences that are given in OEIS [3] A000290 (the squares), A007969 and $\underline{\text { A007970 }}$, respectively. It is stated as a theorem, with the proof left to the reader, that each positive integer appears in exactly one of these three sequences. Here we consider the numbers $d=D E$ coming from the 2-happy couples. These numbers are defined if the following indefinite binary quadratic form is soluble with positive integers D and E, and odd integers T and U which can be taken positive.

$$
\begin{equation*}
E U^{2}-D T^{2}=+2 \tag{1}
\end{equation*}
$$

The discriminant of this quadratic form is Disc $=4 E D=4 d>0$. Hence this is an indefinite quadratic form leading to an infinitude of solutions (U, T) if there is any, for given D and E. It is clear that E and D are either both odd or both even. This will define two cases called later i) and ii). No square number d will appear because if $E=n^{2} r$ and $D=m^{2} s$ with square-free $r=s$, one has $r(n U-m T)(n U+m T)=2$, hence two possibilities $r=1$ or $r=2$. In the first case the two remaining factors lead to $2 n U=3$ which is contradictory. In the second case the remaining two factors lead to $n U=1$ and $m T=0$, i.e., $m=0$, but D cannot vanish because D has to be positive.
The connection to the Pell equation

$$
\begin{equation*}
x^{2}-d y^{2}=+1 \tag{2}
\end{equation*}
$$

with odd $y=2 Y+1$ and positive (proper) solution $\left(x_{0}, y_{0}\right)$ for certain d, not a square number, will be established for the rewritten equation

$$
\begin{equation*}
x_{0}^{2}-8 d \operatorname{Tr}\left(Y_{0}\right)=d+1 \tag{3}
\end{equation*}
$$

with the triangular numbers $\operatorname{Tr}=\underline{\text { A000217 }}$. It is useful to distinguish two cases $\mathbf{i}): x_{0}$ even and $\left.\mathbf{i i}\right): x_{0}$ odd. (They will later be seen to correspond to the cases D and E odd and even, respectively.)
Case i): For $x_{0}=2 X_{0}$ eq. (3) becomes $4 X_{0}^{2}-8 d \operatorname{Tr}\left(Y_{0}\right)=d+1$, showing that necessarily $d \equiv$ $-1(\bmod 4) \equiv 3(\bmod 4)$. This can be rewritten as

$$
\begin{equation*}
d Y_{0}\left(Y_{0}+1\right)=X_{0}^{2}-\frac{d+1}{4} \tag{4}
\end{equation*}
$$

[^0]Or as

$$
\begin{equation*}
\left(2 X_{0}+1\right)\left(2 X_{0}-1\right)=d\left(2 Y_{0}+1\right)^{2} . \tag{5}
\end{equation*}
$$

Case ii): For odd $x_{0}=2 X_{0}+1$, eq. (3) becomes $8\left(\operatorname{Tr}\left(X_{0}\right)-d \operatorname{Tr}\left(Y_{0}\right)\right)=d$, showing that necessarily $d \equiv 0(\bmod 8)$. This can be rewritten as

$$
\begin{equation*}
4 d Y_{0}\left(Y_{0}+1\right)=4 X_{0}\left(X_{0}+1\right)-d \tag{6}
\end{equation*}
$$

Or as

$$
\begin{equation*}
4 X_{0}\left(X_{0}+1\right)=d\left(2 Y_{0}+1\right)^{2} \tag{7}
\end{equation*}
$$

Because of the different parity of d for the two cases it is clear that cases \mathbf{i}) and $\mathbf{i i}$) will later belong to odd and even D and E, respectively.
We first show that for positive integers D and E allowing integer solutions of eq. (1) with odd U and odd T the eqs. (5) and (7) can be derived for $d:=D E$ and $x_{0}=E U_{0}^{2}-1$ and $y_{0}=U_{0} T_{0}$, where U_{0} and T_{0} are the minimal positive odd solutions. Later the converse is proved.
Proposition 1: From $\left(\mathbf{U}_{\mathbf{0}}, \mathrm{T}_{\mathbf{0}}\right)$ to $\left(\mathrm{x}_{\mathbf{0}}, \mathrm{y}_{\mathbf{0}}\right)$
Let U_{0} and T_{0} be the minimal positive odd solutions of eq. (1) for certain positive values of D and E. Then one has with $d=D E$ eq. (2) with $x=x_{0}=E U_{0}^{2}-1$ and $y=y_{0}:=U_{0} T_{0}$, where (x_{0}, y_{0}) is the fundamental positive (proper) solution for d. Necessarily, $d \equiv 3(\bmod 4)$ or $0(\bmod 8)$ for odd or even D and E, respectively.
Proof: Case i). The l.h.s. (left-hand side) of eq. (4) multiplied by 4 becomes with $2 Y_{0}=U_{0} T_{0}-1$

$$
\begin{equation*}
D E\left(U_{0} T_{0}-1\right)\left(U_{0} T_{0}+1\right)=D E\left(\left(U_{0} T_{0}\right)^{2}-1\right) \tag{8}
\end{equation*}
$$

The r.h.s. (rigth-hand side) multiplied by 4 becomes with $2 X_{0}=x_{0}=E U_{0}^{2}-1$

$$
\begin{equation*}
\left(\left(E U_{0}^{2}-1\right)^{2}-1\right)-D E=E U_{0}^{2}\left(E U_{0}^{2}-2\right)-D E \tag{9}
\end{equation*}
$$

Therefore, after cancellation of the $d=D E$ terms on both sides and division by $E U_{0}^{2}$, this reduces to eq. (1)

$$
\begin{equation*}
D T_{0}^{2}=E U_{0}^{2}-2 \tag{10}
\end{equation*}
$$

Going these steps backwards proves the proposition for case \mathbf{i}), after observing that a minimal solution $\left(U_{0}, T_{0}\right)$ of eq. (1) implies that the defined $\left(x_{0}, y_{0}\right)$ are also minimal, i.e., the positive fundamental solution of eq. (2) for odd y. Any solution is of course proper, meaning $\operatorname{gcd}\left(x_{0}, y_{0}\right)=1$.
In case ii) the l.h.s. of eq. (6) is the same as the one for eq. (4) and becomes with $2 Y_{0}=U_{0} T_{0}-1$ again

$$
\begin{equation*}
D E\left(\left(U_{0} T_{0}\right)^{2}-1\right) \tag{11}
\end{equation*}
$$

The r.h.s. becomes with $2 X_{0}=x_{0}-1=E U_{0}^{2}-2$,

$$
\begin{equation*}
\left(E U_{0}^{2}-2\right) E U_{0}^{2}-D E \tag{12}
\end{equation*}
$$

After cancellation of $d=D E$ on both sides and division by $E U_{0}^{2}$ this reduces also to eq. (10), i.e., eq. (1). Going these steps backwards proves the proposition for case ii), observing again that a minimal solution $\left(U_{0}, T_{0}\right)$ of eq. (1) implies fundamental positive $\left(x_{0}, y_{0}\right)$ of eq. (2).
The congruence for odd and even d is clear from the remarks before eqs. (4) and (6).
The converse statement will be a bit more difficult to prove.

Proposition 2: From $\mathbf{d}, \mathbf{x}_{\mathbf{0}}, \mathbf{y}_{0}$ to $\mathbf{D}, \mathbf{E}, \mathbf{U}_{\mathbf{0}}, \mathbf{T}_{\mathbf{0}}$

Let $\left(x_{0}, y_{0}\right)$ be the positive fundamental solution of eq. (2) for those positive non-square integers d with odd y_{0}. Then there will be a positive solution $\left(U_{0}, T_{0}\right)$ of eq. (1) with $E=\operatorname{gcd}\left(x_{0}+1, d\right), D=\frac{d}{E}$, and
$U_{0}=\operatorname{gcd}\left(x_{0}+1, y_{0}\right), T_{0}=\frac{y_{0}}{U_{0}} . D$ and E are both odd if d is odd $($ in fact $\equiv 3(\bmod 4))$, and they are both even if d is even $\left(\right.$ in fact $\equiv 0(\bmod 4)$). The solutions U_{0}, T_{0} are the minimal positive ones.
Proof: One uses the basic result that the Pell eq. (2) has a fundamental positive solution $\left(x_{0}, y_{0}\right)$ for each non-square positive integer d (see e.g., Nagell [2], Theorem 104, pp. 197-198). Here all such d values with odd y_{0} are considered.
For the later discussion it is useful to observe the scaling freedom in the definition of E, D, U_{0}, T_{0}. Instead of fixed values one can replace them by $E(n)=\frac{E}{n}, D(n)=n D \quad U_{0}(m)=\frac{U_{0}}{m}, T_{0}(m)=m T$ with arbitrary positive integers n and m. This is because $d=E D$ and $y_{0}=U_{0} T_{0}$ are invariant under this transformation. Later the values for n and m will be fixed appropriately.
Case i) $x_{0}=2 X_{0}, y_{0}=2 Y_{0}+1 . E=\operatorname{gcd}\left(2 X_{0}+1, d\right), D=d / E$, and $U_{0}=\operatorname{gcd}\left(2 X_{0}+1,2 Y_{0}+1\right)$, $T_{0}=y_{0} / U_{0}$. Because d is odd $(\equiv 3(\bmod 4)) E$ and D are odd. Note that $\operatorname{gcd}\left(2 X_{0}-1,2 X_{0}+1\right)=1$. By definition, E as well as U_{0} divides $2 X_{0}+1$, Therefore E and U_{0} cannot divide $2 X_{0}-1$. Because the r.h.s. of eq. (5) is $d y_{0}=E D\left(U_{0} T_{0}\right)^{2}$ the factor $2 X_{0}+1$ of the l.h.s. is divisible by $E U_{0}^{2}$. Thus, $2 X_{0}+1=E U_{0}^{2} a$, with some positive integer a, and then $2 X_{0}-1=\frac{D T_{0}^{2}}{a}$. Now we use the scaling freedom to replace E, D, U_{0} and T_{0} by their n and m dependent counterparts: $2 X_{0}+1=$ $E(n) U_{0}^{2}(m) a=\frac{a}{n m^{2}} E U_{0}^{2}$, and $2 X_{0}-1=\frac{D(n) T_{0}^{2}(m)}{a}=\frac{n m^{2}}{a} D T_{0}^{2}$. The choice is $n m^{2}=$ a, i.e., $n=n(a)=\operatorname{sqfp}(a)$ and $m=m(a)=\sqrt{\frac{a}{n(a)}}$, where $\operatorname{sqfp}(a)$ is the square-free part of a (see A007913), and $m(a)=\underline{\text { A000188 }}(a)$. After this choice we finally obtain

$$
\begin{equation*}
2 X_{0}+1=E U_{0}^{2}, \text { and } 2 X_{0}-1=D T_{0}^{2}, \tag{13}
\end{equation*}
$$

which leads to eq. (1): $E U_{0}^{2}=\left(2 X_{0}-1\right)+2=D T_{0}^{2}+2$.
Case ii) $x_{0}=2 X_{0}+1$. Here $d \equiv 0(\bmod 8)$, and eq. (7) is $X_{0}\left(X_{0}+1\right)=\frac{d}{4} y_{0}^{2}$.
$E=\operatorname{gcd}\left(2\left(X_{0}+1\right), d\right)=2 \operatorname{gcd}\left(\left(X_{0}+1\right), \frac{d}{2}\right)$ and $D=\frac{d}{E}$. Thus D and E are even. $U_{0}=$ $\operatorname{gcd}\left(2\left(X_{0}+1\right), y_{0}\right)$ and $T_{0}=\frac{y_{0}}{U_{0}}$. Note that $\operatorname{gcd}\left(X_{0}, X_{0}+1\right)=1$. Therefore, because by definition $\frac{E}{2}$ and U_{0} (which is odd) divide $X_{0}+1$, and they do not divide X_{0}, we have $X_{0}+1=\frac{E}{2} U_{0}^{2} b$ with some positive integer b. Using again the scaling freedom by taking $E(n), D(n), U_{0}(m)$ and $T_{0}(m)$ instead of the fixed quantities we have $X_{0}+1=\frac{E(n)}{2} U_{0}^{2}(m) b=\frac{b}{n m^{2}} \frac{E}{2} U_{0}^{2}$. Now we choose $n m^{2}=b$, i.e., $n=n(b)=\underline{\operatorname{A007913}}(b)$ and $m=m(a)=\underline{\text { A000188 }}(a b)$. This leads to $2\left(X_{0}+1\right)=E U_{0}^{2}$ and then from eq. (7) to $2 X_{0}=D T_{0}^{2}$ which is again eq. (1) after elimination of $2 X_{0}$.
In both cases the positive fundamental (minimal) solutions (x_{0}, y_{0}) of eq.. (2) with odd y_{0} lead to minimal positive solutions (U_{0}, T_{0}) of eq. (1), as is clear from their definitions.

Remarks:

1) Contrary to the case of the solutions of the Pell equation (1) with even y_{0}, in the present case with odd y_{0} not all solutions have odd y. The parity alternates for the solutions derived from the fundamental solution. This is clear from the general formula (see e.g., Nagell [2], Theorem 104, pp. 197-198, eq. (8) for y_{n}).
2) From the proof of the equivalence of the solutions (x_{0}, y_{0}) of eq. (2) with odd y_{0} and non-square integer $d=E D$ and (U_{0}, T_{0}) of eq. (1) there can be only one class of solutions also for eq. (1). This follows from the known fact that the Pell equation eq. (2) has only one class (it is ambiguous) (see e.g., Nagell [2], p. 205).
3) The requirement $U T$ odd in eq. (1) prevents values for $d=E D$ which are listed in $\underline{\text { A007969 }}$ (those with even y solutions of eq. (2)). For example, for $d=56$ there are solutions for E, D, U, T given by $4,14,2,1$ and $2,28,15,4$,
4) For the first numbers $\left(d, x_{0}, y_{0}\right)$ and $\left(E, D, U_{0}, T_{0}\right)$ see the Table. There X_{0} depends on the parity of d : if d is odd then $X_{0}=\frac{x_{0}}{2}$, and if d is even then $X_{0}=\frac{x_{0}-1}{2}$. For the x_{0} values see $\underline{A 262027}$, and for y_{0} and Y_{0} see A262026 and A262028, respectively.
For E, D, U_{0} and T_{0} for $d=E D$ from $\underline{\text { A007970 }}$ see $\underline{\text { A191857, }} \underline{\text { A191856 }}$, $\underline{\text { A26309 }}$ and $\underline{\text { A263008 (after }}$ correction), respectively.
In conclusion, we paraphrase Conway's theorem.

Theorem [Conway [1]] Tripartition of the positive integers

There is a trivial bipartition of the set $\Delta:=\{d \in \mathbb{N} \mid d$ not a square $\}$ by the parity of the positive fundamental solution y_{0} (the smallest positive value) of the Pell eq. (1). $\Delta=\Delta_{e} \cup \Delta_{o}$ with $\Delta_{e}=\{d \in$ $\mathbb{N} \mid d$ not a square, and y_{0} even $\}$ and $\Delta_{o}=\left\{d \in \mathbb{N} \mid d\right.$ not a square, and y_{0} odd $\}$. Together with the set of the positive square numbers S this provides the disjoint tripartition of $\mathbb{N}=S \cup \Delta$.
Conway's tripartition of positive integers with the products of the $0-, 1-$ and $2-h a p p y$ couples A000290, A007969 and A007970, respectively, has been shown here and in the link of A007969 to correspond to the above trivial tripartition.

The author wonders about Conway's "truly wonderful proof".

References

[1] J. H. Conway, On Happy Factorizations, https://cs.uwaterloo.ca/journals/JIS/happy.html, Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.1.
[2] T. Nagell, Introduction to Number Theory, 1964, Chelsea Publishing Company, New York
[3] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/Submit.html

AMS MSC numbers: 11A05, 11D09.
Keywords: Tripartition of the positive integers, Pell equation.

Concerned with OEIS sequences A000290, A007969, A007970, A000217, A007913, A000188, $\underline{\text { A191856, }}$ A191857, A262026, A262027, A262028, 263008, 263009.

TABLE: $\mathbf{d}, \mathbf{X}_{\mathbf{0}}, \mathbf{Y}_{\mathbf{0}}, \mathbf{E}, \mathbf{D}, \mathbf{U}_{\mathbf{0}}, \mathrm{T}_{\mathbf{0}}$

d	X_{0}	Y_{0}	E	D	U_{0}	T_{0}
3	1	0	3	1	1	1
7	4	1	1	7	3	1
8	1	0	4	2	1	1
11	5	1	11	1	1	3
15	2	0	5	3	1	1
19	85	19	19	1	3	13
23	12	2	1	23	5	1
24	2	0	6	4	1	1
27	13	2	27	1	1	5
31	760	136	1	31	39	7
32	8	1	2	16	3	1
35	3	0	7	5	1	1
40	9	1	20	2	1	3
43	1741	265	43	1	9	59
47	24	3	1	47	7	1
48	3	0	8	6	1	1
51	25	3	51	1	1	7
59	265	34	59	1	3	23
63	4	0	9	7	1	1
67	24421	2983	67	1	27	221
71	1740	206	1	71	59	7
75	13	1	3	25	3	1
79	40	4	1	79	9	1
80	4	0	10	8	1	1
83	41	4	83	1	1	9
87	14	1	29	3	1	3
88	98	10	22	4	3	7
91	787	82	7	13	15	11
96	24	2	2	48	5	1
99	5	0	11	9	1	1
103	113764	11209	1	103	477	47
104	25	2	52	2	1	5
107	481	46	107	1	3	31
115	563	52	23	5	7	15
119	60	5	1	119	11	1
120	5	0	12	10	1	1
123	61	5	123	1	1	11
127	2365312	209887	1	127	2175	193
128	288	25	2	64	17	3
131	5305	436	131	1	9	103
135	122	10	5	27	7	3
136	17	1	4	34	3	1
139	38781625	3289414	139	1	747	8807
\vdots						

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www-itp.particle.uni-karlsruhe.de/~wl

