<u>A007970</u>: Proof of a Theorem Related to the Happy Number Factorization

Wolfdieter L a n g 1

Abstract

Conway's product of 2-happy number couples, <u>A007970</u>, are proved to coincide with the values d of the Pell equation $x^2 - dy^2 = +1$ for which the positive fundamental solution (x_0, y_0) has odd y_0 . Together with the proof that the products of the 1-happy number couples, <u>A007969</u>, coincide with the d values which have even positive fundamental solution y_0 , found as a W. Lang link in <u>A007969</u>, this is Conway's theorem on a tripartition of the positive integers including the square numbers <u>A000290</u>.

Conway [1] proposed three sequences, obtained from three types of sequences of couples called 0-happy couples (A,A), 1-happy couples (B,C) and 2-happy couples (D,E). By taking products of each couple one obtains three sequences that are given in OEIS [3] <u>A000290</u> (the squares), <u>A007969</u> and <u>A007970</u>, respectively. It is stated as a theorem, with the proof left to the reader, that each positive integer appears in exactly one of these three sequences. Here we consider the numbers d = D E coming from the 2-happy couples. These numbers are defined if the following indefinite binary quadratic form is soluble with positive integers D and E, and odd integers T and U which can be taken positive.

$$E U^2 - D T^2 = +2. (1)$$

The discriminant of this quadratic form is Disc = 4ED = 4d > 0. Hence this is an indefinite quadratic form leading to an infinitude of solutions (U, T) if there is any, for given D and E. It is clear that E and D are either both odd or both even. This will define two cases called later i) and ii). No square number d will appear because if $E = n^2 r$ and $D = m^2 s$ with square-free r = s, one has r(nU - mT)(nU + mT) = 2, hence two possibilities r = 1 or r = 2. In the first case the two remaining factors lead to 2nU = 3 which is contradictory. In the second case the remaining two factors lead to nU = 1 and mT = 0, *i.e.*, m = 0, but D cannot vanish because D has to be positive. The connection to the *Pell* equation

 $x^2 - dy^2 = +1 \tag{2}$

with odd y = 2Y + 1 and positive (proper) solution (x_0, y_0) for certain d, not a square number, will be established for the rewritten equation

$$x_0^2 - 8 \, d \, Tr(Y_0) = d + 1, \tag{3}$$

with the triangular numbers $Tr = \underline{A000217}$. It is useful to distinguish two cases i): x_0 even and ii): x_0 odd. (They will later be seen to correspond to the cases D and E odd and even, respectively.)

Case i): For $x_0 = 2X_0$ eq. (3) becomes $4X_0^2 - 8dTr(Y_0) = d + 1$, showing that necessarily $d \equiv -1 \pmod{4} \equiv 3 \pmod{4}$. This can be rewritten as

$$dY_0(Y_0+1) = X_0^2 - \frac{d+1}{4}.$$
(4)

¹ wolfdieter.lang@partner.kit.edu, http://www-itp.particle.uni-karlsruhe.de/~wl

Or as

$$(2X_0 + 1)(2X_0 - 1) = d(2Y_0 + 1)^2.$$
(5)

Case ii): For odd $x_0 = 2X_0 + 1$, eq. (3) becomes $8(Tr(X_0) - dTr(Y_0)) = d$, showing that necessarily $d \equiv 0 \pmod{8}$. This can be rewritten as

$$4 dY_0 (Y_0 + 1) = 4 X_0 (X_0 + 1) - d.$$
(6)

Or as

$$4X_0(X_0+1) = d(2Y_0+1)^2.$$
(7)

Because of the different parity of d for the two cases it is clear that cases i) and ii) will later belong to odd and even D and E, respectively.

We first show that for positive integers D and E allowing integer solutions of eq. (1) with odd U and odd T the eqs. (5) and (7) can be derived for d := D E and $x_0 = E U_0^2 - 1$ and $y_0 = U_0 T_0$, where U_0 and T_0 are the minimal positive odd solutions. Later the converse is proved.

Proposition 1: From (U_0, T_0) to (x_0, y_0)

Let U_0 and T_0 be the minimal positive odd solutions of eq. (1) for certain positive values of D and E. Then one has with d = D E eq. (2) with $x = x_0 = E U_0^2 - 1$ and $y = y_0 := U_0 T_0$, where (x_0, y_0) is the fundamental positive (proper) solution for d. Necessarily, $d \equiv 3 \pmod{4}$ or $0 \pmod{8}$ for odd or even D and E, respectively.

Proof: Case i). The *l.h.s.* (left-hand side) of eq. (4) multiplied by 4 becomes with $2Y_0 = U_0T_0 - 1$

$$DE(U_0T_0 - 1)(U_0T_0 + 1) = DE((U_0T_0)^2 - 1).$$
(8)

The *r.h.s.* (rigth-hand side) multiplied by 4 becomes with $2X_0 = x_0 = EU_0^2 - 1$

$$((E U_0^2 - 1)^2 - 1) - D E = E U_0^2 (E U_0^2 - 2) - D E.$$
(9)

Therefore, after cancellation of the d = DE terms on both sides and division by EU_0^2 , this reduces to eq. (1)

$$DT_0^2 = EU_0^2 - 2. (10)$$

Going these steps backwards proves the proposition for case i), after observing that a minimal solution (U_0, T_0) of eq. (1) implies that the defined (x_0, y_0) are also minimal, *i.e.*, the positive fundamental solution of eq. (2) for odd y. Any solution is of course proper, meaning $gcd(x_0, y_0) = 1$.

In case ii) the *l.h.s.* of eq. (6) is the same as the one for eq. (4) and becomes with $2Y_0 = U_0T_0 - 1$ again

$$D E \left((U_0 T_0)^2 - 1 \right) \,. \tag{11}$$

The *r.h.s.* becomes with $2X_0 = x_0 - 1 = EU_0^2 - 2$,

$$(E U_0^2 - 2) E U_0^2 - D E . (12)$$

After cancellation of d = DE on both sides and division by EU_0^2 this reduces also to eq. (10), *i.e.*, eq. (1). Going these steps backwards proves the proposition for case **ii**), observing again that a minimal solution (U_0, T_0) of eq. (1) implies fundamental positive (x_0, y_0) of eq. (2).

The congruence for odd and even d is clear from the remarks before eqs. (4) and (6). The converse statement will be a bit more difficult to prove.

Proposition 2: From d, x_0 , y_0 to D, E, U_0 , T_0

Let (x_0, y_0) be the positive fundamental solution of eq. (2) for those positive non-square integers d with odd y_0 . Then there will be a positive solution (U_0, T_0) of eq. (1) with $E = \text{gcd}(x_0 + 1, d)$, $D = \frac{d}{E}$, and

 $U_0 = \gcd(x_0 + 1, y_0), \ T_0 = \frac{y_0}{U_0}.$ D and E are both odd if d is odd (in fact $\equiv 3 \pmod{4}$), and they are both even if d is even (in fact $\equiv 0 \pmod{4}$). The solutions U_0, T_0 are the minimal positive ones.

Proof: One uses the basic result that the *Pell* eq. (2) has a fundamental positive solution (x_0, y_0) for each non-square positive integer d (see *e.g.*, *Nagell* [2], Theorem 104, pp. 197-198). Here all such d values with odd y_0 are considered.

For the later discussion it is useful to observe the scaling freedom in the definition of E, D, U_0 , T_0 . Instead of fixed values one can replace them by $E(n) = \frac{E}{n}$, D(n) = nD $U_0(m) = \frac{U_0}{m}$, $T_0(m) = mT$ with arbitrary positive integers n and m. This is because d = ED and $y_0 = U_0T_0$ are invariant under this transformation. Later the values for n and m will be fixed appropriately.

Case i) $x_0 = 2X_0, y_0 = 2Y_0 + 1$. $E = \gcd(2X_0 + 1, d), D = d/E$, and $U_0 = \gcd(2X_0 + 1, 2Y_0 + 1), T_0 = y_0/U_0$. Because d is odd $(\equiv 3 \pmod{4})$ E and D are odd. Note that $\gcd(2X_0 - 1, 2X_0 + 1) = 1$. By definition, E as well as U_0 divides $2X_0 + 1$, Therefore E and U_0 cannot divide $2X_0 - 1$. Because the r.h.s. of eq. (5) is $dy_0 = ED(U_0T_0)^2$ the factor $2X_0 + 1$ of the l.h.s. is divisible by EU_0^2 . Thus, $2X_0 + 1 = EU_0^2 a$, with some positive integer a, and then $2X_0 - 1 = \frac{DT_0^2}{a}$. Now we use the scaling freedom to replace E, D, U_0 and T_0 by their n and m dependent counterparts: $2X_0 + 1 = E(n)U_0^2(m)a = \frac{a}{nm^2}EU_0^2$, and $2X_0 - 1 = \frac{D(n)T_0^2(m)}{a} = \frac{nm^2}{a}DT_0^2$. The choice is $nm^2 = a$, *i.e.*, n = n(a) = sqfp(a) and $m = m(a) = \sqrt{\frac{a}{n(a)}}$, where sqfp(a) is the square-free part of a (see A007913), and m(a) = A000188(a). After this choice we finally obtain

$$2X_0 + 1 = EU_0^2$$
, and $2X_0 - 1 = DT_0^2$, (13)

which leads to eq. (1): $E U_0^2 = (2X_0 - 1) + 2 = DT_0^2 + 2.$

Case ii) $x_0 = 2X_0 + 1$. Here $d \equiv 0 \pmod{8}$, and eq. (7) is $X_0(X_0 + 1) = \frac{d}{4}y_0^2$.

 $E = \gcd(2(X_0 + 1), d) = 2 \gcd\left((X_0 + 1), \frac{d}{2}\right) \text{ and } D = \frac{d}{E}.$ Thus D and E are even. $U_0 = \gcd(2(X_0 + 1), y_0) \text{ and } T_0 = \frac{y_0}{U_0}.$ Note that $\gcd(X_0, X_0 + 1) = 1$. Therefore, because by definition $\frac{E}{2}$ and U_0 (which is odd) divide $X_0 + 1$, and they do not divide X_0 , we have $X_0 + 1 = \frac{E}{2}U_0^2 b$ with some positive integer b. Using again the scaling freedom by taking E(n), D(n), $U_0(m)$ and $T_0(m)$ instead of the fixed quantities we have $X_0 + 1 = \frac{E(n)}{2}U_0^2(m)b = \frac{b}{nm^2}\frac{E}{2}U_0^2$. Now we choose $nm^2 = b$, *i.e.*, $n = n(b) = \underline{A007913}(b)$ and $m = m(a) = \underline{A000188}(ab)$. This leads to $2(X_0 + 1) = EU_0^2$ and then from eq. (7) to $2X_0 = DT_0^2$ which is again eq. (1) after elimination of $2X_0$.

In both cases the positive fundamental (minimal) solutions (x_0, y_0) of eq. (2) with odd y_0 lead to minimal positive solutions (U_0, T_0) of eq. (1), as is clear from their definitions.

Remarks:

1) Contrary to the case of the solutions of the *Pell* equation (1) with even y_0 , in the present case with odd y_0 not all solutions have odd y. The parity alternates for the solutions derived from the fundamental solution. This is clear from the general formula (see *e.g.*, *Nagell* [2], Theorem 104, pp. 197-198, eq. (8) for y_n).

2) From the proof of the equivalence of the solutions (x_0, y_0) of eq. (2) with odd y_0 and non-square integer d = E D and (U_0, T_0) of eq. (1) there can be only one class of solutions also for eq. (1). This follows from the known fact that the *Pell* equation eq. (2) has only one class (it is ambiguous) (see *e.g.*, Nagell [2], p. 205).

3) The requirement UT odd in eq. (1) prevents values for d = ED which are listed in <u>A007969</u> (those with even y solutions of eq. (2)). For example, for d = 56 there are solutions for E, D, U, T given by 4, 14, 2, 1 and 2, 28, 15, 4,

4) For the first numbers (d, x_0, y_0) and (E, D, U_0, T_0) see the Table. There X_0 depends on the parity of d: if d is odd then $X_0 = \frac{x_0}{2}$, and if d is even then $X_0 = \frac{x_0 - 1}{2}$. For the x_0 values see <u>A262027</u>, and for y_0 and Y_0 see <u>A262026</u> and <u>A262028</u>, respectively.

For E, D, U_0 and T_0 for d = ED from <u>A007970</u> see <u>A191857</u>, <u>A191856</u>, <u>A26309</u> and <u>A263008</u> (after correction), respectively.

In conclusion, we paraphrase Conway's theorem.

Theorem [Conway [1]] Tripartition of the positive integers

There is a trivial bipartition of the set $\Delta := \{d \in \mathbb{N} | d \text{ not a square}\}$ by the parity of the positive fundamental solution y_0 (the smallest positive value) of the Pell eq. (1). $\Delta = \Delta_e \cup \Delta_o$ with $\Delta_e = \{d \in \mathbb{N} | d \text{ not a square, and } y_0 \text{ odd}\}$. Together with the set of the positive square numbers S this provides the disjoint tripartition of $\mathbb{N} = S \cup \Delta$.

Conway's tripartition of positive integers with the products of the 0-, 1- and 2-happy couples <u>A000290</u>, <u>A007969</u> and <u>A007970</u>, respectively, has been shown here and in the link of <u>A007969</u> to correspond to the above trivial tripartition.

The author wonders about Conway's "truly wonderful proof".

References

- J. H. Conway, On Happy Factorizations, https://cs.uwaterloo.ca/journals/JIS/happy.html, Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.1.
- [2] T. Nagell, Introduction to Number Theory, 1964, Chelsea Publishing Company, New York
- [3] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/Submit.html

AMS MSC numbers: 11A05, 11D09.

Keywords: Tripartition of the positive integers, Pell equation.

Concerned with OEIS sequences <u>A000290</u>, <u>A007969</u>, <u>A007970</u>, <u>A000217</u>, <u>A007913</u>, <u>A000188</u>, <u>A191856</u>, <u>A191857</u>, <u>A262026</u>, <u>A262027</u>, <u>A262028</u>, <u>263008</u>, <u>263009</u>.

TABLE: d, X₀, Y₀, E, D, U₀, T₀

d	X ₀	Y ₀	Е	D	U ₀	T_0
3	1	0	3	1	1	1
7	4	1	1	7	3	1
8	1	0	4	2	1	1
11	5	1	11	1	1	3
15	2	0	5	3	1	1
19	85	19	19	1	3	13
23	12	2	1	23	5	1
24	2	0	6	4	1	1
27	13	2	27	1	1	5
31	760	136	1	31	39	7
32	8	1	2	16	3	1
35	3	0	7	5	1	1
40	9	1	20	2	1	3
43	1741	265	43	1	9	59
47	24	3	1	47	7	1
48	3	0	8	6	1	1
51	25	3	51	1	1	7
59	265	34	59	1	3	23
63	4	0	9	7	1	1
67	24421	2983	67	1	27	221
71	1740	206	1	71	59	7
75	13	1	3	25	3	1
79	40	4	1	79	9	1
80	4	0	10	8	1	1
83	41	4	83	1	1	9
87	14	1	29	3	1	3
88	98	10	22	4	3	7
91	787	82	7	13	15	11
96	24	2	2	48	5	1
99	5	0	11	9	1	1
103	113764	11209	1	103	477	47
104	25	2	52	2	1	5
107	481	46	107	1	3	31
115	563	52	23	5	7	15
119	60	5	1	119	11	1
120	5	0	12	10	1	1
123	61	5	123	1	1	11
127	2365312	209887	1	127	2175	193
128	288	25	2	64	17	3
131	5305	436	131	1	9	103
135	122	10	5	27	7	3
136	17	1	4	34	3	1
139	38781625	3289414	139	1	747	8807
:						