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Abstract

It is known from Bernstein and Sloane 1995 [1], that the BINOMIAL (also known as
(aka) Pascal) transform of the Bell sequence A000110 {B(n)}∞0 is the shifted sequence
{B(n + 1)}∞0 . Here another proof by elementary means is given. This fact implies
that the Bell sequence is an eigensequence to the enlarged Pascal matrix A071918 with
eigenvalue 1; i.e., a fixed point under iteration.

It is also proved that the nth power of the lower triangular matrix A071918 in the
limit n → ∞ has in its first column the Bell sequence and zeros otherwise. This shows
that the Bell sequence is the asymptotic vector for the initial vector (1, 0, 0, 0, ...)⊤

under iteration. This fact is tied to the property α of the Bell sequence stated also in
Bernstein and Sloane [1].

1 Introduction

Motivated by e-mail correspondence with Gary W. Adamson the author was led to provide
proofs for several of his conjectures concerning the Bell sequence A000110, the Pascal matrix
A007318 and the corresponding matrix A071919 which has the main diagonal [1, 0, 0, 0, ...] on
top of Pascal’s triangle when written as lower triangular array. Neither originality nor priority
is claimed. In fact, proposition 1 appears as special instance in Bernstein and Sloane [1].
All proofs involve elementary operations on lower triangular number matrices, based on the
knowledge of the ordinary generating function (o.g.f.) of the sequence of the mth column. All
considered triangles T (n, m) have offset [0, 0], i.e., n ≥ 0 and m ≥ 0, and the triangularity
condition is T (n, m) = 0 if n < m. All manipulations are formal. No convergence issues are
considered. This means especially that infinite sums can be interchanged.
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2 Bell sequence as eigensequence of A071919

Proposition 1. [1, Bernstein and Sloane 1995] B(n + 1) =
∑n

m=0
P (n, m) B(m), with the

lower triangular (infinite dimensional) Pascal matrix P (n, m) = A007318(n, m) :=

(

n

m

)

and the Bell sequence A000110.

Definition 2. The BINOMIAL transform of a sequence C with members C(n) is the
sequence D with members D(n) =

∑n

m=0
P (n, m) C(m), n ≥ 0. In matrix notation D =

PC. Because of the Pascal matrix P appearance, D could also be called Pascal or P
transform of C.

Therefore, proposition 1 states the result for the BINOMIAL transform of the Bell se-
quence, known from Bernstein and Sloane [1]. In the notation of this reference it would be
written as P ◦ B = L ◦ B with the shift operation L ◦ [B0, B1, B2, ...] = [B1, B2, B3, ...].

Definition 3. The sequence D with members D(n) =
∑

∞

m=0
T (n, m) C(m), m ≥ 0,

is called the T−transform of the sequence C with members C(m), m ≥ 0. Here T is any
lower triangular matrix.

Corollary 4.
n

∑

m=0

T (n, m) B(m) = B(n) with the lower triangular (infinite dimensional)

enlarged Pascal matrix T (n, m) = A071919. Therefore, the Bell sequence is an eigensequence
to the matrix A071919 with eigenvalue 1. In matrix notation B = TB, and B is a fixed
point, in an infinite dimensional R vector space, under the T transformation.

Proof. Four lemmata and a definition of the Bell numbers are first given.

Lemma 5. The Pascal lower triangular matrix is the Riordan array (or triangle)

(

1

1 − x
,

x

1 − x

)

,

which means that the o.g.f. of the sequence in column nr. m is

Pm(x) =
1

1 − x

(

x

1 − x

)m

, m ≥ 0. (1)

The proof of this lemma is obvious from the (ordinary) convolution property of Pascal’s
triangle. For the notion of Riordan matrices see the paper by Shapiro et al. [5].

Lemma 6. The Stirling triangle of the second kind, S = A048993 (with first column

(1, 0, 0, ...)⊤), has as o.g.f. of its mth column sequence

Sm(x) =
xm

∏m

j=1
(1 − j x)

, m ≥ 0. (2)

This lemma appears as theorem C on p. 207 of Comtet’s book [2]. Its proof is also
given there and it is based on the partial fraction decomposition of the o.g.f. and an explicit
formula for S(n, m), the Stirling numbers of the second kind. This formula is due to their
subset number property. See theorem A on p. 204 of Comtet’s book.
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Definition 7. The Bell numbers B(n), n ≥ 0 are the row sums of the Stirling triangle
of the second kind:

B(n) :=
n

∑

m=0

S(n, m) . (3)

Lemma 8. The o.g.f. of the Bell numbers is

B(x) :=

∞
∑

n=0

B(n) xn =

∞
∑

m=0

xm

∏m

j=1
(1 − j x)

. (4)

For m = 0 the product has to be replaced by 1.

Proof. This lemma has been included as a comment by R. Stephan under A000110 without
a proof. The proof uses definition 7 and lemma 6.

∞
∑

n=0

n
∑

m=0

S(n, m) xn , interchanging the summations yields:

=
∞

∑

m=0

∞
∑

n=m

S(n, m) xn =
∞

∑

m=0

Sm(x) =
∞

∑

m=0

xm

∏m

j=1
(1 − j x)

. (5)

The author thanks R. Stephan for an e-mail exchange.

Note 9. The Stirling triangle of the second kind S is an example of an exponential (aka
binomial) convolution triangle. See Knuth’s paper [3] or Roman’s book [4]. Here, however,

the o.g.f. , and not the exponential generating function (e.g.f. )
1

m!
(exp(x) − 1)m, m ≥ 0,

is of interest (these types of generating functions are related by a Laplace transform).

Lemma 10. If sequence D is the BINOMIAL transform of sequence C, i.e., D = PC,
then their o.g.f. s are related like

D(x) =
1

1 − x
C

(

x

1 − x

)

. (6)

This lemma is stated in Bernstein and Sloane [1] and several references are given there.
The proof is elementary. It uses an interchange of the two summations and the recognition
of the o.g.f. Pm(x) of the mth column of the Pascal triangle which has been given in lemma
5.

Corollary 11. The BINOMIAL transformed sequence of the mth column sequence of the
triangle S of the Stirling numbers of the second kind A048993 has the o.g.f.

PSm(x) =
1

1 − x
Sm

(

x

1 − x

)

=
1

x
Sm+1(x) . (7)
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The last eq. follows from lemma 6.

The proof of proposition 1 is now clear because the BINOMIAL transform of the Bell

sequence {B(n)}∞0 , i.e., PB, is also the row sum of the BINOMIAL transformed matrix
S, where each column is transformed. I.e., the Bell sequence is the row sum of the matrix
product PS. This follows from PSm(x) = (PS)m(x) , the o.g.f. of the mth column sequence
of the matrix PS. Thus,

∞
∑

m=0

PSm(x) =
1

x

∞
∑

m=0

Sm+1(x) =
1

x

∞
∑

m=1

Sm(x) =
1

x
(B(x) − 1) . (8)

The last step follows from lemmata 6 and 8. This is the o.g.f. for the shifted Bell sequence
{B(n + 1)}∞n=0 = [1, 2, 5, ...] with offset 0.

3 Powers of matrix A071919

Proposition 12.
lim

n→∞

Tn = ( ~B,~0,~0, ...) , (9)

with the (infinite dimensional) lower triangular matrix T = A071919 (extended Pascal), the

(infinite dimensional) vector ~B with entries (B(0) = 1, B(1) = 1, B(2) = 2, ...)⊤, the Bell

sequence A000110, and the vector ~0 with only 0 entries. This implies that the Bell sequence
~B is the asymptotic vector for the vector (1, 0, 0, 0, ...)⊤ under T iteration.

Note 13. That the first column becomes the Bell sequence stems from its property α
stated in Bernstein and Sloane [1].

Proof. Several lemmata are formulated first.

Note 14. In this section the interest is on the matrix T = A071919. See the definition 3
and compare with the BINOMIAL transform 2 which uses the Pascal matrix P = A007318
in place of T.

Lemma 15. The o.g.f. of the mth column sequence of the matrix T = A071919 is for m = 0

given by T (0; x) = T (x) =
1

1 − x
and for m ≥ 1 by T (m; x) = (xT (x))m+1.

This is obvious from the o.g.f. s of the shifted Pascal triangle columns. Note the difference
in notation between T (n, m) and T (m; x).

Note 16. T is, in the strict sense, not a Riordan triangle because the columns are not
obtained via convolution. This means that the o.g.f. of the mth column is not of the type
G(x)(xF(x))m with some G and F with F(0) = 1. Of course, the given column o.g.f. s are
also simple to manage.
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Lemma 17. The o.g.f. D(x) =
∞

∑

n=0

D(n) xn of the T = A071919-transformed sequence D

of the sequence C with o.g.f. C(x) =

∞
∑

m=0

C(m) xm is

D(x) = C(0) +
x

1 − x
C

(

x

1 − x

)

. (10)

Proof. This runs along the lines of the proof of lemma 10.

D(x) =

∞
∑

n=0

∞
∑

m=0

T (n, m) C(m) xn , interchanging the summations yields:

=

∞
∑

m=0

C(m)

∞
∑

n=m

T (n, m) xn =

∞
∑

m=0

C(m) T (m; x)

= C(0) T (0; x) + xT (x)

∞
∑

m=1

C(m) (xT (x))m

= C(0) T (x) + xT (x) (C

(

x

1 − x

)

− C(0)) = C(0) + xT (x) C

(

x

1 − x

)

. (11)

Corollary 18. The o.g.f. T (n, m; x) of the mth column of the nth power of the matrix
T = A071919 satisfies the recurrence relation

T (n, m; x) = T (n − 1, m; 0) +
x

1 − x
T (n − 1, m;

x

1 − x
) , for n ≥ 1, m ≥ 0,

with input T (1, m; x) = T (m; x) =







T (x) = 1

1−x
, if m = 0

(xT (x))m+1 , if m ≥ 1
. (12)

This uses Tn = TTn−1 and lemma 17 is applied for the mth column sequence of the
matrix Tn−1 whose o.g.f. is T (n − 1, m; x).

Lemma 19. The o.g.f. of the sequence of the first (m = 0) column of the matrix power Tn

is

T (n, 0; x) =
1

∏n−2

j=1
(1 − j x)

p(n, x)

1 − n x
, n ≥ 1. (13)

For n = 1 and 2 the product has to be replaced by 1. The recurrence for the polynomials
p(n, x) of degree n − 1 is

p(n, x) =

n−2
∏

j=1

(1 − j x) (1 − n x) + x (1 − x)n−2 p

(

n − 1,
x

1 − x

)

n ≥ 2 , (14)

with input p(1, x) = 1.
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Proof. The recurrence from corollary 18 is for m = 0

T (n, 0; x) = T (n − 1, 0; 0) +
x

1 − x
T

(

n − 1, 0;
x

1 − x

)

, (15)

with input T (1, 0; x) = T (x) = 1

1−x
. The ansatz for T (n, 0; x) as in lemma 19 leads to the

recurrence stated for the polynomials p. Note that p(n, 0) = 1 for all n ≥ 1. It follows
that they are integer polynomials of the given degree. Now the lemma is proved with this
recurrence by induction, and this proof is left to the reader.

Corollary 20. The integer coefficients of the polynomial system p from lemma 19 constitute
the triangular array A157165 which starts like [[1], [1,−1], [1,−3, 1], [1,−6, 9,−3],
[1,−10, 32,−37, 11], [1,−15, 81,−192, 189,−53], ...].

Lemma 21. T (n, 0; x) from lemma 19 can be written as

T (n, 0; x) = 1 +
n

∑

k=1

xk

∏k

j=1
(1 − j x)

, (16)

which is the nth partial sum of the o.g.f. of the Bell sequence known from lemma 8.

Proof. T (n, 0; x) of the this lemma satisfies the recurrence given in the proof of lemma 19
with the correct input T (1, 0; x) = 1 + x

1−x
= 1

1−x
= T (x) . Then mathematical induction

over n is used. For n = 1 the statement is correct due to the correct input. Now one assumes
that the formula is true for all p = 1, 2, ..., n. From the recurrence (written for n → n + 1),
using the induction hypothesis, one obtains

T (n + 1, 0; x) = T (n, 0; 0) +
x

1 − x

n
∑

k=0

(x/(1 − x))k

∏k

j=1
(1 − j x/(1 − x))

= 1 +
x

1 − x

n
∑

k=0

xk

∏k

j=1
(1 − (j + 1) x)

= 1 +
x

1 − x

n
∑

k=0

xk

∏k+1

j=2
(1 − j x)

= 1 +

n
∑

k=0

xk+1

∏k+1

j=1
(1 − j x)

= 1 +

n+1
∑

k=1

xk

∏k

j=1
(1 − j x)

, (17)

which is indeed the claimed formula for T (n + 1, 0; x) .

Lemma 22. T (n, m; x), the o.g.f. of the mth column sequence of Tn, is for m ≥ 1 given by

T (n, m; x) = xn+m 1
∏n−1

j=1
(1 − j x)

1

(1 − n x)m+1
. (18)

Proof. The recurrence from corollary 18 with input T (1, m; x) = T (m; x) = (xT (x))m+1

is employed. The proof runs with induction over n, for fixed m ≥ 1, and is left to the
reader.
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Now the proof of proposition 12 is clear. For m = 0 one finds from lemma 19, in the
limit n → ∞, the (formal) o.g.f. B(x) for the Bell sequence, known from lemma 8. For each
m ≥ 1 one obtains in the limit n → ∞, because of the pre-factor xn+m in eq. 18, the ~0
sequence. (The number of leading 0 members of the sequence grows with n).
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