A176740: E.g.f. Lagrange inversion partition array

Wolfdieter L ang ${ }^{1}$

Abstract

The coefficients of the special Lagrange series which provides the compositional inverse of a formal power series, considered as exponential generating function (e.g.f.), are obtained from a certain partition array involving the multinomial M_{3} numbers $\underline{\text { A036040 }}$.

Given any formal power series (f.p.s.) $g(x):=\sum_{k=1}^{\infty} g_{k} \frac{x^{k}}{k!}=: x h(x)$ with $g_{0}=0, g_{1} \neq 0$, the compositional inverse $f=g^{[-1]}$ defined by $f(g(x)) \equiv x$ or $g(f(y)) \equiv y$ is defined as f.p.s. $f(y):=$ $\sum_{n=1}^{\infty} f_{n} \frac{y^{n}}{n!}$. The well known expression for the coefficients f_{n} of the Lagrange series, which involves higher derivatives of the inverse of the f.p.s. h, is e.g., [5], p. 524, [3], p. 205, [6], ch. 4.5, p. 146 ff .

$$
\begin{equation*}
f_{n}=\left.\left(\frac{1}{h(x)^{n}}\right)^{(n-1)}\right|_{x=0}, n \geq 2 ; f_{1}=\frac{1}{h_{0}}=\frac{1}{g_{1}} \tag{1}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
f_{n}=(n-1)!\left[x^{n-1}\right]\left(\frac{1}{h(x)}\right)^{n}, n \geq 2, \text { and } f_{1}=\frac{1}{g_{1}} \tag{2}
\end{equation*}
$$

Therefore, instead of giving an explicit formula, it demands to find the coefficients of inverse powers of a f.p.s. considered as e.g.f.. This is achieved with the help of Bell polynomials [6] and the proof can be found e.g., in [3], p. 437, eq. (11.43) with p. 428. eq. (11.29) or [2], p. 175, eq. (13.84).

$$
\begin{equation*}
f_{n}=\frac{1}{g_{n}^{n}} \sum_{k=1}^{n-1}(-1)^{k} n^{\bar{k}} B_{n-1, k}\left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{n-k}\right), n \geq 2 \tag{3}
\end{equation*}
$$

with $\hat{g}_{k}:=\frac{g_{k+1}}{(k+1) g_{1}}$, and $f_{1}=\frac{1}{g_{1}} \cdot n^{\bar{k}}$ is the rising factorial (Pochhammer symbol)
$n(n+1) \cdots(n-(k-1))$.
This formula is the solution of the recurrence formula for the coefficients of the Lagrange series which is (see [2], p. 173, eq.(13.81) where the solution f_{n} is also given as a determinant due to Cramer's rule in eq.(13.82)).

$$
\begin{equation*}
f_{n}=-\frac{1}{g_{1}^{n}} \sum_{k=1}^{n-1} B_{n, k}\left(g_{1}, \ldots, g_{n+1-k}\right) f_{k}, n \geq 2, f_{1}=\frac{1}{g_{1}} \tag{4}
\end{equation*}
$$

Note: This solution of the recurrence for the coefficients of the this special application of a Lagrange series appears in the context of the Faà di Bruno Hopf algebra for the formal diffeomorphism group in

[^0]the complex plane as the antipode (aka counit). See [8], ch. 3, "The Power of Combinatorics", sects. $3.4 .4,3.4 .5$, pp. $136-140$, especially eqs. (3.34), (3.36), and (3.38).
The above solution of the recurrence relation for the $\left\{f_{n}\right\}$ coefficients can be considered as an analogon of Zimmermann's forest formula in the context of renormalizable quantum field theory à la Bogoliubov-Parasuik-Hepp-Zimmermann (BPHZ), where the analog of the recurrence formula is the iterative Roperation of Bogoliubov.
This "sophisticated Zimmermann type cancellation formula" ([8], p. 139), eq. (3), can be reinterpreted such that its partition structure becomes obvious (W. Lang, Feb. 2010). This just uses the fact that Bell polynomials are partition polynomials and some later given proposition. The final formula for the coefficients of this special application of the Lagrange series becomes then
\[

$$
\begin{equation*}
f_{n}=\frac{1}{g_{1}^{2 n-1}} \hat{f}_{n}, \text { i.e., } f(y)=g_{1} \sum_{n=1}^{\infty} \hat{f}_{n}\left(\frac{y}{g_{1}^{2}}\right)^{n} \frac{1}{n!} \tag{5}
\end{equation*}
$$

\]

$\hat{f}_{1}=1$, and for $n=2,3, \ldots$ we have

$$
\begin{equation*}
\hat{f}_{n}=\sum_{m=1}^{n-1}(-1)^{m} P 3(n, m), \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
P 3(n, m):=\sum_{p:=\left(1^{e_{1}}, 2^{e_{2}}, \ldots,(n-1)^{e_{n-1}}\right) \text { from } \operatorname{Pa(n-1,m)}} P 3(p), \tag{7}
\end{equation*}
$$

where, finally,

$$
\begin{equation*}
P 3(p):=M 3(n+m-1, \overrightarrow{\hat{e}}) \prod_{j=1}^{n-1}\left(g_{1}^{j-1} g_{j+1}\right)^{e_{j}} \tag{8}
\end{equation*}
$$

Some more definitions have been used in the above formulae. The set of partitions of n with m parts (m part partitions of n) is here denoted by $P a(n, m)$. This set will be considered as a list of $p(n, m)=\underline{\operatorname{A008284}}(n, m)$ partitions ordered lexicographically. Note that we take the partitions of n in the Abramowitz-Stegun ($A-S t$) order [1], i.e. the partitions are ordered with increasing parts number m, and partitions with the same number of parts m are or ordered lexicographically.
The multinomial M_{3} partition numbers, called here $M 3(n, \vec{e})$, are given as partition array in $\mathbf{A 0 3 6 0 4 0}$ (see also the W. Lang link there). $\vec{e}:=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, stands for the non-negative integer exponents of a given m part partition of $n: \sum_{j=1}^{n} j e_{j}=n$ and $\sum_{j=1}^{n} e_{j}=m, e_{j} \in \mathbb{N}_{0}$.
In the formula the M_{3} numbers for m part partitions of $n+m-1$ with the following exponents, determined from those of the partition p, enter:

$$
\begin{equation*}
\overrightarrow{\hat{e}}=(0, e_{1}, e_{2}, \ldots, e_{n-1}, \underbrace{0, \ldots 0}_{m-1}) . \tag{9}
\end{equation*}
$$

I.e., $\hat{e}_{1}:=0, \hat{e}_{2}:=e_{1}, \ldots, \hat{e}_{n}:=e_{n-1}, \hat{e}_{n+1}:=0, \ldots, \hat{e}_{n+m-1}:=0$.

These \hat{e} exponents belong indeed to an m part partition of $n+m-1$ because $2 e_{1}+3 e_{2}+\ldots+n e_{n-1}=$ $\left(1 e_{1}+2 e_{2}+\ldots+(n-1) e_{n-1}\right)+\sum_{j=1}^{n-1} e_{j}=(n-1)+m$.
The definition of the M_{3} numbers is

$$
\begin{equation*}
M 3(n+m-1, \overrightarrow{\hat{e}}):=\frac{(n+m-1)!}{\prod_{j=1}^{n+m-1} j!!_{j} \hat{e}_{j}!} \tag{10}
\end{equation*}
$$

In Table 1 these M3 numbers are listed as partition array $\operatorname{A176740}(n, k)$ in $O E I S[7]$ for partitions of $n, n \geq 1$, in the A-St order, as they appear in the above formula for \hat{f}_{n+1}. If the numbers corresponding to partitions of n with the same parts number m are summed, the well known triangle A134991 of OEIS [7], the so called 2 -associated Stirling number triangle of the second kind $S 2_{2}(n, m)$ appears (see [4], p. 222, where these numbers are called $S_{2}(n, k)$, with $n \rightarrow n-m$ and $k \rightarrow m$). This triangle is shown in Table 2. The column sequences without leading zeros and offset 0 are A000012 (n) (powers of 1), $\underline{\mathrm{A} 000247}(n+3), \underline{\mathrm{A} 000478}(n+6), \underline{\mathrm{A} 058844}(n+8), \ldots$ The row sums give $\underline{\mathrm{A} 000311}(n+1)$ (Schroeder's fourth problem). The signed triangle has row sums A133942 $(n)=(-1)^{n} n!, n \geq 1$.
It should be mentioned that the same problem is treated in A134685 in OEIS[7], however the order of partitions is different and fewer terms are given.
It turns out that in the $\hat{f}_{n}, n \geq 2$, formula, which derives from partitions of $n-1$ in the A-St order, one finds exactly the g-coefficients fitting to the partitions of $2(n-1)$ with $n-1$ parts, also sorted in A-St order. This is the main observation of this note. Before proving this we first give an example. The formula for \hat{f}_{5} is

$$
\begin{equation*}
\hat{f}_{5}=-1 g_{1}^{3} g_{5}+15 g_{1}^{2} g_{2} g_{4}+10 g_{1}^{2} g_{3}^{2}-105 g_{1} g_{2}^{2} g_{3}+105 g_{2}^{4} \tag{11}
\end{equation*}
$$

Compare the array Tab.1, line $n=4$, for the $M 3$ numbers [$-1,15,10,-105,105$], and [1], p. 831, for the order of all the partitions of 4 , whose exponents determine these $M 3$ numbers according to the above given prescription, and the 4 parts partitions of 8 which produce the g coefficients.
This 1-1 mapping of partitions of n in A-St order to the partitions of $2 n$ with n parts (we used here $(n-1) \rightarrow n)$ is the content of the following Proposition. But first a simple Lemma is needed.

Lemma:

Every element of $\operatorname{Pa}(2 n, n)$, the set of partitions of $2 n$ with n parts, has the last $n-1$ exponents vanishing. This means that there is no part exceeding $n+1$.

Proof:

Every exponent in the set $\left\{e_{n+2}, e_{n+3}, \ldots, e_{2 n}\right\}$ can at most be either 0 or 1 , because a partition of $2 n$ is considered. Moreover, if any of these exponents is 1 , say $e_{n+k}=1$, for $k \in\{2,3, . . n\}$, then in order to have n parts one would have to use $n-1$ times the part 1 , but this already overshoots $2 n$ because $(n+k)+(n-1) 1>2 n$. Therefore, all of these exponents have to vanish.

Proposition:

There is a bijective mapping between $P a(n)$, the set of partitions of n and $P a(2 n, n)$, the set of partitions of $2 n$ with n parts, which respects the $A-S t$ order. This mapping is the following one.
i) $\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in P a(n) \mapsto\left(n-m, e_{1}, e_{2}, \ldots, e_{n}, 0, \ldots, 0\right) \in \operatorname{Pa}(2 n, n)$.

Here the exponent notation for partitions is used. $m:=\sum_{j=1}^{n} e_{j}$. In the image the last $n-1$ exponents, those for the parts $n+2, n+3, \ldots, 2 n$, are all vanishing, in accordance with the Lemma.
ii) $\left(e_{1}, e_{2}, \ldots, e_{n+1}, 0, \ldots, 0\right) \in P a(2 n, n) \mapsto\left(e_{2}, e_{3}, \ldots, e_{n+1}\right) \in P a(n)$.

The last $n-1$ exponents in any $\operatorname{Pa}(2 n, n)$ partition all vanish due to the Lemma. The parts number of the image is $m=\sum_{j=2}^{n+1} e_{j}=n-e_{1}$.

Example: The list of the seven $n=5$ partitions in A-St order is (written in exponent notation) $[(0,0,0,0,1),(1,0,0,1,0),(0,1,1,0,0),(2,0,1,0,0),(1,2,0,0,0),(3,1,0,0,0),(5,0,0,0,0)]$. This list is mapped, entry by entry, to the following list, which turns out to be also A-St ordered.
$[(4,0,0,0,0,1,0,0,0,0),(3,1,0,0,1,0,0,0,0,0),(3,0,1,1,0,0,0,0,0,0),(2,2,0,1,0,0,0,0,0,0)$,
$(2,1,2,0,0,0,0,0,0,0),(1,3,1,0,0,0,0,0,0,0),(0,5,0,0,0,0,0,0,0,0)]$.

Proof:

i) The images are partitions of $P a(2 n, n)$ because $1(n-m)+\sum_{j=1}^{n}(j+1) e_{j}=n-\sum_{j=1}^{n} e_{j}+\sum_{j=1}^{n}(j+1) e_{j}=$ $n+n=2 n$.
If in the A-St ordered list of the partitions of n, partition p_{2} follows partition p_{1}, then the parts number m is either identical or larger for p_{2}. If m coincides then the $A-S t$ order is lexicographic, and the images have identical exponent e_{1} and the remaining parts of the two images take over the lexicographic order (the parts are just shifted by +1). Therefore, in this case the image of p_{2} follows also the image of p_{1} because A-St order in $P a(2 n, n)$ is just lexicographic. If p_{2} has larger parts number m than p_{1}, the exponent e_{1} of the image of p_{2} is smaller than the one for the image of p_{1} and the remaining parts are in lexicographic order. Therefore, also in this case lexicographic order ensues.
ii) It is clear that this map leads to partitions of n with parts number $m=n-e_{1}$, because
$\sum_{j=1}^{n} j e_{j+1}=\sum_{j=1}^{n+1} j e_{j}-\sum_{j=1}^{n+1} e_{j}=2 n-n=n$.
For $\operatorname{Pa}(2 n, n)$ partitions the A-St order is just lexicographic (the parts number is fixed; it is n). If from this set a partition p_{2} follows lexicographically p_{1}, then the parts number $\left(n-e_{1}\right)$ of the image of p_{2} is never smaller than the one of the image of p_{1}. If it is larger then the image of p_{2} follows in A-St order the one of p_{1}. If the parts number of the images coincide, the original lexicographic order from the two $\left\{e_{2}, e_{3}, \ldots e_{n+1}\right\}$ exponent sets is carried over to the images, hence they are A-St ordered.
This proves the bijective mapping between the lists of A-St ordered partitions $L(n)$ for partitions of n and $L(2 n, n)$ for n parts partitions of $2 n: L(n)[k] \longleftrightarrow L(2 n, n)[k]$, for $k=1, \ldots, p(n)=\underline{\text { A000041 }}(n)$.

Corollary:

$\underline{\mathrm{A} 000041}(n)=: p(n)=p(2 n, n):=\underline{\mathrm{A} 008284}(n, m)$.
Examples: $p(4)=5=p(8,4), p(5)=7=p(10,5)$.
Now the assertion about the \hat{f}_{n} structure in terms of A-St ordered partitions of $\operatorname{Pa}(2(n-1), n-1)$ is obvious. Remember that we have to use the Proposition with $n \rightarrow n-1$. Just observe that the exponent of the coefficient g_{1} in eq. (8) is $\sum_{j=1}^{n-1}(j-1) e_{j}=\sum_{j=1}^{n-1} j e_{j}-\sum_{j=1}^{n-1} e_{j}=(n-1)-m$, like expected for the map i) of the Proposition with $n \rightarrow n-1$. Also the exponents of the other $g_{k}, k \in\{2,3, \ldots, n\}$, fit this map. Thus we have shown, that the following formulae can be used for \hat{f}_{n}, instead of eqs. (6) to (8) .

$$
\begin{equation*}
\hat{f}_{n}=\sum_{k=1}^{p(n-1)} a(n-1, k) \prod_{j=1}^{n} g_{j}^{e_{j}(k)}, n \in\{2,3, \ldots,\} \text { and } \hat{f}_{1}=1 \tag{12}
\end{equation*}
$$

with the signed partition array $a(n, k):=\underline{\text { A176740 }}(n, k)$ given in Table 1, and the exponents $\left\{e_{j}(k)\right\}$ of the k - th partition of $P a(2(n-1), n-1)$ in A-St, i.e. here in lexicographic order. The number of partitions is $p(n):=\underline{\operatorname{A000041}}(n)$. This produces for \hat{f}_{n} the polynomials given in Table 3.

TAB. 1: $\underline{\text { A176740 }}(\mathrm{n}, \mathrm{k})$ partition array

\mathbf{n} / \mathbf{k}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	-1											
$\mathbf{2}$	-1	3										
$\mathbf{3}$	-1	10	-15									
$\mathbf{4}$	-1	15	10	-105	105							
$\mathbf{5}$	-1	21	35	-210	-280	1260	-945					
$\mathbf{6}$	-1	28	56	35	-378	-1260	-280	3150	6300	-17325	10395	
$\mathbf{7}$	-1	36	84	126	-630	-2520	-1575	-2100	6930	34650	15400	-51975
$\mathbf{8}$	-1	45	120	210	126	-990	-4620	-6930	-4620	-5775	13860	83160
\vdots												

n / k	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	21	$\mathbf{2 2} \ldots$
$\mathbf{1}$										
$\mathbf{2}$										
$\mathbf{3}$										
$\mathbf{4}$										
$\mathbf{5}$										
$\mathbf{6}$										
$\mathbf{7}$	-138600	270270	-135135							
$\mathbf{8}$	51975	138600	15400	-135135	-900900	-600600	945945	3153150	-4729725	2027025
\vdots										

TAB. 2: triangle A134991 from the unsigned partition array A176740

TAB. 3: E.g.f. inversion: partition polynomials for $\left\{\hat{f}_{n}\right\}_{1}^{10}, f_{n}=\frac{1}{g_{1}^{2 n-1}} \hat{f}_{n}$

n	partition polynomials for $\mathrm{n}-1$ parts partitions of $2(\mathrm{n}-1)$
1	1
2	$-g_{2}$
3	$-g_{1} g_{3}+3 g_{2}^{2}$
4	$-g_{1}^{2} g_{4}+10 g_{1} g_{2} g_{3}-15 g_{2}^{3}$
5	$-g_{1}^{3} g_{5}+15 g_{1}^{2} g_{2} g_{4}+10 g_{1}^{2} g_{3}^{2}-105 g_{1} g_{2}^{2} g_{3}+105 g_{2}^{4}$
6	$-g_{1}^{4} g_{6}+21 g_{1}^{3} g_{2} g_{5}+35 g_{1}^{3} g_{3} g_{4}-210 g_{1}^{2} g_{2}^{2} g_{4}-280 g_{1}^{2} g_{2} g_{3}^{2}+1260 g_{1} g_{2}^{3} g_{3}-945 g_{2}^{5}$
7	$\begin{aligned} & -g_{1}^{5} g_{7}+28 g_{1}^{4} g_{2} g_{6}+56 g_{1}^{4} g_{3} g_{5}+35 g_{1}^{4} g_{4}^{2}-378 g_{1}^{3} g_{2}^{2} g_{5}-1260 g_{1}^{3} g_{2} g_{3} g_{4}-280 g_{1}^{3} g_{3}^{3}+3150 g_{1}^{2} g_{2}^{3} g_{4}+6300 g_{1}^{2} g_{2}^{2} g_{4}^{2} \\ & -17325 g_{1} g_{2}^{4} g_{3}+10395 g_{2}^{6} \end{aligned}$
8	$\begin{aligned} & -g_{1}^{6} g_{8}+36 g_{1}^{5} g_{2} g_{7}+84 g_{1}^{5} g_{3} g_{6}+126 g_{1}^{5} g_{4} g_{5}-630 g_{1}^{4} g_{2}^{2} g_{6}-2520 g_{1}^{4} g_{2} g_{3} g_{5}-1575 g_{1}^{4} g_{2} g_{4}^{2}-2100 g_{1}^{4} g_{3}^{2} g_{4} \\ & +6930 g_{1}^{3} g_{2}^{3} g_{5}+34650 g_{1}^{3} g_{2}^{2} g_{3} g_{4}+15400 g_{1}^{3} g_{2} g_{3}^{3}-51975 g_{1}^{2} g_{2}^{4} g_{4}-138600 g_{1}^{2} g_{2}^{3} g_{3}^{2}+270270 g_{1} g_{2}^{5} g_{3}-135135 g_{2}^{7} \end{aligned}$
9	$\begin{aligned} & -g_{1}^{7} g_{9}+45 g_{1}^{6} g_{2} g_{8}+120 g_{1}^{6} g_{3} g_{7}+210 g_{1}^{6} g_{4} g_{6}+126 g_{1}^{6} g_{5}^{2}-990 g_{1}^{5} g_{2}^{2} g_{7}-4620 g_{1}^{5} g_{2} g_{3} g_{6}-6930 g_{1}^{5} g_{2} g_{4} g_{5} \\ & -4620 g_{1}^{5} g_{3}^{2} g_{5}-5775 g_{1}^{5} g_{3} g_{4}^{2}+13860 g_{1}^{4} g_{2}^{3} g_{6}+83160 g_{1}^{4} g_{2}^{2} g_{3} g_{5}+51975 g_{1}^{4} g_{2}^{2} g_{4}^{2}+138600 g_{1}^{4} g_{2} g_{3}^{2} g_{4}+15400 g_{1}^{4} g_{3}^{4} \\ & -135135 g_{1}^{3} g_{2}^{4} g_{5}-900900 g_{1}^{3} g_{2}^{3} g_{3} g_{4}-600600 g_{1}^{3} g_{2}^{2} g_{3}^{3}+945945 g_{1}^{2} g_{2}^{5} g_{4}+3153150 g_{1}^{2} g_{2}^{4} g_{3}^{2}-4729725 g_{1} g_{2}^{6} g_{3}+2027025 g_{2}^{8}+2{ }_{2}^{4} \end{aligned}$
10	$-g_{1}^{8} g_{10}+55 g_{1}^{7} g_{2} g_{9}+165 g_{1}^{7} g_{3} g_{8}+330 g_{1}^{7} g_{4} g_{7}+462 g_{1}^{7} g_{5} g_{6}-1485 g_{1}^{6} g_{2}^{2} g_{8}-7920 g_{1}^{6} g_{2} g_{3} g_{7}-13860 g_{1}^{6} g_{2} g_{4} g_{6}$ $-8316 g_{1}^{6} g_{2} g_{5}^{2}-9240 g_{1}^{6} g_{3}^{2} g_{6}-27720 g_{1}^{6} g_{3} g_{4} g_{5}-5775 g_{1}^{6} g_{4}^{3}+25740 g_{1}^{5} g_{2}^{3} g_{7}+180180 g_{1}^{5} g_{2}^{2} g_{3} g_{6}+270270 g_{1}^{5} g_{2}^{2} g_{4} g_{5}$ $+360360 g_{1}^{5} g_{2} g_{3}^{2} g_{5}+450450 g_{1}^{5} g_{2} g_{3} g_{4}^{2}+200200 g_{1}^{5} g_{3}^{3} g_{4}-315315 g_{1}^{4} g_{2}^{4} g_{6}-2522520 g_{1}^{4} g_{2}^{3} g_{3} g_{5}-1576575 g_{1}^{4} g_{2}^{3} g_{4}^{2}$ $-6306300 g_{1}^{4} g_{2}^{2} g_{3}^{2} g_{4}-1401400 g_{1}^{4} g_{2} g_{3}^{4}+2837835 g_{1}^{3} g_{2}^{5} g_{5}+23648625 g_{1}^{3} g_{2}^{4} g_{3} g_{4}+21021000 g_{1}^{3} g_{2}^{3} g_{3}^{3}-18918900 g_{1}^{2} g_{2}^{6} g_{4}$ $-75675600 g_{1}^{2} g_{2}^{5} g_{3}^{2}+91891800 g_{1} g_{2}^{7} g[3]-34459425 g_{2}^{9}$

References

[1] Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, reprinted as Dover publication, seventh printing 1968, New York, 1972
[2] R. Aldrovandi, Special Matrices of Mathematical Physics, World Scientific, 2001
[3] Ch. A. Charalambides, Enumerative Combinatorics, Chapman \&Hall/CRC, 2002
[4] L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, Boston, 1974
[5] G. M. Fichtenholz, Differential- und Integralrechnung II, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964
[6] J. Riordan, Combinatorial Identities, Robert E. Krieger Publ. Comp., Huntington, New York, 1979
[7] N.J.A. Sloane's On-Line Encyclopedia of Integer Sequences, http//:www.research.att.com/~njas/sequences/index.html
[8] E. Zeidler, Quantum Field Theory II, Quantum Electrodynamics, Springer 2009

AMS MSC numbers: 13F25, 40E99, 05A17.
Keywords: power series inversion, Lagrange series, exponential generating function, Bell polynomial, partitions.
(Concerned with OEIS sequences A000012, $\underline{A 000041, ~ A 000247, ~} \underline{A 000311, ~} \underline{A 000478}, \underline{A 0082484}, \underline{A 036040}$, $\underline{\mathrm{A} 058844}, \underline{\mathrm{~A} 133942, \underline{\mathrm{~A} 134991}, \underline{\mathrm{~A} 176740})}$

[^0]: ${ }^{1}$ wl@particle.uni-karlsruhe.de, http://www-itp.particle.uni-karlsruhe.de/~wl

