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A176740: E.g.f. Lagrange inversion partition array
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Abstract

The coefficients of the special Lagrange series which provides the compositional inverse of a for-
mal power series, considered as exponential generating function (e.g.f.), are obtained from a certain
partition array involving the multinomial M3 numbers A036040.

Given any formal power series (f.p.s.) g(x) :=

∞∑

k=1

gk

xk

k!
=: xh(x) with g0 = 0, g1 6= 0, the

compositional inverse f = g[−1] defined by f(g(x)) ≡ x or g(f(y)) ≡ y is defined as f.p.s. f(y) :=
∞∑

n=1

fn

yn

n!
. The well known expression for the coefficients fn of the Lagrange series, which involves higher

derivatives of the inverse of the f.p.s. h, is e.g., [5], p. 524, [3], p. 205, [6], ch. 4.5, p.146 ff.

fn =

(
1

h(x)n

)(n−1)
∣
∣
∣
∣
∣
x=0

, n ≥ 2; f1 =
1

h0
=

1

g1
, (1)

i.e.

fn = (n− 1)! [xn−1]

(
1

h(x)

)n

, n ≥ 2, and f1 =
1

g1
. (2)

Therefore, instead of giving an explicit formula, it demands to find the coefficients of inverse powers of
a f.p.s. considered as e.g.f.. This is achieved with the help of Bell polynomials [6] and the proof can be
found e.g., in [3], p. 437, eq. (11.43) with p. 428. eq. (11.29) or [2], p. 175, eq. (13.84).

fn =
1

gn
n

n−1∑

k=1

(−1)k nk Bn−1,k(ĝ1, ĝ2, ... , ĝn−k) , n ≥ 2 , (3)

with ĝk :=
gk+1

(k + 1) g1
, and f1 =

1

g1
. nk is the rising factorial (Pochhammer symbol)

n (n + 1) · · · (n− (k − 1)).

This formula is the solution of the recurrence formula for the coefficients of the Lagrange series which is
(see [2], p. 173, eq.(13.81) where the solution fn is also given as a determinant due to Cramer’s rule in
eq.(13.82)).

fn = −
1

gn
1

n−1∑

k=1

Bn,k(g1, ... , gn+1−k) fk , n ≥ 2, f1 =
1

g1
. (4)

Note: This solution of the recurrence for the coefficients of the this special application of a Lagrange

series appears in the context of the Faà di Bruno Hopf algebra for the formal diffeomorphism group in
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the complex plane as the antipode (aka counit). See [8], ch. 3, “The Power of Combinatorics”, sects.
3.4.4 , 3.4.5, pp. 136 - 140, especially eqs. (3.34), (3.36), and (3.38).
The above solution of the recurrence relation for the {fn} coefficients can be considered as an analogon
of Zimmermann’s forest formula in the context of renormalizable quantum field theory à la Bogoliubov-

Parasuik-Hepp-Zimmermann (BPHZ), where the analog of the recurrence formula is the iterative R-
operation of Bogoliubov.

This ”sophisticated Zimmermann type cancellation formula” ([8], p. 139), eq. (3), can be reinterpreted
such that its partition structure becomes obvious (W. Lang, Feb. 2010). This just uses the fact that
Bell polynomials are partition polynomials and some later given proposition. The final formula for the
coefficients of this special application of the Lagrange series becomes then

fn =
1

g2n−1
1

f̂n, i.e., f(y) = g1

∞∑

n=1

f̂n

(
y

g2
1

)n 1

n!
, (5)

f̂1 = 1, and for n = 2, 3, ... we have

f̂n =

n−1∑

m=1

(−1)m P3(n,m) , (6)

with
P3(n,m) :=

∑

p:=(1e1 ,2e2 ,...,(n−1)en−1) fromPa(n−1,m)

P3(p) , (7)

where, finally,

P3(p) := M3(n + m− 1, ~̂e )

n−1∏

j=1

(

g
j−1
1 gj+1

)ej

. (8)

Some more definitions have been used in the above formulae. The set of partitions of n with m

parts (m part partitions of n) is here denoted by Pa(n,m). This set will be considered as a list of
p(n,m) = A008284(n,m) partitions ordered lexicographically. Note that we take the partitions of n in
the Abramowitz-Stegun (A-St) order [1], i.e. the partitions are ordered with increasing parts number m,
and partitions with the same number of parts m are or ordered lexicographically.
The multinomial M3 partition numbers, called here M3(n,~e ), are given as partition array in A036040
(see also the W. Lang link there). ~e := (e1, e2, ..., en), stands for the non-negative integer exponents of

a given m part partition of n:
n∑

j=1

j ej = n and
n∑

j=1

ej = m , ej ∈ N0.

In the formula the M3 numbers for m part partitions of n+m−1 with the following exponents, determined
from those of the partition p, enter:

~̂e = (0, e1, e2, ..., en−1, 0, ...0
︸ ︷︷ ︸

m−1

) . (9)

I.e., ê1 := 0, ê2 := e1, ... , ên := en−1, ên+1 := 0, ... , ên+m−1 := 0 .
These ê exponents belong indeed to an m part partition of n+m−1 because 2 e1 + 3 e2 + ... + n en−1 =

(1 e1 + 2 e2 + ... + (n− 1) en−1) +
n−1∑

j=1

ej = (n− 1) + m.

The definition of the M3 numbers is

M3(n + m− 1, ~̂e ) :=
(n + m− 1)!

∏n+m−1
j=1 j!êj êj !

. (10)
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In Table 1 these M3 numbers are listed as partition array A176740(n, k) in OEIS[7] for partitions of
n, n ≥ 1, in the A-St order, as they appear in the above formula for f̂n+1. If the numbers corresponding
to partitions of n with the same parts number m are summed, the well known triangle A134991 of OEIS

[7], the so called 2−associated Stirling number triangle of the second kind S22(n,m) appears (see [4], p.
222, where these numbers are called S2(n, k), with n → n − m and k → m). This triangle is shown
in Table 2. The column sequences without leading zeros and offset 0 are A000012(n) (powers of 1),
A000247(n + 3), A000478(n + 6), A058844(n + 8), ... The row sums give A000311(n + 1) (Schroeder’s
fourth problem). The signed triangle has row sums A133942(n) = (−1)n n!, n ≥ 1.

It should be mentioned that the same problem is treated in A134685 in OEIS[7], however the order of
partitions is different and fewer terms are given.

It turns out that in the f̂n , n ≥ 2, formula, which derives from partitions of n − 1 in the A-St order,
one finds exactly the g−coefficients fitting to the partitions of 2 (n − 1) with n − 1 parts, also sorted in
A-St order. This is the main observation of this note. Before proving this we first give an example. The
formula for f̂5 is

f̂5 = −1 g3
1 g5 + 15 g2

1 g2 g4 + 10 g2
1 g2

3 − 105 g1 g2
2 g3 + 105 g4

2 . (11)

Compare the array Tab.1, line n = 4, for the M3 numbers [−1, 15, 10,−105, 105], and [1], p. 831, for the
order of all the partitions of 4, whose exponents determine these M3 numbers according to the above
given prescription, and the 4 parts partitions of 8 which produce the g coefficients.

This 1 − 1 mapping of partitions of n in A-St order to the partitions of 2n with n parts (we used here
(n− 1) → n) is the content of the following Proposition. But first a simple Lemma is needed.

Lemma:

Every element of Pa(2n, n), the set of partitions of 2n with n parts, has the last n − 1 exponents
vanishing. This means that there is no part exceeding n + 1.

Proof:

Every exponent in the set {en+2, en+3, ... , e2 n} can at most be either 0 or 1, because a partition of 2n

is considered. Moreover, if any of these exponents is 1, say en+k = 1, for k ∈ {2, 3, ..n}, then in order
to have n parts one would have to use n − 1 times the part 1, but this already overshoots 2n because
(n + k) + (n− 1) 1 > 2n. Therefore, all of these exponents have to vanish.

Proposition:

There is a bijective mapping between Pa(n), the set of partitions of n and Pa(2n, n), the set of partitions
of 2n with n parts, which respects the A-St order. This mapping is the following one.

i) (e1, e2, ... , en) ∈ Pa(n) 7→ (n−m, e1, e2, ..., en, 0, ... , 0) ∈ Pa(2n, n).

Here the exponent notation for partitions is used. m :=

n∑

j=1

ej . In the image the last n− 1 exponents,

those for the parts n + 2, n + 3, ... , 2n, are all vanishing, in accordance with the Lemma.

ii) (e1, e2, ... , en+1, 0, ... , 0) ∈ Pa(2n, n) 7→ (e2, e3, ... , en+1) ∈ Pa(n).

The last n− 1 exponents in any Pa(2n, n) partition all vanish due to the Lemma. The parts number of

the image is m =
n+1∑

j=2

ej = n − e1.

Example: The list of the seven n = 5 partitions in A-St order is (written in exponent notation)

[(0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (2, 0, 1, 0, 0), (1, 2, 0, 0, 0), (3, 1, 0, 0, 0), (5, 0, 0, 0, 0)].

This list is mapped, entry by entry, to the following list, which turns out to be also A-St ordered.

[(4, 0, 0, 0, 0, 1, 0, 0, 0, 0), (3, 1, 0, 0, 1, 0, 0, 0, 0, 0), (3, 0, 1, 1, 0, 0, 0, 0, 0, 0), (2, 2, 0, 1, 0, 0, 0, 0, 0, 0),

(2, 1, 2, 0, 0, 0, 0, 0, 0, 0), (1, 3, 1, 0, 0, 0, 0, 0, 0, 0), (0, 5, 0, 0, 0, 0, 0, 0, 0, 0)].
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Proof:

i) The images are partitions of Pa(2n, n) because 1 (n−m) +
n∑

j=1

(j+1) ej = n−
n∑

j=1

ej +
n∑

j=1

(j+1) ej =

n + n = 2n.

If in the A-St ordered list of the partitions of n, partition p2 follows partition p1, then the parts number
m is either identical or larger for p2. If m coincides then the A-St order is lexicographic, and the images
have identical exponent e1 and the remaining parts of the two images take over the lexicographic order
(the parts are just shifted by +1). Therefore, in this case the image of p2 follows also the image of p1

because A-St order in Pa(2n, n) is just lexicographic. If p2 has larger parts number m than p1, the
exponent e1 of the image of p2 is smaller than the one for the image of p1 and the remaining parts are in
lexicographic order. Therefore, also in this case lexicographic order ensues.

ii) It is clear that this map leads to partitions of n with parts number m = n − e1, because
n∑

j=1

j ej+1 =

n+1∑

j=1

j ej −

n+1∑

j=1

ej = 2n − n = n.

For Pa(2n, n) partitions the A-St order is just lexicographic (the parts number is fixed; it is n). If from
this set a partition p2 follows lexicographically p1, then the parts number (n − e1) of the image of p2 is
never smaller than the one of the image of p1. If it is larger then the image of p2 follows in A-St order
the one of p1. If the parts number of the images coincide, the original lexicographic order from the two
{e2, e3, ... en+1} exponent sets is carried over to the images, hence they are A-St ordered.

This proves the bijective mapping between the lists of A-St ordered partitions L(n) for partitions of n

and L(2n, n) for n parts partitions of 2n: L(n)[k]←→ L(2n, n)[k], for k = 1, ..., p(n) = A000041(n).

Corollary:

A000041(n) =: p(n) = p(2n, n) := A008284(n,m).

Examples: p(4) = 5 = p(8, 4), p(5) = 7 = p(10, 5).

Now the assertion about the f̂n structure in terms of A-St ordered partitions of Pa(2 (n − 1), n − 1) is
obvious. Remember that we have to use the Proposition with n → n−1. Just observe that the exponent

of the coefficient g1 in eq. (8) is
n−1∑

j=1

(j − 1) ej =
n−1∑

j=1

j ej −
n−1∑

j=1

ej = (n− 1) − m, like expected for the

map i) of the Proposition with n → n− 1. Also the exponents of the other gk, k ∈ {2, 3, ..., n}, fit this
map. Thus we have shown, that the following formulae can be used for f̂n, instead of eqs. (6) to (8) .

f̂n =

p(n−1)
∑

k=1

a(n− 1, k)
n∏

j=1

g
ej(k)
j , n ∈ {2, 3, ..., } and f̂1 = 1 , (12)

with the signed partition array a(n, k) := A176740(n, k) given in Table 1, and the exponents {ej(k)}
of the k − th partition of Pa(2 (n − 1), n − 1) in A-St, i.e. here in lexicographic order. The number of
partitions is p(n) := A000041(n). This produces for f̂n the polynomials given in Table 3.
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TAB. 1:A176740(n,k) partition array

n/k 1 2 3 4 5 6 7 8 9 10 11 12

1 -1
2 -1 3
3 -1 10 -15
4 -1 15 10 -105 105
5 -1 21 35 -210 -280 1260 -945
6 -1 28 56 35 -378 -1260 -280 3150 6300 -17325 10395
7 -1 36 84 126 -630 -2520 -1575 -2100 6930 34650 15400 -51975
8 -1 45 120 210 126 -990 -4620 -6930 -4620 -5775 13860 83160
...

n/k 13 14 15 16 17 18 19 20 21 22 ...

1
2
3
4
5
6
7 -138600 270270 -135135
8 51975 138600 15400 -135135 -900900 -600600 945945 3153150 -4729725 2027025
...
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TAB. 2: triangle A134991 from the unsigned partition array A176740

n/m 1 2 3 4 5 6 7 8 9 10 ...

1 1
2 1 3
3 1 10 15
4 1 25 105 105
5 1 56 490 1260 945
6 1 119 1918 9450 17325 10395
7 1 246 6825 56980 190575 270270 135135
8 1 501 22935 302995 1636635 4099095 4729725 2027025
9 1 1012 74316 1487200 12122110 47507460 94594500 91891800 34459425
10 1 2035 235092 6914908 81431350 466876410 1422280860 2343240900 1964187225 654729075

...6

http://oeis.org/A134991


TAB. 3: E.g.f. inversion: partition polynomials for {f̂n}
10

1
, fn =

1

g2n−1

1

f̂n

n partition polynomials for n− 1 parts partitions of 2 (n− 1)

1 1

2 −g2

3 −g1 g3 + 3 g2
2

4 −g2
1 g4 + 10 g1 g2 g3 − 15 g3

2

5 −g3
1 g5 + 15 g2

1 g2 g4 + 10 g2
1 g2

3 − 105 g1 g2
2 g3 + 105 g4

2

6 −g4
1 g6 + 21 g3

1 g2 g5 + 35 g3
1 g3 g4 − 210 g2

1 g2
2 g4 − 280 g2

1 g2 g2
3 + 1260 g1 g3

2 g3 − 945 g5
2

7 −g5
1 g7 + 28 g4

1 g2 g6 + 56 g4
1 g3 g5 + 35 g4

1 g2
4 − 378 g3

1 g2
2 g5 − 1260 g3

1 g2 g3 g4 − 280 g3
1 g3

3 + 3150 g2
1 g3

2 g4 + 6300 g2
1 g2

2 g2
4

− 17325 g1 g4
2 g3 + 10395 g6

2

8 − g6
1 g8 + 36 g5

1 g2 g7 + 84 g5
1 g3 g6 + 126 g5

1 g4 g5 − 630 g4
1 g2

2 g6 − 2520 g4
1 g2 g3 g5 − 1575 g4

1 g2 g2
4 − 2100 g4

1 g2
3 g4

+ 6930 g3
1 g3

2 g5 + 34650 g3
1 g2

2 g3 g4 + 15400 g3
1 g2 g3

3 − 51975 g2
1 g4

2 g4 − 138600 g2
1 g3

2 g2
3 + 270270 g1 g5

2 g3 − 135135 g7
2

9 − g7
1 g9 + 45 g6

1 g2 g8 + 120 g6
1 g3 g7 + 210 g6

1 g4 g6 + 126 g6
1 g2

5 − 990 g5
1 g2

2 g7 − 4620 g5
1 g2 g3 g6 − 6930 g5

1 g2 g4 g5

− 4620 g5
1 g2

3 g5 − 5775 g5
1 g3 g2

4 + 13860 g4
1 g3

2 g6 + 83160 g4
1 g2

2 g3 g5 + 51975 g4
1 g2

2 g2
4 + 138600 g4

1 g2 g2
3 g4 + 15400 g4

1 g4
3

− 135135 g3
1 g4

2 g5 − 900900 g3
1 g3

2 g3 g4 − 600600 g3
1 g2

2 g3
3 + 945945 g2

1 g5
2 g4 + 3153150 g2

1 g4
2 g2

3 − 4729725 g1 g6
2 g3 + 2027025 g8

2

10 − g8
1 g10 + 55 g7

1 g2 g9 + 165 g7
1 g3 g8 + 330 g7

1 g4 g7 + 462 g7
1 g5 g6 − 1485 g6

1 g2
2 g8 − 7920 g6

1 g2 g3 g7 − 13860 g6
1 g2 g4 g6

− 8316 g6
1 g2 g2

5 − 9240 g6
1 g2

3 g6 − 27720 g6
1 g3 g4 g5 − 5775 g6

1 g3
4 + 25740 g5

1 g3
2 g7 + 180180 g5

1 g2
2 g3 g6 + 270270 g5

1 g2
2 g4 g5

+ 360360 g5
1 g2 g2

3 g5 + 450450 g5
1 g2 g3 g2

4 + 200200 g5
1 g3

3 g4 − 315315 g4
1 g4

2 g6 − 2522520 g4
1 g3

2 g3 g5 − 1576575 g4
1 g3

2 g2
4

− 6306300 g4
1 g2

2 g2
3 g4 − 1401400 g4

1 g2 g4
3 + 2837835 g3

1 g5
2 g5 + 23648625 g3

1 g4
2 g3 g4 + 21021000 g3

1 g3
2 g3

3 − 18918900 g2
1 g6

2 g4

− 75675600 g2
1 g5

2 g2
3 + 91891800 g1 g7

2 g[3] − 34459425 g9
2

...
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