<u>A176740</u>: E.g.f. Lagrange inversion partition array

Wolfdieter L a n g 1

Abstract

The coefficients of the special Lagrange series which provides the compositional inverse of a formal power series, considered as exponential generating function (*e.g.f.*), are obtained from a certain partition array involving the multinomial M_3 numbers <u>A036040</u>.

Given any formal power series (f.p.s.) $g(x) := \sum_{k=1}^{\infty} g_k \frac{x^k}{k!} =: x h(x)$ with $g_0 = 0$, $g_1 \neq 0$, the compositional inverse $f = g^{[-1]}$ defined by $f(g(x)) \equiv x$ or $g(f(y)) \equiv y$ is defined as f.p.s. $f(y) := \sum_{n=1}^{\infty} f_n \frac{y^n}{n!}$. The well known expression for the coefficients f_n of the Lagrange series, which involves higher derivatives of the inverse of the f.p.s. h, is e.g., [5], p. 524, [3], p. 205, [6], ch. 4.5, p.146 ff.

$$f_n = \left. \left(\frac{1}{h(x)^n} \right)^{(n-1)} \right|_{x=0}, \ n \ge 2; \ f_1 = \frac{1}{h_0} = \frac{1}{g_1}, \tag{1}$$

i.e.

$$f_n = (n-1)! [x^{n-1}] \left(\frac{1}{h(x)}\right)^n$$
, $n \ge 2$, and $f_1 = \frac{1}{g_1}$. (2)

Therefore, instead of giving an explicit formula, it demands to find the coefficients of inverse powers of a *f.p.s.* considered as *e.g.f.*. This is achieved with the help of *Bell* polynomials [6] and the proof can be found *e.g.*, in [3], p. 437, eq. (11.43) with p. 428. eq. (11.29) or [2], p. 175, eq. (13.84).

$$f_n = \frac{1}{g_n^n} \sum_{k=1}^{n-1} (-1)^k n^{\overline{k}} B_{n-1,k}(\hat{g}_1, \hat{g}_2, \dots, \hat{g}_{n-k}) , \ n \ge 2 , \qquad (3)$$

with $\hat{g}_k := \frac{g_{k+1}}{(k+1)g_1}$, and $f_1 = \frac{1}{g_1}$. $n^{\overline{k}}$ is the rising factorial (Pochhammer symbol) $n(n+1)\cdots(n-(k-1))$.

This formula is the solution of the recurrence formula for the coefficients of the Lagrange series which is (see [2], p. 173, eq.(13.81) where the solution f_n is also given as a determinant due to Cramer's rule in eq.(13.82)).

$$f_n = -\frac{1}{g_1^n} \sum_{k=1}^{n-1} B_{n,k}(g_1, \dots, g_{n+1-k}) f_k , \ n \ge 2, \ f_1 = \frac{1}{g_1}.$$
(4)

Note: This solution of the recurrence for the coefficients of the this special application of a Lagrange series appears in the context of the Faà di Bruno Hopf algebra for the formal diffeomorphism group in

¹ wl@particle.uni-karlsruhe.de, http://www-itp.particle.uni-karlsruhe.de/~wl

the complex plane as the antipode (aka counit). See [8], ch. 3, "*The Power of Combinatorics*", sects. 3.4.4, 3.4.5, pp. 136 - 140, especially eqs. (3.34), (3.36), and (3.38).

The above solution of the recurrence relation for the $\{f_n\}$ coefficients can be considered as an analogon of Zimmermann's forest formula in the context of renormalizable quantum field theory à la Bogoliubov-Parasuik-Hepp-Zimmermann (BPHZ), where the analog of the recurrence formula is the iterative Roperation of Bogoliubov.

This "sophisticated Zimmermann type cancellation formula" ([8], p. 139), eq. (3), can be reinterpreted such that its partition structure becomes obvious (W. Lang, Feb. 2010). This just uses the fact that *Bell* polynomials are partition polynomials and some later given proposition. The final formula for the coefficients of this special application of the *Lagrange* series becomes then

$$f_n = \frac{1}{g_1^{2n-1}} \hat{f}_n, \quad i.e., \ f(y) = g_1 \sum_{n=1}^{\infty} \hat{f}_n \left(\frac{y}{g_1^2}\right)^n \frac{1}{n!}, \tag{5}$$

 $\hat{f}_1 = 1$, and for n = 2, 3, ... we have

$$\hat{f}_n = \sum_{m=1}^{n-1} (-1)^m P3(n,m), \qquad (6)$$

with

$$P3(n,m) := \sum_{p:=(1^{e_1}, 2^{e_2}, \dots, (n-1)^{e_{n-1}}) \text{ from } Pa(n-1,m)} P3(p),$$
(7)

where, finally,

$$P3(p) := M3(n+m-1,\vec{e}) \prod_{j=1}^{n-1} \left(g_1^{j-1} g_{j+1}\right)^{e_j} .$$
(8)

Some more definitions have been used in the above formulae. The set of partitions of n with m parts (m part partitions of n) is here denoted by Pa(n,m). This set will be considered as a list of $p(n,m) = \underline{A008284}(n,m)$ partitions ordered lexicographically. Note that we take the partitions of n in the Abramowitz-Stegun (A-St) order [1], *i.e.* the partitions are ordered with increasing parts number m, and partitions with the same number of parts m are or ordered lexicographically.

The multinomial M_3 partition numbers, called here $M3(n, \vec{e})$, are given as partition array in <u>A036040</u> (see also the W. Lang link there). $\vec{e} := (e_1, e_2, ..., e_n)$, stands for the non-negative integer exponents of a given m part partition of n: $\sum_{j=1}^{n} j e_j = n$ and $\sum_{j=1}^{n} e_j = m$, $e_j \in \mathbb{N}_0$.

In the formula the M_3 numbers for m part partitions of n+m-1 with the following exponents, determined from those of the partition p, enter:

$$\vec{\hat{e}} = (0, e_1, e_2, \dots, e_{n-1}, \underbrace{0, \dots 0}_{m-1})$$
 (9)

I.e., $\hat{e}_1 := 0, \hat{e}_2 := e_1, \dots, \hat{e}_n := e_{n-1}, \hat{e}_{n+1} := 0, \dots, \hat{e}_{n+m-1} := 0$. These \hat{e} exponents belong indeed to an m part partition of n+m-1 because $2e_1 + 3e_2 + \dots + ne_{n-1} = (1e_1 + 2e_2 + \dots + (n-1)e_{n-1}) + \sum_{j=1}^{n-1} e_j = (n-1) + m$.

The definition of the M_3 numbers is

$$M3(n+m-1,\vec{e}) := \frac{(n+m-1)!}{\prod_{j=1}^{n+m-1} j!^{\hat{e}_j} \hat{e}_j!}.$$
(10)

In Table 1 these M3 numbers are listed as partition array $\underline{A176740}(n,k)$ in OEIS[7] for partitions of $n, n \geq 1$, in the A-St order, as they appear in the above formula for f_{n+1} . If the numbers corresponding to partitions of n with the same parts number m are summed, the well known triangle <u>A134991</u> of OEIS [7], the so called 2-associated Stirling number triangle of the second kind $S_{22}(n,m)$ appears (see [4], p. 222, where these numbers are called $S_2(n,k)$, with $n \to n-m$ and $k \to m$). This triangle is shown in Table 2. The column sequences without leading zeros and offset 0 are A000012(n) (powers of 1), <u>A000247(n + 3</u>), <u>A000478(n + 6</u>), <u>A058844(n + 8</u>), ... The row sums give <u>A000311(n + 1</u>) (Schroeder's fourth problem). The signed triangle has row sums <u>A133942</u> $(n) = (-1)^n n!, n \ge 1$.

It should be mentioned that the same problem is treated in A134685 in OEIS[7], however the order of partitions is different and fewer terms are given.

It turns out that in the f_n , $n \geq 2$, formula, which derives from partitions of n-1 in the A-St order, one finds exactly the *g*-coefficients fitting to the partitions of 2(n-1) with n-1 parts, also sorted in A-St order. This is the main observation of this note. Before proving this we first give an example. The formula for f_5 is

$$\hat{f}_5 = -1 g_1^3 g_5 + 15 g_1^2 g_2 g_4 + 10 g_1^2 g_3^2 - 105 g_1 g_2^2 g_3 + 105 g_2^4 .$$
⁽¹¹⁾

Compare the array Tab.1, line n = 4, for the M3 numbers [-1, 15, 10, -105, 105], and [1], p. 831, for the order of all the partitions of 4, whose exponents determine these M3 numbers according to the above given prescription, and the 4 parts partitions of 8 which produce the q coefficients.

This 1-1 mapping of partitions of n in A-St order to the partitions of 2n with n parts (we used here $(n-1) \rightarrow n$ is the content of the following *Proposition*. But first a simple Lemma is needed.

Lemma:

Every element of Pa(2n,n), the set of partitions of 2n with n parts, has the last n-1 exponents vanishing. This means that there is no part exceeding n + 1.

Proof:

Every exponent in the set $\{e_{n+2}, e_{n+3}, \dots, e_{2n}\}$ can at most be either 0 or 1, because a partition of 2nis considered. Moreover, if any of these exponents is 1, say $e_{n+k} = 1$, for $k \in \{2, 3, ..., n\}$, then in order to have n parts one would have to use n-1 times the part 1, but this already overshoots 2n because (n+k) + (n-1) 1 > 2n. Therefore, all of these exponents have to vanish.

Proposition:

There is a bijective mapping between Pa(n), the set of partitions of n and Pa(2n, n), the set of partitions of 2n with n parts, which respects the A-St order. This mapping is the following one.

i) $(e_1, e_2, \dots, e_n) \in Pa(n) \mapsto (n - m, e_1, e_2, \dots, e_n, 0, \dots, 0) \in Pa(2n, n).$

Here the exponent notation for partitions is used. $m := \sum_{j=1}^{n} e_j$. In the image the last n-1 exponents,

those for the parts n + 2, n + 3, ..., 2n, are all vanishing, in accordance with the Lemma.

ii)
$$(e_1, e_2, \dots, e_{n+1}, 0, \dots, 0) \in Pa(2n, n) \mapsto (e_2, e_3, \dots, e_{n+1}) \in Pa(n)$$

The last n-1 exponents in any Pa(2n,n) partition all vanish due to the Lemma. The parts number of

the image is $m = \sum_{j=2}^{n+1} e_j = n - e_1.$

Example: The list of the seven n = 5 partitions in A-St order is (written in exponent notation) [(0,0,0,0,1), (1,0,0,1,0), (0,1,1,0,0), (2,0,1,0,0), (1,2,0,0,0), (3,1,0,0,0), (5,0,0,0,0)].This list is mapped, entry by entry, to the following list, which turns out to be also A-St ordered. [(4,0,0,0,0,1,0,0,0,0), (3,1,0,0,1,0,0,0,0,0), (3,0,1,1,0,0,0,0,0,0), (2,2,0,1,0,0,0,0,0,0), (3,0,1,0,0,0,0,0,0), (3,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0,0), (3,0,0,0),(2, 1, 2, 0, 0, 0, 0, 0, 0), (1, 3, 1, 0, 0, 0, 0, 0, 0), (0, 5, 0, 0, 0, 0, 0, 0, 0)].

Proof:

i) The images are partitions of Pa(2n,n) because $1(n-m) + \sum_{j=1}^{n} (j+1)e_j = n - \sum_{j=1}^{n} e_j + \sum_{j=1}^{n} e$

n + n = 2n.

If in the A-St ordered list of the partitions of n, partition p_2 follows partition p_1 , then the parts number m is either identical or larger for p_2 . If m coincides then the A-St order is lexicographic, and the images have identical exponent e_1 and the remaining parts of the two images take over the lexicographic order (the parts are just shifted by +1). Therefore, in this case the image of p_2 follows also the image of p_1 because A-St order in Pa(2n,n) is just lexicographic. If p_2 has larger parts number m than p_1 , the exponent e_1 of the image of p_2 is smaller than the one for the image of p_1 and the remaining parts are in lexicographic order. Therefore, also in this case lexicographic order ensues.

ii) It is clear that this map leads to partitions of n with parts number $m = n - e_1$, because

$$\sum_{j=1}^{n} j e_{j+1} = \sum_{j=1}^{n+1} j e_j - \sum_{j=1}^{n+1} e_j = 2n - n = n$$

For Pa(2n, n) partitions the A-St order is just lexicographic (the parts number is fixed; it is n). If from this set a partition p_2 follows lexicographically p_1 , then the parts number $(n - e_1)$ of the image of p_2 is never smaller than the one of the image of p_1 . If it is larger than the image of p_2 follows in A-St order the one of p_1 . If the parts number of the images coincide, the original lexicographic order from the two $\{e_2, e_3, \dots e_{n+1}\}$ exponent sets is carried over to the images, hence they are A-St ordered.

This proves the bijective mapping between the lists of A-St ordered partitions L(n) for partitions of n and L(2n,n) for n parts partitions of 2n: $L(n)[k] \longleftrightarrow L(2n,n)[k]$, for $k = 1, ..., p(n) = \underline{A000041}(n)$.

Corollary:

<u>A000041(n)</u> =: p(n) = p(2n, n) := A008284(n, m).

Examples: p(4) = 5 = p(8,4), p(5) = 7 = p(10,5).

Now the assertion about the \hat{f}_n structure in terms of A-St ordered partitions of Pa(2(n-1), n-1) is obvious. Remember that we have to use the *Proposition* with $n \to n-1$. Just observe that the exponent of the coefficient g_1 in eq. (8) is $\sum_{j=1}^{n-1} (j-1) e_j = \sum_{j=1}^{n-1} j e_j - \sum_{j=1}^{n-1} e_j = (n-1) - m$, like expected for the map **i**) of the *Proposition* with $n \to n-1$. Also the exponents of the other $g_k, k \in \{2, 3, ..., n\}$, fit this map. Thus we have shown, that the following formulae can be used for \hat{f}_n , instead of eqs. (6) to (8).

$$\hat{f}_n = \sum_{k=1}^{p(n-1)} a(n-1,k) \prod_{j=1}^n g_j^{e_j(k)}, \ n \in \{2,3,...,\} \text{ and } \hat{f}_1 = 1,$$
 (12)

with the signed partition array $a(n,k) := \underline{A176740}(n,k)$ given in *Table 1*, and the exponents $\{e_j(k)\}$ of the k - th partition of Pa(2(n-1), n-1) in A-St, i.e. here in lexicographic order. The number of partitions is $p(n) := \underline{A000041}(n)$. This produces for \hat{f}_n the polynomials given in *Table 3*.

n/k	1	2	3	4	5	6	7	8	9	10	11	12
$\begin{array}{c} 1\\ 2 \end{array}$	-1 -1	3										
3 4	-1 -1	$\begin{array}{c} 10\\ 15 \end{array}$	$-15 \\ 10$	-105	105							
5 6	-1 -1	$\frac{21}{28}$	$\frac{35}{56}$	$-210 \\ 35$	-280 -378	1260 -1260	-945 -280	3150	6300	-17325	10395	
7 8	-1 -1	36 45	84 120	$126 \\ 210$	-630 126	-2520 -990	-1575 -4620	-2100 -6930	6930 -4620	34650 -5775	$15400 \\ 13860$	-51975 83160
:												

TAB. 1:<u>A176740</u>(n,k) partition array

n/k	13	14	15	16	17	18	19	20	21	22
1 2 3 4 5 6 7 8 :	-138600 51975	270270 138600	-135135 15400	-135135	-900900	-600600	945945	3153150	-4729725	2027025

n/m	1	2	3	4	5	6	7	8	9	10	
1 2 3 4 5 6 7 8 9 10 :	1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{r} 3\\10\\25\\56\\119\\246\\501\\1012\\2035\end{array} $	$15 \\ 105 \\ 490 \\ 1918 \\ 6825 \\ 22935 \\ 74316 \\ 235092$	$105 \\ 1260 \\ 9450 \\ 56980 \\ 302995 \\ 1487200 \\ 6914908$	945 17325 190575 1636635 12122110 81431350	$10395 \\ 270270 \\ 4099095 \\ 47507460 \\ 466876410$	1351354729725945945001422280860	2027025 91891800 2343240900	34459425 1964187225	654729075	

TAB. 2: triangle <u>A134991</u> from the unsigned partition array A176740

	n	partition polynomials for $n-1$ parts partitions of $2\left(n-1\right)$
	1	1
	2	$-g_2$
	3	$-g_1g_3+3g_2^2$
	4	$-g_1^2 g_4 + 10 g_1 g_2 g_3 - 15 g_2^3$
	5	$-g_1^3 g_5 + 15 g_1^2 g_2 g_4 + 10 g_1^2 g_3^2 - 105 g_1 g_2^2 g_3 + 105 g_2^4$
-7	6	$-g_{1}^{4}g_{6} + 21 g_{1}^{3}g_{2}g_{5} + 35 g_{1}^{3}g_{3}g_{4} - 210 g_{1}^{2}g_{2}^{2}g_{4} - 280 g_{1}^{2}g_{2}g_{3}^{2} + 1260 g_{1}g_{2}^{3}g_{3} - 945 g_{2}^{5}$
	7	$-g_{1}^{5}g_{7} + 28g_{1}^{4}g_{2}g_{6} + 56g_{1}^{4}g_{3}g_{5} + 35g_{1}^{4}g_{4}^{2} - 378g_{1}^{3}g_{2}^{2}g_{5} - 1260g_{1}^{3}g_{2}g_{3}g_{4} - 280g_{1}^{3}g_{3}^{3} + 3150g_{1}^{2}g_{2}^{3}g_{4} + 6300g_{1}^{2}g_{2}^{2}g_{4}^{2} - 17325g_{1}g_{2}^{4}g_{3} + 10395g_{2}^{6}$
	8	$-g_{1}^{6}g_{8} + 36g_{1}^{5}g_{2}g_{7} + 84g_{1}^{5}g_{3}g_{6} + 126g_{1}^{5}g_{4}g_{5} - 630g_{1}^{4}g_{2}^{2}g_{6} - 2520g_{1}^{4}g_{2}g_{3}g_{5} - 1575g_{1}^{4}g_{2}g_{4}^{2} - 2100g_{1}^{4}g_{3}^{2}g_{4} + 6930g_{1}^{3}g_{2}^{2}g_{3}g_{5} + 34650g_{1}^{3}g_{2}^{2}g_{3}g_{4} + 15400g_{1}^{3}g_{2}g_{3}^{3} - 51975g_{1}^{2}g_{2}^{4}g_{4} - 138600g_{1}^{2}g_{2}^{2}g_{3}^{2} + 270270g_{1}g_{2}^{5}g_{3} - 135135g_{2}^{7}$
	9	$-g_{1}^{7}g_{9} + 45g_{1}^{6}g_{2}g_{8} + 120g_{1}^{6}g_{3}g_{7} + 210g_{1}^{6}g_{4}g_{6} + 126g_{1}^{6}g_{2}^{2} - 990g_{1}^{5}g_{2}^{2}g_{7} - 4620g_{1}^{5}g_{2}g_{3}g_{6} - 6930g_{1}^{5}g_{2}g_{4}g_{5} \\ - 4620g_{1}^{5}g_{3}^{2}g_{5} - 5775g_{1}^{5}g_{3}g_{4}^{2} + 13860g_{1}^{4}g_{2}^{3}g_{6} + 83160g_{1}^{4}g_{2}^{2}g_{3}g_{5} + 51975g_{1}^{4}g_{2}^{2}g_{4}^{2} + 138600g_{1}^{4}g_{2}g_{3}^{2}g_{4} + 15400g_{1}^{4}g_{3}^{4} \\ - 135135g_{1}^{3}g_{2}^{4}g_{5} - 900900g_{1}^{3}g_{2}^{3}g_{3}g_{4} - 600600g_{1}^{3}g_{2}^{2}g_{3}^{3} + 945945g_{1}^{2}g_{2}^{5}g_{4} + 3153150g_{1}^{2}g_{2}^{4}g_{3}^{2} - 4729725g_{1}g_{2}^{6}g_{3} + 2027025g_{2}^{8}$
	10	$-g_{1}^{8}g_{10} + 55g_{1}^{7}g_{2}g_{9} + 165g_{1}^{7}g_{3}g_{8} + 330g_{1}^{7}g_{4}g_{7} + 462g_{1}^{7}g_{5}g_{6} - 1485g_{1}^{6}g_{2}^{2}g_{8} - 7920g_{1}^{6}g_{2}g_{3}g_{7} - 13860g_{1}^{6}g_{2}g_{4}g_{6} \\ - 8316g_{1}^{6}g_{2}g_{5}^{2} - 9240g_{1}^{6}g_{3}^{2}g_{6} - 27720g_{1}^{6}g_{3}g_{4}g_{5} - 5775g_{1}^{6}g_{4}^{3} + 25740g_{1}^{5}g_{2}^{2}g_{7} + 180180g_{1}^{5}g_{2}^{2}g_{3}g_{6} + 270270g_{1}^{5}g_{2}^{2}g_{4}g_{5} \\ + 360360g_{1}^{5}g_{2}g_{3}^{2}g_{5} + 450450g_{1}^{5}g_{2}g_{3}g_{4}^{2} + 200200g_{1}^{5}g_{3}^{3}g_{4} - 315315g_{1}^{4}g_{4}^{2}g_{6} - 2522520g_{1}^{4}g_{2}^{3}g_{3}g_{5} - 1576575g_{1}^{4}g_{2}^{3}g_{4}^{2} \\ - 6306300g_{1}^{4}g_{2}^{2}g_{3}^{2}g_{4} - 1401400g_{1}^{4}g_{2}g_{3}^{4} + 2837835g_{1}^{3}g_{2}^{5}g_{5} + 23648625g_{1}^{3}g_{4}^{4}g_{3}g_{4} + 21021000g_{1}^{3}g_{2}^{3}g_{3}^{3} - 18918900g_{1}^{2}g_{2}^{6}g_{4} \\ - 75675600g_{1}^{2}g_{2}^{5}g_{3}^{2} + 91891800g_{1}g_{2}^{7}g_{3}^{2}] - 34459425g_{2}^{9}$
	:	

TAB. 3: E.g.f. inversion: partition polynomials for $\{\hat{f}_n\}_1^{10}$	$, \ \ f_n = rac{1}{g_1^{2n-1}} \hat{f}_n$
--	---

References

- Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, reprinted as Dover publication, seventh printing 1968, New York, 1972
- [2] R. Aldrovandi, Special Matrices of Mathematical Physics, World Scientific, 2001
- [3] Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, 2002
- [4] L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, Boston, 1974
- [5] G. M. Fichtenholz, Differential- und Integralrechnung II, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964
- [6] J. Riordan, Combinatorial Identities, Robert E. Krieger Publ. Comp., Huntington, New York, 1979
- [7] N.J.A. Sloane's On-Line Encyclopedia of Integer Sequences, http//:www.research.att.com/~njas/sequences/index.html
- [8] E. Zeidler, Quantum Field Theory II, Quantum Electrodynamics, Springer 2009

AMS MSC numbers: 13F25, 40E99, 05A17.

Keywords: power series inversion, Lagrange series, exponential generating function, Bell polynomial, partitions.

(Concerned with OEIS sequences <u>A000012,A000041</u>, <u>A000247</u>, <u>A000311,A000478,A0082484,A036040</u>, <u>A058844,A133942,A134991</u>, <u>A176740</u>)