Karlsruhe January 08 2011

<u>A181875/A181876</u>. Minimal Polynomials of $\cos\left(\frac{2\pi}{n}\right)$

Wolfdieter L a n g 1

The minimal polynomial of an algebraic number α of degree d_{α} is the monic, minimal degree rational polynomial which has as root, or as one of its roots, α . This minimal degree d_{α} is 1 iff α is rational, and the minimal polynomial in this case is $p(x) = x - \alpha$. For the notion 'minimal polynomial of an algebraic number' see, *e.g.*, [6], p. 28.

For the algebraic number $\cos\left(\frac{2\pi}{n}\right)$, for $n \in \mathbb{N}$, the degree (called here d(n)) is d(1) = 1, d(2) = 1, and $d(n) = \frac{\varphi(n)}{2}$, with Euler's totient function $\varphi(n) = \underline{A000010}(n)$. See [3], and [6], Theorem 3.9, p. 37. In [7] one finds the degree sequence as $d(n) = \underline{A023022}(n)$, $n \geq 2$, with d(1) = 1. These minimal polynomials of $\cos\left(\frac{2\pi}{n}\right)$ have been discussed in [9] where they have been called $\Psi_n(x)$. We will call them $\Psi(n, x)$, and give a list of the first 30 polynomials in Table 1, as well as the numerator and denominator arrays of the coefficients $\underline{A181875}(n,m)$ and $\underline{A181876}(n,m)$ in Table 2 and Table 3, respectively. The rational coefficients for the monic polynomials $\Psi(n, x)$ will be given in Table 4. Table 5 shows the head of the integer coefficient array of the non-monic $\psi(n, x) := 2^{d(n)} \Psi(n, x)$ polynomials. This is $\underline{A181877}(n,m)$.

In [9] one finds a recurrence relation for the minimal polynomials $\Psi(n, x)$ based on *Chebyshev's* T-polynomials. We give now a generic example for the application of this recurrence. The example $\Psi(9, x)$ has been treated in the mentioned reference. Assume that one wishes to compute $\Psi(n, 28)$. First consider the list of divisors of 28, *viz* [1, 2, 4, 7, 14, 28]. According to reference [9], eq. (3), one needs, what we call Tnf(n, x), which is the factorized form of $(T(\frac{n}{2} + 1, x) - T(\frac{n}{2} - 1, x))/2^{\frac{n}{2}}$ if n is even, and of $(T(\frac{n+1}{2}, x) - T(\frac{n-1}{2}, x))/2^{\frac{n-1}{2}}$ if n is odd. The formula which leads to the recurrence is $Tnf(n, x) = \prod_{d|n} \Psi(n, d)$, with the divisors d of n. Now we have

$$\Psi(28,x) = \frac{Tnf(28,x)Tnf(2,x)}{Tnf(14,x)Tnf(4,x)}.$$
(1)

The numerators and denominators follow from the divisors of 28 and the Tnf(n, x) formula in terms of the Ψ -products. Tnf(28, x) has besides the wanted $\Psi(n, 28)$ also $\Psi(1, x)$, $\Psi(2, x)$, $\Psi(4, x)$, $\Psi(7, x)$, and $\Psi(14, x)$. Therefore one divides Tnf(14, x), which, in excess of $\Psi(14, x)$ has also the factors $\Psi(1, x)$, $\Psi(2, x)$, $\Psi(7, x)$. In order to divide the remaining $\Psi(4, x)$ one divides Tnf(4, x), which, however, also has as factors $\Psi(1, x)$ and $\Psi(2, x)$, which is Tnf(2, x), and this then appears in the numerator. This kind of compensation procedure works in general, and the results given in *Table 1* have been found by a Maple [5] program, based on the Tnf-formula from reference [9]. See also the W. Lang link under <u>A007955</u> which deals with the (unique) representation of any natural number in terms of products of divisors which is used in this program. The answer for the example is thus

$$\psi(28,x) = 64x^6 - 112x^4 + 56x^2 - 7, \qquad (2)$$

¹ wolfdieter.lang@kit.edu, http://www-itp.particle.uni-karlsruhe.de/~wl

or

$$\Psi(28,x) = x^6 - \frac{7}{4}x^4 + \frac{7}{8}x^2 - \frac{7}{64}.$$
(3)

Due to the Lemma found on p. 473 of [9] the linear factors of the minimal polynomials are

$$\Psi(n,x) = \prod_{\substack{k=0\\gcd(k,n)=1}}^{\lfloor (\rfloor \frac{n}{2})} \left(x - \cos\left(\frac{2\pi k}{n}\right)\right), \qquad (4)$$

where gcd(k,n) is the greatest common divisor of k and n. Remember that gcd(0,n) = n, for $n \ge 1$, hence k = 0 is not allowed for $n \ge 2$. Even though this looks like a non-rational polynomial in general, it is in fact rational due to the *Lemma*. For example, the two zeros of $\Psi(5,x)$ are $\cos(2\pi/5) = \frac{\phi - 1}{2}$ and $\cos\left(\frac{4\pi}{5}\right) = -\frac{\phi}{2}$, with $\phi := \frac{1}{2}(1 + \sqrt{5})$ (the golden section). Therefore,

 $\Psi(5,x) = (x - \frac{\phi - 1}{2})(x + \frac{\phi}{2}) = x^2 + \frac{1}{2}x - \frac{1}{4}$, due to the property $(\phi - 1)\phi = 1$, rendering a rational polynomial $\Psi(5,x)$.

The minimal polynomials $\Psi(n, x)$, for n=1,...,30, have been listed as a comment on <u>A023022</u> (the degree sequence) by Artur Jasinski. They are given here in Table 1 in falling powers of x.

Note added Feb 23 and 25 2011

Gary Detlefs noticed, in an e-mail to the author, for some instances that $\Psi(n, \cos(x))$ can be written as a sum over $\cos(kx)$. His observation generalizes to the following formulae for $\Psi(n, x)$ for prime numbers n = p. We use the $\Psi(n, x)$ formula given in the W. Lang link under <u>A007955</u> which resulted from the recurrence relation given in [9]. There one finds the definition of t(n, x), and we will use Chebyshev's Tand U-polynomials.

$$2\Psi(2,x) = 2\frac{t(2,x)}{t(1,x)} = \frac{T(2,x) - T(0,x)}{T(1,x) - T(0,x)} = 2\sum_{l=0}^{1} T(l,x) = U(1,x) + 2.$$
(5)

$$2^{k} \Psi(p,x) = 2^{k} \frac{t(p,x)}{t(1,x)} = \frac{T(k+1,x) - T(k,x)}{T(1,x) - T(0,x)} = 2 \sum_{l=0}^{k} T(l,x) - 1 =$$
(6)

$$U(k,x) + U(k-1,x)$$
, with $p = 2k + 1$, prime. (7)

Proof:

First consider the sum over Chebyshev's T-polynomials. This reduces (after an index shift) to a telescopic sum when the 'trace' formula T(n,x) = (U(n,x) - U(n-2,x))/2 is used. Then multiply the denominator T(1,x) - 1 with the result of the sum, *i.e.* U(k,x) + U(k-1,x), and use the following well known formula 2T(n,x)U(m,x) = U(m+n,x) + U(m-n,x), for $m \ge n$ (the formula for m < n is 2T(n,x)U(m,x) = U(m+n,x) + U(n-m-2,x), with U(-1,x) := 0). This then yields T(k+1,x) - T(k,x) if one applies the 'trace' formula for the T-polynomials. The case p = 2 works the same way, but the -1 in the sum is not present. \Box

This generalizes to the following

Proposition:

For powers of prime numbers p from <u>A000040</u> the minimal polynomials $\Psi(p^m, x)$ can be written in the following forms involving *Chebyshev's U* (or *S*) and *T*-polynomials <u>A049310</u> and <u>A053120</u>, respectively.

a) If p = 2 then

$$2^{2^{m-2}}\Psi(2^m,x) = \frac{U(2^{m-1}-1,x)}{U(2^{m-2}-1,x)} = 2T(2^{m-2},x) , \ m \in \{2,3,\ldots\}.$$
(8)

b) For odd primes p = 2k + 1 one finds for $m \in \mathbb{N}$

$$2^{p^{m-1}(p-1)/2}\Psi(p^m,x) = \frac{T(\frac{p^m+1}{2},x) - T(\frac{p^m+1}{2}-1,x)}{T(\frac{p^{m-1}+1}{2},x) - T(\frac{p^{m-1}+1}{2}-1,x)} =$$
(9)

$$2\sum_{j=1}^{k} T(p^{m-1}\frac{p-(2j-1)}{2}, x) + 1 = 2\sum_{l=1}^{k} T(p^{m-1}l, x) + 1.$$
 (10)

Proof: One starts with the general formula for $\Psi(n, x)$ given in the W. Lang link under <u>A007955</u> in eq. (1). The powers of 2 there are collected and written in front of $\Psi(n, x)$. The divisor product representation for powers p^m is $dpr(p^m) = \frac{a(p^m)}{a(p^{m-1})}$ with the divisor products a(k). This determines the formula for $\Psi(p^m, x)$ in terms of a quotient of T-polynomials which is rewritten in this proposition. **a)** One has to use $m \ge 2$ for the following. Here $2^{2^{m-2}}\Psi(2^m, x) = \frac{T(2^{m-1}+1, x) - T(2^{m-1}-1, x)}{T(2^{m-2}+1, x) - T(2^{m-2}-1, x)}$ is rewritten with the help of the known formula $T(n+1, x) - T(n-1, x) = 2(x^2-1)U(n-1, x)U(0, x) = 2(x^2-1)U(n-1, x)$ (see e.g., [4], p.261, 1st line). This produces (certainly for $x^2 \ne 1$, but it is also true for these values) $\frac{U(2^{m-1}-1, x)}{U(2^{m-2}-1, x)}$. Then one uses the known identity 2T(n, x)U(n-1, x) = U(2n-1, x) (see e.g., [4], p.260, last line) which will produce the assertion.

b) This is more involved and uses the identity 2T(n, x)T(m, x) = T(n+m, x) + T(n-m, x) if $n \ge m$ (see e.g., [4], p.260, 5.7.3. 1st formula). The general formula is given in the first equation of the *proposition*. One shows that the numerator can be written as the sum given as second eq. multiplied by the denominator. This will result in a telescopic summation with the first term just the two numerator terms and the last term the negative of the two denominator terms. Hence, when the +1 term after the summation is used, one is left with just the numerator terms. We give an example for this cancellation mechanism before going into the proof:

$$p = 5, (k = 2), m = 4: \ 2^{250} \Psi(5^4) = \frac{T(313, x) - T(312, x)}{T(63, x) - T(62, x)}.$$
(11)

$$(2T(250,x) + 2T(125,x) + 1) (T(63,x) - T(62,x)) =$$
(12)

$$\Gamma(313, \mathbf{x}) - \Gamma(312, \mathbf{x}) + T(187, x) - T(188, x) +$$
 (13)

T(125+63,x) - T(187,x) + T(125-63,x) - T(63,x)(14)

+T(63,x) - T(62,x). (15)

This kind of telescoping works also in the general case. The first term of the sum is $2T(a_{m,1}, x)$ with $a_{m,1} := p^{m-1}\frac{p-1}{2}$ which when multiplied with the denominator $T(b_m, x) - T(b_m - 1, x)$, with $b_m := \frac{p^{m-1}+1}{2}$, becomes the numerator because $a_{m,1} + b_m = \frac{p^m+1}{2}$, and a remainder $T(a_{m,1} - b_m, x) - T(a_{m,1} - b_m + 1, x)$. The second term of the sum, after multiplication, produces an argument $a_{m,2} + b_m$, with $a_{m,2} := p^{m-1}\frac{p-3}{2}$ which is in fact $a_{m,1} - b_m + 1$. Therefore, the second term of the sum cancels the remainder from the multiplication of the first term of the sum, and produces a new remainder , then canceled by the first two terms after multiplication of the third term from the sum, etc.. The last term of the sum then has, after multiplication, a remainder which is $T(b_m - 1, x) - T(b_m, x)$, due to $p^{m-1} \cdot 1 - b_m = b_m - 1$. This remainder is canceled by the +1 term when multiplied with $T(b_m, x) - T(b_m - 1, x)$.

On Feb 25 2011 I found a paper by *D. Surowski* and *P. McCombs* [8] on the web where (contrary to the title) the minimal polynomial of $2 \cos\left(\frac{2\pi}{p}\right)$ for odd primes *p* has been computed in Theorem 3.1, where it is called $\Theta_p(x)$. There is a misprint: σ_{2k-1} , not σ_{2k+1} . The relation to the notation here is (see the proposition for odd *p* and m = 1) $\Theta_p(2x) = 2^{(p-1)/2} \Psi(p, x)$.

On Feb 26 2011 I found the paper by Chan-Lye Lee and K. B. Wong [2] with factorizations of *Chebyshev's* U(2n-1,x) and U(2n,x) polynomials, and references to the minimal polynomial papers [8] and [1]. The paper by *S. Beslin* and *V. de Angelis* [1] gives correct formulae for the (integer) minimal polynomials of $\sin\left(\frac{2\pi}{p}\right)$ and $\cos\left(\frac{2\pi}{p}\right)$ for odd primes.

References

- [1] S. Beslin and V. de Angelis, The minimal Polynomials of $\sin(\frac{2\pi}{p})$ and $\cos(\frac{2\pi}{p})$, Mathematics Magazine 77,2 (2004) 146-9. http://www.maa.org/pubs/mag_apr04_toc.html.
- [2] Chan-Lye Lee and K. B. Wong, On Chebyshev's polynomials and certain combinatorial identities, Bulletin of the Malaysian Mathematical Sciences Soc., November 17, 2009, http://www.emis.de/journals/BMMSS/accepted_papers.htm.
- [3] D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40,8 (1933) 165-6.
- [4] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin, 3rd edition, 1966.
- [5] Maple http://www.maplesoft.com/
- [6] I. Niven, *Irrational Numbers*, The Math. Assoc, of America, second printing, distributed by John Wiley and Sons, 1963.
- [7] N.J.A. Sloane's On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
- [8] David Surowski and Paul McCombs, Homogeneous polynomials and the minimal polynomial of $\cos(2\pi/n)$, Missouri J. of Mathematical Sciences, 15,1 (2003) 4-14. A link to the preprint is found under Nr. 28 of http://www.math.ksu.edu/~dbski/cv2.htm#publications.
- [9] William Watkins and Joel Zeitlin, The Minimal Polynomial of $\cos(2\pi/n)$, Am. Math. Monthly 100,5 (1993) 471-4.

AMS MSC numbers: 12D10, 11R04, 33C45.

Keywords: Minimal polynomials, trigonometric algebraic number, Chebyshev T-polynomials.

Concerned with OEIS sequences <u>A000010</u>, <u>A007955</u>, <u>A023022</u>, <u>A181875</u>, <u>A181876</u>, <u>A181877</u>.

Table 1: Minimal polynomials of cos	$\left(\frac{2\pi}{n}\right)$	for $n = 1, 2,, 30$.
-------------------------------------	-------------------------------	-----------------------

n	$\mathbf{\Psi}(\mathbf{n},\mathbf{x})$
1	x-1
2	x+1
3	x + 1/2
4	x
5	$x^2 + (1/2)x - 1/4$
6	x - 1/2
7	$x^3 + (1/2)x^2 - (1/2)x - 1/8$
8	$\frac{x^2 - 1/2}{2}$
9	$\frac{x^3 - (3/4)x + 1/8}{2}$
10	$\frac{x^2 - (1/2)x - 1/4}{4}$
11	$\frac{x^{5} + (1/2)x^{4} - x^{3} - (3/8)x^{2} + (3/16)x + 1/32}{2}$
12	$\frac{x^2 - 3/4}{6}$
13	$\frac{x^{6} + (1/2)x^{5} - (5/4)x^{4} - (1/2)x^{3} + (3/8)x^{2} + (3/32)x - 1/64}{(1/2)x^{2} - (1/2)x^{3} + (3/8)x^{2} + (3/32)x - 1/64}$
14	$\frac{x^{3} - (1/2)x^{2} - (1/2)x + 1/8}{4 - (1/2)x^{2} - (1/2)x + 1/8}$
15	$\frac{x^4 - (1/2)x^3 - x^2 + (1/2)x + 1/16}{4 - 2 - 1/2}$
16	$\frac{x^4 - x^2 + 1/8}{(1 + 2)^2}$
17	$\frac{x^{5} + (1/2)x^{7} - (7/4)x^{5} - (3/4)x^{5} + (15/16)x^{4} + (5/16)x^{5} - (5/32)x^{2} - (1/32)x + 1/256}{(1/32)x^{4} - (1/32)x^{4} - (1/$
18	$\frac{x^{5} - (3/4)x - 1/8}{9 + (1/9) - 8 - 9 - 7 - (7/9) - 6 + (91/16) - 5 + (17/99) - 4 - (7/16) - 3 - (7/64) - 2 + (7/976) - + 1/719$
19	$\frac{x^{5} + (1/2)x^{5} - 2x^{7} - (1/8)x^{5} + (21/16)x^{5} + (15/32)x^{7} - (5/16)x^{5} - (5/64)x^{2} + (5/256)x + 1/512}{4}$
20	$\frac{x^{2} - (5/4)x^{2} + 5/16}{x^{6} - (1/2)x^{5} - (2/2)x^{4} + (2/4)x^{3} + (1/2)x^{2} - (1/4)x + 1/64}$
21	$\frac{x^{5} - (1/2)x^{5} - (3/2)x^{4} + (3/4)x^{5} + (1/2)x^{2} - (1/4)x + 1/64}{5 - (1/2)x^{4} - (3/2)x^{2} + (3/4)x^{5} + (1/2)x^{2} - (1/4)x + 1/64}$
22	$\frac{x^{2} - (1/2)x^{2} - x^{2} + (3/8)x^{2} + (3/10)x - 1/32}{x^{11} + (1/2)x^{10} - (7/2)x^{10} - ($
23	$x^{-} + (1/2)x^{-} - (5/2)x^{-} - (9/8)x^{-} + (9/4)x^{-} + (1/8)x^{-} - (1/8)x^{-} - (55/128)x^{-} + (55/250)x^{-} + (1/5/512)x^{-} - (55/128)x^{-} + (55/250)x^{-} + (55/2$
24	(15/512)x - (5/512)x - 1/2046
24	$\frac{x^{-x} + 1}{10}$ $\frac{x^{10} - (5/2) x^8 + (35/16) x^6 + (1/32) x^5 - (25/32) x^4 - (5/128) x^3 + (25/256) x^2 + (5/512) x - 1/1024}{100}$
26	$\frac{x^{6} - (1/2)x^{5} - (5/4)x^{4} + (1/2)x^{3} + (3/8)x^{2} - (3/32)x^{4} + (20/200)x^{4} + (0/012)x^{4} + (1/02)x^{4}}{(1/02)x^{5} - (5/4)x^{4} + (1/2)x^{3} + (3/8)x^{2} - (3/32)x^{4} + (1/6)x^{4} + (1/6)x^{6} $
20	$\frac{x^{9} - (9/4)x^{7} + (7/16)x^{5} - (15/32)x^{3} + (9/256)x + 1/512}{x^{9} - (9/4)x^{7} + (27/16)x^{5} - (15/32)x^{3} + (9/256)x + 1/512}$
28	$\frac{x^{6}}{x^{6}} = \frac{(7/4)x^{4}}{(7/8)x^{2}} + \frac{(7/8)x^{2}}{(7/64)x^{4}} + \frac{(7/8)x^{2}}{(7/64)x^{4}}$
29	$\frac{x^{14} + (1/2)x^{13} - (13/4)x^{12} - (3/2)x^{11} + (33/8)x^{10} + (55/32)x^9 - (165/64)x^8 - (15/16)x^7 + (15/16)x^7 $
	$(107/128) x^{6} + (63/256) x^{5} - (63/512) x^{4} - (7/256) x^{3} + (7/1024) x^{2} + (7/8192) x - 1/16384$
30	$\frac{(1/2)^{3}}{x^{4} + (1/2)x^{3} - x^{2} - (1/2)x + 1/16}$
:	
:	

n/m	0	1	2	3	4	5	
1	-1	1					
2	1	1					
3	1	1					
4	0	1					
5	-1	1	1				
6	-1	1					
7	-1	-1	1	1			
8	-1	0	1				
9	1	-3	0	1			
10	-1	-1	1				
11 :	1	3	-3	-1	1	1	

Table 2: <u>A181875</u>(n,m) array for numerators of coefficients of minimal polynomials of $\cos\left(\frac{2\pi}{n}\right)$

n/m	0	1	2	3	4	5	
1	1	1					
2	1	1					
3	2	1					
4	1	1					
5	4	2	1				
6	2	1					
7	8	2	2	1			
8	2	1	1				
9	8	4	1	1			
10	4	2	1				
11 :	32	16	8	1	2	1	

Table 3: <u>A181876</u>(n,m) array for denominators of coefficients of minimal polynomials of $\cos\left(\frac{2\pi}{n}\right)$

n/m	0	1	2	3	4	5	
1	-1	1					
2	1	1					
3	1/2	1					
4	0	1					
5	-1/4	1/2	1				
6	-1/2	1					
7	-1/8	-1/2	1/2	1			
8	-1/2	0	1				
9	1/8	-3/4	0	1			
10	-1/4	-1/2	1				
11 :	1/32	3/16	-3/8	-1	1/2	1	

Table 4: <u>A181875(n,m)/A181876(n,m)</u> array for coefficients of minimal polynomials of $\cos\left(\frac{2\pi}{n}\right)$

n/m	0	1	2	3	4	5	
1	-2	2					
2	2	2					
3	1	2					
4	0	2					
5	-1	2	4				
6	-1	2					
7	-1	-4	4	8			
8	-2	0	4				
9	1	-6	0	8			
10	-1	-2	4				
11 :	1	6	-12	-32	16	32	