A181878, Coefficient array for square of Chebyshev S-polynomials

Wolfdieter Lang ${ }^{1}$

The ordinary generating function (o.g.f.) for the square of the Chebyshev S-polynomials $\underline{\text { A049310 }}$ is found from the identity [?], p. 261, second formula with $U_{n}\left(\frac{x}{2}\right)=S_{n}(x)$ and $n \rightarrow n+1$

$$
\begin{equation*}
\left(S_{n}(x)\right)^{2}=\frac{1}{2\left(1-\left(\frac{x}{2}\right)^{2}\right)}\left(1-T_{2(n+1)}\left(\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

with the Chebyshev T-polynomials A053120. This identity is proved by employing the de Moivre-Binet formulae for the S - and T - polynomials for $x=q+q^{-1}$, viz

$$
\begin{equation*}
S_{n-1}\left(q+q^{-1}\right)=\frac{q^{n}-q^{-n}}{q-q^{-1}} \quad, \quad T_{n}\left(\frac{q+q^{-1}}{2}\right)=\frac{1}{2}\left(q^{n}+q^{-n}\right) \tag{2}
\end{equation*}
$$

after some simple algebra.
From the known o.g.f. (e.g. from [?], p. 259 with $T_{0}=1$ or [?], eq. (1.105), p. 41)

$$
\begin{equation*}
T(x, z):=\sum_{n=0}^{\infty} T_{n}\left(\frac{x}{2}\right) z^{n}=\frac{1-z \frac{x}{2}}{1-x z+z^{2}} \tag{3}
\end{equation*}
$$

one finds from one part of the bisection (remember that $G_{\text {even }}(x)=\frac{1}{2}(G(\sqrt{x})+G(-\sqrt{x}))$ for the o.g.f.s)

$$
\begin{equation*}
\sum_{n=0}^{\infty} T_{2(n+1)}\left(\frac{x}{2}\right) z^{n}=\frac{-1+\frac{x^{2}}{2}-z}{(1+z)^{2}-x^{2} z} \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
S(x, z) & :=\sum_{n=0}^{\infty} S_{n}^{2}(x) z^{n}=\frac{1}{2\left(1-\left(\frac{x}{2}\right)^{2}\right)}\left(\frac{1}{1-z}-\frac{-(1+z)+\frac{x^{2}}{2}}{(1+z)^{2}-x^{2} z}\right) \tag{5}\\
& =\frac{1+z}{1-z} \frac{1}{1+\left(2-x^{2}\right) z+z^{2}} . \tag{6}
\end{align*}
$$

This produces, for example, the correct o.g.f. for the square of the even indexed Fibonacci numbers if one puts $x=3$, using $S_{n}(3)=F_{2(n+1)}$. See A049684. Other o.g.f. instances follow by putting $x=0$: $\underline{\text { A } 000035} ; x=+1$ or $x=-1:$ A011655; $x=2: \underline{\text { A000290 }} ; x=i: \underline{\text { A007598 (squared Fibonacci); } x=\sqrt{2}: ~}$ $\underline{\text { A007877 }}(n+1)$ and $x=6$: $\underline{\text { A001110 }}$.
Because of the denominator factor $1-z$ the polynomials $S_{n}^{2}(x)$ generated by $S(x, z)$ are the partial sums of the polynomials $s_{n}(x)$ generated by $s(x, z):=\frac{1+z}{1+\left(2-x^{2}\right) z+z^{2}}$. The coefficients of these $s_{n}(x)$ polynomials in x^{2} constitute the Riordan triangle $\left(\frac{1}{1+x}, \frac{x}{(1+x)^{2}}\right) \underline{\text { A129818 }}(n, k)$. This means that

[^0]the o.g.f. for the sequence in the column with number k (with leading zeros) is $\frac{1}{1+x}\left(\frac{x}{(1+x)^{2}}\right)^{k}$, $0 \leq k \leq n$.
The present coefficient array $\underline{\text { A181878 }}(n, m)$ is obtained for even row numbers $n=2 k$ from $\left[x^{2 m}\right] S_{2 k}^{2}(x)$ (this notation stands for the coefficient of $x^{2 m}$ of the $S_{2 k}^{2}(x)$ polynomial of degree $2 k$), and for odd row numbers $n=2 k+1$ from $\left[x^{2 m}\right] \frac{S_{2 k+1}^{2}(x)}{x^{2}}$. This produces the array shown in table 1 . The row length sequence is A109613, the repeated odd numbers. If one tabulates $\left[x^{2 m}\right] S_{n}^{2}(x)$ one will find the number triangle $\underline{\operatorname{A158454}}(n, k)$, the Riordan array $\left(\frac{1}{1-x^{2}}, \frac{x}{(1+x)^{2}}\right)$, shown in table 2 , which means that the o.g.f. for the sequence in the column with number k (with leading zeros) is $\frac{1}{1-x^{2}}\left(\frac{x}{(1+x)^{2}}\right)^{k}$, $0 \leq k \leq n$. The o.g.f. $S(x, z)$ for the row polynomials in the variable x^{2} coincides indeed with the one obtained for this Riordan triangle. From the (ordinary) convolution of the two sequences generated by $\frac{1}{1-x^{2}}$ and $\left(\frac{x}{(1+x)^{2}}\right)^{k}$ one finds the exlicit sum form
\[

$$
\begin{equation*}
\underline{\operatorname{A158454}}(n, k)=(-1)^{n-k} \sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n+k-1-2 j}{2 k-1}, 0 \leq k \leq n \tag{7}
\end{equation*}
$$

\]

The present array has the odd numbered rows shifted by one entry to the left due to the division by x^{2}. The o.g.f.s for the polynomials of the even and odd numbered rows are found after bisection of the o.g.f for $S_{n}\left(x^{2}\right)$ given above. For the even row numbers one has

$$
\begin{equation*}
\sum_{k=0}^{\infty} S_{2 k}^{2}(\sqrt{x}) z^{n}=\frac{1}{2}(S(\sqrt{x}, \sqrt{z})+S(\sqrt{x},-\sqrt{z})) \tag{8}
\end{equation*}
$$

The result is

$$
\begin{equation*}
\sum_{k=0}^{\infty} S_{2 k}^{2}(\sqrt{x}) z^{n}=\frac{1-2(1-x) z+z^{2}}{(1-z)\left(1-\left(2-4 x+x^{2}\right) z+z^{2}\right)} \tag{9}
\end{equation*}
$$

Similarly, for the odd numbered rows with

$$
\begin{equation*}
\frac{1}{x} \sum_{k=0}^{\infty} S_{2 k+1}^{2}(\sqrt{x}) z^{n}=\frac{1}{2 x \sqrt{z}}(S(\sqrt{x}, \sqrt{z})-S(\sqrt{x},-\sqrt{z})) \tag{10}
\end{equation*}
$$

one finds

$$
\begin{equation*}
\frac{1}{x} \sum_{k=0}^{\infty} S_{2 k+1}^{2}(\sqrt{x}) z^{n}=\frac{1+z}{1-z} \frac{1}{1-\left(2-4 x+x^{2}\right) z+z^{2}} \tag{11}
\end{equation*}
$$

From the well known explicit form of the coefficients of Chebyshev's T-polynomials A053120, see e.g. [?], eq. (1.96), p. 37 and p. 42 (with a misprint in the binomial identity in the middle of the page: on the r.h.s. the factor should read $\frac{k}{n-k}$, not the reciprocal of this), viz

$$
\begin{equation*}
T_{n}\left(\frac{x}{2}\right)=\frac{1}{2} \sum_{j=0}^{\lfloor n / 2\rfloor}(-1)^{j} \frac{n}{n-j}\binom{n-j}{j} x^{n-2 j} \tag{12}
\end{equation*}
$$

one can compute from eq. (1) the (ordinary) convolution implied by the r.h.s., to find the coefficients of $x^{2 m}$ of $S_{2 n}^{2}(x)$, as well as of $\frac{S_{2 n+1}^{2}(x)}{x^{2}}$. The coefficients of the first factor in eq. (1) are in both cases
$a_{n}=\frac{1}{2^{2 n+1}}$, and in the first computation the second factor yields the coefficients

$$
b_{2 n, l}= \begin{cases}2 & \text { if } \mathrm{l}=0 \tag{13}\\ -(-1)^{l-1} \frac{2 n+1}{2 n+1+l}\binom{2 n+1+l}{2 n+1-l} & \text { if } \mathrm{l}=1,2, \ldots, 2 \mathrm{n}+1\end{cases}
$$

Convolution of these sequences leads to the result for the even row numbers $a(2 n, m):=\underline{\text { A181878 }}(2 n, m)$

$$
\begin{equation*}
a(2 n, m)=\frac{1}{2^{2 m}}+\sum_{k=0}^{m-1}(-1)^{m-k} \frac{1}{2^{2 k+1}} \frac{2 n+1}{2 n+1+m-k}\binom{2 n+1+m-k}{2 n+1-(m-k)} . \tag{14}
\end{equation*}
$$

From the Riordan property of $\underline{\text { A158454 }}$ these coefficients have already been computed with the result

$$
\begin{equation*}
a(2 n, m)=(-1)^{m} \sum_{j=0}^{n}\binom{2 n+m-1-2 j}{2 m-1} . \tag{15}
\end{equation*}
$$

Thus these two expressions have to coincide, providing a binomial identity.
In the computation of the odd numbered rows one uses the coefficients of the second factor in eq. (1)

$$
b(2 n+1, m)= \begin{cases}0 & \text { if } \mathrm{l}=0, \tag{16}\\ -(-1)^{l} \frac{2(n+1)}{2(n+1)+l}\binom{2(n+1)+l}{2(n+1)-l} & \text { if } \mathrm{l}=1,2, \ldots, 2(\mathrm{n}+1) .\end{cases}
$$

Convolution of the sequences leads to the result for the odd numbered rows $a(2 n+1, m):=\underline{\text { A181878 }}(2 n+$ $1, m$)

$$
\begin{equation*}
a(2 n+1, m)=\sum_{k=0}^{m}(-1)^{m-k} \frac{1}{2^{2 k+1}} \frac{2(n+1)}{2(n+1)+m+1-k}\binom{2(n+1)+m+1-k}{2(n+1)-(m+1-k)} . \tag{17}
\end{equation*}
$$

From the Riordan property of A158454 these coefficients have already been computed, and after taking the left shift by one entry into account one has

$$
\begin{equation*}
a(2 n+1, m)=(-1)^{m} \sum_{j=0}^{n}\binom{2 n+1+m-2 j}{2 m+1} . \tag{18}
\end{equation*}
$$

Thus the two sums have to coincide, establishing yet another binomial identity.
The row sums of the present array coincide with those of the Riordan triangle A158454. Therefore their o.g.f. is $\frac{1+x}{1-x} \frac{1}{1-x-x^{2}}=\frac{1+x}{1-x^{3}}$, the period length three sequence $[1,1,0], \underline{\operatorname{A011}} 655(n+1), n \geq$ 1 (see the above above $S(\pm 1, z)$ comment). The alternating row sums of A158454 are generated by $\frac{1+x}{1-x} \frac{1}{1+3 x-x^{2}}, \underline{A 007598}(n+1)(-1)^{n}, n \geq 0$. For the even row numbers of the present array these alternating sums coincide. For the odd numbered row $n=2 k+1$ one has the alternating sums $\underline{\text { A049684 }}(k+1), k \geq 0$ (squares of even indexed Fibonacci numbers).
For a Riordan triangle the concept of the so-called A - and Z - sequence is of interest in order to find recurrence relations (which may sometimes turn out not to be the simplest one, however). See the W. Lang link "Sheffer a- and z- sequences" under A006232, where also references are given. To find these sequences the compositional inverse of F of a Riordan triangle $G(x), F(x)=x \hat{F}(x)$ is needed. In this case $\underline{\text { A158454 }}$ one finds $F^{[-1]}(y)=-1+c(x)=y c(y)^{2}$, with the o.g.f. $c(y)$ of the Catalan

sequence $\underline{\text { A115141 }}=[1,-2,-1,-2,-5,-14,-42, \ldots]$. The Z - sequence turns out to be generated by $F^{[-1]}(y)=-1+c(y)$. This the Catalan sequence with a leading 0 . The recurrence for the entries in column $m=0$ of the number triangle A158454 is then given by

$$
\begin{equation*}
T(n, 0)=\sum_{j=0}^{n-1} Z(j) T(n-1, j), \quad n \geq 1 \tag{19}
\end{equation*}
$$

E.g., $1=T(6,0)=0 \cdot 0+1 \cdot 9+2 \cdot(-24)+5 \cdot 22+14 \cdot(-8)+42 \cdot 1$.

For the other columns one has

$$
\begin{equation*}
T(n, m)=\sum_{j=0}^{n-m} A(j) T(n-1, m-1+j), \quad 1 \leq m \leq n \tag{20}
\end{equation*}
$$

E.g.,
$-80=T(7,2)=1 \cdot(-12)+(-2) \cdot 46+(-1) \cdot(-62)+(-2) \cdot 37+(-14) \cdot(-10)+(-5) \cdot(-10)+(-14) \cdot 1$
These recurrences can be reformulated for the present array $a(n, m)$ as

$$
\begin{align*}
a(2 p, 0) & =\sum_{j=0}^{2(p-1)} Z(j+1) a(2 p-1, j), \quad p \geq 1, \tag{21}\\
a(2 p+1,0) & =\sum_{j=0}^{2 p} A(j) a(2 p, j), \quad p \geq 0 . \tag{22}
\end{align*}
$$

and for $m \geq 1$ (putting $a(n,-1)=0$)

$$
\begin{align*}
a(2 p, m) & =\sum_{j=0}^{2 p-m} A(j) a(2 p-1, m-2+j), \quad p \geq 1, \tag{23}\\
a(2 p+1, m) & =\sum_{j=0}^{2 p-m} A(j) a(2 p, m+j), \quad p \geq 1 . \tag{24}
\end{align*}
$$

References

[1] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, 3rd edition, Springer, Berlin, 1966.
[2] Th. J. Rivlin, Chebyshev Polynomials, 2nd ed., John Wiley \& Sons, New York, 1990.

AMS MSC numbers: 11B83, 33C45, 11B65.
Keywords: Riordan arrays, squares of Chebyshev S-polynomials, binomial identities.

Table 1: Riordan triangle $\left(\frac{1}{1-\mathrm{x}^{2}}, \frac{\mathrm{x}}{(1+\mathrm{x})^{2}}\right) \underline{\text { A158454 }}(\mathrm{n}, \mathrm{m})$, Paul Barry

n/m	0	1	2	3	4	5	6	7	8	9	\ldots
0	1										
1	0	1									
2	1	-2	1								
3	0	4	-4	1							
4	1	-6	11	-6	1						
5	0	9	-24	22	-8	1					
6	1	-12	46	-62	37	-10	1				
7	0	16	-80	148	-128	56	-12	1			
8	1	-20	130	-314	367	-230	79	-14	1		
9	0	25	-200	610	-920	771	-376	106	-16	1	

Table 2: $\underline{\text { A181878 }}(\mathrm{n}, \mathrm{m})$ array

n/m	0	1	2	3	4	5	6	7	8	9	10...
0	1										
1	1										
2	1	-2	1								
3	4	-4	1								
4	1	-6	11	-6	1						
5	9	-24	22	-8	1						
6	1	-12	46	-62	37	-10	1				
7	16	-80	148	-128	56	-12	1				
8	1	-20	130	-314	367	-230	79	-14	1		
9	25	-200	610	-920	771	-376	106	-16	1		
10	1	-30	295	-1106	2083	-2232	1444	-574	137	-18	1

[^0]: ${ }^{1}$ wolfdieter.lang@kit.edu, http://www-itp.particle.uni-karlsruhe.de/~wl

